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Abstract

We analyze the convergence properties of operator product expansions (OPE) for Loren-
tzian CFT four-point functions of scalar operators. We give a complete classification of
Lorentzian four-point configurations. All configurations in each class have the same OPE
convergence properties in s-, t- and u-channels. We give tables including the information
of OPE convergence for all classes. Our work justifies that in a subset of the configuration
space, Lorentzian CFT four-point functions are genuine analytic functions. Our results
are valid for unitary CFTs in d ≥ 2. Our work also provides some Lorentzian regions
where one can do bootstrap analysis in the sense of functions.
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1 Introduction

In this paper we study the convergence properties of operator product expansion (OPE) for
Lorentzian four-point functions in conformal field theories (CFT).

Historically, analyticity of correlation functions is an important bridge connecting
Lorentzian quantum field theories (QFT) and Euclidean QFTs. Starting from a Lorentzian
correlator, we can get a Euclidean correlator by analytically continuing the time variables onto
the imaginary axis [1]. Under certain conditions we can also do the reverse [2–4]. This proce-
dure of analytic continuation, called Wick rotation, allows us to explore the Lorentzian nature
of QFTs which may originate from statistical models in the Euclidean signature.

The Lorentzian correlators are not always genuine functions, instead they belong to a class
of tempered distributions which are called Wightman distributions [5]. It is interesting to know
at which Lorentzian configurations (x1, . . . , xn) the correlators Gn(x1, . . . , xn) are indeed func-
tions. The Wightman distributions are known to be analytic functions in some regions Jn
which are the sets of “Jost points" [6] (Gn are called Wightman functions in their domains of
analyticity).1 Jn corresponds to some (not all) Lorentzian configurations with totally space-
like separations. By using the microscopic causality constraints, one can extend Gn to a larger
domain, including all configurations with totally space-like separations [7]. In Minkowski
space Rd−1,1,2 two points can also have time-like or light-like separation. The Lorentzian cor-
relators usually diverge at configurations with light-like separations, and these configurations
are called light-cone singularities [8]. Except for some exactly solvable models, the Lorentzian
correlators at configurations which contain time-like separations are not fully studied.

There are more constraints in CFTs. In general QFTs, the domains of Wightman functions

1It does not mean that the Lorentzian correlators cannot be functions in other regions. For example, the cor-
relators of generalized free fields are functions aside from light-cone singularities. Here we are talking about the
minimal domain of Lorentzian correlators which can be derived from general principles of QFT.

2Often one uses Minkowski space to denote R3,1 only. While in this paper, we use this terminology for Rd−1,1

and general d.
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are Poincaré invariant, while in CFTs this Poincaré invariant domain can be further extended
by using conformal symmetry. Furthermore, in CFTs we have better control on correlators
with the help of OPE [9]. A successful example is the four-point functions in 2d local unitary
CFTs, where the conformal algebra is infinite dimensional [10]. In this case, by using Al.
Zamolodchikov’s uniformizing variables q, q̄ [11], one can show that the four-point function
is regular analytic at all possible Lorentzian configurations aside from light-cone singularities
[12]. We are going to study a similar problem in d ≥ 3, for which the conformal group is finite
dimensional and the radial coordinates ρ, ρ̄ [13] are used in our analysis.3 In addition, in
2d there exists non-local unitary CFTs, which have only the global conformal symmetry. The
analysis in this work also applies to 2d non-local unitary CFTs.

Recently the conformal bootstrap approach has become a powerful tool in the study of
strongly coupled systems [15]. On the numerical side, it gives precise predictions of experi-
mentally measurable quantities, such as the critical exponents of the 3d Ising model [16–20],
O(N)model [20–23] and other critical systems. The functional methods, which are used in the
numerical approach, can be realized analytically in low dimensions , and lead to insights into
low dimensional CFTs and S-matrices [24–27]. While the basic CFT assumptions are made in
the Euclidean signature, many attempts have been made to study the bootstrap equations in
the Lorentzian signature [28–34]. In the conformal bootstrap approach, for crossing equations
to be valid in the sense of functions, there should be at least two convergent OPE channels.
To play the bootstrap game for four-point functions in the Lorentzian signature, it is impor-
tant to know the convergent domains of various OPE channels. This provides an additional
motivation for our work.

The main goal of this work is to give complete tables of Lorentzian four-point configu-
rations with the information about convergence in the sense of analytic functions in various
OPE channels. In this paper we will mostly focus on four-point functions of identical scalar
operators. Our techniques can be immediately generalized to the case of non-identical scalar
operators (see section 7). The four-point funcitons of spinning operators require extra work
because of tensor structures. In this paper, we will only make some comments on the case
of spinning operators. One may also be interested in the convergence of OPE in the sense
of distributions [35]. We leave the discussions of distributional properties to the series of
papers [36–38].

The outline of this paper is as follows. In section 2 we introduce the main problem and
provide a quick summary of the main results in this paper. In section 3 we justify the analytic
continuation of the CFT four-point function to the domain D (which will be defined in sec-
tion 2.1), and the Lorentzian configurations live on the boundary of D. In section 4 we give
criteria of OPE convergence in s-, u- and t-channels. In section 5, we make a classification of
the Lorentzian four-point configurations. All configurations in the same class have the same
convergent OPE channels. All information on the OPE convergence properties can be looked
up in appendix C. In section 6 we review some classical results from Wightman QFT, and com-
pare them with CFT four-point functions. In section 7 we generalize our results to the case of
non-identical scalar operators and make some comments on the case of spinning operators. In
section 8 we make conclusions and point out some open questions related to this work.

3The set of four-point configurations (x1, x2, x3, x4) with |ρ| , |ρ̄| < 1 is a subset of (x1, x2, x3, x4) with
|q| , |q̄| < 1. Since the q-variable argument is based on the Virasoro symmetry which is only true in 2d [14],
we cannot apply it to the case of d ≥ 3.

4

https://scipost.org
https://scipost.org/SciPostPhys.13.4.093


SciPost Phys. 13, 093 (2022)

2 Main problem and summary of results

2.1 Main problem

We start from CFT in the Euclidean signature. Let xk = (τk,xk) denote the k-th point
in the Euclidean space (k = 1, 2,3, 4), where τk = x0

k is the temporal variable and
xk = (x1

k , x2
k , . . . , xd−1

k ) ∈ Rd−1 represents the vector of spatial variables. Lorentzian points
are given by Wick rotating the temporal variables: τ = i t where t is a real number. To get
Lorentzian four-point functions we need to analytically continue the Euclidean four-point func-
tions with respect to temporal variables. We define the Wick rotation of the four-point function
as follows:
Step 1.

We construct a function G4(x1, x2, x3, x4) such that:

• G4 has domain D of complex τk and real xk. The temporal variables (τ1,τ2,τ3,τ4) are
in the set

C4
>

:=
n

(τ1,τ2,τ3,τ4) ∈ C4
�

�

�Re(τ1)> Re(τ2)> Re(τ3)> Re(τ4)
o

. (1)

In other words, D = C4
> ×R

4(d−1).4

• G4 is analytic in the temporal variables τk and continuous in the spatial variables xk.

• G4 agrees with the Euclidean four-point function GE
4 when all the temporal variables are

real.

Step 2.
The Wick rotation to Lorentzian CFT four-point function is defined by

GL
4 (tk,xk) := lim

εk→0
ε1>ε2>ε3>ε4

G4(εk + i tk,xk) , (2)

when such a limit exists.
The reason we define Wick rotation in the above way is that we expect the Lorentzian CFT

four-point function to be a Wightman four-point distribution, which is the boundary value of
the Wightman four-point function from its domain of complex coordinates [1]. The domain of
the four-point Wightman function includes D, so the limit (2) gives the Wightman four-point
distribution when such a limit exists. We will discuss this in section 6.

The main problem we want to discuss in this paper is:

• In which Lorentzian regions does the Lorentzian CFT four-point function, defined by (2),
have a convergent operator product expansion in the sense of functions?

The goal of this paper is to give tables which contain OPE convergence properties of four-point
functions at all possible Lorentzian configurations.

4The analytic continuation can be done in a larger domain, e.g. the forward tube T4 defined by

T4 :=
n

(x1, x2, x3, x4) ∈ C4d
�

�

�Re(x0
k − x0

k+1)> |Im(xk − xk+1)| , k = 1,2, 3
o

.

See [37] for the discussion about the analytic continuation of G4 to T4. In this paper, we are only interested in the
analyticity of G4 in the Lorentzian regime. Since the whole Lorentzian regime is already contained in the closure
of D (see step 2), it suffices to consider the analytic continuation to D.
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2.2 Summary of results

In this subsection, we provide a quick summary of the main results for readers who wish to
know the general ideas of this paper before going into the technical details.

• We prove that the Euclidean CFT four-point function GE
4 has analytic continuation to

the domain D (i.e. Re(τ1) > Re(τ2) > Re(τ3) > Re(τ4)) (section 3). The analytic
continuation will be performed by using the s-channel OPE, which means taking the
OPE φ(x1)×φ(x2) in the four-point function

GE
4 (x1, x2, x3, x4) = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 . (3)

The key observation is that for any four-point configuration in D, the radial variables ρ
and ρ̄ belong to the open unit disk, i.e. |ρ|, |ρ̄|< 1. This observation, together with the
series expansion of GE

4 in ρ and ρ̄, implies that the s-channel OPE is convergent for any
configuration in D.

One technical subtlety in d ¾ 3 is that the radial variables ρ and ρ̄ are not individually
globally well-defined analytic functions (appendix A). We treat this subtlety carefully
when performing the analytic continuation, and show that G4 (constructed in terms of
ρ and ρ̄) is single valued and analytic everywhere in D (section 3.4).

• We derive the criteria of OPE convergence of the Lorentzian CFT four-point function GL
4

in s-, t- and u-channels (section 4). GL
4 is defined to be the boundary value of analyti-

cally continued Euclidean four-point function (see eq. (2)). One can imagine that the
OPE convergence properties of GL

4 rely on the behavior of cross-ratio variables along
the analytic continuation path. In the end we will see that for any fixed Lorentzian
four-point configuration, one can check the criteria using any analytic continuation path
in D (starting from a Euclidean four-point configuration), and the conclusion does not
depend on the choice of the path.

• We classify all the Lorentzian four-point configurations aside from the light-cone singu-
larities (section 5). The Lorentzian configurations are classified into a finite number of
groups according to the range of cross-ratio variables (z, z̄) (section 5.1) and the causal
orderings (section 5.2). We conclude that in each group, all configurations have the
same OPE convergence properties (section 5.3).

Then the problem is reduced to checking convergence properties in a finite number of
cases. The conclusion of OPE convergence properties is lengthy because in our classifica-
tion there are many groups (although finite) to check, so we leave this part to appendix
C. We share the Mathematica code for readers who wish to check our results (see the
ancillary file “/anc/OPE_check.nb" on arXiv).

• We review the classic results on the domain of analyticity of correlation functions in the
framework of Wightman QFT (section 6). It was showed in the classic literature that
the Wightman function is regular analytic in the totally space-like kinematic region. The
domain of the CFT four-point function contains this region, and furthermore it contains
much more regions including time-like separation of points.

• We generalize our results to non-identical scalar four-point functions (section 7). We
show that the OPE convergence properties of non-identical scalar four-point functions
are the same as the identical scalar case, using Cauchy-Schwarz argument. We also make
a comment on the main technical difficulty that arises in the case of spinning operators.

6
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3 Euclidean CFT four-point function and its analytic continuation

In this section justify the first step of Wick rotation: analytically continuing the Euclidean CFT
four-point function GE

4 to the domain D.

3.1 Euclidean CFT four-point function

Consider a Euclidean CFT four-point function of identical scalar primary operators φ with
scaling dimension ∆. By conformal symmetry we write it as

GE
4 (x1, x2, x3, x4) := 〈φ(x1)φ(x2)φ(x3)φ(x4)〉=

g(u, v)
�

x2
12

�∆ �
x2

34

�∆
, (4)

where x2
i j are defined by

x2
i j :=

d−1
∑

µ=0

(xµi − xµj )
2 = (τi −τ j)

2 +
�

xi − x j

�2
, (5)

and g(u, v) is a function of cross-ratios

u=
x2

12 x2
34

x2
13 x2

24

, v =
x2

14 x2
23

x2
13 x2

24

. (6)

GE
4 is originally defined in the Euclidean signature. To extend GE

4 to the domain of complex
temporal variables,5 we first analytically continue x2

i j by eq. (5). Since the functions x2
i j do

not vanish when the configurations are in D,6 the cross-ratios do not diverge. As a result,
cross-ratios have analytic continuation to D. Since x2

i j 6= 0 and D is simply connected, the

prefactor (x2
12 x2

34)
−∆ in (4) also has analytic continuation to D.

Therefore, to show that GE
4 (τk,xk) has analytic continuation to the domain D, it remains

to show that g(τk,xk) has analytic continuation to the domain D.7

In general, we do not know the exact expression of g(τk,xk). We want to extend its domain
according to the basic properties of Euclidean unitary CFT [39,40]:

• Conformal invariance (which has already been used in (4)).

• Reflection positivity (which is the Euclidean version of unitarity [2]).

• Convergence of operator product expansions in the Euclidean space.

Our main idea is to use the above properties via radial variables ρ, ρ̄ [13], which we will intro-
duce below. Roughly speaking, we want to first analytically continue the function g(ρ, ρ̄) by
a good series expansion. Then we want to stick the analytic functions ρ(τk,xk) and ρ̄(τk,xk)
into g(ρ, ρ̄) to get analytic continuation of g(τk,xk).

5We want to remark here that in principle one can also consider analytically continuing the above functions
to the domain of complex spatial variables. But since in this work we only want to discuss about the four-point
functions in the Lorentzian signature, where xk are always real, we will not consider the analytic continuation
problem with respect to spatial variables. By analytically continuing some function f (τk,xk) to D, we mean
extending the domain of f to D, on which f is analytic in τk and continuous in xk.

6Let τk = εk + i tk (k = 1,2, 3,4). For i 6= j, since x2
i j = (εi − ε j + i t i − i t j)2 +

�

xi − x j

�2
and εi 6= ε j , x2

i j is real
only when t i = t j , but then x2

i j > 0.
7In this paper we will abuse the notation by writing g(u, v), g(z, z̄), g(ρ, ρ̄) and g(τk,xk) for four-point function

in different coordinates. For example, g(τk,xk) := g (u(τk,xk), v(τk,xk)).
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3.2 Expansion in z, z̄

3.2.1 Definition of the coordinates

We pass from u, v to z, z̄ by

u= zz̄ , v = (1− z)(1− z̄) . (7)

The above definition has an ambiguity of interchanging z and z̄. We choose z, z̄ to be one
particular solution of (7):

z(u, v) =
1
2

�

1+ u− v + i
q

4u− (1+ u− v)2
�

,

z̄(u, v) =
1
2

�

1+ u− v − i
q

4u− (1+ u− v)2
�

.
(8)

Since we are interested in the four-point configurations in D, where the temporal variables τk
are complex numbers, the cross-ratios u(τk,xk) and v(τk,xk) are also complex numbers. So
we consider z(u, v), z̄(u, v) for (u, v) ∈ C2. For complex (u, v), the expressions of z(u, v), z̄(u, v)
have the same set of square-root branch points

Γuv :=
n

(u, v) ∈ C2
�

�

�4u− (1+ u− v)2 = 0
o

, (9)

and (8) is not single-valued when (u, v) ∈ C2\Γuv . We define the variables w, y by

w= 1+ u− v , y2 = 4u− (1+ u− v)2 , (10)

and write (8) as

z =
w
2
+

i y
2

, z̄ =
w
2
−

i y
2

. (11)

As we discuss in appendix A, y(τk,xk), and hence z(τk,xk), z̄(τk,xk), are single-valued in D
for d = 2 but not for d ≥ 3. This leads to some complication in constructing the analytic
continuation of g(τk,xk), which will be overcome below (see section 3.4).

3.2.2 Conformal frame

We would like to introduce a proper conformal frame configuration to understand the geo-
metrical meaning of z, z̄. Let (µν)-plane denote the 2d subspace of Rd which only has non-
vanishing coordinates xµ, xν (recall that x = (x0, x1, x2, . . . , xd−1)). In Euclidean space, there
exists a conformal transformation which maps the configuration C = (x1, x2, x3, x4) onto the
(01)-plane:

x ′1 =0 ,

x ′2 =(a, b, 0, . . . , 0) ,

x ′3 =(1,0, . . . , 0) ,

x ′4 =∞ .

(12)

Then z = a+i b, z̄ = a−i b. We call (12) a conformal frame configuration of C . Noticing that the
reflection (x0, x1, x2, . . . , xd−1) 7→ (x0,−x1, x2, . . . , xd−1) is a conformal transformation which
preserves (01)-plane and keeps x ′1, x ′3, x ′4 in (12) fixed, the conformal frame configuration is
not unique: it is allowed to replace b with −b in (12). We see that changing b to −b is the
same as interchanging z and z̄.

8
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Let DE be the Euclidean subset of D:

DE :=
n

(x1, x2, x3, x4) ∈D
�

�

�τk ∈ R , k = 1,2, 3,4
o

, (xk = (τk,xk)) . (13)

By using the conformal frame, one can show that

• All configurations in DE have the following property:

z, z̄ ∈ C\[1,+∞) . (14)

This follows from the fact that conformal transformations map circles to circles or lines, pre-
serving cyclic order.8 Suppose we have a configuration C with z = z̄ ∈ [1,+∞), then the
conformal frame configuration (12) of C satisfies x ′2 = (a, 0, . . . , 0) with a > 1, which means
(x ′1, x ′2, x ′3, x ′4) have cyclic order [1324]. However, the cyclic order [1324] does not exist in
DE because of the constraint τ1 > τ2 > τ3 > τ4.

3.2.3 Series expansion

By (7), we can think of g (u(z, z̄), v(z, z̄)) as a function of z, z̄. Since u, v are symmetric poly-
nomials of z, z̄, we have

g(z, z̄) = g(z̄, z) , (z∗ = z̄) . (15)

The constraint z∗ = z̄ in (15) is because our assumptions of conformal invariance are made
in the Euclidean signature, where z, z̄ are complex conjugate to each other. If g(z, z̄) has
analytic continuation to independent complex z, z̄, then it is easy to remove this constraint by
the Cauchy-Riemann equation, so that (15) will hold for any z, z̄.

In the unitary CFT, the function g(z, z̄) is known to have a series expansion in z, z̄:

g(z, z̄) =
∑

h,h̄≥0

ah,h̄zhz̄h̄ , (16)

where ah,h̄ are real non-negative coefficients. This expansion can be understood as follows. In
the radial quantization picture, we insert a complete basis

�

|h, h̄〉
	

into the four-point function
in the conformal frame (12):

∑

h,h̄

〈φ(x ′1)φ(x
′
2) |h, h̄〉 〈h, h̄|φ(x ′3)φ(x

′
4)〉=

1

(x ′212 x ′234)∆

∑

h,h̄≥0

ah,h̄zhz̄h̄ , (17)

where h, h̄ are the eigenvalues of Virasoro generators L0, L̄0 [14] (L0, L̄0 also belong to
so(1, d + 1), the Lie algebra of the global conformal group). Here h, h̄ ≥ 0 are the conse-
quences of unitarity [14].

The expansion (16) is absolutely convergent when |z|, |z̄| < 1, so g(z, z̄) has analytic con-
tinuation from its Euclidean domain {z∗ = z̄} to the universal covering of {0< |z|, |z̄|< 1}.
Our purpose is to extend the domain of g(τk,xk) from DE to D by composing g(z, z̄) with
z(τk,xk) and z̄(τk,xk). However, the set of (x1, x2, x3, x4) with |z(τk,xk)| , |z̄(τk,xk)| < 1
does not cover D (it does not even cover DE). To solve this issue, we will introduce a pair of
radial coordinates ρ, ρ̄ and expand the function g in ρ, ρ̄ (see the next subsection).

8Given four Euclidean points x1, x2, x3, x4, we say that they have the cyclic order [i1i2i3i4] if these four points
lie on a circle or a line in the order x i1 x i2 x i3 x i4 .

9

https://scipost.org
https://scipost.org/SciPostPhys.13.4.093


SciPost Phys. 13, 093 (2022)

3.3 Expansion in ρ, ρ̄

3.3.1 Definition of the coordinates

We define the radial coordinates ρ, ρ̄ by

ρ(z) =
(1−

p
1− z)2

z
, ρ̄(z̄) =

(1−
p

1− z̄)2

z̄
. (18)

Eq. (18) defines a one-to-one holomorphic map ρ(z) from z ∈ C\[1,+∞) to the open unit
disc |ρ|< 1. The same is true for z̄ and ρ̄. By composing (18) with z(τk,xk) and z̄(τk,xk), we
get functions ρ(τk,xk) and ρ̄(τk,xk). For configurations in DE , by the property (14) of z, z̄ ,
we have:

• In the Euclidean region DE , we have |ρ(τk,xk)| , |ρ̄(τk,xk)|< 1.

Analogously to the conformal frame for z, z̄, for ρ, ρ̄ there exists a conformal transforma-
tion which maps C onto the (01)-plane:

x ′′1 =(α,β , 0, . . . , 0) ,

x ′′2 =(−α,−β , 0, . . . , 0) ,

x ′′3 =(−1, 0, . . . , 0) ,

x ′′4 =(1,0, . . . , 0) ,

(19)

with α2 + β2 < 1. Then ρ = α+ iβ , ρ̄ = α− iβ .

