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Abstract—In this work, we proposed a tractable mathematical
framework to analyze the coverage probability in dynamic down-
link cellular networks taking into account the queue dynamics.
In particular, the static properties of the physical layer network
are studied by stochastic geometry and dynamic properties of
queue evolution are studied with discrete time Markov chain.
We also analyze the stable region by giving explicit upper and
lower bounds on the dynamic coverage probability.

Index Terms—stochastic geometry, downlink cellular network,
instantaneous SINR, DTMC, stability.

I. INTRODUCTION

A. Background and related work

The stochastic geometry approach has recently got much
attention in particular for quantifying the aggregate interfer-
ence in the wireless network. The introduction of point process
theory turned out to be a great tool for modeling and analyzing
the performance of wireless networks in different scenarios
[1]–[3]. The first works focused on full-load networks, i.e.
transmitters never have empty buffers and then transmit all
the time, and hence the studies investigated the impact of a
random topology on the coverage probability of the typical
user.

However, real systems are subjected to temporal traffic
variation and sources generate packets according to some
stochastic process which should be stored in a queue before
being transmitted. The introduction of queueing theory in
a stochastic geometry approach allows to assess important
network performance measures such as the average delay
or stability to cite a few. The analysis remains however
challenging due to the complex interaction between the packet
arrival rate process and the service rate depending on the
coverage probability that in turn depends on the interference
in the networks and all the queue states of transmitters. A first
attempt combining stochastic geometry and queueing theory
has been granted in [4] by considering a double-stochastic
network, i.e. space-time Poisson call arrivals. Authors suc-
ceeded to derive network performance measures averaging
over space and time. However, the interaction between the
queues at different BSs are either ignored or only analyzed by
approximations.

The works in [5]–[7] pushed further the analysis of the
interaction between the queue dynamics and the topology of
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the network. A traffic-aware spatio-temporal model for IoT
devices supported by cellular uplink connectivity has been
developed in [5]. A quite complete transmission scheme, i.e.
backoff and transmission power, has been proposed using
Markov chains whose evolution depends on the queue state
of the devices. Thanks to this model, authors studied the
tradeoff between the scalability of the network, i.e. supporting
as much as possible a high number of devices, and its stability,
i.e. queues are not diverging. A marked Poisson process is
modeled to catch arrival packets and delays in heterogeneous
cellular network [6]. Similarly, [7] assumed that the traffic
is generated at random spatial regions, rather than modeling
the flow at each independent user. In [8], a novel spatio-
temporal mathematical framework is provided to analyze the
preamble transmission success probability of a cellular IoT
network, where the number of accumulated packets in the
queues is approximated by a Poisson distribution. However,
the theoretical findings are not validated by simulations.

Further, the primal consideration in queueing systems is
about stability. For an isolated system, even with random
arrival and departure process, the stable region requires that
the service rate is larger than the arrival rate. However,
the sufficient conditions are more complicated in large-scale
queueing networks since the service rate depends on the
state of all the transmitters in the network. Sufficient and
necessary conditions for system stability have been studied
in [9], meta-stability in [10]. Particularly, [11] characterizes
the SIR variation due to the traffic conditions, and its impact
on system stability. However, the stable region is characterized
by assuming a dominant and a modified system to avoid the
problem of interacting queues. Thus, a simple but general
framework to describe the dynamic interaction effects of
coverage probability remains to propose.

B. Approach and contributions

This work proposes a tractable mathematical model to ana-
lyze the coverage probability in a downlink cellular network,
in which queue dynamics are taken into consideration. We
develop a comprehensive approach to handle the interaction
between the coverage probability and the queueing state evo-
lution using discrete time Markov chain (DTMC). A simple
model is considered, but contrarily to the state of the art
[9]–[11], closed-form expressions are given that make the
bridge between the coverage probability and the fraction of



active base stations (BS) under conditional stable state. We
also characterize the explicit upper and lower bounds on the
dynamic coverage probability.

The rest of paper is organized as follows. Section II presents
the system model and the assumptions. The outline of the
analytical framework is established in Section III. Section IV
provides the simulation results and conclusions are drawn in
Section V.

