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Introduction

Let G be a real linear semi-simple Lie group, K < G a maximal compact subgroup and X = G/K the associated Riemmannian symmetric space, whose distance is denoted by d. We write o ∈ X the xed point of K. The sectional curvatures on X are non-positive. When G has rank one, we can scale the metric such that the sectionnal curvatures on X are at most -1.

Let Γ < G be a discrete subgroup. To study the growth of Γ, a central quantity is its critical exponent, dened by

δ(Γ) = lim sup R→+∞ 1 R log{γ ∈ Γ ; d(o, γo) ≤ R}.
Since the sectional curvatures of X are bounded from below, it follows from the Bishop-Gromov comparison theorem that this critical exponent is nite, bounded from above by the volume entropy of G which is dened by h(G) = lim sup

R→+∞ 1 R log Vol(B(o, R)).
The critical exponent has been widely studied since the 70's for Riemannian manifolds with curvature at most -1 (and CAT(-1) metric spaces). In this case, it coincides with the topological entropy of the geodesic ow of Γ\X. In this paper, we will be interested in the following elementary question.

If Γ Γ is a normal subgroup, how are related δ(Γ ) and δ(Γ) ?

δ ϕ (Γ) := lim sup R→∞ 1 R log Card{γ ∈ Γ | ϕ(κ(γ)) ≤ R},
where κ(γ) denotes the Cartan projection of γ, see Section 2.1.2.

Our rst result is the following.

Theorem 1.2. Let G be a real linear, semisimple, connected, Lie group with nite center. Let Γ be a discrete subgroup of G and Γ Γ be a normal subgroup. If Γ is Zariski dense in G, then the two limit cones coincide: C(Γ) = C(Γ ).

Moreover, for all linear forms ϕ ∈ L(a, R) which are positive on C(Γ), we have δ ϕ (Γ ) ≥ Corollary 1.3. Let G be a real linear, semisimple, connected, Lie group with nite center. Let Γ be a normally irreducible Zariski dense discrete subgroup of G. Then for all non trivial normal subgroup Γ Γ, the limit cones C(Γ) and C(Γ ) coincide. Moreover, for all linear forms ϕ ∈ L(a, R) which are positive on C(Γ), we have δ ϕ (Γ ) ≥ 1 2 δ ϕ (Γ).

Equality of critical exponents for co-amenable normal subgroups

Once the equality of the limit cones has been proven, it is natural to look for conditions which ensure the equality between the critical exponents for Γ and Γ . When both groups are lattices, the question is settled by a famous theorem of Leuzinger.

Theorem 1.4 (Leuzinger,[START_REF] Leuzinger | Kazhdan's property (T ), L 2 -spectrum and isoperimetric in-equalities for locally symmetric spaces Commentarii[END_REF]). Let Γ be a (possibly non-uniform) lattice in G, and let h(G)

be the volume entropy of G. Then δ(Γ) = h(G) if and only if Γ is a lattice.

We are hence interested in the situation when Γ is not a lattice. In negative curvature, the following has been shown by Roblin.

Theorem 1.5 ([Rob05], Theorem 2.2.2). Let X be a CAT(-1) metric space. Let Γ ⊂ Isom(X) be a non-elementary discrete group. Let Γ Γ be a normal subgroup of Γ such that Γ \Γ is amenable. Then δ(Γ ) = δ(Γ).

We will dene amenable groups in Section 4. Our second main result extends this theorem to discrete groups of higher rank symmetric spaces.

Theorem 1.6. Let G be a real linear, semisimple, connected, Lie group with nite center. Let Γ be a discrete subgroup of G. Let Γ be a normal, Zariski dense subgroup of Γ. If Γ \Γ is amenable then for all linear form ϕ ∈ L(a, R) which are positive on C(Γ), the associated critical exponents satisfy δ ϕ (Γ ) = δ ϕ (Γ).

Let us point that, in our proof as in Roblin's, the normal assumption is crucial. Removing this assumption is possible in negative curvature, but requires an additional hypothesis on Γ.

This hypothesis also allows to have a full characterization of the equality of critical exponents by amenability, which has been shown by Coulon, Dougall, Schapira and Tapie.