3.3.2 Series expansion

By (18), the maps from ρ, ρ̄ to z, z̄ are given by

z =
4ρ

(1+ρ)2
, z̄ =

4ρ̄
(1+ ρ̄)2

. (20)

We get g(ρ, ρ̄) by composing (20) with g(z, z̄). By (15) and (20), we have

g(ρ, ρ̄) = g(ρ̄,ρ) , (ρ∗ = ρ̄) . (21)

In the Euclidean unitary CFT, the function g(τk,xk) is known to have an expansion in radial
coordinates [9]:

g (ρ, ρ̄) =
∑

h,h̄≥0

bh,h̄ρ
hρ̄h̄ , (22)

where bh,h̄ are positive coefficients. This expansion can be obtained by inserting a complete
basis

�

|h, h̄〉
	

into the four-point function at the configuration (19):

∑

h,h̄

〈φ(x ′′1 )φ(x
′′
2 ) |h, h̄〉 〈h, h̄|φ(x ′′3 )φ(x

′′
4 )〉=

1
(16ρρ̄)∆

∑

h,h̄≥0

bh,h̄ρ
hρ̄h̄ . (23)

Furthermore, the ρ-expansion (22) can be rearranged in the following way:

g(ρ, ρ̄) =
∑

∆≥0

∑

l∈N
c∆,l (ρρ̄)

∆/2 P l(ρ, ρ̄) ,

P l(ρ, ρ̄) =
l
∑

k=0

pl
k

�

ρ

ρ̄

�l/2−k

, pl
k = pl

l−k ,
(24)
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where the function P l(ρ, ρ̄) in (24) is another form of the Gegenbauer polynomial Cd/2−1
l [13]:

P l(ρ, ρ̄) = Cd/2−1
l (cosθ ) ,

�

ρ = reiθ , ρ̄ = re−iθ
�

. (25)

The function g(ρ, ρ̄) is originally defined in the Euclidean region ρ∗ = ρ̄. Considering now
ρ, ρ̄ to be independent complex variables, since the expansion (22) is absolutely convergent
when |ρ|, |ρ̄|< 1, it defines an analytic function on the universal covering of the domain

R :=
n

(ρ, ρ̄) ∈ C2
�

�

�0< |ρ| , |ρ̄|< 1
o

. (26)

We write radial coordinates as

ρ = eiχ , ρ̄ = eiχ̄ . (27)

The universal covering of R is characterized by a product of upper half planes

X :=
n

(χ, χ̄) ∈ C2
�

�

�Im(χ), Im(χ̄)> 0
o

, (28)

and the covering map is (27). The Euclidean region of X corresponds to χ∗ = −χ̄. By (24),
the function g(χ, χ̄) on X has the following properties:

g(χ, χ̄) =g(χ̄,χ) ,

g(χ, χ̄) =g(χ + 2π, χ̄ − 2π) .
(29)

3.4 Analytic continuation: case d ≥ 3

3.4.1 Main idea

In this section we will study the analytic continuation of g(τk,xk) in d ≥ 3. Our goal is to ana-
lytically continue g(τk,xk) to D. Naively, one may want to construct this analytic continuation
by the following compositions:

(τk,xk) 7→ (u, v) 7→ (z, z̄) 7→ (ρ, ρ̄) 7→ (χ, χ̄) 7→ g(χ, χ̄) . (30)

This construction requires two conditions:

1. The step (τk,xk) 7→ (z, z̄) in (30) should be well defined.

2. All configurations in D satisfy |ρ| , |ρ̄|< 1, or equivalently, z, z̄ /∈ [1,+∞).

The first condition holds if we have well-defined analytic functions z(τk,xk) and z̄(τk,xk)
on D. However, as already mentioned in section 3.2.1, such analytic functions do not exist in
d ≥ 3 (they exist in 2d). We will discuss the 2d case in section 3.5. For the d ≥ 3 case, we
discuss the non-existence of z(τk,xk), z̄(τk,xk) in appendix A.

Concerning the second condition, we have a crucial observation:

Theorem 3.1. [37] The above condition 2 holds in any d ≥ 2.

This theorem is one of the results in [37], where the proof is given (see [37], lemma 6.1
and the proof in its section 6.4). In this paper we will accept it as a fact. For readers who wish
to get some intuition on why |ρ|, |ρ̄| < 1 in D, we will give a proof of the 2d case in section
3.5.
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Since it is impossible to construct analytic functions z(τk,xk), z̄(τk,xk) on D in d ≥ 3,
we cannot naively do the composition like (30). We will construct analytic continuation of
g(τk,xk) as follows.

Let Γ be the preimage of Γuv in D (see eq. (9)).9 Given a four-point configuration
C = (x1, x2, x3, x4) ∈D, we choose a path

γ : [0,1] −→ D ,

γ(0) ∈DE\Γ ,

γ(1) = C ,

γ(s) ∈D\Γ , s < 1 .

(31)

The values of u(s), v(s) along γ are uniquely computable via (6). We would like to also define
z, z̄,ρ, ρ̄,χ, χ̄ along the path γ. For this we make some conventions: at the start point of γ we
choose

Im(z)≥ 0, Im(z̄)≤ 0 ,

0≤ Re(χ)≤ π, −π≤ Re(χ̄)≤ 0 .
(32)

This uniquely determines z, z̄,ρ, ρ̄,χ, χ̄ at s = 0. Since we chose γ such that γ(s) /∈ Γ before
the final point, the subsequent paths of z, z̄,ρ, ρ̄,χ, χ̄ at s > 0 are then uniquely determined
by continuity. We define path-dependent variables

z(C ,γ), z̄(C ,γ),ρ(C ,γ), ρ̄(C ,γ),χ(C ,γ), χ̄(C ,γ) , (33)

to be the variables at the final point γ(1) = C . Our goal is to show that

• The function g (χ(τk,xk,γ), χ̄(τk,xk,γ)) is actually independent of the path γ, so we
write it as g(τk,xk).

• The function g(τk,xk) is analytic in τk.

This, then, is how we will analytically continue g(τk,xk) to the whole D.

3.4.2 Path independent quantities

In the previous subsection we defined path dependent variables (33). Changing the path may
change the values of these variables. In this subsection we are going to show that the following
quantities are analytic functions on D:

1. (ρρ̄)∆ for any ∆.

2.
�

ρ

ρ̄

�k/2

+
�

ρ̄

ρ

�k/2

, where k ∈ Z.

9We claim that D\Γ is connected, so such a path γ exists. The reason is as follows. First we notice that
the defining property of Γ (see eq. (9)) is equivalent to z = z̄. According to section 3.2.2, any configuration
C = (x1, x2, x3, x4) can be written as C = g · C ′, where g is a conformal transformation and C ′ is the conformal-
frame configuration in eq. (12). If C belongs to Γ , we have b = 0 in eq. (12) (which is equivalent to z = z̄).
Then we keep the conformal transformation g fixed and vary C ′. One can show that at such a configuration,
∂ (z−z̄)
∂ x ′2

µ = ±2i 6= 0 for µ = 1, 2, . . . , d − 1. Since the conformal transformation g is invertible, there exists at least

one nonzero (complex) derivative of z− z̄ in xµi ’s. If ∂ (z−zi )
∂ τk

6= 0 for some k, then Γ is locally complex-codimension-
1 (i.e. real-codimension-2) in D near this configuration. This is the generic case for configurations in Γ . The
“bad configurations", where ∂ (z−z̄)

∂ τk
= 0 for all k, form a lower dimensional subspace than the subspace of generic

configurations in Γ . We know that removing a subspace with real codimensions no less than 2 does not affect
connectedness, therefore D\Γ is connected.
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We first need to show that the above quantities are path independent, then we need to show
the analyticity.

For (ρρ̄)∆, by (7) and (18), we write it as

(ρρ̄)∆ =
u∆

I2∆
, I = (1+

p
1− z)(1+

p
1− z̄) . (34)

u∆ is an analytic function onD because (a) x2
i j ’s are non-zero analytic functions onD and (b)D

is simply connected. Condition (a) guarantees that the path-dependent analytic continuation

of u∆ =
�

x2
12 x2

34

x2
13 x2

24

�∆

can be performed, and condition (b) implies that the analytic continuation

of u∆ is path-independent (i.e. u∆, as a function of xµi ’s, has no monodromy issue).

Lemma 3.2. I(τk,xk) is an analytic function on D.

Proof. By theorem 3.1, the variables z, z̄ are always in the same branch of the square-root
functions

p
1− z,

p
1− z̄. Together with the fact that changing the path at most interchanges

z and z̄ (this follows from (7) and from u, v being functions of a point and not of a path), we
conclude that I is a path independent quantity.

To show that I(τk,xk) is an analytic function onD, we first show that I(τk,xk) is an analytic
function on D\Γ . For a given configuration C ∈ D\Γ , we choose a path γ under conditions
(31). Then the variables z, z̄ at C are determined by γ. By (8), we can find a neighbourhood
U ⊂D\Γ of C such that the map (u, v) 7→ (z, z̄) is locally analytic. Thus I(τk,xk) is an analytic
function on D\Γ .

It remains to show that I(τk,xk) is analytic near C ∈ Γ . For C ∈ Γ we have z = z̄ = z∗.
Because I(z, z̄) is symmetric in z and z̄, and because I(z, z̄) is analytic in the variables z, z̄ in
the domain z, z̄ /∈ [1,+∞), I(z, z̄) has the following Taylor expansion near (z∗, z∗):

I(z, z̄) =
∑

m,n∈N
am,n(z + z̄ − 2z∗)

m(z − z̄)2n . (35)

By (8) we have

z + z̄ =1+ u− v ,

(z − z̄)2 =(1+ u− v)2 − 4u .
(36)

Although the map (u, v) 7→ (z, z̄) is not analytic near (u, v) ∈ Γuv , (35) and (36) imply that
the function I(u, v) is still locally analytic in the variables u, v. Thus I(τk,xk), which is the
composition of analytic functions I(u, v) and (u(τk,xk), v(τk,xk)), is analytic near C ∈ Γ .

To show (ρρ̄)∆ is an analytic function on D, it remains to show that [I(τk,xk)]
∆ is an

analytic function on D. Since all configurations in D have z, z̄ /∈ [1,+∞), we have

−
π

2
< Arg(

p
1− z), Arg(

p
1− z̄)<

π

2
, (37)

which implies

I(D) ⊂ C\(−∞, 0] . (38)

Thus I(D) does not contain any curve which goes around zero. Together with lemma 3.2, we
conclude that [I(τk,xk)]

∆ is an analytic function on D.
Recall definition (27) of χ, χ̄, the fact that (ρρ̄)∆ is analytic in D is equivalent to the

following lemma:
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Lemma 3.3. χ + χ̄ is an analytic function on D.

Proof. We choose an arbitrary self-avoiding path to perform the analytic continuation of χ and
χ̄.10 By (27), along the analytic continuation path we have

χ + χ̄ = −i log (ρρ̄) . (39)

The above discussion about analyticity of (ρρ̄)∆ was actually proving that log (ρρ̄) is analytic
in D. In particular, the RHS of (39) does not depend on the choice of the analytic continuation
path (although the analytic continuations of χ and χ̄ do). Thus χ + χ̄ is also an analytic
function on D.

For (ρ/ρ̄)k/2 + (ρ̄/ρ)k/2, we write it as

�

ρ

ρ̄

�k/2

+
�

ρ̄

ρ

�k/2

= (ρρ̄)−k/2
�

ρk + ρ̄k
�

. (40)

The analyticity of (ρρ̄)−k/2 has been proved. Changing the path at most interchanges ρ and
ρ̄, so ρk + ρ̄k is path independent. The analyticity of

�

ρk + ρ̄k
�

in D follows from a similar
argument as in the proof of lemma 3.2. Therefore, (ρ/ρ̄)k/2+(ρ̄/ρ)k/2 is an analytic function
on D.

3.4.3 The end of the proof that g(τk,xk) is analytic in D

In section 3.4.1 and 3.4.2, we introduced path dependent variables z, z̄,ρ, ρ̄ in D and showed
that (ρρ̄)∆ and (ρ/ρ̄)k/2+(ρ̄/ρ)k/2 are analytic functions on D. Now sticking them into the
expansion (24), we conclude that

• g(τk,xk) =
∑

∆≥0

∑

l∈N
c∆,l (ρρ̄)

∆ P l(ρ, ρ̄) is a series of analytic functions on D.

For any C ∈ D, we can find a neighbourhood U ⊂ D of C such that the expansion (24)
converges uniformly in U .11 So we conclude that

• g(τk,xk) is an analytic function on D.

3.5 Analytic continuation: case d = 2

In this section we would like to discuss separately the analytic continuation of g(τk,xk) in
2d. Although this case is covered by section 3.4, in the 2d case a much simpler construction
can be given. This is because the analytic functions z(τk,xk), z̄(τk,xk) exist. In 2d we use the
complex coordinates [14]:

zk = x0
k + i x1

k , z̄k = x0
k − i x1

k , k = 1,2, 3,4 . (41)

We choose z, z̄ to be

z =
(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

, z̄ =
(z̄1 − z̄2)(z̄3 − z̄4)
(z̄1 − z̄3)(z̄2 − z̄4)

. (42)

10The self-avoiding condition is to make sure that there exists a simply connected neighbourhood of the path,
so that the analytic continuation is always well-defined (no monodromy issue).

11We can find a neighbourhood U of C such that |ρ| , |ρ̄| < R < 1 in U . Then the uniform convergence follows
from the fact that (24) is a rearrangement of the series expansion (22) which is absolutely convergent.
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D

(42)

{z, z̄ /∈ {0} ∪ [1,+∞)}
(6)

R3 (ρ, ρ̄)

(27)

X3 (χ, χ̄)
3

(τk,xk) ∈
g(χ, χ̄)

C

Figure 3.1: The diagram of maps in 2d.

One can check that (42) is consistent with (7). Furthermore, z, z̄ in (42) are analytic in all
variables xµk except for

(z1 − z3)(z̄1 − z̄3)(z2 − z4)(z̄2 − z̄4) = 0 . (43)

In particular, z(τk,xk), z̄(τk,xk) are analytic functions of xµk on D.
Let x0

k = εk + i tk. We write down the complex coordinates defined in (41):

zk = εk + i tk + i x1
k , z̄k = εk + i tk − i x1

k , k = 1, 2,3, 4v . (44)

Then z, z̄ are computed via (42). Notice that the Euclidean configuration C ′ = (x ′1, x ′2, x ′3, x ′4),

�

x ′k
�0
= εk ,

�

x ′k
�1
= tk + x1

k v , (45)

gives the same zk, and hence the same z. Applying eq. (14) to C ′, we conclude that
z 6= [1,+∞) (z̄ 6= [1,+∞) follows from the same argument). This proves the 2d case of
theorem 3.1.

Furthermore, z, z̄ 6= 0 in D because zi − z j , z̄i − z j 6= 0 for i 6= j. So we conclude that

z(D), z̄(D) ⊂ C\ ({0} ∪ [1,+∞)) . (46)

Based on (46), we safely map z, z̄ to ρ, ρ̄ via (18), and we have ρ, ρ̄ 6= 0. Then consider the
function g(χ, χ̄) which is analytic in the domain Im(χ), Im(χ̄)> 0 (see section 3.3.2). Figure
3.1 shows the procedure of analytic continuation.

Since D is simply connected, by the lifting properties of the covering map [41], there
exists a continuous map (dashed arrow in figure 3.1) from D to X , which lifts the map from
D to R. Such a map is unique if we fix χ(τk,xk) and χ̄(τk,xk) at one configuration in DE .12

Because (42), (18), (27) are analytic functions, the map D→ X defines an analytic function
(χ(τk,xk), χ̄(τk,xk)). By composing χ(τk,xk), χ̄(τk,xk) with the function g(χ, χ̄), we get a
function g(τk,xk) which is analytic in the variables τk and xk = x1

k .

4 Lorentzian CFT four-point function

4.1 Some preparations

In this section we are going to study the OPE convergence of Lorentzian CFT four-point func-
tions. Since we have analytically continued the Euclidean CFT four-point function to the do-
main D, the next step is to take the limit (2) to the Lorentzian configurations, which are at the
boundary of D (denoted by ∂D).

The main differences between D and ∂D are as follows:
12In DE , we choose χ(τk,xk), χ̄(τk,xk) with the constraint χ∗ = −χ̄ because ρ∗(τk,xk) = ρ̄(τk,xk) for config-

urations in the Euclidean region.
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• (Position space) For any x i , x j pair in D, x2
i j is always non-zero, while for x i , x j pairs in

∂D, x2
i j = 0 when x i and x j are light-like separated:

εi = ε j , (t i − t j)
2 =

�

xi − x j

�2
.

• (Cross-ratio space) For all configurations in D, the variables z, z̄ never belong to
{0} ∪ [1,+∞), while the configurations in ∂D may have z or z̄ ∈ {0} ∪ [1,+∞).

We call (4), (22) the s-channel expansion of the CFT four-point function. A priori we can also
use the t- and u-channel expansions to construct the analytic continuation of the four-point
function, starting from the t- and u-channel versions of (4):

〈φ(x1)φ(x2)φ(x3)φ(x4)〉=
g(ut , vt)

�

x2
14

�∆ �
x2

23

�∆
=

g(uu, vu)
�

x2
13

�∆ �
x2

24

�∆
, (47)

where

ut = v , vt = u , uu =
1
u

, vu =
v
u

. (48)

We want to remark that only the s-channel expansion could be used to extend g(τk,xk) to
the whole D, since theorem 3.1 holds only for the s-channel. We can use t- and u-channel
expansion to analytically continue the four-point function to part of D, but not to the whole D.
We will also consider t- and u-channel expansions because there are Lorentzian configurations
where the s-channel expansion does not converge, but the t- or u-channel expansion converges
(see section 4.3.2).

4.2 Excluding light-cone singularities

When x2
i j = 0 for some x i , x j pair, since at least one of the scaling factors in (4) and (47) is

infinity, we expect the four-point function to be infinity. The configurations which contain at
least one light-like x i , x j pair are called light-cone singularities.

One example, for which the correlation functions are divergent at light-cone singularities,
is the generalized free field (GFF). Since we are interested in the Lorentzian configurations
where the four-point functions are genuine functions for all unitary CFTs, we only consider
the configurations which are not light-cone singularities. In other words, in this paper we will
only consider the following set of Lorentzian configurations:

DL :=
n

(x1, x2, x3, x4) ∈ ∂D
�

�

�xk = (i tk,xk), ∀k; x2
i j 6= 0, ∀i 6= j

o

. (49)

4.3 Criteria of OPE convergence

Now that x2
i j 6= 0 for all configurations in DL , all the cross-ratios defined in (6) and (48) are

finite and non-zero, which implies

z, z̄ 6= 0, 1,∞ . (50)

So the real axis in the z, z̄-space is divided into three parts:

(−∞, 0)∪ (0,1)∪ (1,+∞) . (51)

In this section, we are going to establish criteria of OPE convergence in s-, t- and u-channels.
The three intervals in (51) will play important roles because each of them is the place where
one OPE channel stops being convergent.
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4.3.1 s-channel

We have analytically continued the four-point function G4 to D. So far, as already mentioned,
we only used the s-channel expansion because of theorem 3.1. Actually by using the s-channel
expansion, we are able to extend G4 to a larger domain Ds ⊃ D according the constraint
0< |ρ| , |ρ̄|< 1 (or equivalently, z, z̄ 6= {0}∪[1,+∞)). Ds contains some but not all Lorentzian
configurations. In other words, the Lorentzian four-point function has convergent s-channel
OPE on the set Ds ∩DL .

By (18) and (50), ρ, ρ̄ 6= 0,±1 for all configurations in DL . Because of theorem 3.1 and the
continuity, all configurations in DL have |ρ| , |ρ̄| ≤ 1. To check the convergence of s-channel
OPE, it suffices to check whether |ρ| , |ρ̄| 6= 1 or not. Equivalently, it suffices to check whether
z, z̄ /∈ (1,+∞) or not.

Therefore, given a Lorentzian configuration CL ∈ DL , we have the following criterion of
s-channel OPE convergence:

Theorem 4.1. (s-channel OPE convergence) If neither z nor z̄ computed from CL belong to
(1,+∞), then the Lorentzian four-point function G4 is analytic at CL and is given by the
formula

G4(CL) =
g(χ, χ̄)
[x2

12 x2
34]∆

. (52)

Here g(χ, χ̄) is the same function as described in section 3.3.2, and the variables χ, χ̄ are
defined by the algorithm in section 3.4.1. The function g(χ, χ̄) can be computed by the con-
vergent series expansion (22).

4.3.2 t-channel and u-channel

We define the variables zt , z̄t and zu, z̄u by replacing u, v with ut , vt and uu, vu in (7). By (7) and
(48), we choose proper solutions to the t- and u-channel versions of (7), and get the following
relations13

zt = 1− z , z̄t = 1− z̄ , zu = 1/z , z̄u = 1/z̄ . (53)

Then we define the t- and u-channel versions of radial coordinates ρt , ρ̄t ,ρu, ρ̄u by replac-
ing z, z̄ with zt , z̄t and zu, z̄u in (18). By (53) and the fact that z, z̄ are not real for con-
figurations in DE\Γ , zt , z̄t , zu, z̄u are also not real for configurations in DE\Γ . In particular,
zt , z̄t , zu, z̄u /∈ [1,+∞) for all configurations in DE\Γ , which allows us to choose |ρt |= |ρ̄t |< 1
and |ρu| = |ρ̄u| < 1 to start with convergent t- and u-channel expansions. Analogously to the
s-channel expansion, the t- and u-channel expansions are defined by replacing ρ, ρ̄ with ρt , ρ̄t
and ρu, ρ̄u in the series expansion (22).

For all configurations in DE\Γ , the s-, t- and u-channel expansions converge to the same
Euclidean CFT four-point function. This consistency condition is called the crossing symmetry
[42,43]. Now let us analytically continue the four-point function via the t-channel expansion.
Suppose we have a path γ in D\Γ such that γ(0) ∈ DE\Γ , we can find a neighbourhood
Uγ ⊂ D\Γ of the set {γ(s) | 0≤ s ≤ 1} and perform the analytic continuation of z, z̄ in Uγ via
(6) and (8).14 Then we get the analytic continuation of zt , z̄t in Uγ by the relation in (53). If
zt , z̄t /∈ (1,+∞) in Uγ, or equivalently, |ρt | , |ρ̄t |< 1 in Uγ, then the t-channel expansion of G4
is convergent in Uγ, and gives the analytic continuation to Uγ. Since the start point γ(0) is a
Euclidean configuration, Uγ∩DE is an open subset of DE , where the temporal variables τk are

13The other solutions of zt , z̄t , zu, z̄u differ from (53) by interchanging zt , z̄t or zu, z̄u, which will give the same
conclusions of convergence properties in t- and u-channel expansions.

