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Abstract

We study the critical exponents of discrete subgroups of a higher rank semi-simple real

linear Lie group G. Let us �x a Cartan subspace a ⊂ g of the Lie algebra of G. We show that if

Γ < G is a discrete group, and Γ′ / Γ is a Zariski dense normal subgroup, then the limit cones

of Γ and Γ′ in a coincide. Moreover, for all linear form ϕ : a → R positive on this limit cone,

the critical exponents in the direction of ϕ satisfy δϕ(Γ′) ≥ 1

2
δϕ(Γ). Eventually, we show that

if Γ′\Γ is amenable, these critical exponents coincide.

1 Introduction

Let G be a real linear semi-simple Lie group, K < G a maximal compact subgroup and X = G/K
the associated Riemmannian symmetric space, whose distance is denoted by d. We write o ∈ X
the �xed point of K. The sectional curvatures on X are non-positive. When G has rank one, we
can scale the metric such that the sectionnal curvatures on X are at most −1.

Let Γ < G be a discrete subgroup. To study the growth of Γ, a central quantity is its critical
exponent, de�ned by

δ(Γ) = lim sup
R→+∞

1

R
log{γ ∈ Γ ; d(o, γo) ≤ R}.

Since the sectional curvatures of X are bounded from below, it follows from the Bishop-Gromov
comparison theorem that this critical exponent is �nite, bounded from above by the volume entropy
of G which is de�ned by

h(G) = lim sup
R→+∞

1

R
log Vol(B(o,R)).

The critical exponent has been widely studied since the 70's for Riemannian manifolds with
curvature at most −1 (and CAT(−1) metric spaces). In this case, it coincides with the topological
entropy of the geodesic �ow of Γ\X. In this paper, we will be interested in the following elementary
question.

If Γ′ / Γ is a normal subgroup, how are related δ(Γ′) and δ(Γ) ?
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1.1 Normal subgroups, limit cones and lower bound on critical exponents

By construction, δ(Γ′) ≤ δ(Γ) for all subgroups Γ′ < Γ. When Γ′ is a normal subgroup of Γ, the
following results have been shown in [Rob05].

Theorem 1.1 ([Rob05], Theorem 2.2.1). Let X be a CAT(-1) metric space. Let Γ ⊂ Isom(X) be a
discrete group and Γ′ /Γ be a non elementary normal subgroup of Γ0. Then their critical exponents

satisfy δ(Γ′) ≥ 1

2
δ(Γ).

This result may be surprising due to the following example. In the setting of Theorem 1.1, let
g, h ∈ Γ be hyperbolic elements whose �xed points on the visual boundary ∂X are all distinct. For
all n ∈ N, let us consider the subgroup Γn = 〈gn, hn〉 < Γ generated by gn and hn. For n large
enough, the group Γn has a structure of Schottky group. It is a free group generated by gn and hn,
and it can easily be shown that lim

n→+∞
δ(Γn) = 0. Nevertheless, writing Γ′n for the normal closure

of Γn in Γ, it follows from Theorem 1.1 that δ(Γ′n) cannot be smaller than 1
2δ(Γ). We will show

that a similar phenomenon holds in higher rank symmetric spaces.

On non-positively curved manifolds, the study of the critical exponent has been of more recent
interest. For discrete groups acting on higher rank symmetric spaces, it has been known since the
PhD thesis of J.F. Quint (cf [Qui02]) that it is interesting to consider directional critical exponents
which we de�ne now. We refer to Section 2 for the geometric background.

Let us �x a Cartan subspace a ⊂ g of the Lie algebra of G and a Weyl chamber a+ ⊂ a. Let
C(Γ) ⊂ a+ be the limit cone of Γ. This cone has been introduced by Y. Benoist in [Ben97], and
describes the directions in the Weyl chamber in which the group grows. By de�nition, if Γ′ < Γ,
the limit cones satisfy C(Γ′) ⊂ C(Γ).

For any linear form ϕ ∈ L(a,R), which we suppose to be positive on C(Γ), let us write

δϕ(Γ) := lim sup
R→∞

1

R
log Card{γ ∈ Γ |ϕ(κ(γ)) ≤ R},

where κ(γ) denotes the Cartan projection of γ, see Section 2.1.2.
Our �rst result is the following.

Theorem 1.2. Let G be a real linear, semisimple, connected, Lie group with �nite center. Let Γ
be a discrete subgroup of G and Γ′ / Γ be a normal subgroup. If Γ′ is Zariski dense in G, then the
two limit cones coincide: C(Γ) = C(Γ′).

Moreover, for all linear forms ϕ ∈ L(a,R) which are positive on C(Γ), we have δϕ(Γ′) ≥ 1

2
δϕ(Γ).

We have separated the statements to emphasize on the equality of limit cones, which seems
unknown. Since a linear form which vanishes on some open subset of C(Γ) has in�nite critical
exponent, this equality of limit cones follows from the inequality δϕ(Γ′) ≥ 1

2δϕ(Γ) for all ϕ which
are positive on C(Γ′).

The Zariski dense assumption on Γ′ is necessary to avoid trivial counter-examples as Γ′ =
Γ` × {Id} ⊂ Γ` × Γr = Γ for discrete groups in a product, for which Theorem 1.2 is trivially false.
Our approach is based on the existence of ϕ-conformal Patterson-Sullivan densities for Γ′, which
are not de�ned for discrete groups such as Γ` × {Id} ⊂ Γ` × Γr.

Let us say that the group Γ ⊂ G is normally irreducible if it intersects trivially all normal
subgroups N / G when N 6= G. We will show in Proposition 3.7 that a Zariski dense subgroup
Γ < G is normally irreducible if and only if all its non-trivial normal subgroups are Zariski dense
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Corollary 1.3. Let G be a real linear, semisimple, connected, Lie group with �nite center. Let
Γ be a normally irreducible Zariski dense discrete subgroup of G. Then for all non trivial normal
subgroup Γ′/Γ, the limit cones C(Γ) and C(Γ′) coincide. Moreover, for all linear forms ϕ ∈ L(a,R)

which are positive on C(Γ), we have δϕ(Γ′) ≥ 1

2
δϕ(Γ).

1.2 Equality of critical exponents for co-amenable normal subgroups

Once the equality of the limit cones has been proven, it is natural to look for conditions which
ensure the equality between the critical exponents for Γ and Γ′. When both groups are lattices, the
question is settled by a famous theorem of Leuzinger.

