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Optimal Immunity Control and Final Size

Minimization by Social Distancing for the SIR

Epidemic Model

P.-A. Bliman∗ M. Duprez† Y. Privat‡ N. Vauchelet§

Abstract

The aim of this article is to understand how to apply partial or total containment to SIR

epidemic model during a given finite time interval in order to minimize the epidemic final size,

that is the cumulative number of cases infected during the complete course of an epidemic.

The existence and uniqueness of an optimal strategy is proved for this infinite-horizon problem

and a full characterization of the solution is provided. The best policy consists in applying the

maximal allowed social distancing effort until the end of the interval, starting at a date that is

not always the closest date and may be found by a simple algorithm. Both theoretical results

and numerical simulations demonstrate that it leads to a significant decrease of the epidemic

final size. We show that in any case the optimal intervention has to begin before the number

of susceptible cases has crossed the herd immunity level, and that its limit is always smaller

than this threshold. This problem is also shown to be equivalent to the minimum containment

time necessary to stop at a given distance after this threshold value.

Keywords: Optimal control, SIR epidemic model, herd immunity, lockdown policy, epidemic final
size.

AMS classification: 34H05, 49J15, 49K15, 92D30, 93C15.

1 Introduction

The current outbreak of Covid-19 and the entailed implementation of social distancing on an
unprecedented scale, led to renewed interest in modeling and analysis of this method to control
infectious diseases. In contrast with a recent trend of papers that aim at giving a large account
of the complexity of the pandemic, in its epidemiological dimension, but also from the point of
view of the functioning of the hospital and public health systems, and even possibly the behavioral
aspects, our perspective here is quite different. Our purpose is to study, at a theoretical level,
how to use social distancing in an optimal way, in order to minimize the cumulative number of
cases infected during the course of an epidemic. This issue is addressed in the framework of
the classical SIR model, in line with other papers that studied optimal epidemic control, through
treatment, vaccination, quarantine, isolation or testing. This simplified setting deliberately ignores

∗Inria, Sorbonne Université, Université Paris-Diderot SPC, CNRS, Laboratoire Jacques-Louis Lions, équipe
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many features important in the effective handling of a human epidemic: population heterogeneity,
limited hospital capacity, imprecision of the epidemiological data (including the question of the
asymptomatic cases), partial respect of the confinement, etc. On the other hand, thanks to its
simplicity complete, computable, solutions are achievable to serve as landmark for real situations.
In a nutshell, our aim is to determine what best result may be obtained in terms of reduction of the
total cumulative number of infected individuals by applying lockdown of given maximal intensity
and duration, in the worst conditions where no medical solution is discovered to stop earlier the
epidemic spread.

The SIR model is described by the following system, in which all parameters are positive:

Ṡ = −βSI, S(0) = S0, (1a)

İ = βSI − γI, I(0) = I0, (1b)

Ṙ = γI, R(0) = R0. (1c)

The state variables S, I, R correspond respectively to the proportions of susceptible, infected and
removed individuals in the population. The sum of the derivatives of the three state variables is
zero, so the sum of the variables remains equal to 1 if initially S0 + I0 + R0 = 1, and one may
describe the system solely with the equations (1a)-(1b). The total population is constant and no
demographic effect (births, deaths) is modeled, as they are not relevant to the time scale to be
taken into account in reacting to an outbreak. The infection rate β accounts globally for the rate
of encounters between the individuals and the probability of transmitting the infection during each
of these encounters. The parameter γ is the recovery rate. Recovered individuals are assumed to
have acquired permanent immunity.

Obviously, every solution of (1) is nonnegative and thus, Ṙ > 0 > Ṡ at any instant, so S and
S + I decrease, while R increases. We infer that every state variable admits a limit and that the
integral

∫ +∞

0
βI(t) dt converges. Therefore,

lim
t→+∞

I(t) = 0, S∞ := lim
t→+∞

S(t) > 0 if S0 > 0. (2)

The basic reproduction number R0 := β/γ governs the behavior of the system departing from
its initial value. When R0 < 1, İ = (βS − γ)I is always negative: I decreases and no epidemic
may occur. When R0 > 1 epidemic occurs if S0 >

1
R0

. In such a case, I reaches a peak and then
goes to zero. From now on, we assume

R0 =
β

γ
> 1.

An important issue is herd immunity. The latter occurs naturally when a large proportion of
the population has become immune to the infection. Mathematically, it is defined as the value of
S below which the number of infected decreases. For the SIR model (1), one has İ = (βS − γ)I,
and

Sherd :=
γ

β
=

1

R0
. (3)

Notice that, after passing the collective immunity threshold, that is for large enough t, one has

Sherd > S(t) > S∞. (4)

While the number of infected decreases when S(·) 6 Sherd, epidemics continue to consume
susceptible and to generate new infections once the immunity threshold has been crossed. The
number of infected cases appearing after this point may be quite large. In order to illustrate this
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fact, Table 1 displays, for several values of R0, the value of the herd immunity threshold and
the number of susceptibles that remain after the fading out of the outbreak, in the case of an
initially naive population (S0 ≈ 1). The proportion of infections occurred after the overcome of
the immunity is also shown.

R0 1.5 2 2.5 2.9 3 3.5
Sherd 0.67 0.50 0.40 0.34 0.33 0.29
S∞ 0.42 0.20 0.11 0.067 0.059 0.034

Sherd − S∞

1− S∞

43% 37% 33% 30% 29% 27%

Table 1: Herd immunity level Sherd and asymptotic susceptible proportion S∞ for initial value
S0 ≈ 1 for several values of the basic reproduction number R0. The value of Sherd comes from (3),
and S∞ may be deduced from the fact that S∞ − 1

R0
lnS∞ ≈ 1, see Lemma 2 below. The ratio

Sherd−S∞

1−S∞

represents the proportion of susceptible that occur after passing the collective immunity

threshold. The column in bold corresponds to R0 found in [SKL+20] for the SARS-CoV-2 in
France before the lockdown of March-May 2020.

Apart from medical treatment, there are generally speaking three main methods to control
human diseases. Each of them, alone or in conjunction with the others, gave rise to applications
of optimal control. A first class of interventions consists in vaccination or immunization [Aba74,
MW74, DB80, Gre88, Beh00, GS09, HD11, HZ13, AER+14, YWZZ15, LT15, BBSG17, BBDMG19,
Shi19]. It consists in transferring individuals from the S compartment to the R one. The members
of the latter may not be stricto sensu recovered: they are removed from the infective process.
A second class of measures corresponds to screening and quarantining of infected [Aba73, Wic75,
Wic79, Beh00, AI12, ZWW13, BBSG17, BBDMG19]. It may be modeled by transfer of individuals
from the I compartment to the R one (which consequently will change its meaning). Last, it is
possible to reduce transmission through health promotion campaigns or lockdown policies [Beh00,
BBSG17, MRPL20, MSW20]. Of course these methods may be employed jointly [HD11].

Other modeling frameworks have also been considered. More involved models called SEIR and
SIRS have been analyzed in [Beh00, GS09], and SIR model structured by the infection age in [AI12].
Constraints on the number of infected persons that the public health system can accommodate or on
available resources, particularly in terms of vaccination, were studied [ZWW13, YWZZ15, BBSG17,
BBDMG19, MSW20]. Economical considerations may be aggregated to the epidemiological model
[KS20, PS20, AAL20]. Ad-hoc models for tackling emergence of resistance to drugs issues have
been introduced [JDM13, JDHWM13], as well as framework allowing to study revaccination policies
[KGZ15, KZ16]. Optimization of vaccination campaigns for vector-borne diseases have also been
considered [Shi19]. Optimal public health intervention as a complement to such campaigns has
been studied in [BMd19, BDMd19] (see [MD13] for more material on behavioral epidemiology).
The references cited above are limited to deterministic differential models, but discrete-time models
and stochastic models have also been used e.g. in [Aba73, Aba74, Gre88].