Theorem 1.7 ([CDST], Theorem 1.1). Let Γ Let X be a proper Gromov-hyperbolic geodesic space.

Let Γ be a discrete group acting properly by isometries on X, and Γ a subgroup of Γ. Assume that the action of Γ is strongly positively recurrent. The following are equivalent.

• δ(Γ) = δ(Γ )

• The subgroup Γ is co-amenable in Γ.

Being strongly positively recurrent means that for some suitable notion of critical exponent at innity δ ∞ (Γ), we have δ(Γ) > δ ∞ (Γ). This property is also called a critical gap. In negative curvature, this has strong implications on the dynamics of the group Γ acting on X, and on the geodesic ow of the quotient X/Γ. We refer the reader to [START_REF] Schapira | Regularity of entropy, geodesic currents and entropy at infnity. to appear[END_REF], [CDST]. Studying the notion of strongly positively recurrent discrete groups in higher rank symmetric spaces will be done elsewhere.

Organisation of the paper

In the next section, we recall the necessary background on dynamics of discrete groups in symmetric spaces.

In Section 3 we present the proof of Theorem 1.2. It mostly relies on adapting the ideas from [START_REF] Roblin | Un théorème de fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative[END_REF] to higher rank setting. The main idea is to prove that the orbits of the group Γ satises a so-called shadow principle with respect to the conformal densities associated to Γ , see Section 3.1.

In the last section, we introduce amenable groups and prove Theorem 1.6. It also relies on the shadow principle, combined with the use of amenability of Γ \Γ to construct an average of the Γ-equivariant conformal density, see Section 4.2, from which we will control the critical exponents.

2 Background on higher rank symmetric spaces

In this section we rst recall some classical facts on the geometry of higher rank symmetric spaces.

We then describe some basic facts about discrete isometry groups of such spaces, and we introduce ϕ-conformal densities on the Furstenberg boundary which will be the main tools in the proof of our results. Our main references for this section are [START_REF] Quint | Mesures de PattersonSullivan en rang supérieur[END_REF][START_REF] Thirion | Sous-groupes discrets de SL d (R) et equidistribution dans les espaces symétriques[END_REF][START_REF] Dey | Kapovich Patterson-Sullivan theory for Anosov subgroups[END_REF]. Similar results under a slightly dierent point of view are presented in [START_REF] Link | Hausdor dimension of limit sets of disccrete subgroups of higher rank Lie groups Geometric and Functional Analysis[END_REF].

Symmetric spaces

We x once for all a semisimple real linear Lie group G. In this section we present some geometric properties of the symmetric space associated to G which we will use.

Structure of semisimple Lie groups

Let K be a maximal compact subgroup of G. We denote by X = G/K the associated symmetric riemannian space.

The Lie algebra of G (respectively K) is denoted by g (respectively k). Let g = k ⊕ p be a Cartan decomposition of g.

The maximal abelian Lie algebra of p is called a Cartan subspace and is denoted by a. Geometrically, a corresponds via the exponential map to an isometric copy of a Euclidean space in X of maximal dimension. Any isometric, totally geodesic copy of R n is called a at of X of dimension n. The dimension of a is called the rank of G. By denition, when this rank is at least 2, there exists ats of dimension greater than 2 along which the sectional curvatures vanishes.

The space g then decomposes into a direct sum g = ⊕ α∈Σ g α , where the sum is taken over a set of linear forms on a, called roots, for which

g α := {u ∈ g | [a, u] = α(a)u, ∀a ∈ a}, is non trivial.
The kernels of non zero roots cut the vector space a into connected components, called Weyl chambers. We choose one, which we call the positive Weyl chamber and denote by a + .

Cartan projection

The main dierence between the hyperbolic setting and higher rank symmetric spaces is the existence of such ats, for which the sectional curvature is zero. Directions in ats provide invariants for the dynamics of the group G and hence for the geodesic ow on X. We now present how we can take this into account.

The Cartan projection, which generalizes the polar decomposition for any symmetric space, is dened as follows.