Theorem 1.4 (Leuzinger, [Leu03]). Let Γ be a (possibly non-uniform) lattice in G, and let h(G)
be the volume entropy of G. Then δ(Γ) = h(G) if and only if Γ is a lattice.

We are hence interested in the situation when Γ′ is not a lattice. In negative curvature, the
following has been shown by Roblin.

Theorem 1.5 ([Rob05], Theorem 2.2.2). Let X be a CAT(-1) metric space. Let Γ ⊂ Isom(X) be
a non-elementary discrete group. Let Γ′ /Γ be a normal subgroup of Γ such that Γ′\Γ is amenable.
Then δ(Γ′) = δ(Γ).

We will de�ne amenable groups in Section 4. Our second main result extends this theorem to
discrete groups of higher rank symmetric spaces.

Theorem 1.6. Let G be a real linear, semisimple, connected, Lie group with �nite center. Let Γ
be a discrete subgroup of G. Let Γ′ be a normal, Zariski dense subgroup of Γ. If Γ′\Γ is amenable
then for all linear form ϕ ∈ L(a,R) which are positive on C(Γ), the associated critical exponents
satisfy δϕ(Γ′) = δϕ(Γ).

Let us point that, in our proof as in Roblin's, the normal assumption is crucial. Removing
this assumption is possible in negative curvature, but requires an additional hypothesis on Γ.
This hypothesis also allows to have a full characterization of the equality of critical exponents
by amenability, which has been shown by Coulon, Dougall, Schapira and Tapie.

Theorem 1.7 ([CDST], Theorem 1.1). Let Γ Let X be a proper Gromov-hyperbolic geodesic space.
Let Γ be a discrete group acting properly by isometries on X, and Γ′ a subgroup of Γ. Assume that
the action of Γ is strongly positively recurrent. The following are equivalent.

• δ(Γ) = δ(Γ′)

• The subgroup Γ′ is co-amenable in Γ.

Being strongly positively recurrent means that for some suitable notion of critical exponent at
in�nity δ∞(Γ), we have δ(Γ) > δ∞(Γ). This property is also called a critical gap. In negative
curvature, this has strong implications on the dynamics of the group Γ acting on X, and on the
geodesic �ow of the quotient X/Γ. We refer the reader to [ST19], [CDST]. Studying the notion of
strongly positively recurrent discrete groups in higher rank symmetric spaces will be done elsewhere.
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1.3 Organisation of the paper

In the next section, we recall the necessary background on dynamics of discrete groups in symmetric
spaces.

In Section 3 we present the proof of Theorem 1.2. It mostly relies on adapting the ideas from
[Rob05] to higher rank setting. The main idea is to prove that the orbits of the group Γ satis�es a
so-called shadow principle with respect to the conformal densities associated to Γ′, see Section 3.1.

In the last section, we introduce amenable groups and prove Theorem 1.6. It also relies on
the shadow principle, combined with the use of amenability of Γ′\Γ to construct an average of the
Γ-equivariant conformal density, see Section 4.2, from which we will control the critical exponents.

2 Background on higher rank symmetric spaces

In this section we �rst recall some classical facts on the geometry of higher rank symmetric spaces.
We then describe some basic facts about discrete isometry groups of such spaces, and we introduce
ϕ-conformal densities on the Furstenberg boundary which will be the main tools in the proof of
our results. Our main references for this section are [Qui02, Thi07, DK19]. Similar results under a
slightly di�erent point of view are presented in [Lin04].

2.1 Symmetric spaces

We �x once for all a semisimple real linear Lie group G. In this section we present some geometric
properties of the symmetric space associated to G which we will use.

2.1.1 Structure of semisimple Lie groups

Let K be a maximal compact subgroup of G. We denote by X = G/K the associated symmetric
riemannian space.

The Lie algebra of G (respectively K) is denoted by g (respectively k). Let g = k⊕p be a Cartan
decomposition of g.

The maximal abelian Lie algebra of p is called a Cartan subspace and is denoted by a. Geomet-
rically, a corresponds via the exponential map to an isometric copy of a Euclidean space in X of
maximal dimension. Any isometric, totally geodesic copy of Rn is called a �at of X of dimension
n. The dimension of a is called the rank of G. By de�nition, when this rank is at least 2, there
exists �ats of dimension greater than 2 along which the sectional curvatures vanishes.

The space g then decomposes into a direct sum g = ⊕α∈Σgα, where the sum is taken over a set
of linear forms on a, called roots, for which

gα := {u ∈ g | [a, u] = α(a)u, ∀a ∈ a},

is non trivial.
The kernels of non zero roots cut the vector space a into connected components, called Weyl

chambers. We choose one, which we call the positive Weyl chamber and denote by a+.

2.1.2 Cartan projection

The main di�erence between the hyperbolic setting and higher rank symmetric spaces is the exis-
tence of such �ats, for which the sectional curvature is zero. Directions in �ats provide invariants
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for the dynamics of the group G and hence for the geodesic �ow on X. We now present how we
can take this into account.

The Cartan projection, which generalizes the polar decomposition for any symmetric space, is
de�ned as follows.

Theorem 2.1. For every g ∈ G there exists k1, k2 ∈ K and a unique κ(g) ∈ a+ such that

g = k1 exp(κ(g))k2.

The element κ(g) is called the Cartan projection of g.

We refer the reader to [Hel78], Chap. VI. for a proof. The Killing form on G, which induces
the metric on X = G/K and in particular gives a scalar product on p which �nally restrict to a.
The norm of κ(g) for this scalar product is by construction the distance d(g[K], [K]) in X. For all
x, y ∈ X let gx, gy ∈ G be such that x = gxK and y = gyK. Then the distance d(x, y) in X is given
by ‖κ(gy

−1gx)‖.
In order to take into account the direction inside a+, we introduce a a+-valued �distance� de�ned

by:
a(x, y) := κ(gy

−1gx).

The following lemma will be used in the sequel as one commonly uses the triangle inequality in
negative curvature:

Lemma 2.2. [Ben97, Lemme 4.6] For all compact subset L of G, there exists a positive real number
M > 0 such that for all `1, `2 ∈ L, and for all x, y ∈ X:

‖a(`1x, `2y)− a(x, y)‖ ≤M.