14As long as γ(s) /∈D\Γ along the path γ, such a neighbourhood Uγ always exists.
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independent real numbers. According the crossing symmetry, the s- and t-channel expansions
agree in Uγ ∩ DE , so they also agree in Uγ, where τk are independent complex numbers.
Furthermore, by taking the limit from D\Γ to Γ , we can also use the t-channel expansion to
compute the four-point function for configurations in Γ with the constraint |ρt | , |ρ̄t |< 1, and
the result also agrees with the s-channel expansion by continuity. So we conclude that

• Given a configuration C in D, the t-channel expansion gives the same analytic continua-
tion of G4 as the s-channel expansion if there exists a path γ in D such that γ(0) ∈DE\Γ ,
γ(1) = C and zt , z̄t /∈ (1,+∞) along γ.

Analogously, by replacing zt , z̄t with zu, z̄u, we have the same conclusion for the u-channel
expansion.

While theorem 3.1 holds for z, z̄, it does not hold for zt , z̄t or zu, z̄u, which means that the t-
and u-channel expansions may diverge in D. Unlike the s-channel, the convergence properties
of t- and u-channel expansions require not only the values of zt , z̄t , zu, z̄u of a configuration,
but also the values of these variables along a path. For convenience we use the relation (53)
to translate zt , z̄t , zu, z̄u /∈ (1,+∞) to equivalent conditions in z, z̄:

zt , z̄t /∈ (1,+∞) ⇒ z, z̄ /∈ (−∞, 0) ,

zu, z̄u /∈ (1,+∞) ⇒ z, z̄ /∈ (0,1) .
(54)

Then it suffices to compute and watch z, z̄-curves along the path.
To give criteria of convergence properties in t- and u-channel expansions, we define some

quantities which count how z, z̄-curves cross the intervals (−∞, 0) and (0,1). Given a path γ
defined as follows

γ : [0,1] −→ D ,

γ(0) ∈DE\Γ ,

γ(s) ∈D\Γ , s < 1 ,

(55)

if the variables z, z̄ at the final point γ(1) satisfy z, z̄ /∈ (−∞, 0), we define

nt (γ) := number of times z crosses (−∞, 0) from above

− number of times z crosses (−∞, 0) from below ,

n̄t (γ) := number of times z̄ crosses (−∞, 0) from above

− number of times z̄ crosses (−∞, 0) from below ,

(56)

and

Nt(γ) := nt(γ) + n̄t(γ) . (57)

Analogously, if the variables z, z̄ at the final point γ(1) satisfy z, z̄ /∈ (0,1), we define

nu (γ) := number of times z crosses (0,1) from above

− number of times z crosses (0,1) from below ,

n̄u (γ) := number of times z̄ crosses (0,1) from above

− number of times z̄ crosses (0,1) from below ,

(58)

and

Nu(γ) := nu(γ) + n̄u(γ) . (59)

Let us consider the t-channel expansion. We claim that Nt is a path independent quantity:
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Lemma 4.2. Given a configuration C ∈D with z, z̄ /∈ (−∞, 0], Nt is independent of the choice
of the path. Therefore, we can write Nt as Nt(C).

Proof. Suppose we have a path γ under condition (55) and γ(1) = C . Under convention (32),
the path γ uniquely determines the paths of z, z̄,ρ, ρ̄,χ, χ̄. By (18) and (27), we have

z ∈ (−∞, 0) ⇐⇒ ρ ∈ (−1, 0)

⇐⇒ Re(χ) = (2k+ 1)π for some k ∈ Z ,
(60)

which implies that the final point of χ(s) contains the information about nt :

(2nt − 1)π < Re (χ(1))< (2nt + 1)π . (61)

Analogously we have

(2n̄t − 1)π < Re (χ̄(1))< (2n̄t + 1)π . (62)

Now we pick another path γ′ under condition (55) and γ′(1) = C . We let χ ′, χ̄ ′, n′t , n̄′t , N ′t
denote the corresponding variables of the path γ′. By lemma 3.3, we have

χ(1) + χ̄(1) = χ ′(1) + χ̄ ′(1) . (63)

Since ρ, ρ̄ at C at most interchange with each other, the relation (63) implies that there only
two possibilities:

1. χ(1) = χ ′(1) + 2kπ, χ̄(1) = χ̄ ′(1)− 2kπ for some k ∈ Z,

2. χ(1) = χ̄ ′(1) + 2kπ, χ̄(1) = χ ′(1)− 2kπ for some k ∈ Z,

which, by (61) and (62), are equivalent to

1. nt = n′t + k, n̄t = n̄′t − k for some k ∈ Z.

2. nt = n̄′t + k, n̄t = n′t − k for some k ∈ Z.

Thus we have Nt (γ) = Nt

�

γ′
�

.

Suppose C is a configuration in D ∪DL with z, z̄ /∈ (−∞, 0) and Nt = 0. By choosing an
arbitrary path γ with conditions (55) and γ(1) = C , we get the paths χ(s), χ̄(s) along γ. We
define a pair of new variables χ̃, ˜̄χ by

χ̃ = χ(1)− 2ntπ , ˜̄χ = χ̄(1) + 2ntπ . (64)

Since Nt = 0 (which implies nt = −n̄t), by (61) and (62), the construction (64) gives

−π < Re (χ̃)< π , −π < Re
�

˜̄χ
�

< π . (65)

We have the following lemma.

Lemma 4.3. The following maps

χ 7→ ρ = eiχ 7→ z =
4ρ

(1+ρ)2
=

1

cos2
χ

2

, (66)

are biholomorphic maps from {χ ∈ C| −π < Re (χ)< π, Imχ > 0} to {ρ ∈ C| |ρ|< 1,
ρ 6= (−1, 0]}, then to the double-cut plane {z ∈ C|z /∈ (−∞, 0]∪ [1,+∞)}.

19

https://scipost.org
https://scipost.org/SciPostPhys.13.4.093


SciPost Phys. 13, 093 (2022)

Proof. For the map χ 7→ ρ, since −π < Re (χ) < π, its image in the ρ-space does not contain
(−∞, 0), hence does not contain curves which go around 0. So the inverse χ = −i lnρ exists.
The constraint Imχ > 0 is equivalent to 0< |ρ|< 1.

The map ρ 7→ z is known to be a biholomorphic map from the open unit disc toC\[1,+∞)
[13]. One can show by direct computation that ρ ∈ (−1, 0] is equivalent to z ∈ (−∞, 0].

Since the double-cut plane is preserved under the map z→ 1− z, by lemma 4.3 we define
a pair of t-channel variables χ̃t , ˜̄χt by

χ̃ 7→ z̃ 7→ z̃t = 1− z̃ 7→ χ̃t ,
˜̄χ 7→ ˜̄z 7→ ˜̄zt = 1− ˜̄z 7→ ˜̄χt ,

(67)

where the maps χ̃ 7→ z̃, ˜̄χ 7→ ˜̄z are the same as (66), and the maps z̃t 7→ χ̃t , ˜̄zt 7→ ˜̄χt are the
inverse of (66).

Since Imχ̃, Im ˜̄χ > 0 for all configurations in D, above we defined the (path dependent)
variables χ̃t , ˜̄χt for configurations in D with the constraints z, z̄ /∈ (−∞, 0) and Nt = 0. In fact
such definition can be extended to Lorentzian configurations in DL with the same constraints.
This is because any configuration CL with z, z̄ /∈ (−∞, 0) and Nt = 0 can be approached by
configurations in D with the same constraints, and then χ̃t , ˜̄χt at CL are defined by continuity.

Note that if z nor z̄ do not cross (−∞, 0) at all, then |ρt |, |ρ̄t | < 1 along the whole path,
and the t-channel OPE is guaranteed to converge. The criterion we give is more general in
that it allows some crossings. Let us prove that this more general criterion is indeed sufficient.

Theorem 4.4. (t-channel OPE convergence) Given a Lorentzian configuration CL ∈ DL . If
the variables z, z̄ of CL do not belong to (−∞, 0), and furthermore if Nt(CL) = 0, then the
Lorentzian four-point function G4 is analytic at CL and is given by the formula

G4(CL) =
g
�

χ̃t , ˜̄χt

�

�

x2
23 x2

14

�∆
. (68)

Here g is the same function as described in section 3.3.2, and the variables χ̃t , ˜̄χt are defined
by the algorithm in (64) and (67). The function g(χ̃t , ˜̄χt) can be computed by the convergent
series expansion (22).

Before the proof of theorem 4.4, we introduce the following lemma:

Lemma 4.5. Given a configuration C ∈D. If the variables z, z̄ of C do not belong to (−∞, 0),
and furthermore if Nt(C) = 0, then we have

g (χ, χ̄)
�

x2
12 x2

34

�∆
=

g
�

χ̃t , ˜̄χt

�

�

x2
23 x2

14

�∆
. (69)

We would like to postpone the proof of lemma 4.5. Let us first see how lemma 4.5 implies
theorem 4.4.

Suppose we have a Lorentzian configuration CL which satisfies the conditions of theorem
4.4. Since CL ∈ D, we can approach CL by a sequence of configurations {Cn} in D such that
Cn satisfies z, z̄ /∈ (−∞, 0) and Nt (Cn) = 0. By construction Imχ̃t , Im ˜̄χt > 0 for CL and all Cn
in the sequence, so g

�

χ̃t , ˜̄χt

�

can be computed by the convergent series expansion (22). We
choose χ̃t(Cn), ˜̄χt(Cn) such that they form two sequences which approach χ̃t(CL), ˜̄χt(CL), then
by continuity, the limit of g

�

χ̃t(Cn), ˜̄χt(Cn)
�

is exactly g
�

χ̃t(CL), ˜̄χt(CL)
�

.15 By lemma 4.5, we

15For this claim we choose a path γ(s) with γ(1) = CL and let the sequence {Cn} be along the path γ. Let the
sequences of χ(Cn), χ̄(Cn) also be along the path, then it is natural to see that the sequences of χ̃t(Cn), ˜̄χt(Cn) have
the limits χ̃t(CL), ˜̄χt(CL).
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have eq. (69) for Cn. Note that the LHS of (69) is the four-point function in the s-channel
expansion, thus we have

G4 (CL) = lim
n→∞

G4(Cn) = lim
n→∞

g
�

χ̃t , ˜̄χt

�

�

x2
23 x2

14

�∆

�

�

�

�

�

Cn

=
g
�

χ̃t , ˜̄χt

�

�

x2
23 x2

14

�∆

�

�

�

�

�

CL

. (70)

So we finish the proof of theorem 4.4. We would like to make two comments. First, theorem
4.4 covers the case when s-channel expansion is not convergent. For this case we have z or
z̄ ∈ (1,+∞). To compute G4 it is important to know whether Arg(1− z̃) or Arg(1− ˜̄z) is equal
to π or −π. A crucial point is that the information about these phases are contained in χ̃t and
˜̄χt .

16 Second, eq. (68) indeed corresponds to the t-channel expansion because each term in
the series expansion (22) of g

�

χ̃t , ˜̄χt

�

corresponds to a state which appears in the φ(x2)φ(x3)
OPE.

It remains to prove lemma 4.5.

Proof. We have

g (χ, χ̄)
�

x2
12 x2

34

�∆
=

g
�

χ̃, ˜̄χ
�

�

x2
12 x2

34

�∆

=
1

�

x2
12 x2

34

�∆
×

�

z̃˜̄z

(1− z̃)
�

1− ˜̄z
�

�∆

g
�

χ̃t , ˜̄χt

�

=
1

�

x2
12 x2

34

�∆
×
�

zz̄
(1− z) (1− z̄)

�∆

g
�

χ̃t , ˜̄χt

�

=
1

�

x2
12 x2

34

�∆
×
hu

v

i∆

g
�

χ̃t , ˜̄χt

�

=
g
�

χ̃t , ˜̄χt

�

�

x2
23 x2

14

�∆
.

(71)

The first equality is a consequence of eq. (29). The second equality follows from the crossing
symmetry

g(z, z̄) =
�

zz̄
(1− z)(1− z̄)

�∆

g(1− z, 1− z̄) , z, z̄ ∈ C\(−∞, 0]∪ [0,+∞) . (72)

Here we also use the fact that both s- and t-channel expansions are convergent if z, z̄ are in
the double-cut plane, and in the same branch as the Euclidean case.

For the third equality, we recall our definition of χ̃, ˜̄χ in (64): the variables z, z̄ acquire
extra phases and 1− z, 1− z̄ do not go around 0. In other words, we have

z̃ = e−2ntπiz , ˜̄z = e2ntπi z̄ ,

1− z̃ = 1− z , 1− ˜̄z = 1− z̄ .
(73)

The remaining steps in (71) are trivial.

The criterion of u-channel convergence is similar to t-channel. Given a configuration CL
with z, z̄ /∈ (0, 1) and Nu = 0. We choose a path γ to get χ(1), χ̄(1), then the u-channel versions
of (61) and (62) are given by

−2nuπ < Re (χ(1))< −2nuπ+ 2π ,

−2n̄uπ− 2π < Re (χ̄(1))< −2n̄uπ .
(74)

16Since ρ̃t = eiχ̃t , we have Arg(ρ̃t) =Reχ̃t . If z = z̃ ∈ (1,+∞), then we have Arg(1− z̃) =Reχ̃t . The argument
is similar for z̄.
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The u-channel variables χ̃u, ˜̄χu are defined by following algorithm, which is analogous to (67):

χ̃ = χ(1) + 2nuπ 7→ z̃ 7→ z̃u =
1
z̃
7→ χ̃u ,

˜̄χ = χ̄(1)− 2nuπ 7→ ˜̄z 7→ ˜̄zu =
1
˜̄z
7→ ˜̄χu .

(75)

We give the u-channel criterion without proof.

Theorem 4.6. (u-channel OPE convergence) Given a Lorentzian configuration CL ∈ DL . If the
variables z, z̄ of CL do not belong to (0, 1), and furthermore if Nu(CL) = 0, then the Lorentzian
four-point function G4 is analytic at CL and is given by the formula

G4(CL) =
g
�

χ̃u, ˜̄χu

�

�

x2
13 x2

24

�∆
. (76)

Here g is the same function as described in section 3.3.2, and the variables χ̃u, ˜̄χu are defined
by the algorithm (75). The function g(χ̃u, ˜̄χu) can be computed by the convergent series
expansion (22).

Unlike the s-channel case, even if we only want to check the convergence properties of t-
and u-channel expansions, we have to choose a path to compute Nt and Nu.

Before finishing this subsection, we want to remark that actually the condition (55) of the
path γ can be relaxed in the way that γ is allowed to touch Γ :

γ : [0, 1] −→ D ,

γ(0) ∈DE\Γ ,

γ(1) ∈DL .

(77)

Suppose we have a path γ which intersects with Γ . Let γ(s∗) ∈ Γ be the first intersection point.
At s∗ we have z(s∗) = z̄(s∗), then z(s), z̄(s) become indistinguishable for s > s∗, so the quantities
nt , n̄t , nu, n̄u,χ, χ̄ are not well defined for γ. However, by manually choosing z, z̄ after each
intersection, we still get two curves z(s), z̄(s): they may not be smooth at intersection points,
but they are still continuous. By this trick we get nt , n̄t , nu, n̄u,χ, χ̄, so that we are able to
compute Nt , Nu and the four-point function. On the other hand, we can always deform γ to a
path γ′, such that γ′ has the same start and final points as γ but γ′ does not intersect with Γ .
By doing proper deformation, we can make γ′ have the same nt , n̄t , nu, n̄u,χ, χ̄ as selected on
γ. Therefore, our manual selection will give the correct OPE convergence properties and the
correct value of the four-point function.

4.4 What happens if there is no convergent OPE channel?

We want to make a comment that theorem 4.1, 4.4 and 4.6 give sufficient conditions for
OPE convergence. For a Lorentzian configuration CL which is not a light-cone singularity and
which does not satisfy the conditions in these theorems, it does not mean that G4 cannot be a
function at CL . It just means that for general CFT, we are not able to use the radial coordinates
ρ, ρ̄ (ρt , ρ̄t , ρu, ρ̄u) and the expansion (22) to prove the analyticity of G4 at CL . The four-
point function still has a chance to be analytic at CL . For example, the four-point function of
generalized free fields has analytic continuation to the whole Lorentzian region except for the
light-cone singularities.

An interesting related open question is: can we relax the conditions in theorem 4.1, 4.4
and 4.6?
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4.4.1 s-channel condition

In theorem 4.1, we only assume the condition z, z̄ /∈ (1,+∞) (equivalently, |ρ|, |ρ̄|< 1). The
Lorentzian configurations which violate this condition has |ρ| = 1 or |ρ̄| = 1, then the proof
of theorem 4.1 fails because in the proof we used the fact that the series expansion (22) is
absolutely convergent when |ρ| , |ρ̄|< 1.

We are interested in the Lorentzian configurations where the s-channel expansion is con-
vergent for all unitary CFTs. For configurations with |ρ| = 1 or |ρ̄| = 1, we may exhibit an
explicit CFT four-point function, for which the s-channel expansion is divergent (then such
configurations are ruled out). The generalized free field (GFF) theory is such an example. The
GFF four-point function of identical scalar operators (with scaling dimension ∆) is defined by

�

G4

�

GF F (x1, x2, x3, x4) =
1

�

x2
12 x2

34

�∆
+

1
�

x2
23 x2

14

�∆
+

1
�

x2
13 x2

24

�∆
. (78)

By (4), the conformal invariant part of
�

G4

�

GF F is given by

g
GF F
(ρ, ρ̄) = 1+

�

16ρρ̄
(1+ρ)2(1+ ρ̄)2

�∆

+
�

16ρρ̄
(1−ρ)2(1− ρ̄)2

�∆

. (79)

It has the series expansion

g
GF F
(ρ, ρ̄) = 1+ (16ρρ̄)∆

∞
∑

m,n=0

�

1+ (−1)m+n
�

Γ (∆+m)Γ (∆+ n)

m!n!Γ (∆)2
ρmρ̄n , (80)

which diverges when |ρ| = 1 or |ρ̄| = 1. It follows that theorem 4.1 cannot be extended to
configurations with |ρ| = 1 or |ρ̄| = 1 without extra assumptions on the theory. One such
extra assumption will be mentioned in section 5.3.2 (locality of 2d CFT).

4.4.2 t- and u-channel conditions

In theorem 4.4, we assumed two conditions: z, z̄ /∈ (−∞, 0) and Nt = 0. For Lorentzian
configurations which violate the first condition, (analogously to the s-channel case) we can
use GFF to conclude that these configurations do not have convergent t-channel expansion for
some unitary CFTs.

Let us explain more about our motivation for assuming Nt = 0. By the s-channel series
expansion (22) and crossing symmetry (72), the function g(χt , χ̄t) has analytic continuation
to the universal covering of the domain

−π < Re (χt)< π , χt 6= 0 ,

−π < Re (χ̄t)< π , χ̄t 6= 0 .
(81)

The series expansion of g(χt , χ̄t) is absolutely convergent in the region where

−π < Re (χt)< π , 0< Arg (χt)< π ,

−π < Re (χ̄t)< π , 0< Arg (χ̄t)< π .
(82)

Suppose we have a configuration CL with Nt 6= 0. By choosing a path γ, we compute the paths
χt(s), χ̄t(s), and then determine the final points χt(1), χ̄t(1). When the path z(s) crosses
(−∞, 0) from above, χt(s) either crosses (−π, 0) from above, or crosses (0,π) from below.
Since the start points χt(0), χ̄t(0) are in the region (82), we have

ntπ < Arg (χt)< (nt + 1)π , n̄tπ < Arg (χ̄t)< (n̄t + 1)π , (83)
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which are the t-channel versions of (61) and (62). We see that χt(1)e−ntπi ,χt e
−n̄tπi are in the

region (82). The property (29) says that we have17

g (χt(1), χ̄t(1)) = g
�

χt(1)e
πi , χ̄t(1)e

−πi
�

. (84)

However, if Nt 6= 0, then nt 6= −n̄t for any path γ. So in this case we cannot use (84) to move
χt(1), χ̄t(1) to the region (82). This is where the proof of theorem 4.4 fails for Nt 6= 0.

The arguments for theorem 4.6 are similar.

5 Classifying the Lorentzian configurations

In the previous section we gave the criteria of convergence properties of OPE in various chan-
nels for Lorentzian CFT four-point functions. These criteria say that given a Lorentzian con-
figuration CL , one can just start with an arbitrary Euclidean configuration in DE\Γ and choose
an arbitrary path towards CL , then decide if the conditions in theorem 4.1, 4.4 and 4.6 hold
or not by watching the z, z̄-curves (in theorem 4.1 one does not even have to choose a path).

However, it would be frustrating if we have to check the analytic continuation curves for
all Lorentzian configurations in DL (recall definition (49)). We expect that these Lorentzian
configurations can be classified such that for each class it suffices to choose one representative
configuration to see if various OPE channels converge or not. There are two natural classi-
fication methods, one according to the range of z and z̄, the other according to the causal
orderings. We will show that combining these two methods leads to a complete classification
for the convergence properties of Lorentzian CFT four-point functions.

5.1 z, z̄ of Lorentzian configurations

For all Lorentzian configurations, since x2
i j are real, the cross-ratios u, v are also real. By (8),

there are only two possibilities for z, z̄:

1. z, z̄ are independent real variables.

2. z, z̄ are complex conjugate to each other.

In addition, we have already excluded light-cone singularities in DL (recall definition (49)),
so the configurations in DL have z, z̄ 6= 0, 1,∞. According to the range of the z, z̄ variables,
we divide DL into four classes:

DL = St T tU t E , (85)

where the classes are defined as follows.

• Class S: configurations with 0< z < 1, z̄ < 0 or z < 0, 0< z̄ < 1.

• Class T: configurations with z > 1, 0< z̄ < 1 or 0< z < 1, z̄ > 1.