II. SYSTEM MODEL

A. Network topology

The downlink cellular-based network model consists of a
single-tier base stations (BSs) in R2 following an independent
homogeneous Poisson point process (PPP) Φ, with intensity
λ. User density is such that every BS has at least one user
associated with it . Besides, each user is associated to the
closest BS. A single user equipment (UE), randomly chosen,
is considered as a typical UE and being located at origin (0, 0)
for the ease of the analysis. Moreover, all BSs are assumed
to transmit with a constant normalized power in the same
spectrum.

A single queue but multiple servers are considered per BS.
The study focuses on a given resource block per user and
an independently and identically distributed (i.i.d.) flat fading
channel across time and space is considered [11].

B. Traffic model

We use a discrete time queueing system to model the
random traffic arrival and departure processes. The packet
arrival is modeled by an independent Bernoulli process with
rate ξ ∈ [0, 1] and the rate of the departure random process of
the queue depends on the instantaneous signal-to-noise ratio
(SINR). If the received SINR exceeds a predefined threshold
θ, the packet is transmitted successfully and it can be removed
from the queue. Otherwise, the transmission fails and the
packet remains in the buffer waiting for re-transmission in
the next time slot. Moreover, whether the transmission of the
typical BS is successful or not, the queue evolution depends on
the realization of the PPP, the random access, the fading and
the arrival traffic rates, and the dynamic aggregate interference.

The realization of the point process Φ is conditioned on
a full time activity of the BS at position x0. The relevant
probability measure over the PPP is then the reduced Palm
probability, denoted as Px0 . Correspondingly, the expectation
is taken with respect to the measure Px0 .

Furthermore, we define Φt to be the set of BSs that are
transmitting in the time slot t ∈ N. Obviously, a transmitter
with a reasonable packet input rate and experiencing a favor-
able network performance (i.e. high successful transmission
probability) is able to clear the backlogged packets in the
buffer. Otherwise, the backlogged packets in the buffer will
rapidly grow up.

C. Signal-to-interference ratio

The aggregate interference of the typical UE at time slot t
can be written as

It =
∑

x∈Φ\x0

hx,t ‖x‖−α 1(x ∈ Φt) (1)

where ‖x‖ is the distance between the interfering BS at x and
the typical user, hx,t is the exponential channel gain between
the typical UE and the interfering BS at position x and time
t, with mean 1, α is the path loss exponent, and 1(·) is the
indicator function.

Hence, the received SINR at time slot t experienced by the
typical UE is

γt =
hx0,t ‖x0‖−α

σ2 +
∑

x∈Φ\x0

hx,t ‖x‖−α 1(x ∈ Φt)
(2)

where σ2 denotes the power of additive white Gaussian noise
and hx0,t is the exponential channel gain between the typical
UE and its tagged BS. Moreover, we note qt the quantity

qt = E1(x∈Φt)(1(x ∈ Φt) = 1) (3)

which can be seen as (i) the fraction of active interfering BS
at time slot t; (ii) the probability that a randomly chosen BS
is active at time slot t.

III. PERFORMANCE ANALYSIS

Our main results are stated in Theorems 1 and 2 in this
section. The traffic analysis and its relation with the coverage
probability are performed thanks to a DTMC. Finally, upper
and lower bounds on the dynamic coverage probability are
derived.

A. Coverage probability

Considering that the typical UE receives data at time slot
t, i.e. its associated BS in x0 is always active, the coverage
probability is defined as [9]

pt(θ, λ, α, ξ) , Px0 [γt > θ] (4)

Theorem 1. The conditional coverage probability at time t is

pt(θ, λ, α, ξ) = 2πλ

∫ ∞
0

e−σ
2θrαe−πλr

2(1+qtρ(α,θ))rdr

where ρ(α, θ) =
∫∞

1
[1 + u

α
2 θ−1]−1du.

Proof. See Appendix A.

Theorem 1 quantifies how the coverage probability behaves
at a given time slot and depends on the traffic. It illustrates
that the state of the queues are affecting the coverage via
the parameter qt. As qt depends on the time t, the coverage
probability in Theorem 1 is time depending. In the particular
case of the interference-limited network, Theorem 1 takes the
following form.