The costs considered in the literature are usually integral costs combining an “outbreak size”
(the integral of the number of infected, or of the newly infected term, or the largest number of
infected) and the input variable on a given finite time horizon. Some minimal time control problems
have also been considered [AER+14, BBSG17, BBDMG19, HIP20]. The integral of the deviation
between the natural infection rate and its effective value due to confinement is used in [MSW20],
together with constraints on the maximal number of infected. In [ACVHM20], the authors minimize
the time needed to reach herd immunity, under the constraint of keeping the number of infected
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below a given value, in an attempt to preserve the public health system. Few results consider infinite
horizon [Beh00]. Qualitatively, optimal solutions attached to the vaccination or isolation protocols
are in general bang-bang1, with an intervention from the very beginning. Bounds on the number
of switching times between the two modes (typically zero or one) are sometimes provided. By
contrast, protocols that mitigate the transmission rate (health promotion campaigns or lockdown
policies) usually provide bang-bang optimal solutions with transmission reduction beginning after
a certain time. Generally speaking, there exists no ideal strategy, and the achievement of some
policy objective may preclude success with others [HKHA11].

The present article is dedicated to the optimal control issue of obtaining, by enforcing social
distancing, the largest value for S∞, the limit number of susceptible individuals at infinity. Using
classical vocabulary of epidemiology, this is equivalent to minimize the attack ratio 1 − S∞ or its
unnormalized counterpart, the final size of the epidemic. Abundant literature exists concerning
this quantity, since Kermack and Mc Kendrick’s paper from 1927 [KM27], see e.g. [ME06, And11,
Kat12, Mil12] for important contributions to its computation in various deterministic settings.
Said otherwise, we seek here to determine how close to the herd immunity threshold it is possible
to stop the spread of a disease, in the case where no vaccine or treatment is found to modify its
evolution. A possible action is to let the proportion of susceptible reach the collective immunity
level, and then impose total lockdown, putting β = 0 in (1) after a certain time. This situation is
illustrated in Figure 1. Merely as a reference point, we use the figures of the Covid-19 in France
in Spring 2020, borrowed from [SKL+20] and given in Table 2 below. In this way one may stop
exactly at the herd immunity threshold, however this is achieved by applying total lockdown during
infinite time duration.
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Figure 1: Numerical simulation of the SIR model with the numerical parameters given in Table 2.
Left: no action. Right: switch at the epidemic peak (β is put to 0 at t = 62 days).

On the contrary, our aim here is to focus more realistically on interventions taking place on a
given finite time interval, through possibly partial lockdown. A closely related issue is studied in
[Ket20], where only total lockdown is considered2. Our perspective is slightly different here, as we
are equally interested by enforcement measures inducing partial contact reduction. In [DLKM20]
the authors explore by thorough numerical essays conducted on SIR model the impact of one-shot
lockdowns of given intensity and duration, initiated when S(t) + I(t) reaches a certain threshold,
with regard to three quantities of interest: the final size, the peak prevalence and the average time

1In other words, they only take a.e. two different values.
2Other valuable contributions are to be found in [Ket20], including the consideration of added integral term

accounting for control cost, and hospital overflow minimization.
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of infection. Prolonging the work of the present article, [BD20] analyzes how to optimally choose
the onset of such one-shot interventions, with the aim of maximizing the epidemic final size.

For better readability, all results are exposed in Section 2. It is first shown in Section 2.1
(Proposition 1) that, for strong enough lockdown measures and long enough intervention time T ,
one can stop the epidemics arbitrarily close after the herd immunity is attained. In Section 2.2,
we provide and analyze the optimal control law that leads asymptotically, through an intervention
of duration T , to the largest number of susceptible individuals. Theorem 2 establishes existence
and uniqueness of the solution to the optimal control problem, which is bang-bang with a unique
commutation from the nominal value to the minimal allowed value of the transmission rate. The-
orem 3 characterizes in a constructive way the time of this commutation, and situates the latter
with respect to the peak of the epidemic, and the corresponding proportion of susceptible with
respect to the herd immunity level. Last, we show in Section 2.3 (Theorem 4) that this optimal
strategy coincides with a time minimal policy. The results are numerically illustrated in Section
3. For the sake of readability, all the proofs are postponed to Section 4. Concluding remarks are
given in Section 5. Last, details on implementation issues are provided in A.

Notice that from a technical point of view, the problem under study is by nature an optimal
control problem on an infinite horizon, as it aims to maximize the limit S∞ of the proportion of
susceptible cases. However, by using a quantity invariant along the trajectories (see end of Section
2.1 and Lemma 2 in Section 4.1), one is able to formulate the problem over a finite time horizon,
thereby allowing for easier handling.

2 Main results

According to the introduction in the previous section, we consider in the sequel the following “SIR
type” system

Ṡ(t) = −u(t)βS(t)I(t), t > 0

İ(t) = u(t)βS(t)I(t) − γI(t), t > 0
(5)

complemented with nonnegative initial data S(0) = S0, I(0) = I0 such that S0 + I0 6 1. The
time-varying input control u models public interventions on the transmission rate by measures like
social distancing, restraining order, lockdown and so on, imposed on finite time horizon. For given
T > 0 and α ∈ [0, 1), u is assumed to belong to the admissible set Uα,T defined by

Uα,T := {u ∈ L∞([0,+∞)), α 6 u(t) 6 1 if t ∈ [0, T ], u(t) = 1 if t > T }.

The constant T characterizes the duration of the intervention, and α its maximal intensity (typ-
ically the strength of a lockdown procedure). Admittedly, u represents here a rather abstract
quantity: it quantifies how much the non-pharmaceutical measures reduce the rate of contact
between susceptible and infected individuals. In practice, though, it would be quite difficult to
measure its value, or to assign it a prescribed value. On the other hand, as seen later in Theorem 2,
the optimal control follows an “all or nothing” pattern: it takes on only the two extreme values,
which correspond to stronger possible lockdown or no lockdown at all, so that a precise tuning is
not requested in effect.

2.1 Toward an optimal control problem: reachable asymptotic immunity

levels

The following result assesses the question of stopping the evolution exactly at, or arbitrarily close
to, the herd immunity Sherd defined by (3).
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Theorem 1. Let α ∈ [0, 1) and T > 0. Assume that S0 > Sherd and consider

α :=
Sherd

S0 + I0 − Sherd
(lnS0 − lnSherd). (6)

(i) There is no T ∈ (0,+∞) and u ∈ Uα,T such that the solution S to (5) associated to u satisfies

lim
t→+∞

S(t) = Sherd.

(ii) If α 6 α, then, for all ε ∈ (0, Sherd), there exist T > 0 and a control u ∈ Uα,T such that the
solution S to (5) associated to u satisfies

Sherd > lim
t→+∞

S(t) > Sherd − ε.

(iii) If α > α, then for all u ∈ Uα,T the solution S to (5) associated to u satisfies

lim
t→+∞

S(t) 6 lim
t→+∞

Sα(t) < Sherd,

where Sα is the solution to (5) associated to u ≡ α. Moreover, the map α 7→ limt→+∞ Sα(t)
is strictly decreasing.