2.1.3 Furstenberg boundary

When the rank of X is at least 2, the isometry group of X does not act transitively on the unitary
tangent bundle. This di�erence with strictly negative curvature spaces makes the use of the geo-
metric boundary (ie. equivalence classes of asymptotic rays) less relevant. One will instead consider
classes of asymptotic Weyl chambers, which we introduce now.

A geometric Weyl chamber is by de�nition a map w : a+ → X of the form

w(a) = g · exp(a),

where g is an element of G. Two geometric Weyl chambers w1, w2 are said asymptotic if

sup
a∈a

d(w1(a), w2(a)) < +∞.

We denote by F the space of classes of asymptotic geometric Weyl chambers. By de�nition, the
group G acts transitively on F . The stabilizer of the classes corresponding to g = Id is denoted by
P . One has therefore the identi�cation F ' G/P . The space F is called the Furstenberg boundary
of X.

In higher rank symmetric spaces, geometric Weyl chambers play a role analogous to geodesic
rays in rank one. For a geometric Weyl chamber w, call w(0) its origin. For any class of asymptotic
geometric Weyl chambers, we can �nd a representative with origin o = [K] ∈ X. WritingM for the
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stabilizer in K of an element of F , it follows from the Iwasawa decomposition (cf [Hel78], Chap.
VI.) that

F = G/P ' K/M.

In particular, the Furstenberg boundary F is compact.
Let w be a geometric Weyl chamber and denote by w(+∞) its equivalence class. We extend as

follows the notion of shadow to this setting:

De�nition 2.3. For all x, y ∈ X and all r > 0, the shadow of B(y, r) seen from x is de�ned by

S(x, y, r) = {η ∈ F | ∃w : a+ → X,w(+∞) = η, w(0) = x, w(a+) ∩B(y, r) 6= ∅}.

The de�nition is similar as the strictly negatively curved case, where one just replaces geodesic
rays by geometric Weyl chambers.

Let ξ ∈ F and Gξ the stabilizer of ξ in G. There is a unique open dense orbit of Gξ in F . It
is denoted by V (ξ). These are the points which are visible from ξ. It is equal to the set of points
η ∈ F such that there exists a �at f : a → X, with f(u) = g. exp(u).K for some g ∈ G, that
satis�es : [f|a+ ] = η and [f|−a+ ] = ξ. The complementary set of V (ξ) in F is denoted by L(ξ). It
follows from Section 5 of [Qui02]1 that L(ξ) is a Zariski closed subset of F .

We will need the following result, showing that τ 7→ L(τ) is continuous in the Hausdor� topology.
Recall that F identi�ed with K/M and we endow F with a K-invariant Riemannian metric.

Lemma 2.4. [DK19, Lemma 6.6] For every ε > 0, there exists δ > 0 such that for τ ∈ F and for
all τ ′ ∈ B(τ, δ) :

B(L(τ ′), ε) ⊂ B(L(τ), 2ε).

Where we denoted by B(X, ε) the ε neighborhood of a subset X ∈ F .

2.1.4 Busemann functions

The notion of Busemann function extends accordingly to the a+-valued distance function a(·, ·)
de�ned in section 2.1.2. Let x, y ∈ X, and η ∈ F and take ξ : R → X a geodesic ray at bounded
distance of η. We de�ne the a-valued Busemann function by:

βη(x, y) := lim
t→+∞

a(x, ξ(t))− a(y, ξ(t)).

The fact that this limit exists and is independent of the choice of ξ can be founded in Section 6 of
[Qui02], see also [BQ16, 5.34].

We recall two geometric inequalities concerning the Busemann functions. We refer to [Thi07]
which shows precisely the statements which we use in the sequel. Aanalogous statement are shown
for instance in Section 6 of [Qui02].

Lemma 2.5. [Thi07, Proposition 8.66] There exists a constant c > 0 such that for all x, y ∈ X
and all ξ ∈ S(x, y, r) :

‖βξ(x, y)− a(x, y)‖ ≤ cr.

Lemma 2.6. [Thi07, Proposition 8.69] There exists a constant c > 0 such that for all x, y ∈ X
and all ξ ∈ F :

‖βξ(x, y)‖ ≤ c‖a(x, y)‖.
1In this reference, L(ξ) is denoted by Q−θ
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2.2 Dynamic of discrete groups

We now present general properties of the action of a discrete subgroup Γ < G on X. The �rst
paragraph presents the notions of limit cone of Γ in the Weyl chamber a+ and limit set of Γ in
the Furstenberg boundary F . We detail in the second paragraph di�erent notions of growths and
critical exponents. We conclude this section by presenting conformal densities in higher rank, with
a perspective towards the so-called shadow lemma.

We �x for the whole section a semisimple, real linear, connected Lie group G with �nite center,
a choice of Cartan subspace a and Weyl chamber a+, and a discrete Zariski dense subgroup Γ ⊂ G.

2.2.1 Limit set and limit cone

The study of how the orbits of the discrete group Γ �accumulate at in�nity� can be splitted in two
parts: its accumulation directions the Cartan subspace of p, which form its limit cone, and the
accumulation points of the geometric Weyl chamber on the Furstenberg boundary which form its
limits set.

De�nition 2.7. Let ξ ∈ F be �xed. We call limit set of Γ the set ΛΓ of accumulation points of
Γ · ξ ∈ F .

The following result is a crucial chararcterization of the limit set.

Theorem 2.8. [Ben97] If Γ is Zariski dense, the limit set ΛΓ is a Zariski dense subset of F = G/P .
It is the unique minimal subset of F for the action of Γ. In particular is is independent of the orbit
base point.

For u ∈ a, we denote by R+u ⊂ a the half-line generated by u. The following set describes the
asymptotic directions in a+ where Γ grows.

De�nition 2.9. The limit cone is de�ned by:

C(Γ) :=
⋂
n≥0

⋃
γ∈Γ, ‖κ(γ)‖≥n

R+κ(γ) ⊂ a+.

This limit cone was introduced by Benoist in [Ben97], where the following striking fact was
shown.

Theorem 2.10 (Benoist, [Ben97]). If Γ is Zariski dense, the limit cone C(Γ) is a closed convex
subset of a with non-empty interior.

2.2.2 Critical exponents

We are interested in understanding the growth of the orbits Γ · o inside X. We saw in Section 2.1.2
that in higher rank it is interesting to look at an a+-valued �distance� function taking the direction
in the �ats into account. In order to study the growth of Γ · o inside X in di�erent �at directions,
we use linear forms on a which are positive on the limit cone.