Corollary 1. In an interference-limited network, i.e. σ2 → 0,
we have

pt(θ, λ, α, ξ) =

[
1 +

∫ ∞
1

qt
1 + u

α
2 θ−1

du

]−1

(5)

and for path loss exponent α = 4, we have

pt(θ, λ, 4, ξ) =
[
1 + qt

√
θ tan−1(

√
θ)
]−1

(6)

Either in Theorem 1 or Corollary 1, the coverage probability
depends on the BS activity probability, i.e. qt, which is related
to the queue dynamic.

B. Queueing analysis

Let Φ̃ be the limit of Φt as t → ∞, which represents the
point process in the stationary regime, assuming it exists. Let
p be the coverage probability of typical user at a stable state
and q = E

1(x∈Φ̃)(1(x ∈ Φ̃) = 1). Considering qt→∞ = q,
and replacing qt by q in Theorem 1, we have

p(θ, λ, α, ξ) = lim
t→∞

pt(θ, λ, α, ξ)

= 2πλ

∫ ∞
0

e−σ
2θrαe−πλr

2(1+qρ(α,θ))rdr (7)

The coverage probability given in (7) does not depend on t,
contrary to the coverage probability given in Theorem 1. This
coverage probability is then a stable coverage probability.

Theorem 2. Under prescribed system assumption, let ξ and
p be the arrival and departure rates, the active probability at
a randomly chosen BS is

q =

{
ξ/p, if p > ξ,

1, if p ≤ ξ.
(8)

Proof. See Appendix B.

According to (7) and (8), the interdependence between q and
p shows the relationship between the queue and the stochastic
geometry in the analysis. According to the relative values of
p and ξ, a randomly chosen BS has a probability of ξ/p to
be active if its arrival rate is less than the departure rate, and
is always active in the opposite case. The computation of the
probability q is performed dynamically thanks to Algorithm 1.

Algorithm 1 Iteration algorithm for computation of p and q.
Initialize q1 ∈ (ξ, 1), q0 = 0, i = 0, ε� 1
while |qi+1 − qi| ≥ ε do
i← i+ 1, q ← qi, p← p(θ, λ, α, ξ) (7)
if p > ξ then
qi+1 ← ξ/p

else
qi+1 ← 1
break

end if
end while
Return q ← qi+1 and p← p(θ, λ, α, ξ)

It is important to note when p ≤ ξ, q = 1 and all the buffers
length grow up to infinity, i.e. the DTMC are not stable. The
stable coverage probability (7) can however be defined but at
the cost of infinite queue lengths or dropped packets.

C. Upper and lower bounds

The solution of the stability of the network in coverage and
activity probabilities has been given in the previous section and
can be numerically computed using Algorithm 1. Simulation
results will show that this stability behaves between two
extreme cases that are summarized in the next lemma.

Lemma 1. Considering the depicted downlink cellular net-
work, the coverage probability can be bounded as follows

pl ≤ p ≤ pu (9)

where

pu = 2πλ

∫ ∞
0

exp(−σ2θrα)e−πλr
2(1+ξρ(α,θ))rdr (10)

and

pl = 2πλ

∫ ∞
0

exp(−σ2θrα)e−πλr
2(1+ρ(α,θ))rdr (11)

Proof. A favorable system is considered for the upper bound
[9]. If the transmission of a packet fails, this packet is dropped
instead of being re-transmitted. The interfering transmitter is
then active with probability ξ, or we can say that the fraction
of the active interfering transmitters remains constant in time.
Substituting qt in (5) by its minimum value qt = ξ , the upper
bound is obtained.

In the lower bound case, the highest interference situation is
obtained when all BSs are always active [9]. This corresponds
to qt = 1, which also gives the lowest value of the function
in (5).

It has to be mentioned that the lower bound (11) is the
coverage probability given in [1], and the upper bound (10) is
the coverage probability given in [1] with a BS density thinned
by a factor ξ. As with Theorem 2, the stability condition in
Lemma 1 is ensured at a cost of infinite buffer lengths if pl ≤
ξ. Moreover, the bounds in Lemma 1 reduce to a much more
simpler form when the network is considered as interference-
limited.