• Class U: configurations with z > 1, z̄ < 0 or z < 0, z̄ > 1.

• Class E: configurations with z, z̄ < 0 or 0< z, z̄ < 1 or z, z̄ > 1 or z∗ = z̄.

17Recall the map χ 7→ χt in (67), the transformation χ → χ + 2π corresponds to χt → χt e
iπ.
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We use the name “S" (resp. “T", “U") because it corresponds to the configurations where only
the s-channel (resp. t-channel, u-channel) expansion has a chance to converge. The name “E"
means “Euclidean", since the variables z, z̄ in class E can be realized by the configurations with
totally space-like separation. In addition, we divide the class E into four subclasses:

E= Esu t Est t Etu t Estu , (86)

where the subclasses are defined as follows.

• Subclass Esu: configurations with z, z̄ < 0.

• Subclass Est: configurations with 0< z, z̄ < 1.

• Subclass Etu: configurations with z, z̄ > 1.

• Subclass Estu: configurations with z∗ = z̄ not real.

The subscripts in above names indicate the possible convergent channels. Figure 5.1 shows the
range of (z, z̄) pair corresponding to each class/subclass. Let P (C) denote the subset of (z, z̄)
pairs corresponding to class/subclass C. Under identification (z, z̄)∼ (z̄, z), P(C) are connected
subsets of C/Z2. P(S), P(T), P(U), P(E) are disconnected from each other, but P (Esu), P (Est)
and P (Etu) are connected to P (Estu) (also note that P (Esu), P (Est) and P (Etu) are disconnected
from each other).

S

S

T

T

U

U

Esu Est Etu

z

z̄

z̄ = 1

z = 1

Re(z)

Im(z)

0 1

Estu

z∗ = z̄

Figure 5.1: The corresponding range of (z, z̄) pair of each class/subclass.

For each class/subclass, we immediately get some information about OPE convergence
properties by theorem 4.1, 4.4 and 4.6 (see table 1). In table 1, the check mark means that
the sufficient conditions in theorem 4.1 or 4.4 or 4.6 holds, hence the corresponding channel
is convergent. The cross mark means that the sufficient conditions do not hold, we cannot
conclude that the corresponding channel is convergent or not (basically because one or both
ρ, ρ̄ variables are on the unit circles). The blank means that there is room for convergence
but we need to check Nt , Nu conditions.
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Table 1: OPE convergence properties of classes/subclasses

class/subclass s-channel t-channel u-channel

S 3 7 7

T 7 7

U 7 7

Est 3 7

Esu 3 7

Etu 7

Estu 3

5.2 Causal orderings

In Minkowski space Rd−1,1, causal ordering is a binary relation between two arbitrary points.
Let x1 = (i t1,x1) and x2 = (i t2,x2) be two points in Rd−1,1,18 we say x1 → x2 if x2 is in the
open forward light-cone of x1, or equivalently, t2 − t1 > |x1 − x2|.

By the triangle inequality, the causal ordering is transitive: if x1 → x2 and x2 → x3, then
x1→ x3.

Causal orderings are preserved by translations, Lorentz transformations and dilatations.
But special conformal transformations may violate causal orderings.19 Given a pair of time-
like separated points x i , x j in Rd−1,1, there exists a special transformation such that the images
x ′i , x ′j are space-like separated [44].

By “the causal ordering of a configuration C = (x1, x2, x3, x4)", we will mean the directed
graph (V, E), where V = {1,2, 3,4} is the set of indices and E = {(i j)} is the set of arrows i→ j
encoding the causal orderings x i → x j . For example, the causal ordering of the configuration

x1 =(0,0, . . . , 0) ,

x2 =(i, 0, . . . , 0) ,

x3 =(2i, 0, . . . , 0) ,

x4 =(3i, 0, . . . , 0) ,

(87)

is given by

1 2

34

(88)

Since causal ordering is transitive, some arrows in the graph (88) are redundant and we will
drop them. E.g. the graph

1 → 2 → 3 → 4 (89)

18Since in this work our discussions start from the Euclidean signature, we use the Euclidean coordinates
x = (ε+ i t,x). The Euclidean points correspond to t = 0 and the Lorentzian points correspond to ε= 0.

19We will come back to this point in section 5.6.2.
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represents the same causal ordering as (88). For simplicity, we will use the graphic notation
with the least number of arrows like (89).

5.3 Classifying convergent OPE channels

We decompose the set DL according to the causal orderings of the configurations:

DL =
⊔

α

DαL , (90)

where each DαL is the set of configurations with the same causal ordering, labelled by the index
α.

5.3.1 Case d ≥ 3

In d ≥ 3, each DαL in (90) is a connected component of DL . it is not hard to see that different
DαL are disconnected to each other. The proof that each DαL is connected is given in appendix
B.

Since DαL is connected, with the identification (z, z̄)∼ (z̄, z), the set of corresponding (z, z̄)
pairs is a connected subset of C2/Z2. Recalling our classification in section 5.1, we conclude
that

Lemma 5.1. For d ≥ 3, all configurations with the same causal ordering belong to the same
class S, T, U, E (see section 5.1).

By the lemma, we can assign class S, T, U and E to each causal ordering of the configura-
tions. In addition, if DαL is in class E, we subdivide DαL according to the subclasses of class E.
We summarize these relations in figure 5.2.

Dα1
L

Dα2
L

S

Dα3
L

Dα4
L

T

Dα5
L

Dα6
L

U

Dα7
L

Est Esu

Etu Estu

E

Figure 5.2: The class S, T, U and E are subdivided according causal orderings. For
each DαL in class E, DαL is subdivided according to subclasses.

Now we are ready to state the classification of convergent OPE channels for Lorentzian
CFT four-point functions.

Theorem 5.2. Let GL
4 be the Lorentzian four-point function which is defined by the Wick

rotation (2) from a Euclidean unitary CFT in d ≥ 3. Let α be a causal ordering and let DαL be
the set of all configurations with this causal ordering.

• If DαL is in class S, then all configurations in DαL only have convergent s-channel expan-
sion for GL

4 .

• If DαL is in class T, then all configurations in DαL have the same Nt .

• If DαL is in class U, then all configurations in DαL have the same Nu.
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• If DαL is in class E, then

– All configurations in DαL ∩ Est have the convergent s-channel expansion and the
same Nt .

– All configurations in DαL ∩ Esu have the convergent s-channel expansion and the
same Nu.

– All configurations in DαL ∩ Etu have the same Nt , Nu.

– All configurations in DαL ∩ Estu have the convergent s-channel expansion and the
same Nt , Nu.

Proof. Let us check the conclusions case by case.
Case 1: DαL is in class S.
The s-channel convergence follows from theorem 4.1. For other cases, the s-channel argu-

ments are the same, and we will only focus on Nt and Nu.
Case 2: DαL is in class T.
It remains to show that Nt is a constant in DαL . For any CL , C ′L ∈DαL , since DαL is connected,

there exists a path γ1 which connects CL and C ′L:

γ1 : [0,1] −→ DαL ,

γ1(0) = CL , γ1(1) = C ′L .
(91)

Since γ1(s) are always configurations in class T, the corresponding z, z̄ never touch the interval
(−∞, 0). So nt(γ1) = n̄t(γ1) = 0, which implies Nt(γ1) = 0. On the other hand, given a path
γ2 from DE\Γ to CL , we get a path from DE\Γ to C ′L by connecting γ1 and γ2. So we have

Nt(C
′
L) = Nt(γ1) + Nt(γ2) = Nt(CL) . (92)

In other words, Nt is a constant in DαL .
Case 3: DαL is in class U.
It remains to show that Nu is a constant in DαL . The argument is similar to case 2.
Case 4: DαL is in class E.
Suppose CL , C ′L are two configurations inDαL∩Est. It remains to show that Nt(CL) = Nt(C ′L).

Analogously to case 2, there exists a path γ1 satisfying the condition (91), and it suffices to
show that Nt(γ1) = 0. Here it is different from case 2 because γ1(s) may go through the other
subclasses of the class E, and the curves of z, z̄ may touch the interval (−∞, 0). In class E, the
curves z(s), z̄(s) touch the interval (−∞, 0) only when γ(s) enters the subclass Esu. However,
γ(s), which starts from Est, must go through Estu before entering Esu. When γ(s) leaves Esu,
it must go through Estu again. Since in Estu, the variables z, z̄ are complex conjugate to each
other, the curves of z, z̄ must cross (−∞, 0) from opposite directions, see figure 5.3.

Re

Im
z(s)

z̄(s)

0 1Esu Est Etu

Estu

Figure 5.3: An example of z(s), z̄(s) along γ1 in case 4.
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So we get

nt(γ1) = −n̄t(γ1) , (93)

which implies Nt(γ1) = 0, hence Nt(CL) = Nt(C ′L).
The arguments for DαL ∩ Esu, DαL ∩ Etu and DαL ∩ Estu are similar.

An immediate consequence of theorem 5.2 is that for a fixed causal ordering (say DαL ),
each blank space in table 1 satisfy the all-or-none law: either check mark for all configurations
in DαL or cross mark for all configurations in DαL . Therefore, if DαL is in class S or T or U, then
all its configurations have the same OPE convergence properties; if DαL is in class E, then all
its configurations in the same subclass have the same OPE convergence properties.20

5.3.2 Comments on the 2d case

In 2d unitary local CFTs, we have Al. Zamolodchikov’s uniformizing variables q, q̄ [11]. The
function g in (4) has a convergent expansion in terms of Virasoro blocks, and Virasoro blocks
have convergent series expansions in q, q̄ if 0< |q| , |q̄|< 1, which includes the configurations
with 0 ≤ |ρ| , |ρ̄| ≤ 1 except for ρ or ρ̄ = ±1. However, ρ or ρ̄ = ±1 only happens at light-
cone singularities.21 So we conclude that in the Lorentzian signature, the s-channel OPE is
always convergent aside from light-cone singularities [12].

The above CFT argument is valid only for 2d unitary local CFTs, where by local we mean
there exists a stress tensor Tµν(x), which has the mode expansion in Virasoro generators [14].
There are also non-local CFTs, e.g. the generalized free field theories. These non-local CFTs
have only global conformal symmetry, for which we can only use ρ, ρ̄ instead of q, q̄.

We claim that the conclusions in theorem 5.2 are still true for 2d unitary CFT (here we
only assume global conformal symmetry). Unlike the case d ≥ 3, the sets DαL are usually
disconnected in 2d. This is because in 2d, there are two disconnected space-like separations.
So we cannot copy the proof of theorem 5.2. However, any 2d configuration can be embedded
into d ≥ 3. Since our criteria of OPE convergence properties are based on counting how the
analytic continuation curves of z, z̄ cross the intervals (−∞, 0), (0,1) and (1,+∞), which is
dimension independent, the 2d path gives the same counting of Nt , Nu as in d ≥ 3. Therefore,
theorem 5.2 also covers the 2d case.

The only little difference is that in the 2d case, the Lorentzian four-point configurations
only have real z, z̄. This follows from (41) and (42). So the subclass Estu, where z, z̄ are not
real, does not exist in 2d.

5.4 Time reversals

In theorem 5.2, we have classified the Lorentzian configurations in DL into a finite number of
cases. For each case, we will have to choose a representative configuration and a path from
DE\Γ , then check if conditions of theorem 4.1, 4.4 and 4.6 hold. Actually, there are some
further simplifications which will reduce the number of checks to perform. We are going to
show that different DαL which are related by time reversals have the same convergent OPE
channels.

We define two time reversals:

θE : (ε+ i t,x) 7→ (−ε+ i t,x) ,

θL : (ε+ i t,x) 7→ (ε− i t,x) .
(94)

20By configurations having the same OPE convergence properties, we mean that in each OPE channel, all or
none of these configurations have the convergent expansion for the four-point function.

21If ρ or ρ̄ = 1, then v = 0. If ρ or ρ̄ = −1, then u or v =∞. Thus, for any configuration with ρ or ρ̄ = ±1,
there exists at least one x i , x j pair such that (x i − x j)2 = 0.
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They correspond to the time reversals in Euclidean and Minkowski space. Under time reversals,
x2

i j takes its complex conjugate

(θE x i − θE x j)
2 = (θL x i − θL x j)

2 =
�

(x i − x j)
2
�∗

. (95)

Given a configuration C = (x1, x2, x3, x4), we define the time reversals of the configuration by
(notice the change of order of points in θEC)

θEC =(θE x4,θE x3,θE x2,θE x1) ,

θLC =(θL x1,θL x2,θL x3,θL x4) .
(96)

Then the following properties are easily checked:

• The sets D, DE and DL are preserved by θE and θL .

• Under the transformation C 7→ θEC or C 7→ θLC , the conformal invariants u, v, z, z̄,ρ, ρ̄
become their complex conjugates.

Suppose we have a path γ from DE\Γ to DL . Then θEγ and θLγ are still paths from DE\Γ to
DL . The curves of z, z̄ are reflected with respect to the real axis, which implies

Nt(θEγ), Nt(θLγ) = −Nt(γ) ,

Nu(θEγ), Nu(θLγ) = −Nu(γ) .
(97)

By theorem 4.1, 4.4 and 4.6, we conclude that

• Different Lorentzian configurations which are related by θE ,θL have the same conver-
gent OPE channels.

By lemma 5.1 and theorem 5.2, we translate the above results to the level of causal orderings:

• If two different sets DαL ,DβL are related by θE ,θL , then they belong to the same class (S,
T, U, E).

• If two different sets DαL ,DβL are in class S or T or U and are related by θE ,θL , then they
have the same convergent OPE channels.

• If two different sets DαL ,DβL are in class E and are related by θE ,θL , then their intersec-
tions with each subclass have the same convergent OPE channels.

Given a Lorentzian configuration C = (x1, x2, x3, x4), θE interchanges x1↔ x4 and x2↔ x3.
At the level of causal orderings, θE is the permutation of indices

1↔ 4 , 2↔ 3 , (98)

with all the arrows kept fixed. For example, under θE we have

1 2
3

4
⇒ 4 3

2

1
. (99)

Under θL , the Lorentzian configuration xk = (i tk,xk) is mapped to C ′ = (x ′1, x ′2, x ′3, x ′4) with

x ′k = θL xk = (−i tk,xk) , k = 1,2, 3,4 . (100)
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So the operator ordering does not change but the causal ordering is reversed. For example,
under θL we have

1 2
3

4
⇒ 1 2

3

4
. (101)

By definitions (94) and (96), we have the following properties for θE ,θL:

θ2
E = id , θ2

L = id , θEθL = θLθE . (102)

So the group generated by θE ,θL is Z2 × Z2. Under the Z2 × Z2-actions, the orbit of a given
causal ordering contains 1 or 2 or 4 causal orderings. In each orbit, it suffices to check the
OPE convergence properties of only one causal ordering and make the same conclusions for
other causal orderings. This simplifies our work.

5.5 The table of four-point causal orderings

Given two Lorentzian configurations (x1, . . . , xn) and (y1, . . . , yn), we say that they are in the
same causal type if there is a permutation σ ∈ Sn such that (xσ(1), . . . , xσ(n)) has the same
causal ordering as (y1, . . . , yn) or (θL y1, . . . ,θL yn).

In table 2, we give a classification of four-point causal orderings according to the causal
types. The vertices labelled by a, b, c, d can be any permutation of 1,2, 3,4. In the end we
will give a table about OPE convergence properties for each causal type in table 2. Each
causal type thus represents at most 4! × 2 causal orderings (4! for possible assignments of
1, 2,3, 4 → a, b, c, d and ×2 for two columns). This maximal number is realized for type 3,
while for other types it is smaller because often second column is equivalent to the first and
because of little group (see appendix C.0.3).

It makes sense to do this grouping of causal orderings into causal types for two reasons:

• causal orderings related by θE and θL action (and which thus have same OPE conver-
gence properties) belong to the same causal type.

• if we know class/subclass of DαL for one α in a given causal type, it is easy to determine
the class/subclass of any other DαL in the same causal type (see appendix C.0.1).

5.6 Examples

The tables which classify the OPE convergence properties will be particularly large, we leave
them in appendix C. Readers can pick the cases they are interested in. To make it easy for
readers to check, we also share the Mathematica code which contain the OPE convergence
results of all causal orderings, see the file “/anc/OPE_check.nb". In this section we only give
some examples.

The Lorentzian four-point correlation functions defined in (2) are either (maximally) time-
ordered (t1 > t2 > t4 > t4) or out of time order (not t1 > t2 > t4 > t4). The time-ordered
correlators have applications in scattering theories [45, 46], and the out-of-time-order corre-
lation functions have applications in the study of many-body systems [47–54]. An example
in [36] shows the existence of out-of-time-order correlators which do not have a convergent
OPE channel (see appendix A in [36]).22 Our first example is the case of time-ordered correla-
tor. We will see that time-ordered correlators at different causal orderings may have different
OPE convergence properties.

22By “a configuration do not have a convergent OPE channel" we mean the configuration do not satisfy the
conditions of theorem 4.1, 4.4 and 4.6.
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Table 2: Classification of four-point causal orderings

Type No. causal ordering θL time reversal

1 a b c d same

2 a b
c

d

c

d
b a

3
a b c

d
c b a

d

4 a
b

c
d same

5 a
b
c
d

b
c
d

a

6
a b c

d
same

7
a

b

c
d

b

c
a

d

8
a

b

d
c

same

9
a b

c
d

same

10
a

b
c d same

11
a b
c d

same

12 a b c d same

The second example is to clarify that two conformally equivalent configurations/causal
orderings may have different OPE convergence properties.

Then we will discuss two other examples from AdS/CFT. One is the Regge kinematics
[55,56], the other is related to the bulk-point singularities [12].

5.6.1 General time-ordered correlation functions

In this example, we would like to consider the general Lorentzian four-point functions with
the maximal time ordering:

GL
4 (x1, x2, x3, x4) = 〈0|φ(x1)φ(x2)φ(x3)φ(x4) |0〉 ,

xk = (tk,xk) , t1 > t2 > t3 > t4,
(103)
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where GL
4 (x1, x2, x3, x4) is the same as in eq. (2). Since Lorentzian correlator is the boundary

value of the analytic function on domain D, it does not depend on our choice of the path (but
we should keep the ordering of the Euclidean times until we reach the Lorentzian configura-
tion). A simple way to obtain the Lorentzian correlator is by the so-called “ε-prescription":

x1 = (t1,x1) , x2 = (t2 − iε,x2) , x3 = (t3 − 2iε,x3) , x4 = (t4 − 3iε,x4) , ε→ 0+ .
(104)

Here ε plays the role of the Euclidean time difference. Then one can check whether GL
4 exists

in the sense of functions in such a limit.
According to theorem 5.2, the OPE convergence properties are determined by the causal

ordering and (in a special case) the range of cross-ratios. For time-ordered four-point func-
tions, we have 40 possible causal orderings compatible with the maximal time ordering. Here
we list all of them according to table 2:

1 2 3 4 ,
1 2

3

4
,

1

2
3 4

,
1 2 3

4
,

1 3 4
2

,

1 2 4
3

,
1 2 4

3
,

1 3 4
2

,
2 3 4

1
, 1

2

3
4 ,

1
2
3
4

,
1
2
3

4 ,
2 3 4

1
,

1 3 4
2

,
1 2 4

3
,

1 2 3
4

,

1
2

3
4

,
1

2

4
3

,
1

3

4
2

,
2

3

4
1

,

1

2
3

4

,

1

2
4

3

,

1

3
4

2

,

2

3
4

1

,

1
4

3
2

,
1

3

4
2

,
1

2

4
3

,
2

3

4
1

,
2

4

3
1

,
1 2

3
4

,
1 3

2
4

,
1 4

2
3

,

2 3
1
4

,
2 4

1
3

,
3 4

1
2

,
1

2
3 4 ,

1 2
3 4 ,

1 3
2 4 ,

1 4
2 3 ,

1
2
3
4

.

(105)

Reader can look up the OPE convergence properties of these causal orderings in the tables in
appendix C. The way how to look up these tables is shown at the beginning of appendix C.

Here we pick two of the above causal orderings.
Example (a). The simplest example of the time-ordered configuration is the first case in

(105):

1 2 3 4 . (106)

This causal ordering belongs to causal type 1 in table 2. By comparing it with the template
causal ordering (195), we see that it corresponds to the sequence “(1234)". Then we look up
the convergence properties of “(1234)" in table 5. We see that for this causal ordering, the
s-channel and t-channel OPEs are convergent, while the u-channel OPE is not convergent.
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Example (b). The second example is the following causal ordering (the second one in the
fourth row of (105)):

1
3

4
2

. (107)

This causal ordering belongs to causal type 8 in table 2. By comparing it with the template
causal ordering (210), we see that it corresponds to the sequence “(1324)" in table 12. Then
by looking up table 12, we conclude that there is no convergent OPE channel for this causal
ordering. As a consistency check, one can also pick a representative configuration of this causal
ordering:

x1 = (0, 0) , x2 = (−0.1,1) , x3 = (−2,−1.5) , x4 = (−2.1,1.5) . (108)

We choose a start point in DE\Γ and a path to compute the z, z̄-curves. Figure 5.4 shows the
z, z̄-curves along the path.23

10

z(0)

z(0)

z(1) z(1)

Figure 5.4: z, z̄-curves of the configuration (108).

We see from figure 5.4 that z > 1, 0 < z̄ < 1 at the final point, which implies that the
configuration (108) is in class T (i.e. only the t-channel OPE has a chance to converge). The
curve of z variable crosses (−∞, 0) from below, which gives Nt = −1. So the t-channel OPE
(the only undetermined case by table 1) is not convergent. Thus, as already mentioned, there
is no convergent OPE channel for the four-point function at this causal ordering. This example
shows that not all time-ordered correlation functions have a convergent OPE channel.

From the above two examples, we see that the OPE convergence properties depend not
only on time ordering, but also on the causal ordering of the configuration. Actually, the time
ordering is not crucial here.

Remark. Readers may find that some of the causal orderings above have the same OPE con-
vergence properties in s-channel, t-channel and u-channel. This is just a coincidence because
we only have 23 = 8 possibilities for OPE convergence (3 channels, 2 possibilities for each
channel) but 40 causal orderings!