The proof of Theorem 1 is given in Section 4.2. Theorem 1 states that no finite time intervention
is able to stop the epidemics before or exactly at the herd immunity. However, one may stop
arbitrarily close to the latter by allowing sufficiently long intervention, provided that the intensity
is sufficiently strong. This is not true in the opposite case, and the constant α is tight.

Remark 1. The values given in Table 2, which correspond to the sanitary measures put in place
in France during the March to May 2020 containment period, satisfy S0 > Sherd and α ≈ 0.231 6

α ≈ 0.56 (see Section 3). According to Table 1, there thus exists a containment strategy that
increases the limit proportion of susceptible by 30%.

Orientation. When possible, stopping S arbitrarily close to the herd immunity threshold is only
possible by sufficiently long intervention of a strong enough intensity. To determine the closest
state to this threshold attainable by control of maximal intensity α on the interval [0, T ], one is
led to consider the following optimal control problem:

sup
u∈Uα,T

S∞(u) (Pα,T )

where
S∞(u) := lim

t→∞
S(t),

with (S, I) the solution to (5) associated to u.
We now make an observation, which will be crucial in the analysis (see details in Section 4.3).

It turns out that the quantity S + I − 1
R0

ln(S) is constant on any time interval on which u(·) = 1
(see Lemma 2 in Section 4.1). Therefore, using the fact that lim

t→+∞
I(t) = 0 (see formula (2)) and

the monotonicity of x 7→ x− 1
R0

lnx, the optimal control problem (Pα,T ) is indeed equivalent to

inf
u∈Uα,T

S(T ) + I(T )−
1

R0
ln(S(T ))

where (S, I) is the solution to (5) associated to u.

6



2.2 Optimal immunity control

This section is devoted to the analysis of the optimal control problem (Pα,T ). The first result
reduces the study of this problem to the solution of a one dimensional optimization problem whose
unknown, denoted T0, stands for a switching time. For simplicity, given α ∈ [0, 1], T > 0 and
T0 ∈ [0, T ], we define the function uT0 ∈ Uα,T by

uT0 = 1[0,T0] + α1[T0,T ] + 1[T,+∞). (7)

Also, we denote (ST0 , IT0) the solution of (5) with u = uT0 .

Theorem 2. Let α ∈ [0, 1) and T > 0. Problem (Pα,T ) admits a unique solution u∗. Furthermore,

(i) the maximal value S∗
∞,α,T := max{S∞(u) : u ∈ Uα,T } is nonincreasing with respect to α and

nondecreasing with respect to T .

(ii) there exists a unique T0 ∈ [0, T ) such that u∗ = uT0 (in particular, the optimal control is
bang-bang).

The proof of Theorem 2 is given in Section 4.3.

T00 T

α

1

t

u(t)

Figure 2: Opt. con-
trol

At this step, the result above proves that the opti-
mal control belongs to a family of bang-bang func-
tions parameterized by the switching time T0.

This reduces the study

to a simpler optimization problem. The switching time associated to the optimal solution of Prob-
lem (Pα,T ) solves the 1D optimization problem

sup
T0∈[0,T )

S∞(uT0) (P̃α,T )

where uT0 is defined by (7). The next result allows to characterize the optimal T0 for (P̃α,T ). In
order to state it, let us introduce the function

ψ : T0 ∋ [0, T ] 7→ (1− α)βIT0 (T )

∫ T

T0

ST0(t)

IT0(t)
dt− 1, (8)

where (ST0 , IT0) denotes the solution to (5) with u = uT0 .
This function is of particular interest since we will prove that it has the opposite sign to the

derivative of the criterion T0 7→ S∞(uT0), a property of great value to pinpoint its extremum. In
the following result, we will provide a complete characterization of the optimal control u∗, showing
that the control structure only depends on the sign of ψ(0).

Theorem 3. Let T > 0, α ∈ [0, 1) and T ∗
0 the unique optimal solution to Problem (P̃α,T ) (so that

uT∗

0
defined as in (7) is the optimal solution to Problem (Pα,T )). The function ψ is decreasing on

(0, T ) and one has the following characterization:

• if ψ(0) 6 0, then T ∗
0 = 0;
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• if ψ(0) > 0, then T ∗
0 is the unique solution on (0, T ) to the equation

ψ(T0) = 0; (9)

Moreover, if T ∗
0 > 0, then ST (T ∗

0 ) > Sherd, i.e. T
∗
0 < (ST )−1(Sherd), where, in agreement with (7),

ST denotes the solution to System (5) with u = uT ≡ 1.
In the particular case α = 0, one has T ∗

0 > 0 if, and only if T > 1
γ
ln S0

S0−Sherd
, and in that case,

T ∗
0 is the unique solution to the equation

ST0(T0) =
Sherd

1− eγ(T0−T )
.

Together, the reduction to the optimal control (P̃α,T ) achieved in Theorem 2 and the char-
acterization of the optimal T ∗

0 in Theorem 3 show that solving equation (9) is exactly what is
needed to solve Problem Pα,T . Associated search algorithms are presented in Section 3. Theorem
3 also establishes that the commutation of the optimal control occurs before the reach of the herd
immunity level, and fulfills a simple equation in the case α = 0.

Remark 2 (State-feedback form of the optimal control). It is worth emphasizing that the optimal
control is obtained under state-feedback form. As a matter of fact, at each time instant t ∈ [0, T ],
one may derive from the current state value (S(t), I(t)) the value of the optimal control input u∗(t)
by an explicit algorithm. It is sufficient for this to compute the quantity ψ(t) (which amounts to
solve the ODE on the interval [t, T ] and estimate the integral in (8)): with that done, one must set
u∗(t) = 1 if ψ(t) > 0, and u∗(t) = α if ψ(t) 6 0. This situation is in sharp contrast with the usual
one, where finding the optimal control necessitates the resolution of the two-point boundary-value
problem derived from Pontryagin maximum principle.

2.3 Relations with the minimal time problem

We have shown in Theorem 1 that, for α sufficiently small, there exist for every ε > 0 a time of
control T and a control u ∈ Uα,T for which S∞(u) > Sherd − ε. Next one may wonder what is,
for a given ε > 0, the minimal time T for which this property holds. This amounts to solve the
following optimal control problem.

Minimal time problem: for ε > 0, determine the minimal time of action
T ∗ > 0 such that the optimal final number of susceptible individuals satisfies

S∗
∞,α,T∗ > Sherd − ε.

We recall that S∗
∞,α,T is defined in Theorem 2. The following result answers this question by

noting that solving this problem is equivalent to solve Problem (Pα,T ).

Theorem 4. Assume α 6 α (defined in (6)) and let ε > 0.
Let T ∗

ε > 0 be the solution to the minimal time problem above and denote u∗ε the corresponding
control function. Then, u∗ε is the unique solution of Problem (Pα,T ) determined in Theorems 2
and 3 associated to T = T ∗.

Conversely, let T > 0 and S∗
∞,α,T the maximum of Problem (Pα,T ). Then, T is the minimal

time of intervention such that S∞(u) > S∗
∞,α,T for some u ∈ Uα,T .

8



3 Numerical illustrations

To fix ideas, we use the parameter values given in Table 2, coming from [SKL+20] and corresponding
to the lockdown conditions in force in France between March 17th and May 11th 2020. We suppose
that, on the total population of 6.7× 107 persons in France, there are no removed individuals and
1000 infected individuals at the initial time, i.e. R0 = 0 and I0 = 1× 103/6.7× 107 ≈ 1.49× 10−5.