Theorem 2.1. For every g ∈ G there exists k 1 , k 2 ∈ K and a unique κ(g) ∈ a + such that

g = k 1 exp(κ(g))k 2 .
The element κ(g) is called the Cartan projection of g.

We refer the reader to [START_REF] Helgason | Dierential geometry, Lie groups, and symmetric spaces[END_REF], Chap. VI. for a proof. The Killing form on G, which induces the metric on X = G/K and in particular gives a scalar product on p which nally restrict to a. The norm of κ(g) for this scalar product is by construction the distance d(g[K], [K]) in X. For all x, y ∈ X let g x , g y ∈ G be such that x = g x K and y = g y K. Then the distance d(x, y) in X is given by κ(g y -1 g x ) .

In order to take into account the direction inside a + , we introduce a a + -valued distance dened by: a(x, y) := κ(g y -1 g x ).

The following lemma will be used in the sequel as one commonly uses the triangle inequality in negative curvature:

Lemma 2.2. [Ben97, Lemme 4.6] For all compact subset L of G, there exists a positive real number M > 0 such that for all 1 , 2 ∈ L, and for all x, y ∈ X:

a( 1 x, 2 y) -a(x, y) ≤ M.

Furstenberg boundary

When the rank of X is at least 2, the isometry group of X does not act transitively on the unitary tangent bundle. This dierence with strictly negative curvature spaces makes the use of the geometric boundary (ie. equivalence classes of asymptotic rays) less relevant. One will instead consider classes of asymptotic Weyl chambers, which we introduce now.

A geometric Weyl chamber is by denition a map w : a + → X of the form

w(a) = g • exp(a),
where g is an element of G. Two geometric Weyl chambers w 1 , w 2 are said asymptotic if

sup a∈a d(w 1 (a), w 2 (a)) < +∞.
We denote by F the space of classes of asymptotic geometric Weyl chambers. By denition, the group G acts transitively on F. The stabilizer of the classes corresponding to g = Id is denoted by P . One has therefore the identication F G/P . The space F is called the Furstenberg boundary of X.

In higher rank symmetric spaces, geometric Weyl chambers play a role analogous to geodesic rays in rank one. For a geometric Weyl chamber w, call w(0) its origin. For any class of asymptotic geometric Weyl chambers, we can nd a representative with origin o = [K] ∈ X. Writing M for the stabilizer in K of an element of F, it follows from the Iwasawa decomposition (cf [START_REF] Helgason | Dierential geometry, Lie groups, and symmetric spaces[END_REF], Chap.

VI.) that

F = G/P K/M.
In particular, the Furstenberg boundary F is compact. Let w be a geometric Weyl chamber and denote by w(+∞) its equivalence class. We extend as follows the notion of shadow to this setting:

Denition 2.3. For all x, y ∈ X and all r > 0, the shadow of B(y, r) seen from x is dened by

S(x, y, r) = {η ∈ F | ∃w : a + → X, w(+∞) = η, w(0) = x, w(a + ) ∩ B(y, r) = ∅}.
The denition is similar as the strictly negatively curved case, where one just replaces geodesic rays by geometric Weyl chambers.

Let ξ ∈ F and G ξ the stabilizer of ξ in G. η ∈ F such that there exists a at f : a → X, with f (u) = g. exp(u).K for some g ∈ G, that satises :

[f |a + ] = η and [f |-a + ] = ξ. The complementary set of V (ξ) in F is denoted by L(ξ). It follows from Section 5 of [Qui02] 1 that L(ξ) is a Zariski closed subset of F.
We will need the following result, showing that τ → L(τ ) is continuous in the Hausdor topology. Recall that F identied with K/M and we endow F with a K-invariant Riemannian metric.

Lemma 2.4. [DK19, Lemma 6.6] For every ε > 0, there exists δ > 0 such that for τ ∈ F and for all τ ∈ B(τ, δ) :

B(L(τ ), ε) ⊂ B(L(τ ), 2ε).
Where we denoted by B(X, ε) the ε neighborhood of a subset X ∈ F.