Before finishing this subsection, we would like to comment on another extremal example,
which is about the four-point correlators with the maximal out-of-time ordering.

GL
4 (x1, x2, x3, x4) = 〈0|φ(x1)φ(x2)φ(x3)φ(x4) |0〉 ,

xk = (tk,xk) , t1 < t2 < t3 < t4 .
(109)

23We choose the start point x E
1 = (0,−0.8), x E

2 = (−1,−0.2), x E
3 = (−2,−0.6) and x E

4 = (−3,−0.3). The path is
given by the straight line.
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As discussed in section 5.4, if two causal orderings are related by some time-reversal operation,
their OPE convergence properties are the same. We know that the time-reversal operation θL
(defined by (t,x) 7→ (−t,x)) gives a one-to-one correspondence between time-ordered config-
urations and maximally-out-of-time-order configurations. At the level of causal orderings, this
operation reverses all the arrows in eq. (105). Once we know the OPE convergence proper-
ties of all the time-ordered correlators, we immediately make the same conclusion for all the
maximally-out-of-time-order correlators.

5.6.2 Conformally equivalent causal orderings

As mentioned in section 5.2, causal orderings may be violated by special conformal transfor-
mations. As a consequence, there are different causal orderings which have the same range
of cross-ratios z and z̄. However, being in the same conformal equivalence class does not
guarantee that they have the same OPE convergence properties.

To see a counter example, we consider the following two causal orderings:

1→ 2→ 3→ 4 & 2→ 1→ 4→ 3 . (110)

One can check that any configuration with the second causal ordering can be mapped to a
configuration with the first causal ordering via some Lorentzian conformal transformation,
and vice versa. A simple consistency check is that 0< z, z̄ < 1 in both cases.

By looking up table 5, we see that the four-point function has convergent s-channel and
t-channel OPEs at configurations with the first causal ordering, while it has only convergent
s-channel OPE at configurations with the second causal ordering.

This example shows that two causal orderings may have different OPE convergence prop-
erties even if they are conformally equivalent to each other.

5.6.3 Regge kinematics

The second example is the Lorentzian four-point function in the Regge regime [55–57]. Let
x1, x4 and x2, x3 pairs be time-like separated, while other pairs be space-like separated (see
figure 5.5).

x1
x2

x3x4

t

x

Figure 5.5: Regge kinematics.

It is well known that the four-point function at Regge kinematics only has convergent t-
channel expansion [55]. Here we just review this result. The causal ordering of the Regge
kinematics is given by

1 4
2 3

(111)
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The Regge kinematics belongs to causal type 11 in table 2. Let us look up this causal ordering
in appendix C.11. The causal ordering (111) corresponds to the label “(1423)" in table 15.
We see that only t-channel OPE is convergent.

We would like to also choose a representative configuration and a path to compute the
curves of z, z̄. The plot is given by figure 5.6. 24

10

z(0)

z(0)

z(1)z(1)

Figure 5.6: The plot of z, z̄-curves of the Regge kinematics.

We see from figure 5.6 that z, z̄ > 1 at the final point,25 which implies that the Regge
kinematics is in class E. In fact the Regge kinematics can only be in the subclass Etu, where
z, z̄ > 1 [55], so only t- and u-channel expansions have a chance to converge. We see from
figure 5.6 that the z̄-curve crosses (0,1) from below, and z, z̄-curves do not cross (−∞, 0). So
we get

Nt = 0 , Nu = −1 , (112)

which implies that only the t-channel expansion is convergent.

5.6.4 Causal ordering of bulk-point singularities

The third example is as follows. Let x1, x2 and x3, x4 pairs be space-like separated. We put
the x1, x2 pair in the open backward light-cone of some base point and x3, x4 pair in the open
forward light-cone of the base point (see figure 5.7).

x1 x2

x3
x4

t

x

Figure 5.7: Configuration of example 3.

24We choose the Euclidean configuration x1 = 0, x2 = (−1, 0,0, 0), x3 = (−2, 0.9, 0,0), x4 = (−4,0, 0,0) and
the representative Lorentzian configuration y1 = 0, y2 = (0, 0,0.6, 0), y3 = (2i, 0, 0, 0.7), y4 = (2i,−0.05, 0,−3).
We choose the path to be the straight line between them.

25The definition of z, z̄ in [55] is different from this paper. In their work, 0< z, z̄ < 1 at Regge kinematics, while
in this paper, z, z̄ > 1. One can compare the definitions and get the relation of z, z̄ between [55] and our work:
z→ 1/z, z̄→ 1/z̄.
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Such configurations have the causal ordering

1

2
3 4 . (113)

The causal ordering (113) is of causal type 10 in table 2. We look up the OPE convergence
properties in appendix C.10. The causal ordering (113) corresponds to the label “(1234)" in
table 14. We see that this causal ordering is in class E, which has four subclasses. From table
14 we also see that the configurations with the causal ordering (113) exist in each subclass.
We wish to consider the subclass Eut, where z, z̄ > 1. In table 14, we see that the configurations
with causal ordering (113) and in subclass Eut have no convergent OPE channels.

Let us also choose a representative configuration to check this result. We want to remark
that such case does not exist in 2d (see appendix C.10 for the proof). We choose the following
three-dimensional configuration

x1 = (0,0, 0) , x2 = (0,1, 0) , x3 = (i, 0.2, 0.5) , x4 = (i, 0.5, 0.8) . (114)

Figure 5.8 shows the plot of z, z̄-curves.

10

z(0)

z(0) z(1)
z(1)

Figure 5.8: The plot of z, z̄-curves of the configuration (114).

We see that along the path, z crosses the interval (−∞, 0) and z̄ crosses the interval (0,1).
We get

Nt = 1 , Nu = −1 , (115)

which implies that the t- and u-channel expansions do not converge.
We conclude that there is no convergent OPE channel for the causal ordering (113) with

z, z̄ > 1.
Here we give a hint why this example is related to the bulk-point singularities in AdS/CFT

[12]. The bulk-point singularities are not exactly the configurations in Minkowski spaceRd−1,1,
instead they are configurations on the Minkowski cylinderR×Sd−1 [58]. The Minkowski space
can be embedded into a patch of the Minkowski cylinder in a Weyl equivalent way, this patch
is called the Poincaré patch [59]. The Minkowski cylinder also admits a causal ordering which
is equivalent to the causal ordering of the Minkowski space in the Poincaré patch [60,61]. One
can show the following facts:

• The bulk-point singularities have the causal ordering (113) and z, z̄ > 1.
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• One can find a path from an arbitrary bulk-point singularity to a configuration in the
Poincaré patch, such that the causal ordering (113) is preserved along the path.

• The CFT four-point function in the Poincaré patch is the same as the CFT four-point
function in the Minkowski space up to a scaling factor.26

Based on the above facts, the OPE convergence properties of the bulk-point singularities are
exactly the same as this example: there is no convergent OPE channel. More details will
be given in [38]. Our result does not contradict the two-dimensional result in [12] (see the
beginning of section 5.3.2) because here we only use the global conformal symmetry instead
of the Virasoro symmetry.

5.6.5 Digression

We can see from figure 5.4, 5.6 and 5.8 that the z, z̄-curves do not touch the interval (1,+∞)
until the end. One can also see this phenomenon by picking representative configurations of
other causal orderings and compute the z, z̄-curves. This numerical observation is consistent
with theorem 3.1.

6 Wightman functions: a brief review

In this section we will review some classical results about regular points (points where Wight-
man distributions are genuine functions) in a general QFT [5, 6, 62]. For simplicity let us
still consider a scalar theory in the Minkowski space, which is characterized by a collection of
Lorentzian correlators:

Wn(x1, x2, . . . , xn) := 〈0|φ(x1)φ(x2)...φ(xn) |0〉 , (116)

where x i are Lorentzian coordinates.27 We will introduce the Wightman axioms for QFTs,
and then review the domain of correlation functions which can be derived from Wightman
axioms. In the end, we will compare these classical results with our results for CFT four-point
functions.

This section is logically independent from the rest of the paper. Here we assume Wightman
axioms while in the rest we did not. The only connection is to justify the definition of Wick
rotation (steps 1 and 2 in section 2.1).

6.1 Wightman axioms for Lorentzian correlators

We assume the Wightman axioms for correlators {Wn}:
(W1) Temperedness.
Wn is a tempered distribution (called Wightman distribution). It becomes a complex num-

ber after being smeared with rapidly decreasing test functions fn:

Wn( fn) =

∫

f (x1, . . . , xn)Wn(x1, . . . , xn)d x1 . . . d xn . (117)

The Fourier transform Ŵn of Wn is well defined since the space of rapidly decreasing test
functions (Schwartz space) is closed under Fourier transform [63]. One has the definition
Ŵn ( fn) :=Wn

�

f̂n

�

.

26The definition of the CFT four-point function on the Minkowski cylinder is similar to Minkowski space. We
replace the planar time variables τk by the cylindrical time variables. Then do Wick rotations.

27In the rest of the paper we the Lorentzian points were denoted by (i tk,xk). Only in this section we use the
notation xk = (tk,xk).
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(W2) Poincaré invariance.
The correlators transform invariantly under action of the Poincaré group:

Wn(g · x1, . . . , g · xn) =Wn(x1, . . . , xn) , (118)

for all n≥ 0 and g in the Poincaré group.
(W3) Unitarity.
The vector space generated by the states of the form

Ψ
�

f
�

=
∑

n≥0

∫

fn(x1, . . . , xn)φ(x1) . . .φ(xn) |0〉 d x1 . . . d xn , (119)

has a non-negative inner product. Here f is an arbitrary finite sequence of complex valued
Schwartz functions: f = ( f0, f1, f2, . . .) and fn denotes the Schwartz function with n Lorentzian

points as variables. If we assume thatφ(x) are Hermitian operators, i.e. [φ(x)]† = φ(x), then
the unitarity condition is written as

∑

n,m

∫

fn(x1 . . . , xn) fm(y1, . . . , ym)Wn+m(xn, . . . , x1, y1, . . . , ym)d xd y ≥ 0 , (120)

(W4) Spectral condition.
The open forward light-cone V+ is defined by the collection of vectors x ∈ Rd such that

x0 >

√

√

√

∑

µ≥1

(xµ)2 . (121)

In a general QFT we have self-adjoint momentum operators Pµ. The spectral condition says
that the spectrum of P = (P0, P1, . . . , Pd−1) is inside the closed forward light-cone V+, and the
normalized eigenvector of P = 0 is unique (up to a phase factor), denoted by |0〉.

We define the reduced correlators Wn−1 by

Wn(x2 − x1, . . . , xn+1 − xn) =Wn+1(x1, . . . , xn+1) . (122)

Since Wn+1 is a translational invariant tempered distribution, Wn is well defined and is also
a tempered distribution. The spectral condition implies that the Fourier transforms Ŵn of
Wn is supported in the forward light-cone. That is to say, Ŵn(p1, . . . , pn) 6= 0 only if all the
momentum variables pk are inside V+.
(W5) Microscopic causality.
Wn(x1, . . . , xk, xk+1, . . . , xn) = Wn(x1, . . . , xk+1, xk, . . . , xn) if xk and xk+1 are space-like

separated.

6.2 Wightman functions and their domains

6.2.1 Forward tube

Let us consider the “reduced correlator" Wn defined in eq. (122). Wn has Fourier transform

Wn(x1, ..., xn) =

∫

dp1

(2π)d
. . .

dpn

(2π)d
Ŵn(p1, . . . , pn)e

−i(p1·x1+...+pn·xn) , (123)

where Ŵn is also a tempered distribution, and the Lorentzian inner product is defined by
p · x = −p0 x0+ p1 x1+ . . .+ pd−1 xd−1. In general, Wn is not a function if xk are real. However,
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if we replace xk with complex coordinates xk → zk = xk + i yk, because of the spectral condi-
tion (W4), Wn(z1, . . . , zn) is indeed a function if the imaginary parts of zk belong to V+. The
argument is as follows. Suppose yk ∈ V+ for all k = 1, 2, . . . , n, then there exists a Schwartz
function f (p1, . . . , pn) in the momentum space such that f (p1, . . . , pn) = e−i(p1·z1+...+pn·zn) when
all the momentum variables pk are inside the closure of forward light-cone.28 Since Ŵn is sup-
ported in V

n
+, Ŵn( f ) is exactly in the form of (123) with xk replaced by zk. So Wn(z1, . . . , zn)

is a well-defined complex number when Im(zk) ∈ V+ for all k.
Furthermore, since −i (pk)µ f (p1, . . . , pn) is also a Schwartz test function, we have

∂

∂ zµk
Wn(z1, . . . , zn) = Ŵn[−i (pk)µ f ] ,

k = 1, . . . , n and µ= 0, . . . , d − 1 .
(124)

As a result Wn(z1, . . . , zn) is an analytic function inside the “forward tube", denoted as In

In =
n

(z1, . . . , zn) ∈ Cnd
�

�

�Im(zk) ∈ V+, k = 1,2, . . . , n
o

. (125)

The distribution Wn(x1, . . . , xn) is the boundary value of the analytic function Wn(z1, . . . , zn)
on the forward tube In:

Wn(x1, . . . , xn) = lim
y→0
y∈V n

+

Wn(x1 + i y1, . . . , xn + i yn) . (126)

6.2.2 Bargmann-Hall-Wightman theorem, extended tube

Now let us use the Lorentz invariance (W2) to analytically continue Wn to a larger domain.
By (W2), Wn is invariant under the action of real Lorentz group SO+(1, d − 1):29

Wn(g · x1, . . . , g · xn) =Wn(x1, . . . , xn) , ∀g ∈ SO+(1, d − 1) . (127)

The Lorentz transformations preserve the inner product pk · xk and the measure d xk, so the
Fourier transform Ŵn is also Lorentz invariant

Wn(g · p1, . . . , g · pn) =Wn(p1, . . . , pn) , ∀g ∈ SO+(1, d − 1) . (128)

Since Wn(z1, . . . , zn) is defined by the Fourier transform (123) (replace xk with zk), we have

Wn(g · z1, . . . , g · zn) =Wn(z1, . . . , zn) , ∀g ∈ SO+(1, d − 1) . (129)

Here we remark that the real Lorentz group actions preserve the forward tube In.
An important observation is that (129) remains true if we replace the real Lorentz group

SO+(1, d − 1) by the proper complex Lorentz group L+ (C).30 Given an arbitrary g ∈ L+ (C),
we define

W g
n (z1, . . . , zn) :=Wn

�

g−1 · zn, . . . , g−1 · zn

�

, (130)

28The crucial point is that if all yk are inside the forward light-cone, then f (p1, ..., pn) decays exponentially fast
when some pk goes to infinity inside the forward light-cone.

29By SO+(1, d − 1) we mean the connected component of the identity element in O(1, d − 1).
30Let d be the spacetime dimension. The complex Lorentz group L (C) is defined by the set of all d × d complex

matrices M such that M tηM = η. Here η= diag(−1,1, . . . , 1) is the matrix of Lorentzian inner product, and M t is
the transpose of M . L+ (C) is the subgroup of L (C) with constraint detM=1. L+ (C) is connected, unlike the real
case where we need to introduce the constraints “proper", “orthochronous" for connectedness.
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for (z1, . . . , zn) ∈ g In. The Bargmann-Hall-Wightman theorem [64] tells us that if we choose
different complex Lorentz group elements g1, g2, the functions W g1

n and W g2
n coincide in the

domain g1 In∩g2 In. So Wn(z1, . . . , zn) has analytic continuation to the “extended forward tube",
denoted by Ĩn:

Ĩn :=
n

(z1, . . . , zn) ∈ Cnd
�

�

�(g · z1, . . . , g · zn) ∈ In for some g ∈ L+ (C)
o

. (131)

Here we only give the idea of the proof. It suffices to show that for any g ∈ L+ (C), the function
W g

n coincides with Wn in the domain g In ∩ In. Since In and g In are two convex sets, their
intersection g In ∩ In is also convex, thus connected. So it suffices to show that W g

n coincides
with Wn in the neighbourhood of one point. This is obvious for g near the identity element,
but the proof for an arbitrary g is based on the fact that the set {g ∈ L+ (C) | g In ∩ In 6= ;} is
connected, which follows from the group structure of the complex Lorentz group L+ (C) (for
more details, see [1]).

6.2.3 Jost points

While In does not contain Lorentzian points (i.e. points with Im(zk) = 0 for all k), Ĩn contains
a region of Lorentzian points. These points are called Jost points [6], and they are defined by
the configurations (x1, . . . , xn) such that the following cone

¨

λ1 x1 + . . .+λn xn

�

�

�λk ≥ 0 for all k ,
n
∑

k=1

λk > 0

«

, (132)

contains only space-like points (see [1], the theorem on page 81 and the corollary on page
82).

6.2.4 Microscopic causality, envelope of holomorphy

Now let us go back to Wn(x1, . . . , xn) via (122). We define Jn as the set of (x1, . . . , xn) such
that (x2 − x1, . . . , xn − xn−1) are Jost points. The configurations in Jn have totally space-like
separations. To see this we rewrite x i − x j (i > j) as

x i − x j = (x i − x i−1) + (x i−1 − x i−2) + . . .+ (x j+1 − x j) , (133)

which is in the form of (132). By the definition of Jost points, we have (x i − x j)2 > 0 for
i 6= j. It is obvious that J2 contains all totally space-like configurations. For n ≥ 3, Jn does
not contain all totally space-like configurations.

Since Jost points are the configurations with totally space-like separations, by the micro-
scopic causality condition (W5), Wn(x1, . . . , xn) is also regular at (x1, . . . , xn) if there exists a
permutation σ ∈ Sn such that

�

xσ(1), xσ(2), . . . , xσ(n)
�

∈ Jn . (134)

Then the equation Wn (x1, . . . , xn) =Wn

�

xσ(1), . . . , xσ(n)
�

in Jn can be analytically continued
to

Wn (z1, . . . , zn) =Wn

�

zσ(1), . . . , zσ(n)
�

, (z2 − z1, . . . , zn − zn−1) ∈ Ĩn−1 . (135)

Therefore, Wn has analytic continuation to the following domain of complex coordinates
(z1, . . . , zn):

Un =
n

(z1, . . . , zn) ∈ Cnd
�

�

�∃σ ∈ Sn s.t. (zσ(2) − zσ(1), . . . , zσ(n) − zσ(n−1)) ∈ Ĩn−1

o

. (136)
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Un have the following properties:31

1. In 2d, Un contains all totally space-like configurations.

2. U3 contains all totally space-like configurations.

3. In d ≥ 3 and n≥ 4, Un does not contain all totally space-like configurations [1].

To show the first property, we use an analogous version of the complex coordinates (44):

wk = xk + tk , w̄k = xk − tk . (137)

Given an arbitrary totally space-like configuration, we have

(w j −wk)(w̄ j − w̄k)> 0 , ( j 6= k) , (138)

which implies w j > wk, w̄ j > w̄k or w j < wk, w̄ j < w̄k. So we can find a permutation σ such
that

wσ(k) < wσ(k+1) , w̄σ(k) < w̄σ(k+1) , k = 1,2, . . . , n− 1 . (139)

We see from (139) that wσ(k+1)−wσ(k), w̄σ(k+1)− w̄σ(k) are positive, so the cone (132) gener-
ated from these vectors only contain points with positive components. Thus the configuration
(xσ(1), . . . , xσ(n)) is in Jn, or equivalently, (x1, . . . , xn) is in Un.

To show the second property, we consider the totally space-like three-point configurations
in the following form:

x1 = 0 , x2 = (0, 1,0) , x3 = (a, b, c) . (140)

To check that all totally space-like configurations are in U3, it suffices to check the totally space-
like configurations in the form of (140) because Un is Poincaré invariant and scale invariant,
and any totally space-like configuration can be mapped to a configuration in the form of (140)
by Poincaré transformations and dilatation. If (x1, x2, x3) ∈ J3 then we are done. Suppose
(x1, x2, x3) /∈ J3, which means that there exists a positive λ such that λ(x2 − x1) + (x3 − x2)
is a null vector:

a2 = (b− 1+λ)2 + c2 . (141)

The above equation implies a2 ≥ c2, so there exists a Lorentz transformation which maps the
configuration (140) to

x ′1 = 0 , x ′2 = (0,1, 0) , x ′3 = (a
′, b, 0) . (142)

We see that the problem is reduced to the 2d case. According second property, the configura-
tion (142) is in U3. So we conclude that all totally space-like configurations are in U3.

To show the third property, it suffices to give a counterexample for d = 3 and n= 4:

x1 =(1− ε, 1, 1) , x2 = (1− ε,−1,−1) ,

x3 =(ε− 1, 1,−1) , x4 = (ε− 1,−1,1) ,
(143)

where ε > 0 is small. (143) is a totally space-like configuration but it does not belong to U4
(see [1], p. 89).

Wn has analytic continuation from Un to its envelope of holomorphy H(Un) [65], which is
defined by the following property:

• Any holomorphic function on Un has analytic continuation to H (Un).

A theorem proved by Ruelle [7] shows that H (Un) contains all totally space-like configurations.
We conclude that Wightman distributions Wn(x1, . . . , xn) are analytic functions at all to-

tally space-like configurations.
31We were unable to track properties 1,2 in prior literatures. Readers are welcome to provide us with references.
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6.3 Comparison with CFT

6.3.1 Justifying the definition of Wick rotation

In section 3 of this paper, we used CFT arguments (not using Wightman axioms) to show that
the CFT four-point function is analytic in the domain D, where only the temporal variables
are complex numbers (see section 2.1). Consider the points (x2 − x1, x3 − x2, x4 − x3) where
(x1, . . . , x4) ∈D. The notation we use in the rest of the paper is xk = (εk+ i tk,xk), so we have

xk+1 − xk = (εk+1 − εk + i tk+1 − i tk,xk+1 − xk) . (144)

By translating (144) to the notation in this section (see footnote 27), we have

xk+1 − xk = (tk+1 − tk,xk+1 − xk) + i(εk − εk+1, 0) . (145)

We see from (145) that the points (x2 − x1, x3 − x2, x4 − x3) are in the forward tube I3 if
(x1, x2, x3, x4) ∈ D (because ε1 > ε2 > ε3 > ε4). Recalling that the Wightman distritbutions
Wn(x1, . . . , xn) can be obtained by taking the limit of the analytic functions Wn(z1, . . . , zn)
from the domain {(z2 − z1, . . . , zn − zn−1) ∈ In−1}, we see that our definition of Wick rotation
(2) is consistent with Wightman QFT.