Parameter Name Value
β Infection rate 0.29
γ Recovery rate 0.1
αlock Lockdown level (France, March/May 2020) 0.231
S0 Initial proportion of susceptible 1− I0
I0 Initial proportion of infected 1.49× 10−5

R0 Initial proportion of removed 0

Table 2: Value of the parameters used for system (1a)-(1b) (see [SKL+20])

All ODE solutions have been computed with the help of a Runge-Kutta fourth-order method.
Optimization algorithms and details on the computational aspects may be found in A. To check
the correctness of the results, we systematically compute and compare the solutions of Problem
(Pα,T ), obtained directly by projected gradient descent (see Algo. 1), and the solutions of the

simpler one-dimensional Problem (P̃α,T ), obtained by bisection method (see Algo. 2). Solutions
do not depend upon which optimization algorithm is used, confirming the theoretical results.

We first show on Figures 3 and 4 the optimal solutions corresponding to the parameter choices
α = 0 and αlock, with T = 100. To capture the full behavior of the trajectories, the computation
window is [0, 200]. As expected the solutions are bang-bang. One also observes that the optimal
value S∗

∞,α,T is larger for smaller α, as predicted in Theorem 2.
By using Lemma 2, it is easy to determine numerically the optimal value S∗

∞,α,T by solving the
equation

S∗
∞,α,T −

γ

β
lnS∗

∞,α,T = Su∗

(T ) + Iu
∗

(T )−
γ

β
lnSu∗

(T ),

for u∗ solution of (Pα,T ). This allows to investigate numerically on Fig. 5 and 6 the dependency of
S∗
∞,α,T and T ∗

0 with respect to the parameters T and α. As announced in Theorem 2, the optimal
value S∗

∞,α,T is nonincreasing with respect to α and nondecreasing with respect to T .
On Fig. 5, for T = 400, we observe numerically that the lower bound α given in Theorem 1 and

below which S can get as close as we want to Sherd over an infinite horizon, is optimal (α ≈ 0.56).
In particular, for lockdown conditions similar to the ones in effect in France between March and
May 2020 (α ≈ 0.231), it appears that it is possible to come as close as desired to the optimal
bound Sherd of inequality (4). Interestingly, we observe on Fig. 6-left that when α is too large,
then T0 = 0 for T large enough.

Another interesting feature can be observed on Fig. 6: the instant T ∗
0 at which the optimal

lockdown begins is almost independent of the level of the maximal lockdown α ∈ [0, 0.8] for “small
enough” duration T (say T 6 60 days). In other words, the optimal choice of this instant, and thus
the optimal control itself, is robust with respect to the uncertainties on the lockdown duration and
intensity, provided the former is not too long and the latter not too weak.

We also mention that Fig 5-left gives the solution to the minimal time problem. Indeed, from
Theorem 4, a control u∗ is optimal for (Pα,T ) iff it is optimal for the minimal time problem. Then,
given ε > 0 and α 6 α, the minimal time of action such that the final value of susceptible is at a
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distance ε of Sherd is obtained by computing the intersection of the curves in Fig 5-left with the
horizontal line Sherd − ε. As expected, when α is too large, i.e. when the lockdown is insufficient,
the solution stays far away from Sherd (see Fig 5-right).
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Figure 3: Solution of Problem (Pα,T ) for α = 0.0 and T = 100, displayed on the time interval
[0, 200]. In this case S∗

∞ = 0.282 and T ∗
0 = 61.9.
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Figure 4: Solution of Problem (Pα,T ) for α = αlock and T = 100 displayed on the time interval
[0, 200]. In this case S∗

∞ = 0.259 and T ∗
0 = 59.2

We conclude this section by examining in Fig. 7 the influence of the initial data, S0 and I0,
on the optimal intervention time. Let us mention that, in agreement with the conclusions of
[DLKM20], the numerical simulation in this figure seems to indicate that the larger the quantity
I0, the earlier the optimal lockdown strategy should be applied.
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Figure 5: Graph of S∗
∞,α,T for Problem (Pα,T ) with respect to T for α ∈ {0, αlock, 0.7, 0.8} (left)

and with respect to α for T ∈ {100, 200, 400} (right).
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Figure 6: Graph of T ∗
0 for Problem (Pα,T ) with respect to T for α ∈ {0.0, αlock, 0.7, 0.8} (left) and

with respect to α for T ∈ {100, 200, 400} (right).

4 Proofs of the main results

4.1 Preliminary results

Before proving the main results, we provide some useful elementary properties of the state variables
(S, I) solving (5) whose role in the sequel will be central. To this aim, it is convenient to introduce
the function Φξ defined for any ξ > 0

Φξ : R
∗
+ × R+ ∋ (S, I) 7−→ S + I −

1

ξ
lnS. (10)

Let us start with a preliminary result regarding the values of Φξ along the trajectories of
System (5).

Lemma 1. For any u ∈ L∞([0,+∞), [0, 1]) and ξ ∈ R, one has

d

dt
[Φξ(S(t), I(t))] =

(
β

ξ
u(t)− γ

)
I (11)

along any trajectory of system (5). In particular, if u is constant on a non-empty, possibly un-
bounded, interval, then the function ΦR0u(S(·), I(·)) is constant on this interval along any trajectory
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Figure 7: Numerical simulation of the SIR model with the numerical parameters β, γ, αlock and
R0 given in Table 2. The optimal time T ∗

0 introduced in Theorem 3 is plotted with respect to
I0 ∈ [1.49×10−5, 2.95×10−4] (corresponding to an initial number of infected people between 1× 103

and 2× 104 for a total number of people of 6.7× 107) and S0 is chosen so that S0+ I0 = 6.7× 107.

of System (5).

Proof. The proof of (11) follows from straightforward computations. Indeed along every trajectory
of (5), one has

d

dt
[Φξ(S(t), I(t))] =

d

dt

(
S + I −

1

ξ
lnS

)
=

(
1−

1

ξS

)
Ṡ + İ =

(
β

ξ
u(t)− γ

)
I.

The second part of the statement is an obvious byproduct of this property, by setting ξ = R0u.

Lemma 1 allows to characterize the value of the limit of S at infinity, as now stated.

Lemma 2. Let u ∈ Uα,T . For any trajectory of (5), the limit S∞(u) of S(t) at infinity exists and
is the unique solution in the interval [0, 1/R0] of the equation

ΦR0(S∞, 0) = ΦR0(S(T ), I(T )), (12)

where ΦR0 is given by (10).