Busemann functions

The notion of Busemann function extends accordingly to the a + -valued distance function a(•, •) dened in section 2.1.2. Let x, y ∈ X, and η ∈ F and take ξ : R → X a geodesic ray at bounded distance of η. We dene the a-valued Busemann function by: β η (x, y) := lim t→+∞ a(x, ξ(t)) -a(y, ξ(t)).

The fact that this limit exists and is independent of the choice of ξ can be founded in Section 6 of [START_REF] Quint | Mesures de PattersonSullivan en rang supérieur[END_REF], see also [START_REF] Benoist | Random walks on reductive groups A series of modern surveys in mathematics[END_REF]5.34].

We recall two geometric inequalities concerning the Busemann functions. We refer to [START_REF] Thirion | Sous-groupes discrets de SL d (R) et equidistribution dans les espaces symétriques[END_REF] which shows precisely the statements which we use in the sequel. Aanalogous statement are shown for instance in Section 6 of [START_REF] Quint | Mesures de PattersonSullivan en rang supérieur[END_REF].

Lemma 2.5. [Thi07, Proposition 8.66] There exists a constant c > 0 such that for all x, y ∈ X and all ξ ∈ S(x, y, r) :

β ξ (x, y) -a(x, y) ≤ cr.
Lemma 2.6. [Thi07, Proposition 8.69] There exists a constant c > 0 such that for all x, y ∈ X and all ξ ∈ F:

β ξ (x, y) ≤ c a(x, y) .

Dynamic of discrete groups

We now present general properties of the action of a discrete subgroup Γ < G on X. The rst paragraph presents the notions of limit cone of Γ in the Weyl chamber a + and limit set of Γ in the Furstenberg boundary F. We detail in the second paragraph dierent notions of growths and critical exponents. We conclude this section by presenting conformal densities in higher rank, with a perspective towards the so-called shadow lemma.

We x for the whole section a semisimple, real linear, connected Lie group G with nite center, a choice of Cartan subspace a and Weyl chamber a + , and a discrete Zariski dense subgroup Γ ⊂ G.

Limit set and limit cone

The study of how the orbits of the discrete group Γ accumulate at innity can be splitted in two parts: its accumulation directions the Cartan subspace of p, which form its limit cone, and the accumulation points of the geometric Weyl chamber on the Furstenberg boundary which form its limits set.

Denition 2.7. Let ξ ∈ F be xed. We call limit set of Γ the set Λ Γ of accumulation points of

Γ • ξ ∈ F.
The following result is a crucial chararcterization of the limit set.

Theorem 2.8. [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF] If Γ is Zariski dense, the limit set Λ Γ is a Zariski dense subset of F = G/P . It is the unique minimal subset of F for the action of Γ. In particular is is independent of the orbit base point.

For u ∈ a, we denote by R + u ⊂ a the half-line generated by u. The following set describes the asymptotic directions in a + where Γ grows.

Denition 2.9. The limit cone is dened by:

C(Γ) := n≥0 γ∈Γ, κ(γ) ≥n R + κ(γ) ⊂ a + .
This limit cone was introduced by Benoist in [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF], where the following striking fact was shown.

Theorem 2.10 (Benoist, [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF]). If Γ is Zariski dense, the limit cone C(Γ) is a closed convex subset of a with non-empty interior.

Critical exponents

We are interested in understanding the growth of the orbits Γ • o inside X. We saw in Section 2.1.2 that in higher rank it is interesting to look at an a + -valued distance function taking the direction in the ats into account. In order to study the growth of Γ • o inside X in dierent at directions, we use linear forms on a which are positive on the limit cone.

Recall that we write C(Γ) ⊂ a for the limit cone of Γ. Let a * = L(a, R) be the set of linear forms on a and denote by C(Γ) * + ⊂ a * be the set of linear forms which are positive on the limit cone:

C(Γ) * + := {ϕ : a → R | ∀x ∈ C(Γ)\{0}, ϕ(x) > 0}.
Denition 2.11. For all ϕ ∈ a * we dene the critical exponent according to ϕ by :

δ ϕ (Γ) := lim sup R→∞ 1 R log Card{γ ∈ Γ | ϕ(a(γ • o, o)) ≤ R}.
For every ϕ ∈ C(Γ) * + , the critical exponent δ ϕ (Γ) is independent of the chosen origin (cf Lemma 2.2) and is nite. Indeed, since ϕ is positive on C(Γ) and linear, there exists c > 0 such that for all x ∈ C(Γ): ϕ(x) > c x .