Recall that we write C(Γ) ⊂ a for the limit cone of Γ. Let a∗ = L(a,R) be the set of linear
forms on a and denote by C(Γ)∗+ ⊂ a∗ be the set of linear forms which are positive on the limit
cone:

C(Γ)∗+ := {ϕ : a→ R | ∀x ∈ C(Γ)\{0}, ϕ(x) > 0}.
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De�nition 2.11. For all ϕ ∈ a∗ we de�ne the critical exponent according to ϕ by :

δϕ(Γ) := lim sup
R→∞

1

R
log Card{γ ∈ Γ |ϕ(a(γ · o, o)) ≤ R}.

For every ϕ ∈ C(Γ)∗+, the critical exponent δϕ(Γ) is independent of the chosen origin (cf Lemma
2.2) and is �nite. Indeed, since ϕ is positive on C(Γ) and linear, there exists c > 0 such that for all
x ∈ C(Γ):

ϕ(x) > c‖x‖.

Therefore,

δϕ(Γ) ≤ lim sup
R→∞

1

R
log Card{γ ∈ Γ | d(go, o) ≤ R/c},

which is �nite since Γ is discrete.
Conversely, if the kernel of ϕ ∈ a∗ intersects the interior of C(Γ), the critical exponent δϕ(Γ) is

in�nite. We will not study in this paper the case of linear form ϕ ∈ a∗ which are non-negative on
C(Γ) but vanishes on ∂C(Γ).

2.2.3 ϕ-Conformal densities

De�nition 2.12. For all δ > 0, a ϕ-conformal density of dimension δ is a family µ = (µx)x∈X of
mutually absolutely continuous locally �nite, borelian measures on F , such that for all x, y ∈ X,

dµx
dµy

(η) = e−δϕ(βη(x,y)).

Such conformal density µ is Γ-equivariant if, for all γ ∈ Γ and all x ∈ X,

γ∗µx = µγx.

We denote by Mϕ(δ,Γ) the space of Γ-equivariant, ϕ-conformal measure of dimension δ.

Note that Mϕ(δ,Γ) is a cone: for all µ ∈ Mϕ(δ,Γ) and all λ > 0, we obviously have λµ ∈
Mϕ(δ,Γ). The following result is the starting point of our approach.

Theorem 2.13 ([Qui02], Section 8). Let Γ < G be a Zariski dense subgroup. Then for all ϕ ∈
C(Γ)∗+ there exists a Γ equivariant, ϕ-conformal density of dimension δϕ(Γ), which is supported on
the limit set ΛΓ ⊂ F .

These densities have been constructed in [Qui02] via an adaptation of the usual Patterson-
Sullivan construction to higher rank symmetric space. A similar construction also appears in
[Lin04]. The work of Dey-Kapovich [DK19] proves their uniqueness (up to scaling) in the case of
Anosov subgroup.

In our study of limit cones with respect to taking normal subgroup we will use the following
observation, whose analogue in negative curvature is due to Roblin in [Rob05].

Lemma 2.14. Let δ > 0 and µ ∈ Mϕ(δ,Γ). Let g ∈ G be an isometry which normalizes Γ. Then

the family µg = (µgx)x∈X de�ned for all x ∈ X by µgx :=
1

||µgo||
g−1
∗ µgx is also in Mϕ(δ,Γ) and

satis�es ||µgo|| = 1.
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Proof. By construction, ||µgo|| = 1. For all z, z′ ∈ X, η ∈ F , we have

dµgz
dµgz′

(η) =
dµgz
dµgz′

(gη) = e−δϕ(βgη(gz,gz′)) = e−δϕ(βη(z,z′)).

Therefore the family νg is a ϕ-conformal density of dimension δ.

Moreover, for all γ ∈ Γ, we have

γ∗µ
g
z =

1

‖µgo‖
γ∗g
−1
∗ µgz =

1

‖µgo‖
g−1
∗
(
gγg−1

)
∗ µgz = g−1

∗ µ(gγg−1)gz = µgγz.

Therefore, µg ∈Mϕ(δ,Γ).

The crucial feature linking the measurable properties of the ϕ-conformal densities with the
dynamical action of Γ is the so-called Shadow lemma, which is originally due to Sullivan in [Sul79]
for hyperbolic manifolds. The same proof extends to CAT(−1) metric spaces, see Lemma 1.3 of
[Rob03]. In the higher rank setting, several variant of the Shadow Lemma are known, depending
on the boundary and the densities which are considered. We will use the following version, which
�rst appeared as Lemme 8.2 of [Qui02] and Theorem 4.7 of [Lin04].

Theorem 2.15 (Shadow Lemma, [Qui02, DK19] ). Let µ be a Γ-equivariant, ϕ-conformal density
of dimension δ > 0. For all x ∈ X there exists R0 > 0 and C > 0 such that for all r > R0, and for
all γ ∈ Γ.

1

C
e−δϕϕ(a(x,γx)) ≤ µx(S(x, γx, r)) ≤ Ce−δϕϕ(a(x,γx)).

We will now brie�y present a proof of this Shadow Lemma, since we will need most of its
ingredients in the sequel. We follow the same strategy as in Lemma 8.2 of [Qui02] eventhough the
notations have evolved in the past 20 years. We rely on two key lemmas which we quote from
[DK19]. Equivalent statements are shown in Section 5 of [Qui02].

We endow F ' K/M with aK-invariant Riemmanian metric. We have seen in 2.3 the de�nitions
of shadows S(x, y, r), visible sets V (ξ) and its complement L(ξ). Our terminology and notations
are close to [DK19], where we can �nd the two following lemmas. Recall that we have �xed a
K-invariant Riemannian metric on F and that Γ is supposed to be Zariski dense in G. The point
o = [K] ∈ X = G/K provides us a �xed origin.

Lemma 2.16. [DK19, Lemma 6.7] For all x ∈ X, there exists q < µx(ΛΓ) and ε such that for all
τ ∈ ΛΓ, and all Borel subsets B of F contained in the ε neighborhood of L(τ), one has : µx(B) ≤ q.

Lemma 2.17. [DK19, Lemma 6.8] For every ε > 0, there exists r1 > 0 such that for all r ≥ r1

and all x ∈ X, the complement of S(x, o, r) in F is contained in a ε-neighborhood of L(τ) for some
τ in S(o, x, 0).