Proof. Any input control u from Uα,T is equal to 1 on [T,+∞). Hence, applying Lemma 1 with
u = 1 on this interval yields (12), by continuity of ΦR0 and because of (2). Moreover, Eq. (12)
has exactly two roots. Indeed, this follows by observing that the mapping S 7→ ΦR0(S, 0) is first
decreasing and then increasing on (0,+∞), with infinite limit at 0+ and +∞, and minimal value
at S = 1/R0 = Sherd, equal to

1
R0

(1+ lnR0). We conclude by noting that the limit S∞(u) cannot

be larger than Sherd: otherwise there would exist ε > 0 such that İ > ε > 0 and Ṡ < −εβS for T
large enough, so that S would tend to zero at infinity, yielding a contradiction. It follows that the
value of S∞(u) is thus the smallest root of (12).
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Remark 3 (On the control in infinite time). Notice that, in the quite unrealistic situation where
one is able to act on System (5) up to an infinite horizon of time, then the optimal strategy
to maximize S∞(u) is to consider the constant control function uα(·) = α on [0,+∞). Indeed,
according to Lemma 1,

d

dt
[ΦαR0(S(t), I(t))] =

(
β

αR0
u(t)− γ

)
I(t) =

γ

α
(u(t)− α)I(t) > 0,

for all t ∈ [0, T ]. Hence, ΦαR0(S0, I0) 6 ΦαR0(S∞(u), 0), with equality if, and only if u = uα = α
a.e. on R+. Since S∞(u) is maximal whenever ΦαR0(S∞(u), 0) is minimal, we get that the optimal
strategy in that case corresponds to the choice u = uα = α a.e. on R+. Moreover, it is notable
that this maximal value S∞(uα) is computed by solving the nonlinear equation ΦαR0(S∞, 0) =
ΦαR0(S0, I0). Therefore, an easy application of the implicit functions theorem yields that the
mapping α 7→ S∞(uα) is decreasing.

4.2 Proof of Theorem 1

Let us start with (i). According to (5), one has İ > −γI, thus I(t) > I0e
−γt > 0 for all t > 0.

Then, Ṡ < 0 and S is decreasing. Assume by contradiction that, for all t > 0, we have Sherd 6 S(t).
Since I satisfies (5), it follows that İ > 0 on (T,+∞) and then, Ṡ 6 −βI(T )S on (T,+∞). We
thus infer that S(t) 6 e−βI(T )(t−T )S(T ) for t > T , and thus S(t) → 0 as t → +∞, which is a
contradiction.

Let us now show (ii). For all α ∈ [0, 1), we denote by uα(·) the control equal to α on (0,∞).
Thanks to the same argument by contradiction as above, one has S∞(uα) 6 1/(αR0). Let us
denote by (Suα , Iuα) the solution to System (5) associated to uα. Lemma 1 shows that the
function t 7→ ΦαR0(S

uα(t), Iuα(t)) is conserved, and we infer that S∞(uα) solves the equation

ΦαR0(S0, I0) = ΦαR0(S∞(uα), 0).

Using the expression of α,

ΦαR0(Sherd, 0) = ΦαR0(S0, I0) = ΦαR0(S∞(uα), 0).

Since x 7→ ΦαR0(x, 0) is bijective on (0, 1
αR0

), we deduce that S∞(uα) = Sherd. It follows that

for η > 0 small enough, there exists T > 0 such that for each t > T , İuα(t) 6 (βα(1 + η) γ
β
−

γ)Iuα(t) < 0. By using a Gronwall lemma, one infers that Iuα(t) → 0 as t → +∞. Then, for
all k ∈ N∗, there exists Tk > 0, such that |Suα(Tk) − Sherd| 6 1/k and Iuα(Tk) 6 1/k. Consider
uk := α1(0,Tk) + 1(Tk,∞) and let us denote by (Suk , Iuk) the solution to System (5) associated to
uk. By continuity of ΦR0 ,

ΦR0(S∞(uk), 0) = ΦR0(S
uk(Tk), I

uk(Tk)) −→
k→∞

ΦR0(Sherd, 0).

Thus S∞(uk) −→
k→∞

Sherd.

Let us finally prove (iii). We show that α 7→ S∞(uα) is strictly decreasing. Let α1, α2 ∈ [0, 1)
such that α1 < α2 and (Suα1 , Iuα1 ) and (Suα2 , Iuα2 ) the solutions to System (5) associated to uα1

and uα2 , respectively. Using Lemma 1, t 7→ Φα1R0(S
uα2 (t), Iuα2 (t)) is strictly increasing, hence

Φα1R0(S∞(uα1), 0) = Φα1R0(S0, I0) < Φα1R0(S∞(uα2), 0).

Thanks to the equations satisfied by (Suα1 , Iuα1 ) and (Suα2 , Iuα2 ), one has S∞(uα1), S∞(uα2) 6
Sherd/α1. Since x 7→ Φα1R0(x, 0) in strictly decreasing on (0, Sherd/α1), we deduce that S∞(uα2) <
S∞(uα1). This concludes the proof since S∞(uα) = Sherd.
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4.3 Proof of Theorem 2

Solving (Pα,T ) involves the resolution of an ODE system on an infinite horizon, and it is quite
convenient to consider an equivalent version of this problem involving an ODE system on a bounded
horizon. A key point for this is that, according to Lemma 2, S∞ solves Eq. (12). Furthermore, since
the mapping [0, 1/R0] ∋ S 7→ ΦR0(S, 0) is decreasing, maximizing S∞ is equivalent to minimize
ΦR0(S∞, 0). Combining all these observations yields that the optimal control problem is equivalent
to the following problem, investigated hereafter:

inf
u∈Uα,T

J(u), (PΦ
α,T )

where
J(u) := ΦR0(S(T ), I(T )) (13)

and (S, I) solves the controlled system (5) associated to the control u(·).

Proof of Theorem 2. For better readability, the proof of Theorem 2 is decomposed into several
steps.

Step 1: existence of an optimal control We will prove the existence of an optimal control for
the equivalent problem (PΦ

α,T ). Let (un)n∈N be a maximizing sequence for Problem (PΦ
α,T ). Since

(un)n∈N is uniformly bounded, we may extract a subsequence still denoted (un)n∈N with a slight
abuse of notation, converging towards u∗ for the weak-star topology of L∞(0, T ). It is moreover
standard that Uα,T is closed for this topology and therefore, u∗ belongs to Uα,T . For n ∈ N, let
us denote (Sn, In) the solution to the SIR model (5) associated to u = un. A straightforward
application of the Cauchy-Lipschitz theorem yields that (Ṡn, İn)n∈N is uniformly bounded. By
applying Ascoli’s theorem, we may extract a subsequence still denoted (Sn, In)n that converges
towards (S∗, I∗) in C0([0, T ]). As usually, we consider an equivalent formulation of System (5),
where (Sn, In) can be seen as the unique fixed point of an integral operator. We then pass to
the limit and show that (S∗, I∗) solves the same equation where u has been replaced by u∗. By
combining all these facts with the continuity of ΦR0 , we then infer that (J(un))n∈N converges up
to a subsequence to J(u∗), which gives the existence.

Step 2: optimality conditions and bang-bang property We will again establish these
properties for the equivalent problem (PΦ

α,T ). In what follows, for the sake of simplicity, we will

consider and denote by u a solution to Problem (PΦ
α,T ) and by (S, I), the associated pair solving

System (5). Observe first that integrating (11) in Lemma 1, one has

J(u) = ΦR0(S(T ), I(T )) = ΦR0(S0, I0) + γ

∫ T

0

(u(t)− 1)I(t) dt.

It is standard to write the first order optimality conditions for such kind of optimal control
problem. To this aim, we use the so-called Pontryagin maximum principle (see e.g. [LM67]) and
introduce the Hamiltonian H defined on R4 by

H(S, I, pS , pI) = [−pSβuS + pI(βuS − γ)− γ(u− 1)] I

= γ(1− pI)I + (β(pI − pS)S − γ)Iu.