Therefore,

δ ϕ (Γ) ≤ lim sup R→∞ 1 R log Card{γ ∈ Γ | d(go, o) ≤ R/c}, which is nite since Γ is discrete.
Conversely, if the kernel of ϕ ∈ a * intersects the interior of C(Γ), the critical exponent δ ϕ (Γ) is innite. We will not study in this paper the case of linear form ϕ ∈ a * which are non-negative on C(Γ) but vanishes on ∂C(Γ).

ϕ-Conformal densities

Denition 2.12. For all δ > 0, a ϕ-conformal density of dimension δ is a family µ = (µ x ) x∈X of mutually absolutely continuous locally nite, borelian measures on F, such that for all x, y ∈ X, dµ x dµ y (η) = e -δϕ(βη(x,y)) .

Such conformal density µ is Γ-equivariant if, for all γ ∈ Γ and all x ∈ X,

γ * µ x = µ γx .
We denote by M ϕ (δ, Γ) the space of Γ-equivariant, ϕ-conformal measure of dimension δ.

Note that M ϕ (δ, Γ) is a cone: for all µ ∈ M ϕ (δ, Γ) and all λ > 0, we obviously have λµ ∈ M ϕ (δ, Γ). The following result is the starting point of our approach. Theorem 2.13 ([Qui02], Section 8). Let Γ < G be a Zariski dense subgroup. Then for all ϕ ∈ C(Γ) * + there exists a Γ equivariant, ϕ-conformal density of dimension δ ϕ (Γ), which is supported on the limit set Λ Γ ⊂ F.

These densities have been constructed in [START_REF] Quint | Mesures de PattersonSullivan en rang supérieur[END_REF] via an adaptation of the usual Patterson-Sullivan construction to higher rank symmetric space. A similar construction also appears in [START_REF] Link | Hausdor dimension of limit sets of disccrete subgroups of higher rank Lie groups Geometric and Functional Analysis[END_REF]. The work of Dey-Kapovich [START_REF] Dey | Kapovich Patterson-Sullivan theory for Anosov subgroups[END_REF] proves their uniqueness (up to scaling) in the case of Anosov subgroup.

In our study of limit cones with respect to taking normal subgroup we will use the following observation, whose analogue in negative curvature is due to Roblin in [START_REF] Roblin | Un théorème de fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative[END_REF].

Lemma 2.14. Let δ > 0 and µ ∈ M ϕ (δ, Γ). Let g ∈ G be an isometry which normalizes Γ. Then the family µ g = (µ g x ) x∈X dened for all x ∈ X by µ g

x := 1 ||µ go || g -1 * µ gx is also in M ϕ (δ, Γ) and satises ||µ g o || = 1.
By Lemma 2.5, there exists c > 0 such that for all ξ ∈ S(x, y, r), one has |ϕ(β ξ (x, y)) -ϕ(a(x, y))| ≤ cr. This implies that µ x (S(x, y, r)) ≤ e δcr µ y (S(x, y, r))e -δϕ(a(x,y)) ≤ C||µ y ||e -δϕ(a(x,y)) .

(2) Moreover since µ is Γ-invariant, we have for all γ ∈ Γ ||µ γx || = ||µ x ||. This implies the upper bound given by the Shadow Lemma.

Let us show the lower bound.

µ x (S(x, γx, r)) = µ γ -1 x (S(γ -1 x, x, r)) = S(γ -1 x,x,r) e -δϕ(β ξ (γ -1 x,x)) dµ x ≥ 1 e cr µ x (S(γ -1 x, x, r
))e -δϕ(a(x,γx)) , the last inequality coming from Lemma 2.5. Now using Lemmas 2.16 and 2.17, we get the lower bound µ x (S(γ -1 x, x, r)) ≥ 1 C , which nishes the proof.