6.3.2 Osterwalder-Schrader theorem

In fact we use the same analytic continuation path as in the Osterwalder-Schrader (OS) theo-
rem [2]. The OS theorem shows that under certain conditions, a Euclidean QFT can be Wick
rotated to a Wightman QFT.

In this paper we focus on the domain of analyticity of the four-point function, and we do
not explore the distributional properties of it. To show that the limit (2) of the CFT four-point
functions defines a Wightman four-point distribution, one needs to deal with the four-point
function not only at regular points (where |ρ|, |ρ̄| < 1 in s- or t- or u-channel), but also at all
the other Lorentzian configurations where ρ and/or ρ̄ is 1 in absolute value (this needs a lot
of extra work). Readers can go to [37], where we show that Wick rotating a Euclidean CFT
four-point function indeed results in a Wightman four-point distribution.

Let us contrast our construction and the OS construction. Our construction extends G4
in a CFT to domain D using only information about the four-point function itself. The OS
construction can extend G4 (in fact any Gn) to domain D in a general QFT. But the price to
pay is that analytic continuation involves infinitely many steps and needs information about
higher-point functions [3,4].

We would also like to point out that the OS theorem requires an extra assumption, called
the linear growth condition. The linear growth condition is introduced as a technical condition
for showing that the analytically continued Euclidean correlator is a tempered distribution
in the Lorentzian regime. Without this condition, the Euclidean correlator still has analytic
continuation to the domain D (i.e. step 1 in section 2 can still be done). However, since D
does not contain any Lorentzian configurations, one has to take a limit towards the Lorentzian
regime from D. To show such a limit exists in the sense of tempered distributions, one needs
to derive some power-law upper bound on the correlator in D (or T4, the forward tube), and
this is where the linear growth condition is used. So far, it is not understood whether the
linear growth condition can be derived from basic CFT assumptions (conformal invariance,
OPE convergence, unitarity) or not.
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6.3.3 Domain of analyticity: Wightman axioms + conformal invariance

Let us summarize how the domains of Wightman functions are derived in Wightman QFT.
We first use the temperedness property (W1), translational invariance (W2) and the spectral
condition (W4) to show that the reduced Wightman distribution Wn is an analytic function in
the forward tube In. Then we use the Lorentz invariance (W2) to show that Wn has analytic
continuation to the “extended tube" Ĩn, which includes the set of Jost points. Finally we use
the microscopic causality condition (W5) to show that Wn+1 has analytic continuation to all
configurations with totally space-like separations.

The unitarity condition (W3) is not involved in the above argument, only the conditions
(W1), (W2), (W4) and (W5) are used.

In the rest of the paper we explored the domain of CFT four-point functions by assuming
unitarity, Euclidean conformal invariance and OPE (not assuming Wightman axioms). Here
we would like to discuss a related but different situation:

• What is the domain of the four-point function if we only assume Wightman axioms and
conformal invariance (not assuming OPE)?

We want to emphasize that global conformal invariance does not hold for general CFT inRd−1,1

because Lorentzian special conformal transformations may violate causal orderings. The pre-
cise meaning of conformal invariance here is the Euclidean global conformal invariance: we
Wick rotate Wightman functions to the Euclidean signature, then the corresponding Euclidean
correlation functions are invariant under Euclidean global conformal transformations. This as-
sumption is called weak conformal invariance [58].

It is obvious that the Wightman function W4 is analytic in U4 (as discussed in section
6.2). In section 6.2, a crucial step is to extend the real Poincaré invariance to complex
Poincaré invariance. Then the reduced Wightman function W3 has analytic continuation from
the forward tube I3 to the extended forward tube Ĩ3. Now that we assume weak confor-
mal invariance, given any Euclidean conformal transformation g and Euclidean configuration
C = (x1, x2, x3, x4), we have

W4(C) =Ω(x1)
∆Ω(x2)

∆Ω(x3)
∆Ω(x4)

∆W4(g · C) ,
g · C =(g · x1, g · x2, g · x3, g · x4) ,

(146)

where Ω(x) is the scaling factor of the conformal transformation. It is not hard to show that
given any configuration C (which can be non-Euclidean) in the domain of W4, eq. (146)
holds for g in a neighbourhood of the identity element in the Euclidean conformal group (this
neighbourhood depends on configuration). Then we can show that for a fixed C , eq. (146)
holds not only in a neighbourhood of identity element in the Euclidean conformal group, but
also in a neighourhood in the complex conformal group.32 Therefore, by using (146) with g in
the complex conformal group, we can extend W4 to a bigger domain than U4 (recall definition
(136)).33 We say that configurations C = (x1, x2, x3, x4), C ′ = (x ′1, x ′2, x ′3, x ′4) are conformally
equivalent if there exists a path g(s) in the complex conformal group such that

• g(0) =id, and g(1) · C1 = C2.

• The scaling factors Ω(x1),Ω(x2),Ω(x3),Ω(x4) along g(s) do not go to 0 or∞.

32The complex conformal group is generated by translations x → x+a, rotations x → exp
�

αµνMµν

�

x , dilatations

x → eτx , special conformal translations x → x ′µ = xµ−x2 bµ

1−2b·x+b2 x2 with complex parameters.
33This can be called conformal extension of Bargmann-Hall-Wightman theory. We were unable to find this idea

in prior literature.
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We define

U c
4 =

�

C = (x1, x2, x3, x4) ∈ C4d
�

� C is conformally equivalent to some C′ ∈ U4

	

, (147)

where the superscript “c" in U c
4 means “conformal". Naively, one may expect that W4 has

analytic continuation to U c
4 by (146).34 However, for each conformally equivalent C , C ′ pair

in U c
4 , the path g(s) in the complex conformal group is not unique, which means choosing

different g(s) may give different analytic continuation. In other words, W4 may not be a
single-valued function on U c

4 .
There is one very simple partial case which is guaranteed not to lead to multi-valuedness.

It is the case when the whole curve C(s) = g(s) · C =
�

x1(s), x2(s), x3(s), x4(s)
�

has point
differences (y1(s), y2(s), y3(s)) (where yk = xk+1 − xk) in the forward tube I3, except for the
end point g(1) · C .

In this paper we do not fully explore the Lorentzian domain of W4 by using the above
method. We left it for future work. Here we only give a simple example which shows that by
assuming weak conformal invariance in Wightman QFT, the domain of the Wightman function
contains more Lorentzian configurations than totally space-like configurations.

We would like to show that the following Lorentzian configurations are in the domain of
(conformally invariant) W4:

xk = (tk,xk) , 1→ 2→ 3→ 4 . (148)

We act with complex dilatation on (148):

x ′k = eiαxk . (149)

Then the point differences are given by x ′jk = x jk cosα+ i x jk sinα. By the causal ordering in
(148), we have (x ′2− x ′1, x ′3− x ′2, x ′4− x ′3) ∈ I3 when 0< α≤ 1. On the other hand, the scaling
factors of complex dilatations (149) are constants: Ω(x) = eiα, which are finite and non-zero.
Thus, we can use the above-mentioned simple partial case. We conclude that the Lorentzian
configurations in the form of (148) are in the domain of (conformally invariant) W4.

6.3.4 Domain of analyticity: unitarity + conformal invariance + OPE

Now back to our CFT construction in this paper. We assumed unitarity, conformal invariance
and OPE, but did not assume Wightman axioms.

With the help of OPE, we are able to control the upper bound of the CFT four-point function
more efficiently [9]. It seems to be rather difficult to apply the unitarity condition (120) in a
general Wightman QFT because it is a non-linear constraint. While, in the expansion (22), we
are able to use the unitarity condition for CFT four-point functions.

The domain of the Lorentzian CFT four-point function G4 contains all configurations where
there exists at least one convergent OPE channel. The results in appendix C show that the
domain of G4 contains much richer set of causal orderings than just the totally space-like
causal ordering obtainable from Wightman axioms alone.

One interesting point is that if we act with conformal transformations on the configurations
which have point differences in the forward tube I3 (let us call this set I4), we can get at most
Lorentzian configurations whose cross-ratios can be realized by configurations in I4 because
conformal transformations do not change cross-ratios.35 However, if we additionally assume

34As a next step, one could consider the Lorentzian configurations in envelope of holomorphy H(U c
4).

35The similar idea has been used to look for the domain of analyticity of the Wightman functions in a general QFT.
E.g. G. Källén explored the domain of the Wightman four-point function by studying configurations (x1, x2, x3, x4)
such that the Poincaré invariants x i j · xkl can be realized by configurations in I4 [66].
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OPE, then it is not necessary that the cross-ratios of the Lorentzian configurations can be
realized by configurations in I4 (the only requirement is that |ρ| , |ρ̄|< 1 in the corresponding
OPE channel). It would be interesting to figure out:

• can we get more Lorentzian configurations by assuming unitarity+ conformal invariance
+ OPE than by assuming Wightman axioms + conformal invariance?

We left it for future work.

7 Four-point functions of non-identical scalar or spinning opera-
tors

7.1 Generalization to the case of non-identical scalar operators

In this section we generalize our results of section 3, 4 and 5 to the CFT four-point functions
of non-identical scalar operators. We start from a Euclidean CFT four-point function

G1234(x1, x2, x3, x4) := 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 . (150)

The scalar operators Oi in (150) have scaling dimensions ∆i . By conformal symmetry, (150)
can be factorized as

G1234(x1, x2, x3, x4) =
1

�

x2
12

�

∆1+∆2
2

�

x2
34

�

∆3+∆4
2

�

x2
24

x2
14

�

∆1−∆2
2

�

x2
14

x2
13

�

∆3−∆4
2

g1234(ρ, ρ̄) . (151)

As we discussed in section 3.1, the prefactor multiplying g1234(ρ, ρ̄) has analytic continuation
to the domain D. It remains to show that g1234(τk,xk) has analytic continuation to D.

In the region |ρ| , |ρ̄| < 1 in the Euclidean signature, g1234 has a convergent expansion in
conformal blocks:

g1234 (ρ, ρ̄) =
∑

O
C12OC34O g12,34

O (ρ, ρ̄) , (152)

where Ci jO are OPE coefficients and O are the primary operators which appear in the O1×O2
OPE. In the unitary CFTs, we can assume Ci jO to be real by choosing proper basis of operators.

Each conformal block g12,34
O (ρ, ρ̄) has a series expansion

g12,34
O (ρ, ρ̄) =

∑

ψ∈[O]
a12ψb34ψρ

h(ψ)ρ̄h̄(ψ) , (153)

where ψ ∈ [O] form an orthonormal basis in the highest weight representation [O] of the
conformal group SO(1, d + 1). Here we choose ψ to be eigenstates of Virasoro generators
L0, L̄0 ∈ so(1, d + 1) and h(ψ),h̄(ψ) are the corresponding eigenvalues. The real coefficients
a12ψ, b34ψ in (153) are totally fixed by conformal symmetry and a12O = b34O = 1, where O
is the primary state in [O].
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We stick (153) into (152) and apply the Cauchy-Schwartz inequality:

�

�g12,34 (ρ, ρ̄)
�

�

2
=

�

�

�

�

�

∑

O
C12OC34O

∑

ψ∈[O]
a12ψb34ψρ

h(ψ)ρ̄h̄(ψ)

�

�

�

�

�

2

≤

�

�

�

�

�

∑

O

∑

ψ∈[O]

�

�

�C12OC34Oa12ψb34ψρ
h(ψ)ρ̄h̄(ψ)

�

�

�

�

�

�

�

�

2

≤

 

∑

O

∑

ψ∈[O]
C2

12Oa2
12ψ |ρ|

h(ψ) |ρ̄|h̄(ψ)
!

×

 

∑

O

∑

ψ∈[O]
C2

34Ob2
34ψ |ρ|

h(ψ) |ρ̄|h̄(ψ)
!

.

(154)

Since the primaries O are in the intersection of O1 ×O2 and O3 ×O4 OPE, we have
∑

O

∑

ψ∈[O]
C2

12Oa2
12ψ |ρ|

h(ψ) |ρ̄|h̄(ψ) ≤g12,21(r, r) ,

∑

O

∑

ψ∈[O]
C2

34Ob2
34ψ |ρ|

h(ψ) |ρ̄|h̄(ψ) ≤g43,34(r, r) ,
(155)

where r = max {|ρ| , |ρ̄|}. The above inequalities show that the ρ-expansion of g12,34 is ab-
solutely convergent in the domain |ρ| , |ρ̄| < 1. As a result we have an analytic function
g1234(χ, χ̄) in the domain (28), where χ, χ̄ are defined in (27).

On the other hand, for the case of non-identical scalar operators, we can still rearrange the
series (153) in the same way as (24). This follows from the fact that only the operators in trace-
less totally-symmetric representations of SO(d) can appear in the OPE of two scalar operators,
which leads to ρ-expansion in the form of Gegenbauer polynomials (25) [13]. Therefore, by
the results in section 3.4.2, the function g1234(τk,xk) is analytic in D.

The remaining steps are the same as the case of identical scalar operators. We conclude that
for the case of four-point functions with non-identical scalar operators, the OPE convergence
properties are the same as the case of identical scalar operators.

7.2 Comments on the case of spinning operators

Before finishing this section we want to make some comments on the case of four-point func-
tions with spinning operators:

Ga1a2a3a4
1234 (x1, x2, x3, x4) := 〈Oa1

1 (x1)O
a2
2 (x2)O

a3
3 (x3)O

a4
4 (x4)〉 , (156)

where Oai
i are primary operators with scaling dimensions ∆i and SO(d)-representation ρi . ai

are the indices for the spin representations ρi . In the Euclidean signature, the Jacobian of any
conformal transformation f in SO(1, d + 1) can be factorized as

Jµν (x) :=
∂ f µ(x)
∂ xν

= Ω(x)Rµν(x) , (157)

whereΩ(x)> 0 is a scaling factor and R is a rotation matrix. The four-point function Ga1a2a3a4
1234

is invariant if we replace all Oai
i (x) in (156) with

Oai
i (x)→ Ω(x)

∆i
�

ρi (R(x))−1�ai

bi
Obi

i ( f (x)) . (158)
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If we choose the conformal transformation f to be the one which maps (x1, x2, x3, x4) to its
ρ, ρ̄-configuration (19), then we get

Ga1a2a3a4
1234 (x1, x2, x3, x4) =

1
�

x2
12

�

∆1+∆2
2

�

x2
34

�

∆3+∆4
2

�

x2
24

x2
14

�

∆1−∆2
2

�

x2
14

x2
13

�

∆3−∆4
2

× T a1a2a3a4
b1 b2 b3 b4

(R1,R2,R3,R4)g
b1 b2 b3 b4
1234 (ρ, ρ̄) ,

(159)

where Rk is the rotation matrix of f at xk, and T is a function of rotation matrices, which is
determined by the representations ρi of the spinning operators Oi .

Analogously to the scalar case, the function g b1 b2 b3 b4
1234 (ρ, ρ̄) can be bounded by Cauchy-

Schwarz inequality. We can still write g b1 b2 b3 b4
1234 (ρ, ρ̄) in the form of (24), but in general the

functions P l(ρ, ρ̄) are not Gegenbauer polynomials of cosθ (recall that ρρ̄ = e2iθ ). The diffi-
culty is that there is the function T (Rk) in (159) because of the non-trivial representations of
the spinning operators. If we think of the above conformal transformation f as a conformal-
group-valued function of (x1, x2, x3, x4),36 then Rk are also functions of (x1, x2, x3, x4). In
general, the entries of Rk have singularities in the domain D, e.g. at Γ [67,68]. In a word, it
is not obvious that T (Rk) in (159) is under control. Some extra work is required for a good
estimate on the object

T a1a2a3a4
b1 b2 b3 b4

(R1,R2,R3,R4)g
b1 b2 b3 b4
1234 (ρ, ρ̄) .

In this paper we do not study the correlators of spinning operators. We leave these for future
work.

8 Conclusions and outlooks

In this work we studied the convergence properties of various OPE channels for Lorentzian
CFT four-point functions of scalar operators in d ≥ 2, assuming global conformal symmetry.
Our analysis is based on the convergence properties of OPE in the Euclidean unitary CFTs.
We classified the Lorentzian four-point configurations according to their causal orderings and
the range of the variables z, z̄. The Lorentzian correlators are analytic functions in a neigh-
bourhood of some Lorentzian configuration as long as there exists at least one convergent
OPE channel in the sense of functions. We showed that the convergence properties of various
OPE channels are determined by the causal orderings and the range of z, z̄ of the four-point
configurations. The CFT four-point functions are analytic in a very big domain, including
configurations with totally space-like separations and configurations with some other causal
orderings. All the results of OPE convergence properties are given in Appendix C.

Before ending, we would like to point out some related open questions. We list these
questions in the order of difficulty (based on personal perspective):

1. (Easy) CFTs can also live on the Minkowski cylinder [58]. We start from CFT four-point
function defined on the Euclidean cylinder and then Wick rotate the cylindrical time
variables. The corresponding counterpart questions are:

• Which configurations have convergent s-, t- and u-channel OPE in the sense of
functions on the Minkowski cylinder?

36Since such a conformal transformation f is not unique, the definition of this group-valued function depends
on how we construct it.
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• Can we still classify the OPE convergence properties according to the range of z, z̄
and the causal orderings on the Minkowski cylinder?

2. We mainly used the radial coordinates ρ, ρ̄ in our analysis. We have seen that by us-
ing the q, q̄-variables in 2d, the domain of CFT four-point functions are larger than the
domain derived by using the ρ, ρ̄-variables. A natural question is

• For CFTs with only global conformal symmetry, are there any other coordinates
which allow us to extend G4 to some other domains which are not covered by
using radial variables?

Our conjecture is that there are no such coordinates.

3. (Probably hard) Our results provide some safe Lorentzian regions where conformal boot-
strap approach can be applied. One can use bootstrap equations to analyze the four-point
functions at Lorentzian configurations with at least two convergent OPE channels. It is
also interesting to play with crossing symmetry at Lorentzian configurations with

• One convergent OPE channel in the sense of functions, another one in the sense of
distributions.

• Two convergent OPE channels in the sense of distributions.37

The above situations are closely related to the topics on analytic functional bootstrap
when the functionals touch the boundaries of the regions with convergent OPE [24–27,
70–72].

4. (Hard) There are also Lorentzian configurations with no convergent OPE channels. For
these cases we do not know whether the general four-point correlators are genuine func-
tions or not. We may need other techniques to handle these situations. For example,
there are questions similar to section 6.2.4:

• One can derive a complex domain Dstu which is the union of the domains of three
OPE channels. Then what is Dstu and what is its envelope of holomorphy H

�

Dstu
�

?
Does H

�

Dstu
�

contain more Lorentzian configurations than those provided by the
results in this paper?

Once we are able to construct H
�

Dstu
�

, one can ask

• Given a Lorentzian configuration CL ∈ D\H
�

Dstu
�

, can we find a CFT example
such that the four-point function is divergent at CL?

5. (Hard) One can also consider higher-point correlation functions in CFTs. A natural ques-
tion is:

• For n≥ 5, what is the Lorentzian domain of Gn in the sense of functions?

We leave these questions for future work.

37The similar idea was proposed recently by Gillioz et al, see [69], section 5.
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A Why z(τk,xk), z̄(τk,xk) are not well defined on D in d ≥ 3 ?

A.1 Main idea

Recall that we want to analytically continue the function g(τk,xk) to D by using the compo-
sitions (30). In fact, by theorem 3.1 and the fact that D is simply connected, this would have
been possible if analytic functions z(τk,xk), z̄(τk,xk) existed (see the 2d case in section 3.5).

We are going to show that in d ≥ 3, there is no analytic function (z(τk,xk), z̄(τk,xk)) on
D which is compatible with (6) and (7). Consequently, some modification of the strategy (30)
is needed to construct the analytic continuation of g(τk,xk) in d ≥ 3 (and that’s what we did
in section 3.4). In this section we do not identify (z, z̄)∼ (z̄, z).

Let us first give the main idea why z(τk,xk), z̄(τk,xk) are not globally well-defined on D.
This is similar to the reason why the square-root function f (w) =

p
w is not globally well-

defined on C: there exits a loop of w such that f (w) starts with f (w0) (w0 is the start and final
point of the loop) but ends with − f (w0). In d ≥ 3, there exists a loop γ in D such that the
value 4u− (1+ u− v)2 goes around 0 once. Then by (8), we see that (z(γ(s)), z̄(γ(s))) starts
with (z0, z̄0) but ends with (z̄0, z0). The construction of such a path γ is given by (167) and
(168).38

A.2 Proof

Let Γ be the preimage of Γuv in D (i.e. the set of configurations where 4u−(1+u− v)2 = 0, see
the definition of Γuv in (9)). A necessary condition for the existence of such a (z, z̄) function is
that

• (z(τk,xk), z̄(τk,xk)) is a continuous function from D\Γ to C2\{z = z̄}.
It suffices to show that the above condition does not hold in d ≥ 3.

If the continuous function (z(τk,xk), z̄(τk,xk)) exists, then since (11) is an invertible linear
map, the continuous function α̃(τk,xk) = (w(τk,xk), y(τk,xk)) also exists. Then there is the
following commutative diagram (the map α is defined by (6), while p is a composition of (11)
and (7)):

D\Γ α
C2\Γuv

p

C× (C\{0})

(εk + i tk,xk) ∈ 3 (u, v)

(w, y) ∈
(11)

C2\{z = z̄}

(7)α̃? (160)

38In the proof we will use a formal way to reformulate the idea described here. Readers who got the idea can
just go to the construction of the path. We thank Petr Kravchuk for the discussion on this problem.
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The map α̃ in (160) satisfies p ◦ α̃ = α. Since p is a double covering map from C× (C\{0})
to C2\Γuv , recalling the lifting properties of the covering map [41], a sufficient and necessary
condition for the existence of α̃ is the following relation of the fundamental groups

α∗

�

π1

�

D\Γ , C0

�

�

⊂ p∗
�

π1

�

C× (C\{0}) , (w0, y0)
�

�

, (161)

where C0, (w0, y0) are base points of the corresponding spaces such that α (C0) = p (w0, y0),
and α∗, p∗ are the fundamental group homomorphisms induced by α, p.