There exists an absolutely continuous mapping (pS , pI) : [0, T ] → R2 called adjoint vector such
that the extremal ((S, I), (pS , pI), u) satisfies a.e. in [0, T ]:
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Adjoint equations and transversality conditions:

ṗS = βuI(pS − pI), ṗI = βuSpS − (βuS − γ)pI + γ(u− 1), (14a)

pS(T ) = 0, pI(T ) = 0. (14b)

Maximization condition: for a.e. t ∈ [0, T ], u(t) solves the problem

max
α6v61

(β(pI(t)− pS(t))S(t)− γ)I(t)v

and therefore, by using that I is nonnegative on [0, T ], one has

w > −
1

R0
on {u = α}, w 6 −

1

R0
on {u = 1}, w = −

1

R0
on {α < u < 1}, (15)

where w denotes the Lipschitz-continuous switching function given by w = S(pS − pI).
By using (5), one computes

ẇ = −βuSI(pS − pI) + S(−βuI(pI − pS)

+βuS(pI − pS)− γpI − γ(u− 1))

= −S (βuw + γ(pI + u− 1)) .

We will now prove that the optimal control can be written as uT0 defined in (7), for some
T0 ∈ [0, T ). From (14b), one has pS(T ) = pI(T ) = 0, and thus w(T ) = 0 > − 1

R0
. According to

(15) and by continuity of w, this implies u(·) = α on a certain maximal interval [T0, T ], for some
T0 ∈ (0, T ), by continuity of w. By inserting the relation w > − 1

R0
holding on (T0, T ) in the

equation (14a) satisfied by pI , we deduce that ṗI > γ(pI − 1) on (T0, T ). Since pI(T ) = 0, the
Gronwall lemma yields

pI(t) 6 1− eγ(t−T ), t ∈ [T0, T ]. (16)

Then, either T0 = 0, in which case, u = u0 = α1[0,T ] + 1[T,+∞)(see (7)) or T0 > 0. Let us now
address this latter case. Since the interval (T0, T ) is maximal by assumption and w is continuous,
one has necessarily w(T0) = −1/R0. On the other hand, S and pI are continuous, with pI(T0) < 1
according to (16). Consequently, for any ε in the non-empty open interval (0, γS(T0)(1− pI(T0)),
there exists a neighborhood VT0 of T0 on which

ẇ = −βuS

(
w +

1

R0

)
+ γS(1− pI)

∈ [γS(T0)(1− pI(T0))− ε, γS(T0)(1 − pI(T0)) + ε] a.e.

Since ε ∈ (0, γS(T0)(1− pI(T0)), this implies that w is strictly increasing in VT0 . Therefore, there
exists a maximal open interval (T1, T0) with T1 ∈ [0, T0) on which w < − 1

R0
, and therefore on

which u = 1. As a consequence, the left-derivative of w at T0 exists and reads

ẇ(T−

0 ) = −βS(T0)

(
w(T0) +

1

R0
pI(T0)

)
> 0. (17)

We will in fact show that T1 = 0. In other words, the control u can be written as (7).
To this aim, let us assume by contradiction that there exists T1 ∈ (0, T0) such that w(T1) =

− 1
R0

= w(T0) and w < − 1
R0

on (T1, T0). Observing that w is differentiable on (T1, T0) and using
Rolle’s theorem yields the existence of τ ∈ (T1, T0) such that ẇ(τ) = 0.
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Note that, according to (14a), one has ẇ = −SṗI , a.e. in (0, T ). Since S(τ) > 0, one has also
ṗI(τ) = 0. Using the fact that u = 1 on (T1, T0), this means that the point (pI(τ), w(τ)) is a
steady-state of the system

ẇ = −βSw − γSpI , ṗI = βw + γpI .

According to the Cauchy-Lipschitz theorem, we infer that (pI , w) is constant on [τ, T0] and there-
fore, ṗI(T

−

0 ) = ẇ(T−

0 ) = 0, which is in contradiction with (17). As a conclusion, T1 = 0, and u
can be written as (7).

Step 3: monotonicity of S∗
∞,α,T Let T > 0 and 0 6 α 6 α̃ < 1. It is straightforward that

Uα̃,T ⊂ Uα,T , and then S∗
∞,α,T > S∗

∞,α̃,T . It follows that the map [0, 1) ∋ α 7→ maxu∈Uα,T
S∞(u)

is nonincreasing.
Let us show that the map T 7→ maxu∈Uα,T

S∞(u) is nondecreasing. Let 0 < T 6 T̃ , 0 6 α < 1,

and denote by u∗ ∈ Uα,T the control realizing the maximum S∗
∞,α,T . Since u∗ = 1 in (T, T̃ ), one

has u∗ ∈ Uα,T̃ . Thus
S∗

∞,α,T̃
> S∞(u∗) = S∗

∞,α,T .

Step 4: uniqueness of the optimal control The demonstration of the uniqueness of the
optimal control is achieved in the proof of Theorem 3 below, by demonstrating the uniqueness
of the optimal switching point T0. Except this point, the demonstration of Theorem 2 is now
complete.

4.4 Proof of Theorem 3

The proof is decomposed into several steps. We assume first that α > 0, the case α = 0 is
considered in the last step. In the whole proof, one deals with control functions uT0 as defined in
formula (7).

Step 1: necessary first order optimality conditions on T0 Let u = uT0 be an optimal
control for problem (Pα,T ), with T0 be the associated optimal switching time. Let us introduce
the criterion j given by

j(T0) := ΦR0(S
T0(T ), IT0(T )) = IT0(T ) + ST0(T )−

γ

β
lnST0(T ), (18)

where (ST0 , IT0) is the solution corresponding to the control uT0 , as previously defined. For the sake
of simplicity, we omit these subscripts in the sequel. By Theorem 2, it is equivalent to minimize J
defined in (13) and to minimize j. By using Lemma 2, one has

I(t) + S(t)− γ
β
lnS(t) = c0 in [0, T0],

I(t) + S(t)− γ
αβ

lnS(t) = I(T0) + S(T0)−
γ
αβ

lnS(T0) in [T0, T ],
(19)

where c0 = I0 + S0 −
γ
β
lnS0. According to (19), we infer that S solves the system

Ṡ = −βS(c0 − S +
γ

β
lnS), in (0, T0), (20a)

Ṡ = −αβS

(
c0 +

γ

β

(
1−

1

α

)
lnS(T0)− S +

γ

αβ
lnS

)
, in (T0, T ), (20b)
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with the initial data S(0) = S0. Using (19), one gets

j(T0) = I(T ) + S(T )−
γ

β
lnS(T )

= I(T0) + S(T0)−
γ

αβ
lnS(T0) +

γ

β

(
1

α
− 1

)
lnS(T )

= c0 +
γ

β
lnS(T0)−

γ

αβ
lnS(T0) +

γ

β

(
1

α
− 1

)
lnS(T ),

so that the cost function reads

j(T0) = c0 +
γ

β

(
1

α
− 1

)
ln

(
S(T )

S(T0)

)
.

The next lemma allows to compute the derivative of j with respect to T0. For the sake of
clarity, its proof is postponed to the end of this section.

Lemma 3. For all t ∈ [T0, T ], the derivative3 Ŝ(t) and Ŝ(T0) of the function S(·) and S(T0) with

respect to T0, in other words Ŝ(t) = ∂S(t)
∂T0

and Ŝ(T0) =
∂[S(T0)]

∂T0
, are given by

Ŝ(t) = (α− 1)βS(t)I(t)

(
1 + γI(T0)

∫ t

T0

ds

I(s)

)

and
Ŝ(T0) = −βS(T0)I(T0).