Note that the Shadow Lemma implies in particular that if µ ∈ M ϕ (δ, Γ), then there exists C > 0 such that for all γ ∈ Γ, µ γo ≥ 1 C e -δϕ(a(o,γo)) .

(

) 3 
This standard version of the Shadow Lemma is only valid on orbits of the discrete group Γ.

The proofs of our main result rely on an extension of this Shadow Lemma, called Shadow principle, which holds on much larger sets: the orbits of the full normalizer of Γ in G. This was rst proven in negative curvature by Roblin in [Rob05, Théorème 1.1.1]. We will extend it to higher rank in the next section.

Normal subgroup and asymptotic invariants

In this section we prove the rst main theorems of the paper. In Section 3.1, we prove our main tool, given in Theorem 3.2, which is the extension of the Shadow Lemma to the orbits of the normalizer of any Zariski dense discrete group. As a corollary we get that the limit cone of a Zariski dense group is the same as the limit cone of any of its Zariski dense normal subgroups. We eventually prove in Section 3.2 the inequality between critical exponents announced in Theorem 1.2 .

Shadow principle and limit cones

The following extension of the Shadow Lemma was called shadow principle by Roblin in [START_REF] Roblin | Un théorème de fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative[END_REF].

Denition 3.1. Let Γ < G be a Zariski dense discrete subgroup, ϕ ∈ C(Γ) * + and δ > 0. We say that a set Y ⊂ X satises the shadow principle for M ϕ (δ, Γ). if there exists R, C > 0 such that for all µ ∈ M ϕ (δ, Γ), all r ≥ R and all x, y ∈ Y ,

1 C
µ y e -δϕ(a(x,y)) ≤ µ x (S(x, y, r)) ≤ C µ y e -δ(Γ)ϕ(a(x,y)) .

Proof of Theorem 3.2. By Lemma 3.3, it is enough to show that there exists C, R > 0 such that for all µ ∈ M ϕ (δ, Γ) with ||µ o || = 1 and all y ∈ Y = N (Γ) • o, the lower bound (4) is satised. We follow the strategy developped in [START_REF] Roblin | Un théorème de fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative[END_REF].

Suppose by contradiction that it is not the case. There exists a sequence

(R i ) i∈N with R i → ∞, a sequence (g i ) ∈ N (Γ) N and a sequence (µ i ) i∈N ∈ M ϕ (δ, Γ) N with ||µ i o || = 1 such that lim i→+∞ 1 µ i gio µ i gio (S(o, g i o, R i )) = 0. (5) 
Denote by ν i = (ν i x ) x∈X the family of measures dened for all x ∈ X by ν i x :=

1 µ i gio g i -1 * µ i gix . By Lemma 2.14, it is a ϕ-conformal density of dimension δ and satises ||ν i o || = 1. Since F is compact and (ν i o )
i∈N is a sequence of probabilities on F, we can assume up to taking a subsequence that it converges weakly to some probability measure ν ∞ o . Then since ν i is ϕ-conformal of dimension δ, for all x ∈ X the sequence of nite measures (ν i

x ) i∈N also converges in the weak topology to some nite measure ν ∞

x and the family ν

∞ = (ν ∞ x ) x∈X is in M ϕ (δ, Γ).
Lemma 3.4. Up to extracting a subsequence, there exists τ ∈ F such that for all ε > 0 there exists i 0 > 0 such that for all i ≥ i 0 :

F \ S(g -1 i o, o, R i ) ⊂ B(L(τ ), ε).
Proof. We rst apply Lemma 2.17 : for all ε > 0 there exists r > 0 such that for all R > r for all y ∈ X :

F \ S(y, o, R) ⊂ B(L(τ y ), ε), for some τ y ∈ S(o, {y}). Taking y = g -1 i o, gives a sequence τ i ∈ F such that F \ S(g -1 i o, o, R) ⊂ B(L(τ i ), ε)
. By compactness, we can suppose that τ i converges to τ ∈ F.