It remains to show that the condition (161) does not hold in d ≥ 3. By (10), C2\Γuv
is homeomorphic to C × (C\{0}). So C2\Γuv and C × (C\{0}) have the same non-trivial
fundamental group

π1

�

C× (C\{0}) , (w0, y0)
�

' π1

�

C2\Γuv , (u0, v0)
�

' Z , (162)

where (u0, v0) is a base point in C2\Γuv such that p(w0, y0) = (u0, v0). Since p is a double
covering map, the group homomorphism

p∗ : π1

�

C× (C\{0}) , (w0, y0)
�

−→ π1

�

C2\Γuv , (u0, v0)
�

, (163)

is not surjective. In fact, by choosing proper basis, the group homomorphism (163) can be
written as

p∗ : Z −→ Z ,

n 7→ 2n .
(164)

Now to show that the condition (161) does not hold, it suffices to show that the group homo-
morphism

α∗ : π1

�

D\Γ , C0

�

−→ π1

�

C2\Γuv , (u0, v0)
�

, (165)

is surjective. By (10), the generator of π1

�

C2\Γuv , (u0, v0)
�

corresponds to a loop in C2\Γuv
such that along this loop, 4u− (1+u− v)2 goes around 0 only once. Let us construct a loop γ
in D\Γ :

γ : [0, 1] −→ D\Γ , γ(0) = γ(1) = C0 , (166)

which induces a loop in C2\Γuv such that 4u− (1+ u− v)2 goes around 0 only once.
We pick 4 configurations C0, C1, C2, C3 in D\Γ :

C0 : x1 = 0 , x2 = (−1, 1,0, . . . , 0) , x3 = (−2, 0, . . . , 0) , x4 = (−5, 0, . . . , 0) .

C1 : x1 = (0,−1,0, . . . , 0) , x2 = (−1+ 3i,−1,0, . . . , 0) , x3 = (−2, 0, . . . , 0) ,

x4 = (−5,0, . . . , 0) .

C2 : x1 = 0 , x2 = (−1,−1, 0, . . . , 0) , x3 = (−2,0, . . . , 0) ,

x4 = (−5,0, . . . , 0) .

C3 : x1 = (0,1, 0, . . . , 0) , x2 = (−1,0, 1,0, . . . , 0) , x3 = (−2, 0, . . . , 0) ,

x4 = (−5,0, . . . , 0) .

(167)

We let γ be consisting of four straight lines:

γ(s) =











(1− 4s)C0 + 4sC1, 0≤ s ≤ 1/4 ,
(2− 4s)C1 + (4s− 1)C2, 1/4≤ s ≤ 1/2 ,
(3− 4s)C2 + (4s− 2)C3, 1/2≤ s ≤ 3/4 ,
(4− 4s)C3 + (4s− 3)C0, 3/4≤ s ≤ 1 .

(168)
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f(C1)=f(C3)

f(C2)

f(C4)

0
-0.5 0.5 Re(4u-(1+u-v)^2)

-0.4

-0.2

0.2

0.4

0.6

0.8

Im(4u-(1+u-v)^2)

Figure A.1: The curve of 4u − (1 + u − v)2 along γ(s). We use f (Ci) to denote the
value 4u− (1+ u− v)2 at the configuration Ci .

Figure A.1 shows the curve of 4u− (1+u− v)2 along the path γ. We see that 4u− (1+u− v)2

is non-zero everywhere, implies that the configurations along γ are always in D\Γ (because
the image (u, v) of γ(s) is not in Γuv). Furthermore, 4u − (1 + u − v)2 goes around 0 only
once. Therefore, fundamental group element [γ] ∈ π1 (D\Γ , C0) is mapped to the generator
of π1

�

C2\Γuv , (u0, v0)
�

, so (165) is surjective. As a result, the lifted map α̃ does not exist.
We conclude that in d ≥ 3, there is no analytic function (z(τk,xk), z̄(τk,xk)) on D.
We also want to remark that in 2d, the analytic function (z, z̄) does exist (see section 3.5).

The part of our proof in this section that fails in 2d is the construction of the loop γ in (168).
In our construction of C3 in (167), the third component of x2 is non-zero. This is where we
use the condition d ≥ 3. In fact, one can show that in 2d, the group homomorphism (165) is
not surjective, and the condition (161) holds.

B Connectedness of DαL in d ≥ 3

In this section we are going to show that in d ≥ 3, each DαL in (90) is connected.
Observe first of all that all DαL of the same causal type in table 2 have the same connected-

ness property (this is obvious because they are related by renumbering points), so it suffices
to prove the connectedness property for one DαL in each causal type.

Given a DαL , we define (DαL )3 to be the set of all three-point Lorentzian configurations
which have the causal ordering of the first three points of the configurations in DαL . Then
there is a natural projection from DαL to (DαL )3:

π : DαL −→
�

DαL
�

3 ,

(x1, x2, x3, x4) 7→ (x1, x2, x3) .
(169)
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Then DαL has the following decomposition

DαL =
⋃

(x1,x2,x3)∈(DαL)3

�

x4

�

� (x1, x2, x3, x4) ∈DαL
	

.
(170)

For each causal type in table 2, we want to show that there exists a DαL in this causal type such
that

1. For fixed (x1, x2, x3) ∈
�

DαL
�

3, the set Fαx1,x2,x3
=
�

x4

�

� (x1, x2, x3, x4) ∈DαL
	

is non-
empty and connected.

2.
�

DαL
�

3 is connected.

B.1 Step 1

For a fixed three-point configuration (x1, x2, x3), the set Fαx1,x2,x3
=
�

x4

�

� (x1, x2, x3, x4) ∈DαL
	

is non-empty and connected if one of the following conditions holds as a consequence of causal
ordering imposed by DαL :

1. x i → x4 for i = 1,2, 3.

2. x4→ x i for i = 1,2, 3.

3. x4 is space-like separated from all of x1, x2, x3.

For the first case, Fαx1,x2,x3
is given by the intersection of the open forward light-cones of

x1, x2, x3, which is non-empty. Since cones are convex, Fαx1,x2,x3
is also convex, thus connected.

The connectedness for the second case follows from a similar argument. For the third case, we
use the fact that the connectedness property does not change under Poincaré transformations,
which allows us to move x1 to 0 by translation

xk 7→ xk − x1 , k = 1,2, 3,4 , (171)

and then move x2, x3 onto a 2d subspace by a Lorentz transformation. We enumerate all
possible three-point causal orderings

a b c , a
b

c
,

b

c
a , b c

a
,

a
b
c

, (172)

and check case by case that in d ≥ 3 we can always move the extra point x4 from any position
to∞, preserving the constraint that x4 is space-like to a, b, c. This observation implies that
Fαx1,x2,x3

is connected for the third case.
In table 2, we find a DαL satisfying one of the above conditions for some but not all causal

types. That’s why the connectedness of DαL is not so obvious. The exceptional cases are causal
type 8, 10 and 11, for which we need to discuss case by case. Without loss of generality we
set a = 1, b = 2, c = 3, d = 4 (comparing with table 2) in the following discussion.

Type 8. By translations, Lorentz transformations and dilatations we fix the configurations to

x1 = 0 , x2 = (x
0, x1, 0, . . . , 0) , x3 = (0,1, 0 . . . , 0) . (173)
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x1

x0

x1 x3

x2

Figure B.1: Type 8

Then x2 is in the open forward light-cone of x1, but out of the light-cones of x3 (see the
grey region in figure B.1), and x4 is in the intersection of open forward light-cones of x1 and
x3 (see the red region in figure B.1). Once x2 is fixed somewhere in the grey region, the space
of allowed positions for x4 is given by the red region minus the forward light-cone of x2, so the
remaining region for x4, which is Fαx1,x2,x3

, is the red dashed region in figure B.1. Figure B.1
shows the 2d situation but a similar 3d figure shows that Fαx1,x2,x3

is non-empty and connected
in 3d, thus also non-empty and connected in higher d (because we can always find a spatial
rotation which preserves x1, x2, x3 and maps x4 to (x , y, z, 0, . . . , 0)).

Type 10. By translations, Lorentz transformations and dilatations we fix the configurations
to

x1 = 0 , x2 = (0,1, 0 . . . , 0) , x3 = (x
0, x1, 0, . . . , 0) . (174)

Figure B.2: Type 10

x1

x0

x1 x2

x3

The remaining x3, x4 pair are in the intersection of the open forward light-cones of x1, x2,
i.e. the grey region in figure B.2. Once x3 is fixed, by the constraint that x3, x4 are space-like
separated, Fαx1,x2,x3

is given by the grey dashed region in figure B.2, which is obviously non-

empty. This region is topologically the same as Rd minus the light-cones of x3, thus connected
when d ≥ 3.

Type 11. By translations, Lorentz transformations and dilatations we fix the configurations
to

x1 = 0 , x2 = (i, 0, . . . , 0) , x3 = (x
0, x1, 0, . . . , 0) . (175)
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x1

x0

x1

x2

x3

Figure B.3: Type 11

The remaining x3, x4 pair are in the grey region in figure B.3. One can see that in d ≥ 3 the
grey region is topologically the same as the triangle slice (see one of the grey triangle in figure
B.3) times Sd−2, which is connected. Once x3 is fixed, Fαx1,x2,x3

is given by the forward light-
cone of x3 in the grey region (see the grey dashed region in figure B.3), which is connected.

B.2 Step 2

By slightly improving the argument in step 1, we claim that for the representative set DαL
(which we chose in step 1) of each causal type in table 2, the map (169) is surjective. In other
words, for each three-point configuration in (DαL )3, its preimage in DαL is non-empty.

This claim is true for the cases which satisfy one of the conditions at the beginning of
section B.1 because for these cases we can always find an x4 which is very far away from x1,
x2 and x3. This claim is also true for the exceptional cases because from the figure B.1, B.2
and B.3 we see that the remaining region for x4 is always non-empty.

Now it remains to show that (DαL )3, which is the set of all three-point configurations with
a fixed causal ordering, is connected. For each causal type in (172), we choose

x1 = b , x2 = c , x3 = a . (176)

Analogously to the four-point case we define a projection

π :
�

DαL
�

3 −→
�

DαL
�

2 ,

(x1, x2, x3) 7→ (x1, x2) .
(177)

Then we decompose
�

DαL
�

3 into

�

DαL
�

3 =
⋃

(x1,x2)∈(DαL)2

�

x3

�

� (x1, x2, x3) ∈
�

DαL
�

3

	

.
(178)

By comparing (172) and (176), we find each
�

DαL
�

3 satisfies one of the following conditions:

1. x i → x3 for i = 1, 2.

2. x3→ x i for i = 1, 2.

3. x3 is space-like separated from both of x1, x2.

This observation implies that for each
�

DαL
�

3:
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• For any fixed (x1, x2) ∈
�

DαL
�

2, the set
�

x3

�

� (x1, x2, x3) ∈
�

DαL
�

3

	

is connected.

•
�

DαL
�

2 = π
��

DαL
�

3

�

contains all two-point configurations with the corresponding causal
ordering.

It remains to show that in d ≥ 3, the set of two-point configurations with a given causal
ordering is connected. This is trivial.

C Tables of OPE convergence

In this appendix we will give 12 tables of the results about convergence properties of three
OPE channels: one table for one causal type. For each causal type we will give a template
graph with points a, b, c, d. Given a Lorentzian configuration CL = (x1, x2, x3, x4) ∈ DL , the
way to look up the tables is as follows.

1. Compute the causal ordering of CL , draw the graph of this causal ordering. Find the
corresponding type number (say type X) in table 2.

2. Go to the section of causal type X (which is appendix C.X). Compare the causal ordering
of CL with the template causal ordering of causal type X at the beginning of appendix
C.X. Match the points i1, i2, i3, i4 with (abcd). We will get a sequence (i1i2i3i4).

3. Look up the convergence properties of (i1i2i3i4) in the table of causal type X.

For example, consider the following template causal ordering

a
b

c
d

, or

b

c
a

d

.

Then (i1i2i3i4) means

i1

i2

i3
i4

, or

i2

i3

i1

i4

.

In appendix C.1 we will explain in detail how to make the table of OPE convergence for type
1 causal ordering. The procedure is similar for the other causal types, so we will only give the
results for them. Before we start, we would like to introduce some tricks in appendix C.0.1,
C.0.2 and C.0.3. They will be helpful in making the tables.

C.0.1 S4-action

There is a natural S4-action on the space of four-point configurations. Letσ ∈ S4 be a symmetry
group element:

σ =

�

1 2 3 4
σ(1) σ(2) σ(3) σ(4)

�

. (179)

Let C = (x1, x2, x3, x4) be a four-point configuration such that x2
i j 6= 0 for all x i , x j pairs. We

define the action

σ · C = (x ′1, x ′2, x ′3, x ′4) , x ′k = xσ−1(k) . (180)
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By computing z, z̄ of σ · C and comparing with z, z̄ of C , we get a natural S4-action on z, z̄:

wσ : C\{0, 1} −→ C\{0,1} ,

z 7→ wσ(z) ,

z̄ 7→ wσ(z̄) ,
(181)

where wσ(z), wσ(z̄) are the variables z, z̄ computed from σ · C . We have the following prop-
erties:

• {wσ}σ∈S4
belong to a set of 6 fractional linear transformation forming a group which

is isomorphic to S3. The map σ 7→ wσ is a group homomorphism from S4 to S3 (i.e.
wσ1
◦wσ2

= wσ1σ2
).

• The S4-action on DL permutes classes S,T,U among themselves.

• The S4-action on DL permutes subclasses Esu,Est,Etu among themselves.

• The S4-action on DL preserves the subclass Estu.

Let us denote σ by [σ(1)σ(2)σ(3)σ(4)]. We summarize the above properties in table 3. Sup-

Table 3: The list of wσ and the S4 transformation between classes and subclasses.

σ wσ(z) S T U Esu Est Etu Estu

[1234], [2143], [3412], [4321] z S T U Esu Est Etu Estu

[2134], [1243], [4312], [3421] z
z−1 S U T Est Esu Etu Estu

[3214], [4123], [1432], [2341] 1− z T S U Etu Est Esu Estu

[1324], [2413], [3142], [4231] 1
z U T S Esu Etu Est Estu

[2314], [1423], [4132], [3241] 1
1−z T U S Est Etu Esu Estu

[3124], [4213], [1342], [2431] 1− 1
z U S T Etu Esu Est Estu

pose a configuration CL gives the template causal ordering of a causal type, which means that
CL corresponds to the sequence (1234). For σ = [i1i2i3i4], we get a configuration C ′L = σ · C
by eq. (180). The causal ordering of C ′L is in the same causal type as CL . By comparing the
causal orderings of CL and C ′L , we see that the sequence of C ′L is exactly (i1i2i3i4). Therefore,
given a causal type, if we know the class/subclass of the template causal ordering, by looking
up table 3 we decide the classes/subclasses of the other causal ordering in the same causal
type. Then by looking up table 1, we immediately get a part of the OPE convergence properties
for each causal ordering.

By using the above trick, the problem of determining the classes/subclasses of causal order-
ings belong is reduced to determining the class/subclass of the template causal ordering in each
causal type. In appendix C.0.2, we will introduce a trick to determine the classes/subclasses
of the template causal orderings.

C.0.2 Lorentzian conformal frame

Our goal in this subsection is to give a systematic way to determine the class/subclass of DαL ,
where α is a fixed causal ordering.
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Recalling lemma 5.1, all configurations in DαL belong to the same class. We can choose a
particular configuration CL ∈DαL and compute z, z̄ of CL , then we immediately know the class
(not subclass) of DαL .

If DαL belongs to class S/T/U, then we are done. The rest of this subsection is for the case
that DαL belongs to class E. If DαL belongs to class E, then according to theorem 5.2, we need
to check the OPE convergence properties for the intersection of DαL and each subclass of class
E as long as the intersection is non-empty. We will find that only the type 1, 5, 6, 10, 11, 12
causal orderings in table 2 belong to class E.39 In the tables of OPE convergence properties of
causal type 5, 10 and 12 , we give the results of all subclasses for each causal ordering (see
table 9, 14 and 16); while in the tables of causal type 1 ,6 and 11, we only give the results of
one subclass for each causal ordering (see table 5, 10 and 15). We claim that our tables are
complete, based on the following lemma.

Lemma C.1. Given a fixed causal ordering α, if α is in causal type 1/6/11, then DαL only
belongs to one of the three subclasses Est, Esu, Etu.

The basic tool we use to prove the above lemma is the Lorentzian conformal frame. The
Lorentzian conformal frame is similar to the Euclidean conformal frame (12). Given a
Lorentzian configuration CL , its conformal frame configuration C ′L is a Lorentzian configu-
ration which has one of the following forms

1. x ′1 = 0, x ′2 = (ia, b, 0, . . . , 0), x ′3 = (i, 0, . . . , 0), x ′4 =∞ ,

2. x ′1 = 0, x ′2 = (i b, a, 0, . . . , 0), x ′3 = (0,1, 0, . . . , 0), x ′4 =∞ ,

3. x ′1 = 0, x ′2 = (0, a, b, 0, . . . , 0), x ′3 = (0,1, 0, . . . , 0), x ′4 =∞ ,

(182)

where C ′L and CL are related by a Lorentzian conformal transformation. Computing the cross-
ratios from (182), we see that: for the first and second cases z = a+ b, z̄ = a− b; for the third
case z = a + i b, z̄ = a − i b. Analogously to the Euclidean conformal frame, the Lorentzian
conformal frame configuration is unique up to a reflection b 7→ −b, which corresponds to
interchanging z and z̄.

Let us describe how we map a four-point configuration to the conformal frame by confor-
mal transformations. Let CL = (x1, x2, x3, x4) be a Lorentzian configuration. We will go from
CL to C ′L in a few steps, and each step is a conformal transformation. The configuration after

the k-th step is denoted by C (k)L .

Step 1. We move x1 to 0 by translation. The configuration C (1)L after the first step is given by

C (1)L =
�

x (1)1 , x (1)2 , x (1)3 , x (1)4

�

= (0, x2 − x1, x3 − x1, x4 − x1) . (183)

This step preserves the causal ordering.
Step 2. We move x4 to∞ by special conformal transformation

x ′µ =
xµ − x2 bµ

1− 2x · b+ x2 b2
, bµ =

(x4 − x1)µ

(x4 − x1)2
. (184)

x1 = 0 is preserved by special conformal transformation. This step may change the causal
ordering. Under general conformal transformations, x2

i j transforms as

(x ′i − x ′j)
2 =Ω(x i)Ω(x j)(x i − x j)

2 ,

(ds′2 =Ω(x)2ds2) ,
(185)

39This can be easily done by choosing one particular configuration and compute z, z̄ for each template causal
ordering, and by the fact that the S4-action preserves class E (as discussed in appendix C.0.1).
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and for special conformal transformation (184), the scaling factor at x (1)k = xk − x1 is given
by

Ω
�

x (1)k

�

=
(x4 − x1)2

(x4 − xk)2
, k = 1,2, 3,4 . (186)

Let C (2)L =
�

x (2)1 , x (2)2 , x (2)3 , x (2)4

�

be the configuration after step 2. For any configuration CL in
DL (where the light-cone singularities are excluded), by (185) and (186) we have

�

x (2)i − x (2)j

�2
6= 0 , i, j = 1, 2,3 . (187)

Furthermore, the sign of
�

x (2)i − x (2)j

�2
is determined by the causal ordering of CL . So we

know if each x (2)i , x (2)j pair of C (2)L is space-like or time-like. The information we do not know

a priori from (185) and (186) is the causal orderings of time-like x (2)i , x (2)j pairs (who is in the

future of whom).40

Step 3. We move x3 to its final position by some composition of Lorentz transformations, di-
latations and time reversal θL (these conformal transformations preserve x1 = 0 and x4 =∞).
Lorentz transformations and dilatations preserve causal orderings, and time reversal only re-
verse causal orderings (i.e. x i , x j pairs change from time-like to time-like, or from space-like

to space-like). There are two possibilities after step 2: x (2)3 could be space-like or time-like to

x (2)1 . If x (2)1 , x (2)3 are time-like, then x (3)3 is put at (i, 0, . . . , 0). If x (2)1 , x (2)3 are space-like, then

x (3)3 is put at (0,1, 0, . . . , 0). Therefore, C (3)L is in one of the following forms:

1. x (3)1 = 0, x (3)3 = (i, 0, . . . , 0), x (3)4 =∞.

2. x (3)1 = 0, x (3)3 = (0, 1,0, . . . , 0), x (3)4 =∞.

Step 4. We move x2 to somewhere in the (01)-plane or (12)-plane by Lorentz transformations
in the little group of x (3)3 . If x (3)3 = (i, 0, . . . , 0), then we move x2 to the (01)-plane by rotation,

i.e. x (4)2 = (ia, b, 0, . . . , 0). If x (3)3 = (0, 1,0, . . . , 0), then we move x2 onto the (01)-plane or
the (12)-plane, determined as follows:

• If x (3)2 = (iβ1, a,β2, . . . ,βd−1) with (β1)2 ≥ (β2)2 + . . . (βd−1)2, then x2 is put in the

(01)-plane, i.e. x (4)2 = (i b, a, 0, . . . , 0) and b2 = (β1)2 − (β2)2 − . . .− (βd−1)2.

• If x (3)2 = (iβ1, a,β2, . . . ,βd−1) with (β1)2 ≤ (β2)2 + . . . (βd−1)2, then x2 is put in the

(01)-plane, i.e. x (4)2 = (0, a, b, 0, . . . , 0) and b2 = (β2)2 + . . .+ (βd−1)2 − (β1)2.