Thanks to this result, we may compute

j′(T0) =
γ

β

(
1

α
− 1

)(
Ŝ(T )

S(T )
−
Ŝ(T0)

S(T0)

)

= γ

(
1

α
− 1

)(
(α − 1)I(T )

(
1 + γI(T0)

∫ T

T0

ds

I(s)

)
+ I(T0)

)

= γ

(
1

α
− 1

)
I(T0)(α− 1)

(
I(T )

I(T0)
+ γ

∫ T

T0

I(T )

I(s)
ds−

1

1− α

)
.

By noting that
∫ T

T0

S(t)

I(t)
dt =

1

αβ

∫ T

T0

αβS(t)− γ + γ

I(t)
dt =

1

αβ

∫ T

T0

İ(t)

I(t)2
dt+

γ

αβ

∫ T

T0

1

I(t)
dt

=
1

αβ

(
1

I(T0)
−

1

I(T )
+ γ

∫ T

T0

1

I(t)
dt

)
,

we have for the function ψ defined in (8):

ψ(T0) =
( 1
α
− 1
)( I(T )

I(T0)
+ γ

∫ T

T0

I(T )ds

I(s)
−

1

1− α

)
. (21)

We deduce that j′(T0) = 0 is equivalent to

ψ(T0) = 0. (22)
3To avoid any misunderstanding about the differentiability of S(·) with respect to T0, let us make the use of Ŝ

precise. This function stands for the derivative of the function [0, T ] ∋ T0 7→ S(·, T0) ∈ C0([T0, T ]), where S(·, T0)
is defined as the unique solution to (20b) on [T0, T ], where S(T0) is defined as the value at T0 of the unique solution
to (20a). Defined in this way, the differentiability of this mapping is standard.
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Step 2: Zeros of j′ and uniqueness of the optimal switching time According to (5), one

has for any t ∈ (T0, T ), I(t) = I(T0) exp
(∫ t

T0
(αβS(s) − γ) ds

)
. Then, using the expression of ψ

given in (21), it follows that

ψ(T0) =
( 1
α
− 1
)
exp

(∫ T

T0

(αβS(s)− γ) ds

)

+
( 1
α
− 1
)
γ

∫ T

T0

exp

(∫ T

t

(αβS(s) − γ) ds

)
dt−

1

α
.

Introducing ϕ : [0, T ] → R defined by ϕ(t) = exp
(∫ T

t
(αβS(s)− γ) ds

)
, the last expression writes

simply

ψ(T0) =
( 1
α
− 1
)
ϕ(T0) +

( 1
α
− 1
)
γ

∫ T

T0

ϕ(t) dt−
1

α
.

Differentiating this identity with respect to T0 yields

ψ′(T0) =
( 1
α
− 1
)(

−αβS(T0) + γ +

∫ T

T0

αβŜ(s) ds

)
ϕ(T0)

−γ
( 1
α
− 1
)
ϕ(T0) + γ

( 1
α
− 1
)∫ T

T0

(∫ T

t

αβŜ(s) ds

)
ϕ(t) dt

=
( 1
α
− 1
)(

−αβS(T0) +

∫ T

T0

αβŜ(s) ds

)
ϕ(T0)

+γ
( 1
α
− 1
)∫ T

T0

(∫ T

t

αβŜ(s) ds

)
ϕ(t) dt.

As a consequence of Lemma 3, both terms in the previous formula are negative, and ψ′(T0) < 0.
The function ψ is thus decreasing on (0, T ). Moreover, ψ(T ) = −1 < 0. Therefore, if ψ(0) < 0,
then (22), or equivalently j′(T0) = 0, has no solution, and thus T ∗

0 = 0. Conversely, if ψ(0) > 0,
then (22) admits a unique solution T ∗

0 which is the unique critical point of j. In particular, in the
case ψ(0) = 0, one has T ∗

0 = 0.
We also deduce that the function j is nonincreasing on (0, T ∗

0 ) and increasing on (T ∗
0 , T ).

Step 3: S(0) 6 Sherd implies T ∗
0 = 0 We consider now the particular case where S(0) 6 Sherd,

and show that in this case T ∗
0 = 0. As S is decreasing, one then has S(t) 6 Sherd for any t > 0,

whatever the input control. Thus, for any t ∈ [0, T ], one has ϕ(t) 6
∫ T

t
(αβSherd − γ) ds =

γ(α− 1)(T − t) 6 0, and

ψ(0) =
( 1
α
− 1
)
ϕ(0) +

( 1
α
− 1
)
γ

∫ T

0

ϕ(t) dt−
1

α

appears as a sum of three nonpositive terms. Therefore ψ(0) 6 0, and we conclude that T ∗
0 = 0 if

S(0) 6 Sherd.

Step 4: T ∗
0 > 0 implies S(T ∗

0 ) > Sherd, that is T ∗
0 6 (S)−1(Sherd) To prove this estimate on

T ∗
0 , consider an optimal trajectory for which the switching point verifies T ∗

0 > 0 and S(T ∗
0 ) < Sherd.
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By continuity, there exists a time instant T1 ∈ (0, T ∗
0 ) such that S(T ∗

0 ) < S(T1) < Sherd. The point
(S(T1), I(T1)) pertains to the optimal trajectory of the initial optimal control problem.

Consider now the optimal control problem defined by the same cost function, but with initial
condition (S(T1), I(T1)) and on a time horizon of length T − T1. The cost that is considered is
the supremum of the limits of S among every admissible control inputs, so the optimal value for
the second problem (on horizon T − T1) is equal to the optimal value for the initial problem (on
horizon T ); and the optimal control for the former problem is indeed the restriction to [T1, T ] of
the optimal control for the latter problem. As a matter of case, if this was not the case, then
concatenating the restriction to [0, T1] of the optimal solution of the problem on horizon T , with
the optimal solution of the problem on horizon T −T1, would lead to a larger limit of S at infinity.

Now observe that the optimal solution of the problem on [0, T − T1] takes on the value 1
on [0, T ∗

0 − T1], and then α on [T ∗
0 − T1, T − T1]. Therefore, it presents a commutation at time

T ∗
0 − T1 > 0, while the initial state value (S(T1), I(T1)) fulfills S(T1) < Sherd. But it was shown

in Step 3 that such a situation is impossible. As a conclusion, if T ∗
0 > 0, then S(T ∗

0 ) > Sherd. The
inequality on T ∗

0 itself is deduced from the fact that S is decreasing.

Step 5: The case α = 0 Let us finally deal with the case α = 0. Using the fact that S is
constant on (T0, T ), we deduce that pS(t) = 0 and pI(t) = 1 − eγ(T0−T ) for all t ∈ (T0, T ). A
commutation occurs at T0 if, and only if,

Sherd = w(T0) = S(T0)(1− eγ(T0−T )). (23)

The function S is nonincreasing, thus there exists T0 > 0 satisfying this relation only if S0 >
Sherd

1−e−γT

which is equivalent to T > 1
γ
ln S0

S0−Sherd
. If this is the case, then, since t 7→ S(t) is nonincreasing

and T0 7→ Sherd

1−eγ(T0−T ) is increasing, there exists a unique T0 satisfying the relation (23). We also

remark that (23) is equivalent to (22).
To achieve the proof of Theorem 3, it now remains to prove Lemma 3.