Proof of Theorem 2.15. We �x x ∈ X. Let us remark �rst that since µ is δ-conformal, for all y ∈ X
and all r > 0 we have

µx(S(x, y, r)) =

∫
S(x,y,r)

e−δϕ(βξ(x,y))dµy(ξ) (1)
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By Lemma 2.5, there exists c > 0 such that for all ξ ∈ S(x, y, r), one has |ϕ(βξ(x, y))−ϕ(a(x, y))| ≤
cr. This implies that

µx(S(x, y, r)) ≤ eδcrµy(S(x, y, r))e−δϕ(a(x,y)) ≤ C||µy||e−δϕ(a(x,y)). (2)

Moreover since µ is Γ-invariant, we have for all γ ∈ Γ ||µγx|| = ||µx||. This implies the upper bound
given by the Shadow Lemma.

Let us show the lower bound.

µx(S(x, γx, r)) = µγ−1x(S(γ−1x, x, r))

=

∫
S(γ−1x,x,r)

e−δϕ(βξ(γ
−1x,x))dµx

≥ 1

ecr
µx(S(γ−1x, x, r))e−δϕ(a(x,γx)),

the last inequality coming from Lemma 2.5. Now using Lemmas 2.16 and 2.17, we get the lower
bound µx(S(γ−1x, x, r)) ≥ 1

C , which �nishes the proof.

Note that the Shadow Lemma implies in particular that if µ ∈Mϕ(δ,Γ), then there exists C > 0
such that for all γ ∈ Γ,

‖µγo‖ ≥
1

C
e−δϕ(a(o,γo)). (3)

This standard version of the Shadow Lemma is only valid on orbits of the discrete group Γ.
The proofs of our main result rely on an extension of this Shadow Lemma, called Shadow principle,
which holds on much larger sets: the orbits of the full normalizer of Γ in G. This was �rst proven
in negative curvature by Roblin in [Rob05, Théorème 1.1.1]. We will extend it to higher rank in
the next section.

3 Normal subgroup and asymptotic invariants

In this section we prove the �rst main theorems of the paper. In Section 3.1, we prove our main tool,
given in Theorem 3.2, which is the extension of the Shadow Lemma to the orbits of the normalizer
of any Zariski dense discrete group. As a corollary we get that the limit cone of a Zariski dense
group is the same as the limit cone of any of its Zariski dense normal subgroups. We eventually
prove in Section 3.2 the inequality between critical exponents announced in Theorem 1.2 .

3.1 Shadow principle and limit cones

The following extension of the Shadow Lemma was called shadow principle by Roblin in [Rob05].

De�nition 3.1. Let Γ < G be a Zariski dense discrete subgroup, ϕ ∈ C(Γ)∗+ and δ > 0. We say
that a set Y ⊂ X satis�es the shadow principle for Mϕ(δ,Γ). if there exists R,C > 0 such that for
all µ ∈Mϕ(δ,Γ), all r ≥ R and all x, y ∈ Y ,

1

C
‖µy‖e−δϕ(a(x,y)) ≤ µx(S(x, y, r)) ≤ C‖µy‖e−δ(Γ)ϕ(a(x,y)).
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It follows from (2) that the upper bound in the shadow principle is a mere consequence of the
ϕ-conformality of dimension δ, valid for all Y ⊂ X. All the interest of this property relies hence
in the lower bound. Note also that the shadow principle is invariant by scaling of the conformal
density. It is hence enough to check it on conformal densities such that ||µo|| = 1, where o ∈ X
is a �xed origin. The end of this paragraph is devoted to the proof of the following result, which
extends Theorem 1.1.1 of [Rob05] to higher rank symmetric spaces.

Theorem 3.2. Let G be a real linear, semisimple, connected, Lie group with �nite center and Γ be
a Zariski dense subgroup of G. Let N(Γ) be the normalizer of Γ in G.

For all ϕ ∈ C(Γ)∗+, all δ > 0 and all x ∈ X, the orbit Y = N(Γ) ·x satis�es the shadow principle
for Mϕ(δ,Γ).2

Let us �rst reduce the proof to a simpler statement, where one of the base points is �xed.

Lemma 3.3. Let G be a real linear, semisimple, connected, Lie group with �nite center and Γ be
a Zariski dense subgroup of G, with normalizer N(Γ). Let us �x ϕ ∈ C(Γ)∗+, δ > 0 and o ∈ X.

The orbit Y = N(Γ) · o satis�es the shadow principle for Mϕ(δ,Γ) if and only if there exists
R,C > 0 such that for all y ∈ Y and all µ ∈Mϕ(δ,Γ),

µy(S(o, y,R)) ≥ 1

C
||µy||. (4)

Proof. We �x o ∈ X and denote by Y = N(Γ) · o the orbit of o under the normalizer of Γ in G.
As already mentionned, we only have to deal with the lower bound of the shadow principle, since
the upper bound is satis�ed for all Y ⊂ X. Note also that, by Equation (1) and Lemma 2.5, if Y
satis�es the shadow principle then (4) is satis�ed for all y ∈ Y . Therefore, we are only left with
showing that, if for all µ ∈ Mϕ(δ,Γ) and all y ∈ Y , the inequality (4) is satis�ed, then Y satis�es
the shadow principle.

Assume therefore that (4) is satis�ed for all ν ∈ Mϕ(δ,Γ) and all y ∈ Y . Let µ ∈ Mϕ(δ,Γ) be
�xed. Let x, y ∈ Y , and g ∈ N such that go = x. We have seen in Lemma 2.14 that the family µg

de�ned for all z ∈ X by µgz :=
1

‖µgo‖
g−1
∗ µgz is also in Mϕ(δ,Γ). Moreover, setting z := g−1y, we

have:

µgz(S(o, z,R)) =
1

‖µgo‖
µgz(gS(o, z,R))

=
1

‖µx‖
µy(S(x, y,R)).

Therefore, since by (4) we have

µgz(S(o, z,R)) ≥ 1

C
‖µgz‖ =

1

C

‖µy‖
‖µx‖

,

we get

µy(S(x, y,R)) ≥ 1

C
‖µy‖,

which is equivalent to the lower bound in the shadow principle by Equation (1) and Lemma 2.5.