In the end, C ′L = C (4)L has one of the forms in eq. (182). Moreover, the above discussion
provides us with the following fact:

• the sign of
�

x ′i j

�2
of C ′L is going to be the same for all configurations CL ∈ DαL in each

causal ordering α.

Now back to our question. Suppose DαL is in class E. Let C ′L = (x
′
1, x ′2, x ′3, x ′4) be the conformal

frame configuration of CL ∈ DαL . Comparing the range of the (a, b) pair in (182) with the
range of the (z, z̄) pair in class E (see section 5.1) and using the above fact, we see that there
are only two possibilities for C ′L:

40Of course for any particular configuration we can just compute C (2)L and then determine its causal ordering.
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x1

x0

x ′1

x ′3
Est

Etu

Esu

x1

x0

x ′1 x ′3
Est EtuEsu x1

x2

x ′1 x ′3

Estu

Figure C.1: The conformal frame configurations realized by configurations in class
E.

1.
�

x ′13

�2
,
�

x ′12

�2
,
�

x ′23

�2
< 0 for all CL ∈ DαL . All possible C ′L are given by the grey region

in the first picture of figure C.1. In this case z, z̄ are real, so we have

DαL =
�

DαL ∩ Est

�

t
�

DαL ∩ Esu

�

t
�

DαL ∩ Etu

�

. (188)

Because the z, z̄ ranges corresponding to Est, Esu, Etu are disconnected from each other
in figure C.1 and because DαL is connected in d ≥ 3, only one of the above intersections
is non-empty. We conclude that such DαL only belongs to one of the three subclasses
Est, Esu, Etu. This conclusion remains valid also in 2d, because 2d configurations can be
embedded into higher d.

2.
�

x ′13

�2
,
�

x ′12

�2
,
�

x ′23

�2
> 0 for all CL ∈ DαL . All possible conformal frame configurations

are given by the grey region in the second and third pictures of figure C.1. In this case
we have

DαL =
�

DαL ∩ Est

�

t
�

DαL ∩ Esu

�

t
�

DαL ∩ Etu

�

t
�

DαL ∩ Estu

�

, (189)

which means that the configurations in DαL may appear in all subclasses.

To see which of these possibilities is realized, it is enough to know the sign of
�

x ′13

�2
. To

finish the proof of lemma C.1, it remains to check that
�

x ′13

�2
< 0 for all type 1, 6, 11 causal

orderings (so that possibility 1 is realized for C ′L). Since all causal orderings of a fixed causal
type can be realized by permuting the indices of the template causal ordering and such S4-
action permutes subclasses Est, Esu, Etu among themselves (see section C.0.1), it suffices to
check that

�

x ′13

�2
< 0 for the template causal orderings of causal type 1, 6, 11. Moreover,

since we are only interested in the sign of
�

x ′13

�2
, we can use the following formula:

Sign
�

�

x ′13

�2�
= Sign

�

x2
13 x2

14 x2
34

�

. (190)

(190) follows from (185), (186) and the fact that step 3,4 (of constructing the conformal

frame) preserve the sign of
�

x (k)i j

�2
. Now let us do the check.

Type 1. The template causal ordering is given by

1→ 2→ 3→ 4 , (191)

which gives x2
13, x2

14, x2
34 < 0, hence

�

x ′13

�2
< 0.

Type 6. The template causal ordering is given by

1 2 3
4

, (192)
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which gives x2
13 < 0 and x2

14, x2
34 > 0, hence

�

x ′13

�2
< 0.

Type 11. The template causal ordering is given by

1 2
3 4

, (193)

which gives x2
13, x2

14 > 0 and x2
34 < 0, hence

�

x ′13

�2
< 0.

So we finished the proof of lemma C.1. As a consistency check one can also compute the
sign of

�

x ′13

�2
for type 5,10,12 causal orderings and find that

�

x ′13

�2
> 0 for these cases.

For type 1, 6, 11 causal orderings, to determine the subclasses, it remains to determine
the subclass of one particular configuration of the template causal ordering in each type, then
determine the subclasses of other causal orderings by looking up table 3.

We would like to remark that Lorentzian conformal frame is just a way to figure out the
range of z, z̄. There is no claim that correlation functions at CL , C ′L agree. As mentioned in
section 6.3.3, the global conformal invariance does not hold in a general Lorentzian CFT.

C.0.3 Symmetry of the graph

Usually, we go from one causal ordering to another by permuting the indices. For example,
given the causal ordering 1→ 2→ 3→ 4, by permuting 1,4 we get another causal ordering
4→ 2→ 3→ 1.

However, a causal ordering may have a non-trivial little group.41 For example, consider
the following causal ordering

a b
c

d
. (194)

The causal ordering (194) does not change if we interchange c and d, so it has a non-trivial
little group Z2.

The little group is unique up to an isomorphism for all causal orderings in the same causal
type. Let G be the little group of one causal type and let |G| be the order of G. Then the total
number of causal orderings in this type is given by 24/|G|. So in the table of each causal type,
we will only list 24/|G| sequences (i1i2i3i4). Below the tables, we will point out the sequences
which give the same causal ordering.

C.1 Type 1

The type 1 causal ordering is given by

a→ b→ c→ d . (195)

We let (195) be the template causal ordering, then the causal ordering i1 → i2 → i3 → i4 is
labelled by the sequence (i1i2i3i4). Any permutation of the indices in (195) will change the
causal ordering, so the little group of the type 1 causal orderings is trivial. We have to list 24
causal orderings in the table.

Under time reversal θL , a→ b→ c→ d is mapped to d → c→ b→ a, which is equivalent
to the permutation θL : a ↔ d, b ↔ c. This action is causal-type specific. In addition, we
have θE action which is always given by θE : 1↔ 4,2↔ 3 (see eq. (98)). Using Z2 × Z2
generated by these permutations, we divide 24 type 1 causal orderings into 8 orbits:

41By little group of a causal ordering, we mean the permutations of the indices which do not change this causal
ordering.
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1. (1234), (4321).

2. (1243), (4312), (3421), (2134).

3. (1324), (4231).

4. (1423), (3241), (4132), (2314).

5. (1342), (2431), (4213), (3124).

6. (1432), (2341), (4123), (3214).

7. (2143), (3412).

8. (2413), (3142).

As discussed in section 5.4, all the causal orderings in each orbit have the same convergent
OPE channels.

Let us consider (1234), or equivalently the causal ordering 1→ 2→ 3→ 4. We first pick
a particular configuration and compute z, z̄. Here we choose

x1 = 0, x2 = (i, 0, . . . , 0), x3 = (2i, 0, . . . , 0), x4 = (3i, 0, . . . , 0) , (196)

and get z = z̄ = 1
4 , which is in the range corresponding to subclass Est. By lemma C.1, the

whole (1234) is in subclass Est.
All other (i1i2i3i4) causal orderings can be obtained by applying permutationσ = [i1i2i3i4]

to the template ordering (1234). Using table 3, we can easily determine the subclasses of all
other (i1i2i3i4) sequences (look at the column having Est on top). Then by looking up table 1,
we get some OPE convergence properties of type 1 causal orderings, which are summarized
in table 4. It remains to complete the rest of table 4. For this we choose a representative

Table 4: The classes/subclasses of type 1 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321) Est 3 7

(1243), (3421), (4312), (2134) Esu 3 7

(1324), (4231) Etu 7

(1423), (3241), (4132), (2314) Etu 7

(1342), (2431), (4213), (3124) Esu 3 7

(1432), (2341), (4123), (3214) Est 3 7

(2143), (3412) Est 3 7

(2413), (3142) Etu 7

configuration for each orbit of causal orderings and choose a path to compute the curves of
z, z̄, then decide the convergence properties of t- and u-channel expansions. In practice this
is done numerically, by plotting the curves of z, z̄ and staring at the plots to determine Nt , Nu
(as in examples in section 5.6). The final results of OPE convergence properties in the three
channels are shown in table 5, where we use red to indicate the new marks.
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Table 5: OPE convergence properties of type 1 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321) Est 3 3 7

(2143), (3412) Est 3 7 7

(1432), (2341), (4123), (3214) Est 3 3 7

(1324), (4231) Etu 7 3 7

(2413), (3142) Etu 7 7 7

(1423), (3241), (4132), (2314) Etu 7 3 7

(1342), (2431), (4213), (3124) Esu 3 7 7

(1243), (3421), (4312), (2134) Esu 3 7 7

C.2 Type 2

The type 2 causal ordering is given by

a b
c

d
,

c

d
b a . (197)

We choose a particular configuration for (1234):

x1 = 0, x2 = (i, 0, . . . , 0), x3 = (2i, 0.5, 0, . . . , 0), x4 = (2i,−0.5,0, . . . , 0) , (198)

and get z = −8
5 , z̄ = 4

9 , which is in the range corresponding to class S. So we conclude that
(1234) is in class S. The remaining steps are the same as appendix C.1. The results of OPE
convergence properties in the three channels are shown in table 6. There are only 12 causal
orderings because (i1i2i3i4) and (i1i2i4i3) are the same causal ordering (the little group is Z2).

Table 6: OPE convergence properties of type 2 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321) S 3 7 7

(1324), (4231) U 7 7 7

(1423), (4132) T 7 3 7

(2134), (3421) S 3 7 7

(3124), (2431) U 7 7 7

(2314), (3241) T 7 3 7

C.3 Type 3

The type 3 causal ordering is given by

a b c
d

,
c b a

d
. (199)
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We choose a particular configuration for (1234):

x1 = 0, x2 = (i, 0, . . . , 0), x3 = (2i, 0, . . . , 0), x4 = (1.5i, 1, 0, . . . , 0) , (200)

and get z = 1
6 , z̄ = 3

2 , which is in the range corresponding to class T. So we conclude that
(1234) is in class T. The results of OPE convergence properties in the three channels are shown
in table 7.

Table 7: OPE convergence properties of type 3 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321) T 7 3 7

(1243), (4312) U 7 7 3

(1324), (4231) T 7 3 7

(1342), (4213) S 3 7 7

(1423), (4132) U 7 7 3

(1432), (4123) S 3 7 7

(2134), (3421) U 7 7 7

(2143), (3412) T 7 7 7

(2314), (3241) U 7 7 7

(2341), (3214) S 3 7 7

(2413), (3142) T 7 7 7

(2431), (3124) S 3 7 7

C.4 Type 4

The type 4 causal ordering is given by

a
b

c
d . (201)

We choose a particular configuration for (1234):

x1 = 0, x2 = (i, 0.5, 0, . . . , 0), x3 = (i,−0.5,0, . . . , 0), x4 = (2i, 0, . . . , 0) , (202)

and get z = 1
9 , z̄ = 9, which is in the range corresponding to class T. So we conclude that (1234)

is in class T. The results of OPE convergence properties in the three channels are shown in table
8. Here we use the fact that (i1i2i3i4) and (i1i3i2i4) are the same causal ordering (the little
group is Z2).

C.5 Type 5

The type 5 causal ordering is given by

a
b
c
d

,
b
c
d

a . (203)
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Table 8: OPE convergence properties of type 4 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321) T 7 3 7

(1243), (4312), (2134), (3421) U 7 7 7

(1342), (4213), (2341), (3214) S 3 7 7

(2143), (3412) T 7 7 7

We choose a particular configuration for (1234):

x1 = 0, x2 = (i, 0.5, 0, . . . , 0), x3 = (i, 0, . . . , 0), x4 = (i,−0.5, . . . , 0) , (204)

and get z = 1
4 , z̄ = 3

4 , which is in the range corresponding to subclass Est. So (1234) is in
class E. We would like to find a particular configuration in each subclass of class E. The little
group of this causal type is S3, which corresponds to permutations among b, c, d in (203). By
looking up table 3, we see that permuting x2, x3 in (204) gives Etu and permuting x3, x4 gives
Esu. To realize Estu we choose the following configuration in (1234):

x1 = 0, x2 = (i, 0.5, 0, . . . , 0), x3 = (i,−0.5,0, . . . , 0), x4 = (i, 0, 0.5, 0, . . . , 0) , (205)

and get z = i, z̄ = −i, which is indeed in the range corresponding to subclass Estu. So we
conclude that the configurations of (1234) do appear in all subclasses of class E in d ≥ 3,
while they only appear in subclasses Est, Esu, Etu in 2d.42

The results of OPE convergence properties in the three channels are shown in table 9.
Here we use the fact that for (i1i2i3i4), any permutation of 2, 3,4 does not change the causal
ordering (the little group is S3).

Table 9: OPE convergence properties of type 5 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321)

Est

Esu

Etu

Estu

3

3

7

3

3

7

3

3

7

3

3

3

(2134), (3124)

Est

Esu

Etu

Estu

3

3

7

3

7

7

7

7

7

7

7

7

C.6 Type 6

The type 6 causal ordering is given by

a b c
d

. (206)

42We used two dimensions in (204) and three dimensions in (205). On the other hand, as mentioned at the end
of section 5.3.2, subclass Estu does not exist in 2d because z, z̄ can only be real.
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We choose a particular configuration for (1234):

x1 = 0 , x2 = (i, 0, . . . , 0) , x3 = (2i, 0, . . . , 0) , x4 = (i, 2, . . . , 0) , (207)

and get z = 1
4 , z̄ = 3

4 , which is in the range corresponding to subclass Est. By lemma C.1,
the whole (1234) is in subclass Est. The results of OPE convergence properties in the three
channels are shown in table 10.

Table 10: OPE convergence properties of type 6 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321), (3214), (2341) Est 3 3 7

(1243), (4312), (4213), (1342) Esu 3 7 3

(1324), (4231), (2314), (3241) Etu 7 3 7

(1423), (4132), (2413), (3142) Etu 7 7 3

(1432), (4123), (3412), (2143) Est 3 7 7

(2134), (3421), (3124), (2431) Esu 3 7 7

C.7 Type 7

The type 7 causal ordering is given by

a
b

c
d

,

b

c
a

d

. (208)

We choose a particular configuration for (1234):

x1 = 0 , x2 = (i, 0.5, 0, . . . , 0) , x3 = (i,−0.5, 0, . . . , 0) , x4 = (0,2, 0, . . . , 0) , (209)

and get z = 7
15 , z̄ = 9, which is in the range corresponding to class T. So we conclude that

(1234) is in class T. The results of OPE convergence properties in the three channels are shown
in table 11. Here we use the fact that (i1i2i3i4) and (i1i3i2i4) are the same causal ordering (the
little group is Z2).

Table 11: OPE convergence properties of type 7 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321) T 7 3 7

(1243), (4312) U 7 7 3

(1342), (4213) S 3 7 7

(2134), (3421) U 7 7 7

(2143), (3412) T 7 7 7

(2341), (3124) S 3 7 7
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C.8 Type 8

The type 8 causal ordering is given by

a
b

d
c

. (210)

We choose a particular configuration for (1234):

x1 = 0 , x2 = (i,−0.5, 0, . . . , 0) , x3 = (0,1, 0, . . . , 0) , x4 = (i, 0.5, 0, . . . , 0) , (211)

and get z = 1
4 , z̄ = 9

4 , which is in the range corresponding to class T. So we conclude that
(1234) is in class T. The results of OPE convergence properties in the three channels are shown
in table 12.

Table 12: OPE convergence properties of type 8 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4321) T 7 7 7

(1243), (4312), (3421), (2134) U 7 7 3

(1342), (4213), (2431), (3124) S 3 7 7

(2143), (3412) T 7 7 7

(1324), (4231) T 7 7 7

(1432), (4123), (2341), (3214) S 3 7 7

(1423), (4132), (3241), (2314) U 7 7 7

(2413), (3142) T 7 7 7

C.9 Type 9

The type 9 causal ordering is given by

a b
c
d

. (212)

We choose a particular configuration for (1234):

x1 = 0 , x2 = (i, 0, . . . , 0) , x3 = (0,2, 0, . . . , 0) , x4 = (0, 3,0, . . . , 0) , (213)

and get z = −1
8 , z̄ = 1

4 , which is in the range corresponding to class S. So we conclude that
(1234) is in class S. The results of OPE convergence properties in the three channels are shown
in table 13. Here we use the fact that (i1i2i3i4) and (i1i2i4i3) are the same causal ordering (the
little group is Z2).

C.10 Type 10

The type 10 causal ordering is given by

a

b
c d . (214)
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Table 13: OPE convergence properties of type 9 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (4312), (2134), (3412) S 3 7 7

(1324), (4213), (3124), (2413) U 7 7 3

(1423), (4123) T 7 3 7

(2314), (3214) T 7 3 7

We choose a particular configuration for (1234):

x1 = 0 , x2 = (0, 1,0, . . . , 0) , x3 = (2i, 0, . . . , 0) , x4 = (2i, 1, . . . , 0) , (215)

and get z = z̄ = 1
4 , which is in the range corresponding to subclass Est. So (1234) is in class E.

We would like to find a particular configuration in each subclass of class E. The little group of
this causal type is Z2 ×Z2, which is generated by a↔ b and c↔ d in (214). By looking up
table 3, we see that by acting with the little group on configuration (215), we can get Esu, but
we cannot get Etu. The underlying fact is that the 2d configurations of (1234) do not appear
in Etu (it is obvious that 2d configurations do not appear in Estu.). Let us show this fact. In 2d
Minkowski space we can use the light-cone coordinates:

zk = tk + xk , z̄k = tk − xk , (xk = (i tk,xk)) . (216)

The causal ordering (214) implies

z3, z4 > z1, z2 , z̄3, z̄4 > z̄1, z̄2 ,

(z1 − z2)(z̄1 − z̄2)< 0 , (z3 − z4)(z̄3 − z̄4)< 0 .
(217)

Since the little group Z2 × Z2 of (1234) preserves Etu (see table 3), by the Z2 × Z2-action, it
suffices to show that Etu configurations do not exist when

z3, z4 > z1, z2 , z̄3, z̄4 > z̄1, z̄2 ,

z1 − z2 < 0 , z̄1 − z̄2 > 0 ,

z3 − z4 < 0 , z̄3 − z̄4 > 0 .

(218)

In this case the computation is straightforward:

z =
(z2 − z1)(z4 − z3)
(z3 − z1)(z4 − z2)

<
(z3 − z1)(z4 − z2)
(z3 − z1)(z4 − z2)

= 1,

z̄ =
(z̄1 − z̄2)(z̄3 − z̄4)
(z̄3 − z̄1)(z̄4 − z̄2)

<
(z̄4 − z̄2)(z̄3 − z̄1)
(z̄3 − z̄1)(z̄4 − z̄2)

= 1 .
(219)

So we conclude that the 2d configurations in (1234) have z, z̄ < 1, i.e. (1234) does not
intersect with subclass Etu in 2d. To find a Etu configuration in (1234) we need to construct
it in d ≥ 3. We choose the 3d configuration (114) and get z ≈ 1.1, z̄ ≈ 6.3, which is in the
range corresponding to subclass Etu.

To realize Estu we choose the following configuration in (1234):

x1 = 0, x2 = (0, 0.5,0, . . . , 0), x3 = (2i, 0, 0.5, 0, . . . , 0), x4 = (i, 0.5, 0, . . . , 0) , (220)

and get z ≈ 0.33+ 0.24i, z̄ = 0.33− 0.24i, which is in the range corresponding to subclass
Estu. So we conclude that the configurations of (1234) do appear in all subclasses of class E in
d ≥ 3, while they only appear in subclasses Est, Esu in 2d.

The results of OPE convergence properties in the three channels are shown in table 14:
Here we use the fact (i1i2i3i4), (i2i1i3i4), (i1i2i4i3) and (i2i1i4i3) are the same causal ordering
(the little group is Z2 ×Z2).
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Table 14: OPE convergence properties of type 10 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (3412)

Est

Esu

Etu

Estu

3

3

7

3

7

7

7

7

7

7

7

7

(1324), (2413)

Est

Esu

Etu

Estu

3

3

7

3

7

7

7

7

7

7

7

7

(1423), (2314)

Est

Esu

Etu

Estu

3

3

7

3

3

7

3

3

7

3

3

3

C.11 Type 11

The type 11 causal ordering is given by

a b
c d

. (221)

We choose a particular configuration for (1234):

x1 = 0 , x2 = (i, 0, . . . , 0) , x3 = (0, 2, . . . , 0) , x4 = (i, 2, . . . , 0) , (222)

and get z = z̄ = 1
4 , which is in the range corresponding to subclass Est. By lemma C.1, the

whole (1234) is in subclass Est. The results of OPE convergence properties in the three channels
are shown in table 15. Here we use the fact that (i1i2i3i4) and (i3i4i1i2) are the same causal

Table 15: OPE convergence properties of type 11 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234), (2143) Est 3 7 7

(1243), (2134) Esu 3 7 3

(1324), (3142) Etu 7 7 3

(1342), (3124) Esu 3 7 3

(1423), (3241) Etu 7 3 7

(1432), (2341) Est 3 3 7

ordering (the little group is Z2).

C.12 Type 12

The type 12 causal ordering is given by

a b c d . (223)
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One can show that this causal type belongs to class E. In fact this is the “Euclidean" case (that’s
why this class is called class E), and there is no need to check numerically for this type. Suppose
we have a totally space-like separated configuration (x1, x2, x3, x4), where xk = (i tk,xk). We
can reach this configuration via the path

xk(s) =

�

((1− 2s)εk, 2sxk) s ∈ [0, 1/2] ,
((2s− 1)i tk,xk) s ∈ [1/2, 1] . (224)

Along the path all the x i , x j pairs are space-like separated. As a result, the totally space-like
separated configurations always have Nt = Nu = 0 (as long as Nt , Nu are well-defined). On
the other hand, there is no doubt that all subclasses of class E can be realized in d ≥ 3.43 We
summarize the OPE convergence properties of this type in table 16. Here we use the fact that
there is only 1 causal ordering in this type (the little group is S4).

Table 16: OPE convergence properties of type 12 causal orderings

causal ordering class/subclass s-channel t-channel u-channel

(1234)

Est

Esu

Etu

Estu

3

3

7

3

3

7

3

3

7

3

3

3
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