We now apply Lemma 2.4 : for i 1 suciently large, B(L(τ i ), ε) ⊂ B(L(τ ), 2ε).

Therefore, for i 1 suciently large, we get R i > r and

F \ S(o, g -1 i o, R i ) ⊂ B(L(τ ), 2ε),
which concludes the proof of Lemma 3.4.

Let V be an open subset of F such that V ∩ L(τ ) = ∅. By Lemma 3.4, there exists i 0 such that for all i ≥ i 0 we have

ν ∞ o (V ) ≤ lim inf i→∞ ν i o (S(g -1 i o, o, R i )) ≤ lim inf i→∞ 1 µ i o µ i gio (S(o, g i o, R i ))
Using equation (5), we get ν ∞ o (V ) = 0. Hence ν ∞ o is supported on L(τ ). In particular, by Γ-invariance of the family ν ∞ , the set L(τ ) contains a closed set which is Γ invariant. Therefore Λ Γ ⊂ L(τ ) which is absurd by Theorem 2.8 since Γ is Zariski dense and L(τ ) is Zariski closed.

We now prove the equality of the limit cone for Zariski dense normal subgroups.

Corollary 3.5. Let Γ be a discrete subgroup of G and Γ Γ be a normal subgroup of Γ. Suppose Γ is Zariski dense, then the limit cone of Γ coincides with the limit cone of Γ.

Proof. If it were not the case, since both limit cones are closed, it means that there exists an open cone U ⊂ C(Γ)\C(Γ ). This implies that there is a linear form ϕ in C(Γ ) * + whose kernel intersects U .

We have seen in Section 2.2.3 that since Γ is Zariski dense, there exists µ = (µ x ) x∈X ∈ M ϕ (δ ϕ (Γ ), Γ ). Since we supposed ker(ϕ) intersects U which is contained in the interior of C(Γ), there exists a sequence of elements γ n of Γ such that ϕ(a(x, γ n x)) → -∞. Nevertheless, by Theorem 3.2, the orbit Γ • x satises the shadow principle for M ϕ (δ, Γ ). Therefore we also have

µ x (Λ Γ ) ≥ µ x (S(x, γ n x, r)) ≥ 1 C e -δϕ(Γ )ϕ(a(x,γnx)) .
Since the right hand side goes to +∞ with n, we get a contradiction.

Note that, in the proof, we use the fact that Γ is Zariski dense to ensure the existence of ϕconformal densities. This prevent from counter-examples such as Γ = Γ × {Id} ⊂ Γ × Γ r = Γ for which, as mentionned in the introduction, Corollary 3.5 is trivially false.

We now prove a necessary and sucient condition on Γ for its normal subgroups to be Zariski dense.

Denition 3.6. Let G be a semisimple Lie group. A subgroup Γ ⊂ G is said normally irreducible if for all normal subgroups N ⊂ G, if N = G then:

N ∩ Γ = {Id}.
The proof of the following result has been suggested to us by Y. Benoist.

Proposition 3.7. Let G be a real linear semisimple Lie group. Let Γ ⊂ G be a Zariski dense subgroup.

All non trivial normal subgroups Γ Γ are Zariski dense if and only if Γ is normally irreducible.

Proof. Let H := Γ Z be the Zariski closure of Γ . It is an algebraic set, therefore the condition ghg -1 ∈ H is algebraic. This condition is satised for all (h, g) ∈ Γ×Γ , hence for all (h, g) ∈ H ×G. In other words, H is normal in G.

Suppose that H = G, then by irreducibility H ∩ Γ = {Id} which its absurd since Γ ⊂ (H ∩ Γ).

Suppose now that Γ is not normally irreducible. Decompose G into the Cartesian product of its simple factors G = Π i=1 G i remark that > 1. Moreover by simplicity of the G i , if N = G, N is also a Cartesian product and in particular is not Zariski dense. By assumption, there exists N = G a normal subgroup of G, such that: N ∩ Γ = {Id} Γ. This is a normal subgroup of Γ which is not Zariski dense. Therefore, using Lemma 2.2, there exists C 1 > 0 depending only on G such that: a(w(u 1 ), w(u 2 )) -a(y 1 , y 2 ) ≤ C 1 R 0 .