2The result is true for all δ > 0. However, it follows from [Qui02] that when δ < δϕ(Γ) then Mϕ(δ,Γ) = ∅.
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Proof of Theorem 3.2. By Lemma 3.3, it is enough to show that there exists C,R > 0 such that
for all µ ∈ Mϕ(δ,Γ) with ||µo|| = 1 and all y ∈ Y = N(Γ) · o, the lower bound (4) is satis�ed. We
follow the strategy developped in [Rob05].

Suppose by contradiction that it is not the case. There exists a sequence (Ri)i∈N with Ri →∞,
a sequence (gi) ∈ N(Γ)N and a sequence (µi)i∈N ∈Mϕ(δ,Γ)N with ||µio|| = 1 such that

lim
i→+∞

1

‖µigio‖
µigio(S(o, gio,Ri)) = 0. (5)

Denote by νi = (νix)x∈X the family of measures de�ned for all x ∈ X by νix :=
1

‖µigio‖
gi
−1
∗ µigix. By

Lemma 2.14, it is a ϕ-conformal density of dimension δ and satis�es ||νio|| = 1.
Since F is compact and (νio)i∈N is a sequence of probabilities on F , we can assume up to taking a

subsequence that it converges weakly to some probability measure ν∞o . Then since νi is ϕ-conformal
of dimension δ, for all x ∈ X the sequence of �nite measures (νix)i∈N also converges in the weak
topology to some �nite measure ν∞x and the family ν∞ = (ν∞x )x∈X is in Mϕ(δ,Γ).

Lemma 3.4. Up to extracting a subsequence, there exists τ ∈ F such that for all ε > 0 there exists
i0 > 0 such that for all i ≥ i0:

F \ S(g−1
i o, o,Ri) ⊂ B(L(τ), ε).

Proof. We �rst apply Lemma 2.17 : for all ε > 0 there exists r > 0 such that for all R > r for all
y ∈ X :

F \ S(y, o,R) ⊂ B(L(τy), ε),

for some τy ∈ S(o, {y}). Taking y = g−1
i o, gives a sequence τi ∈ F such that F \ S(g−1

i o, o,R) ⊂
B(L(τi), ε). By compactness, we can suppose that τi converges to τ ∈ F .

We now apply Lemma 2.4 : for i� 1 su�ciently large,

B(L(τi), ε) ⊂ B(L(τ), 2ε).

Therefore, for i� 1 su�ciently large, we get Ri > r and

F \ S(o, g−1
i o,Ri) ⊂ B(L(τ), 2ε),

which concludes the proof of Lemma 3.4.

Let V be an open subset of F such that V ∩L(τ) = ∅. By Lemma 3.4, there exists i0 such that
for all i ≥ i0 we have

ν∞o (V ) ≤ lim inf
i→∞

νio(S(g−1
i o, o,Ri))

≤ lim inf
i→∞

1

‖µio‖
µigio(S(o, gio,Ri))

Using equation (5), we get ν∞o (V ) = 0. Hence ν∞o is supported on L(τ). In particular, by
Γ-invariance of the family ν∞, the set L(τ) contains a closed set which is Γ invariant. Therefore
ΛΓ ⊂ L(τ) which is absurd by Theorem 2.8 since Γ is Zariski dense and L(τ) is Zariski closed.
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We now prove the equality of the limit cone for Zariski dense normal subgroups.

Corollary 3.5. Let Γ be a discrete subgroup of G and Γ′ / Γ be a normal subgroup of Γ. Suppose
Γ′ is Zariski dense, then the limit cone of Γ′ coincides with the limit cone of Γ.

Proof. If it were not the case, since both limit cones are closed, it means that there exists an open
cone U ⊂ C(Γ)\C(Γ′). This implies that there is a linear form ϕ in C(Γ′)∗+ whose kernel intersects
U .

We have seen in Section 2.2.3 that since Γ′ is Zariski dense, there exists µ = (µx)x∈X ∈
Mϕ(δϕ(Γ′),Γ′). Since we supposed ker(ϕ) intersects U which is contained in the interior of C(Γ),
there exists a sequence of elements γn of Γ such that ϕ(a(x, γnx))→ −∞. Nevertheless, by Theorem
3.2, the orbit Γ · x satis�es the shadow principle for Mϕ(δ,Γ′). Therefore we also have

µx(ΛΓ′) ≥ µx(S(x, γnx, r)) ≥
1

C
e−δϕ(Γ′)ϕ(a(x,γnx)).

Since the right hand side goes to +∞ with n, we get a contradiction.

Note that, in the proof, we use the fact that Γ′ is Zariski dense to ensure the existence of ϕ-
conformal densities. This prevent from �counter-examples� such as Γ′ = Γ` × {Id} ⊂ Γ` × Γr = Γ
for which, as mentionned in the introduction, Corollary 3.5 is trivially false.

We now prove a necessary and su�cient condition on Γ for its normal subgroups to be Zariski
dense.

De�nition 3.6. Let G be a semisimple Lie group. A subgroup Γ ⊂ G is said normally irreducible
if for all normal subgroups N ⊂ G, if N 6= G then:

N ∩ Γ = {Id}.

The proof of the following result has been suggested to us by Y. Benoist.

Proposition 3.7. Let G be a real linear semisimple Lie group. Let Γ ⊂ G be a Zariski dense
subgroup.

All non trivial normal subgroups Γ′ /Γ are Zariski dense if and only if Γ is normally irreducible.

Proof. Let H := Γ′
Z
be the Zariski closure of Γ′. It is an algebraic set, therefore the condition

ghg−1 ∈ H is algebraic. This condition is satis�ed for all (h, g) ∈ Γ×Γ′, hence for all (h, g) ∈ H×G.
In other words, H is normal in G.

Suppose that H 6= G, then by irreducibility H ∩Γ = {Id} which its absurd since Γ′ ⊂ (H ∩Γ).

Suppose now that Γ is not normally irreducible. Decompose G into the Cartesian product of its
simple factors G = Π`

i=1Gi remark that ` > 1. Moreover by simplicity of the Gi, if N 6= G, N is
also a Cartesian product and in particular is not Zariski dense. By assumption, there exists N 6= G
a normal subgroup of G, such that: N ∩ Γ 6= {Id} / Γ. This is a normal subgroup of Γ which is not
Zariski dense.
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3.2 Normal subgroup and critical exponent

Let Γ be a discrete subgroup ofG and Γ′/Γ be a Zariski dense normal subgroup of Γ. Let ϕ ∈ C(Γ′)∗+
be �xed. We now �nish the proof of Theorem 1.6 by showing the lower bound inequality for all the
critical exponents δϕ(Γ) and δϕ(Γ′).