Proof of Lemma 3. Using the notation ST0 previously defined, one has (see (20b)) on (T0, T )

ṠT0 = −αβST0

(
c0 +

γ

β

(
1−

1

α

)
ln(ST0(T0))− ST0 +

γ

αβ
lnST0

)
,

and, at T0, S
T0(T0) is defined thanks to (20a) by

∫ ST0 (T0)

S0

dv

βv(c0 − v + γ
β
ln v)

= −T0. (24)

By differentiating (24) with respect to T0, one infers

̂ST0(T0) = −βST0(T0)

(
c0 − ST0(T0) +

γ

β
ln(ST0(T0))

)
= −βST0(T0)I

T0(T0),

which is the second identity in Lemma 3.
Furthermore, using (20b), one has

∫ ST0(t)

ST0(T0)

dv

v(c0 +
γ
β

(
1− 1

α

)
ln(ST0(T0))− v + γ

αβ
ln v)

= αβ(T0 − t), t ∈ [T0, T ].
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Differentiating this relation with respect to T0 yields for all t ∈ (T0, T ]

αβ =
ŜT0(t)

ST0(t)(c0 +
γ
β

(
1− 1

α

)
lnST0(T0)− ST0(t) + γ

αβ
lnST0(t))

−
̂ST0(T0)

ST0(T0)(c0 +
γ
β
lnST0(T0)− ST0(T0))

−
γ

β

(
1−

1

α

)
̂ST0(T0)

ST0(T0)

∫ ST0(t)

ST0(T0)

dv

v(c0 +
γ
β

(
1− 1

α

)
lnST0(T0)− v + γ

αβ
ln v)2

.

Let us simplify this latter identity. Observe first that, because of (19), one has for all t ∈ (T0, T ]

c0 +
γ

β

(
1−

1

α

)
lnST0(T0) = IT0(t) + ST0(t)−

γ

αβ
lnST0(t).

By using at the same time the change of variable v = S(t) and the identity c0+
γ
β

(
1− 1

α

)
lnS(T0)−

S(t) + γ
αβ

lnS(t) = I(t), holding true for any t ∈ (T0, T ], we infer that

∫ ST0(t)

ST0(T0)

dv

βv(c0 +
γ
β

(
1− 1

α

)
lnST0(T0)− v + γ

αβ
ln v)2

=

∫ t

T0

1

βST0(s)(IT0 (s))2
ṠT0(s) ds =

∫ t

T0

−αST0(s)IT0(s)

ST0(s)(IT0(s))2
ds

= −α

∫ t

T0

ds

IT0(s)
.

Combining all these facts leads to, for all t ∈ (T0, T ],

αβ =
ŜT0(t)

ST0(t)IT0 (t)
+ β − γ(1− α)βIT0 (T0)

∫ t

T0

ds

IT0(s)
.

Therefore, we arrive at, for all t ∈ (T0, T ],

ŜT0(t) = (α− 1)βST0(t)IT0(t)

(
1 + γIT0(T0)

∫ t

T0

ds

IT0(s)

)
,

which is the first identity of the statement. This achieves the proof of Lemma 3, and consequently
of Theorem 3.

4.5 Proof of Theorem 4

Let T ∗ be the minimal time associated to the Minimal time problem. Let u∗α,T∗ be the unique
solution of Problem (Pα,T ) associated to T = T ∗. Assume by contradiction that u∗α,T∗ does not
solve the minimal time problem, i.e. S∞(u∗α,T∗) < Sherd − ε. Then for each u ∈ Uα,T∗ one has

S∞(u) 6 S∞(u∗α,T∗) < Sherd − ε,

which is in contradiction with the fact that T ∗ solves the minimal time problem.
Conversely, let T > 0 and u∗ realizing the maximum of (Pα,T ), i.e. S∞(u∗) = S∗

∞,α,T . Let
T ∗ be the minimal time of intervention such that S∞(u) > S∗

∞,α,T for some u ∈ Uα,T∗ . Since
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S∞(u∗) = S∗
∞,α,T , we necessarily have T ∗ 6 T . By definition of T ∗, there exists u ∈ Uα,T∗ such

that S∞(u) > S∗
∞,α,T . Consider v := u1(0,T∗) + 1(T∗,T ). One has v ∈ Uα,T and

S∞(v) = S∞(u) > S∗
∞,α,T .

Hence, by definition of S∗
∞,α,T , one has v = u∗. But v does not have the form of the minimal

solution in Theorem 2, unless T ∗ = T .

5 Conclusion

Optimal reduction of epidemic final size by social distancing of given maximal duration and in-
tensity has been considered in this paper. This issue amounts to stopping the disease as close as
possible after crossing the herd immunity threshold. We first established that stopping arbitrar-
ily close to this value through long enough intervention is possible only if the social distancing
intensity is sufficiently intense. We also established the existence and uniqueness for the solution
of the considered optimal control problem, which is bang-bang with a unique commutation from
the nominal value to the minimal allowed value of the transmission rate. This property gives rise
to an efficient numerical algorithm to solve the optimization problem, which is exemplified in the
text. As a last result, it has been shown that this problem may be interpreted as equivalent to
reaching a given distance to the herd immunity level by minimal intervention time. To the best of
our knowledge, these contributions did not appear before.

We stress once again that the optimal control problem considered here is mainly a prototypal
one, not aimed at describing exhaustively human epidemics. Ignoring many important features,
it provides baseline to consider real situations, thanks to its reduced complexity. In particular, it
is certainly not relevant to ignore the limitation of the hospital capacity. In first approximation,
the occupancy of hospital beds is proportional to the number of infected individuals, so this effect
may be introduced as a constraint. This will be the main topic of future work.
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A Implementation issues

We provide here an insight of the numerical methods used in Section 3. The codes are available
on:

https://github.com/michelduprez/optimal-immunity-control.git

A.1 Solving Problem (Pα,T ) by a direct approach

In order to check the consistency of the results of Theorem 3, we solved directly the optimal control
problem (Pα,T ). Our approach rests upon the use of gradient like algorithms, which necessitates
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the computation of the differential of S∞ in an admissible direction4 h. According to the proof of
Theorem 2 (see Section 4.3), this differential reads

DS∞(u) · h =

∫ T

0

(γ − βS(pI − pS))Ih dt,

where (pS , pI) denotes the adjoint state, solving the backward adjoint system (14a)-(14b). Thanks
to this expression of DS∞(u) ·h, we deduce a simple projected gradient algorithm to solve numer-
ically the optimal control problem (PΦ

α,T ), then (Pα,T ). The algorithm is described in Algorithm
1. The projection operator PUα,T

is given by

PUα,T
u(t) = min{max{u(t), α}, 1}, for a.e. t ∈ [0, T ].

Algorithm 1 Solving Problem (Pα,T ) by projected gradient descent

Require: u0 ∈ Uα,T , ε > 0
1: k = 1
2: while |S∞(uk)− S∞(uk−1)| > ε do

3: Compute (Sk−1, Ik−1) solution to the primal system (5)
4: Compute (pS,k−1, pI,k−1) solution to the dual system (14a)-(14b)
5: Compute uk := PUα,T

(uk−1−ρk−1DS∞(uk−1)) where ρk−1 is the step, chosen variable such
that S∞(uk)− S∞(uk−1) < 0.
return uk

A.2 Solving Problem (Pα,T ) thanks to the theoretical results

Taking advantage of the theoretical results given in Theorem 3, we then considered a simpler
algorithm, based on the solution of Problem (P̃α,T ) by bisection method. This method is described
in Algorithm 2.

All computations shown in Section 3 indicate, as expected, that the optimal trajectories com-
puted by the two methods do coincide.

For illustrative purpose, we provide in Figure 8 the graph of the cost j(T0) defined in (18) that

corresponds to the one-dimensional optimization Problem (P̃α,T ). As can be seen, the cost is not
convex.
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