Corollary 2. In an interference-limited network, i.e. σ2 → 0,

pu = [1 + ξρ(α, θ)]
−1 (12)

pl = [1 + ρ(α, θ)]
−1 (13)

IV. NUMERICAL RESULTS AND SIMULATIONS

Fig. 1 plots the coverage probability expressed in Theorem 1
w.r.t. the threshold θ. Moreover, two initialization states are
considered: the full load case, i.e. the lower-bound in Lemma
1, and the light traffic initialization case, i.e. the upper-
bound in Lemma 1. Moreover, the time evolution of the
coverage probability when the number of time slots increases
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Figure 1. Comparison of dynamic coverage probability with two initialization,
ξ = 0.3, σ2 = 0, λ = 0.25 and α = 4.
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Figure 2. Comparison of Monte Carlo simulation and analytically iterative
algorithm of coverage probability at stable state.

is illustrated thanks to the arrows in Fig. 1. Whatever the
initialization state is, the coverage probability converges to
the stable coverage probability, corresponding to the stable
distribution of the DTMC when p ≥ ξ.

Fig. 2 compares the analytical results in Theorem 2, eval-
uated with Algorithm 1, with the Monte Carlo simulations
under two network densities, λ = 0.05 and λ = 0.2. The
average arrival rate is set to ξ = 0.3 and σ2 = 0.1. The
results corroborate the good match between simulations and
analytical expressions. Moreover, we observe that the region
between upper and lower bounds reduces when λ decreases.
Indeed, as the density becomes lower, the interference level at
the typical user decreases also and hence the upper bound is
close to the lower bound.

V. CONCLUSION

This work proposed a tractable mathematical model to
analyze the coverage probability in a dynamic traffic randomly
deployed downlink cellular network. The queue evolution
at each transmitter has been handled with a DTMC and
a Bernoulli distribution for packet arrival. The interaction

between the coverage probability and the queue state evolu-
tion has been captured in closed-form. We also develop the
boundaries of dynamic coverage probability. As further work,
we intend to investigate the analysis when the traffic arrival
rate is a function of the number of users in the network. Also,
a multi-devices competition mechanism can be introduced,
which means that in the give time slot the BS has more than
one queue that needs to be served.

APPENDIX

A. Proof of Theorem 1

Given the typical UE received data at time slot t, its condi-
tional SINR coverage probability is written as (to lighten the
notation we remove the index t from the channel coefficients)

pt = Px0(γt ≥ θ)

= Px0

 hx0 ‖x0‖−α

σ2 +
∑

x∈Φ\x0

hx ‖x‖−α 1(x ∈ Φt)
≥ θ


=

∫ ∞
0

2πλr0e
−πλr20 exp(−σ2θrα0 )

× Px0

 hx0
‖x0‖−α

σ2 +
∑

x∈Φ\x0

hx ‖x‖−α 1(x ∈ Φt)
≥θ
∣∣∣∣‖x0‖=r0

dr0

=

∫ ∞
0

2πλr0e
−πλr20e−σ

2θrα0 LI(θrα0 )dr0 (14)

where the Laplace transform (LT) of a random variable X in
s is denoted as LX(s).

Further, the LT LI(s) in (14), with s = θ‖x0‖α = θrα0 , has
the form:

LI(s) = E
[

exp
(
−s
∑

x∈Φ\x0

hx ‖x‖−α1(x ∈ Φt)
)∣∣∣∣r0

]

= E{hx},Φ

 ∏
x∈Φ\x0

exp
(
−shx ‖x‖−α 1(x ∈ Φt)

) ∣∣∣∣r0


a
= EΦ

 ∏
x∈Φ\x0

Ehx
[
exp
(
−shx ‖x‖−α 1(x ∈ Φt)

)]∣∣∣∣r0


= EΦ

 ∏
x∈Φ\x0

1

1 + s ‖x‖−α 1(x ∈ Φt)

∣∣∣∣r0


= E{1(x∈Φt)}

EΦ

 ∏
x∈Φ\x0

1

1+s ‖x‖−α1(x∈Φt)