De�nition 3.8. A set Y ⊂ X is said to have bounded geometry if for all R > 0 there exists
AR > 0 such that for all y ∈ Y ,

Card(Y ∩B(y,R)) ≤ AR.

In particular any orbit of a discrete group of isometry of X has bounded geometry.
The following proposition appears in Roblin [Rob05, Lemma 1.2.4] for conformal densities in

CAT(−1) space. We extend it to higher symmetric spaces.

Proposition 3.9. Let δ > 0 and Y ⊂ X be a set with bounded geometry which satis�es the shadow
principle for Mϕ(δ,Γ).

Then for all µ = (µx)x∈X ∈Mϕ(δ,Γ), the critical exponent of the series

s 7→
∑
y∈Y
‖µy‖e−sϕ(a(o,y))

is at most δ.

Proof of Proposition 3.9. Let r > 1 be the real rank of G and (εi)i=1,...,r be a basis of a
∗, such that

ϕ =
∑
i biεi with bi > 0 for all i ∈ {1, . . . , r}.

For all (n1, ..., nr) ∈ Nr, we de�ne

Rn1,...,nr =

r⋂
i=1

{y ∈ X | εi(α(o, y)) ∈ [ni, ni + 1)}.

Our proof rely on the following uniform multiplicity bound for the covering of Y by the shadows
{S(o, y, r0) ; y ∈ Rn1,...,nr}.

Lemma 3.10. Let Y be a set with bounded geometry. For all R0 > 0, there exists BR0
> 0 such

that for all (n1, ..., nr) ∈ Nr, the covering
⋃

y∈Y ∩Rn1,...,nr

S(o, y,R0) has multiplicity bounded by BR0
.

Proof. Let us �x r > 0, (n1, ..., nr) ∈ Nr. For all y1 ∈ Y , we write

cov(y1) = #{y2 ∈ Rn1,...,nr ; S(o, y1, R0) ∩ S(o, y2, R0) 6= ∅}.

We have to show that cov(y1) is bounded by a constant depending only on R0. Let us �x y1 ∈ Y ,
and let y2 ∈ Y and η ∈ F be such that

η ∈ S(o, y1, R0) ∩ S(o, y1, R0).

We represent η by a geometric Weyl chamber w : a+ → X. By de�nition of shadows, there exists
u1, u2 ∈ a+ such that {

w(u1) ∈ B(y1, R0)
w(u2) ∈ B(y2, R0)

(6)
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Therefore, using Lemma 2.2, there exists C1 > 0 depending only on G such that:

‖a(w(u1), w(u2))− a(y1, y2)‖ ≤ C1R0. (7)

Equation (6) also implies that there exists C2 > 0 depending on G such that:{
‖a(w(u1), o)− a(y1, o)‖ ≤ C2R0

‖a(w(u2), o)− a(y2, o)‖ ≤ C2R0
(8)

Since u1, u2 ∈ a the vectors a(w(u1), o)−a(w(u2), o) and a(w(u1), w(u2)) coincide up to the action of
an element of the Weyl group. To simplify notations, we will suppose that a(w(u1), o)−a(w(u2), o) =
a(w(u1), w(u2)), adaptation to the general case is immediate using Lemma 2.2. We have hence

‖a(w(u1), w(u2))− a(y1, o) + a(y2, o)‖ ≤ 2C2R0.

Moreover, since y1, y2 ∈ Rn1,...n2
, we get for all i ∈ {1, . . . , r}:

εi (a(w(u1), w(u2))) ≤ 2C2R0 + 2.

Since (εi)i∈{1,...,r} forms a basis, there exists hence C3 > 0 depending only on R0 and G, such that:

‖a(w(u1), w(u2))‖ ≤ C3.

Therefore, using Equation (7) we get

‖a(y1, y2)‖ ≤ ‖a(w(u1), w(u2))‖+ C1R0 ≤ C4

for a constant C4 > 0 depending only on r0 and G. Since Y has bounded geometry, this implies
that

cov(y1) ≤ AC4
,

where AC4 is the maximum number of elements of Y contained in a ball of radius C4 and only
depends on R0.

We now resume the proof of Proposition 3.9. Let us �x µ ∈ Mϕ(δ,Γ). Since Y satis�es the
shadow principle for Mϕ(δ,Γ), there exists C,R0 such that for all y ∈ Y , we have µy(S(o, y,R0)) ≥
C||µy||. Moreover, it follows from Lemma 3.10 that there exists BR0

> 0 such that the covering⋃
y∈Rn1,...,nr

S(o, y, r0) has multiplicity bounded by BR0
.

This implies that for all (n1, ..., nr) ∈ Nr, there exists K > 0 such that

‖µo‖ ≥
1

BR0

∑
y∈Rn1,...,nr

µo(S(o, y, r0))

≥ K ′e−δ
∑
i(bini)

∑
y∈Rn1,...,nr

‖µy‖.

We get therefore∑
y∈Y
‖µy‖e−sϕ(a(o,y)) =

∑
n1,...nr

∑
y∈Rn1,...nr

‖µy‖e−sϕ(a(o,y))

≤ K ′−1‖µo‖
∑

n1,...nr

e−s
∑
i(bini)eδ

∑
i(bini).

Eventually, the last series converges for all s > δ.
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A direct corollary of Proposition 3.9 is the following result, originally due to Roblin [Rob05,
Theorem 2.2.1] for groups acting on CAT(−1) spaces.

Corollary 3.11. Let Γ be a discrete subgroup of G and Γ′ a Zariski dense normal subgroup of Γ.
For all ϕ ∈ C(Γ′)∗+ the critical exponents according to ϕ satisfy:

1

2
δϕ(Γ) ≤ δϕ(Γ′).

Proof. Since Γ′ is Zariski dense, by Theorem 2.13 there exists µ ∈Mϕ(δϕ(Γ′),Γ′). By Theorem 3.2,
we know that Γ · o satis�es the shadow principle for Mϕ(δϕ(Γ′),Γ′). Therefore, for all s > δϕ(Γ′)
Proposition 3.9 implies ∑

γ∈Γ

‖µγo‖e−sϕ(a(o,γo)) < +∞.