∣∣∣∣∣r0,
1(x ∈ Φt)


b
= EΦ

 ∏
x∈Φ\x0

(E1(x∈Φt)[1(x ∈ Φt) = 1]

1 + s ‖x‖−α× 1

+
E1(x∈Φt)[1(x ∈ Φt) = 0]

1 + s ‖x‖−α × 0

) ∣∣∣∣∣r0

]



c
= EΦ

 ∏
x∈Φ\x0

(
qt

1 + s ‖x‖−α
+ 1− qt

) ∣∣∣∣r0

 (15)

where (a) follows from the i.i.d. hypothesis of hx and further
independence from the point process Φ, (b) follows from the
law of total expectation and using independence activity of BS
[5, Assumption 2], and (c) follows from (3).

According to the PGFL of PPP and with r = ‖x‖, we have:

LI(θrα0 )

= exp

(
−2πλ

∫ ∞
r0

(
1−

(
qt

1 + θrα0 r
−α + 1− qt

))
rdr

)
a
= exp

(
−πλr2

0

∫ ∞
1

qt
1 + u

α
2 θ−1

du

)
(16)

where (a) is obtained by the change of variable u = ( rr0 )2.

B. Proof of Theorem 2

The number of packets in the queue of a randomly chosen
BS is modeled as a birth and death process that can be
represented with the following DTMC:

0 1 2 3 · · ·ξ̄

pξ + p̄ξ̄ pξ + p̄ξ̄ pξ + p̄ξ̄

ξ p̄ξ p̄ξ p̄ξ

pξ̄pξ̄pξ̄pξ̄

where ā = 1−a with a ∈ {p, ξ} and each state is the number
of packets being in the queue at a given time slot. When the
stable state is achieved, the coverage probability of typical
UE does not evolve with time as mention in (7). The packet
departure at a given interfering BS is a Bernoulli process,
which leads to a geometric inter-departure time. Thus, the
transmission matrix of DTMC is a Geo/Geo/1 queueing model
[12], and the transition matrix is

P =


ξ̄ ξ 0 0 0 · · ·
pξ̄ p̄ξ̄ + pξ p̄ξ 0 0 · · ·
0 pξ̄ p̄ξ̄ + pξ p̄ξ 0 · · ·
0 0 pξ̄ p̄ξ̄ + pξ p̄ξ · · ·

0 0 0
. . . . . . . . .

 (17)

For stationary Markov chains, we have

πP = π, πe = 1 (18)

where π = [π0, π1, π2, · · · , πi, · · · ] is the row vector that
contains the stable-state probabilities, in which πi denotes the
probability of being in state with i packets, and e is a column
vector of ones with the proper length.

The solution of (18) is the solution of:

ξ̄π0 + ξ̄pπ1 = π0

ξπ0 + (ξ̄p̄+ ξp)π1 + ξ̄pπ2 = π1

ξp̄π1 + (ξ̄p̄+ ξp)π2 + ξ̄pπ3 = π2

ξp̄π2 + (ξ̄p̄+ ξp)π3 + ξ̄pπ4 = π3

...

(19)

Solving the system in (19) leads to:

πi = Ri
π0

p̄
, where R =

ξp̄

ξ̄p
, ∀ i ∈ [1,+∞) (20)

By the law of total probability we should have
∞∑
i=0

πi = 1 (21)

it comes

π0 +
π0

p̄

∞∑
i=1

Ri
a
= π0

(
1 +

1

p̄
× R

1 +R

)
= 1 (22)

where (a) comes from geometric series on the condition R <
1, i.e. p > ξ. After straightforward algebraic manipulation, the
final expression at stable state is obtained:

π0 =
p− ξ
p

,∀ p > ξ (23)

Since π0 is the probability to have an empty buffer, and hence
an inactive BS, the activity probability of a BS is

q = 1− π0 =
ξ

p
,∀ p > ξ (24)

If R ≥ 1, then geometric series in (22) does not converge
and the only solution to have (21) satisfied is that πi → 0, i.e.
all states are transient and BS are always active, i.e. q = 1.
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