Moreover by (3), there exists C > 0 such that for all γ ∈ Γ, we have ‖µγo‖ ≥
||µo||
C

e−δϕ(Γ′)ϕ(a(o,γo)).

We get hence that for all s > δϕ(Γ′),∑
γ∈Γ

e−(s+δϕ(Γ′))ϕ(a(o,γo)) ≤ C

||µo||
∑
γ∈Γ

‖µγo‖e−sϕ(a(o,γo)) < +∞.

Therefore 2δϕ(Γ′) ≥ δϕ(Γ).

4 Amenability and critical exponent

4.1 Amenable discrete groups

Given a discrete set Y , we write `∞(Y ) for the set of bounded maps from Y to R.

De�nition 4.1. A discrete group G is amenable if there exists a positive linear map Θ : `∞(G)→ R,
such that Θ(1G) = 1 and which is right invariant, i.e. for all g ∈ G and all f ∈ `∞(G), we have

Θ(a 7→ f(ag)) = Θ(f).

Such map Θ is called a right-invariant mean on G.

If Γ is a discrete group, a normal subgroup Γ′ /Γ is co-amenable in Γ if the quotient group Γ′\Γ
is amenable.

We refer for instance the reader [Jus15] for various characterizations and examples of amenable
discrete groups. Let us present an important characterization of amenability, which illustrates how
this property is related to the growth of the group.

Let G be a discrete group. For all �nite set S ⊂ G, and all subset A ⊂ G, we de�ne the
S-boundary of A to be

∂SA = {g ∈ G\A ; ∃(g′, s) ∈ A× S, g = sg′}.
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The S-isoperimetric constant of G is then given by

hS(G) = inf
A⊂G �nite

#∂SA

#A
.

The following characterization of amenability has been shown by Fölner in [Fol55].

Theorem 4.2 (Fölner [Fol55]). A discrete group G is amenable if and only if for all �nite S ⊂ G,
the isoperimetric constant hS(G) is 0.

This easily implies that all �nitely generated groups with sub-exponential growth (e.g. infra-
nilpotent discrete groups) are amenable, whereas any free group with at least 2 generators is non-
amenable.

4.2 Averaging conformal density

Let us �x a discrete Zariski dense subgroup Γ of G, and a Zariski dense normal subgroup Γ′ / Γ.
By the result of last section, we know that the limit cones of Γ and Γ′ coincide. Let ϕ ∈ C(Γ)∗+
and δ > 0 be �xed. We write

‖ϕ‖ = sup
v∈a\{0}

|ϕ(v)|
‖v‖

< +∞.

We assume from now on that Γ′ is co-amenable in Γ. Let Θ be a right-invariant mean on Γ′\Γ.
Let µ ∈Mϕ(δ,Γ′) with ||µo|| = 1 be �xed. Recall that for all u ∈ Γ, we write µu for the conformal
density de�ned for all x ∈ X by

µux =
1

‖µuo‖
(u−1)∗µux.

By Lemma 2.14, we still have µu ∈ Mϕ(δ,Γ′) and ‖µuo‖ = 1. Therefore for all x ∈ X and all
continuous maps f : F → R, the map

Lx,f :

{
Γ → R
u 7→

∫
F f(ξ)dµux(ξ)

is Γ′-invariant. By Lemma 2.5, there exists C > 0 such that Lx,f is bounded from above by
Ceδ‖ϕ‖d(o,x) sup |f |. Therefore, Lx,f induces a bounded map on Γ′\Γ and we can de�ne the following
application from C(F ,R) to R by

µΘ
x : f 7→ Θ

(
u 7→ Lx,f (u) =

1

||µuo||

∫
F
f(u−1ξ)dµux(ξ)

)
. (9)

We get the following.

Lemma 4.3. The family µΘ = (µΘ
x )x∈X induces a Γ′-invariant ϕ-conformal density of dimension

δ, still written µΘ, which we call the Θ-average of µ. Moreover, it satis�es for all γ ∈ Γ,

||µΘ
γo|| · ||µΘ

γ−1o|| ≥ 1. (10)

Proof. It follows from (9) that for all x ∈ X, µΘ
x is a positive linear map from C(F ,R) to R, with

νx(1F ) ≤ eδd(o,x). Therefore it induces a unique �nite Borel measure on F , which we still denote
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by µΘ
x . Moreover, it immediately follows from Lemma 2.14 that the family µΘ = (µΘ

x )x∈X belongs
to Mϕ(δ,Γ).

Eventually, let us �x γ ∈ Γ. Since Θ is invariant under right multiplication by elements of Γ,
we have :

‖µΘ
γo‖ = Θ

(
u 7→ ‖µuγo‖

‖µuo‖

)
= Θ

(
u 7→ ‖µuo‖

‖µuγ−1o‖

)
≥

(
Θ

(
u 7→

‖µuγ−1o‖
‖µuo‖

))−1

= ‖µΘ
γo‖−1

where the last inequality follows from the Jensen inequality applied to t 7→ t−1.

4.3 Proof of Theorems 1.6

Let us �x a discrete Zariski dense subgroup Γ of G, and a Zariski dense normal subgroup Γ′ / Γ.
Assume moreover that Γ′ is co-amenable in Γ, and let Θ be a right-invariant mean on Γ′\Γ. Let
ϕ ∈ C(Γ′)∗+ be �xed.

We have seen in Section 2.2.3 that there exists µ ∈Mϕ(δϕ(Γ′),Γ′). Let µΘ be the Θ-average of
µ given by Lemma 4.3. We de�ne

Γ+ =
{
γ ∈ Γ ; ||µΘ

γo|| ≥ 1
}
.

It follows from (10) that for all γ ∈ Γ, we have γ ∈ Γ+ or γ−1 ∈ Γ+. Therefore, for all s ∈ R,∑
γ∈Γ

e−sϕ(a(o,γo)) ≤ 2
∑
γ∈Γ+

e−sϕ(a(o,γo)) ≤
∑
γ∈Γ+

||µΘ
γo||e−sϕ(a(o,γo)).

Moreover, by Proposition 3.9, the critical exponent of s 7→
∑
γ∈Γ+

||µΘ
γo||e−sϕ(a(o,γo)) is at most

δϕ(Γ′). Therefore we have
δϕ(Γ) ≤ δϕ(Γ′),

which concludes the proof of Theorem 1.6.
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