(7) Equation ( 6) also implies that there exists C 2 > 0 depending on G such that:

a(w(u 1 ), o) -a(y 1 , o) ≤ C 2 R 0 a(w(u 2 ), o) -a(y 2 , o) ≤ C 2 R 0 (8)
Since u 1 , u 2 ∈ a the vectors a(w(u 1 ), o)-a(w(u 2 ), o) and a(w(u 1 ), w(u 2 )) coincide up to the action of an element of the Weyl group. To simplify notations, we will suppose that a(w(u 1 ), o)-a(w(u 2 ), o) = a(w(u 1 ), w(u 2 )), adaptation to the general case is immediate using Lemma 2.2. We have hence

a(w(u 1 ), w(u 2 )) -a(y 1 , o) + a(y 2 , o) ≤ 2C 2 R 0 .
Moreover, since y 1 , y 2 ∈ R n1,...n2 , we get for all i ∈ {1, . . . , r}:

ε i (a(w(u 1 ), w(u 2 ))) ≤ 2C 2 R 0 + 2.
Since (ε i ) i∈{1,...,r} forms a basis, there exists hence C 3 > 0 depending only on R 0 and G, such that: a(w(u 1 ), w(u 2 )) ≤ C 3 .

Therefore, using Equation (7) we get a(y 1 , y 2 ) ≤ a(w(u 1 ), w(u 2 )) + C 1 R 0 ≤ C 4 for a constant C 4 > 0 depending only on r 0 and G. Since Y has bounded geometry, this implies that cov(y 1 ) ≤ A C4 , where A C4 is the maximum number of elements of Y contained in a ball of radius C 4 and only depends on R 0 .

We now resume the proof of Proposition 3.9. Let us x µ ∈ M ϕ (δ, Γ). Since Y satises the shadow principle for M ϕ (δ, Γ), there exists C, R 0 such that for all y ∈ Y , we have µ y (S(o, y, R 0 )) ≥ C||µ y ||. Moreover, it follows from Lemma 3.10 that there exists B R0 > 0 such that the covering y∈Rn 1 ,...,nr S(o, y, r 0 ) has multiplicity bounded by B R0 .

This implies that for all (n 1 , ..., n r ) ∈ N r , there exists K > 0 such that µ o ≥ 1 B R0 y∈Rn 1 ,...,nr µ o (S(o, y, r 0 ))

≥ K e -δ i (bini) y∈Rn 1 ,...,nr µ y .

We get therefore y∈Y µ y e -sϕ(a(o,y)) = n1,...nr y∈Rn 1 ,...nr µ y e -sϕ(a(o,y))

≤ K -1 µ o n1,...nr e -s i (bini) e δ i (bini) .

Eventually, the last series converges for all s > δ.

The S-isoperimetric constant of G is then given by h S (G) = inf

A⊂G nite #∂ S A #A .
The following characterization of amenability has been shown by Fölner in [START_REF] Fölner | On groups with Full Banach Mean Value Math[END_REF].

Theorem 4.2 (Fölner [Fol55]). A discrete group G is amenable if and only if for all nite S ⊂ G, the isoperimetric constant h S (G) is 0.

This easily implies that all nitely generated groups with sub-exponential growth (e.g. infranilpotent discrete groups) are amenable, whereas any free group with at least 2 generators is nonamenable.

Averaging conformal density

Let us x a discrete Zariski dense subgroup Γ of G, and a Zariski dense normal subgroup Γ Γ.

By the result of last section, we know that the limit cones of Γ and Γ coincide. Let ϕ ∈ C(Γ) * + and δ > 0 be xed. We write ϕ = sup

v∈a\{0} |ϕ(v)| v < +∞.
We assume from now on that Γ is co-amenable in Γ. Let Θ be a right-invariant mean on Γ \Γ. Let µ ∈ M ϕ (δ, Γ ) with ||µ o || = 1 be xed. Recall that for all u ∈ Γ, we write µ u for the conformal density dened for all x ∈ X by µ u x = 1 µ uo (u -1 ) * µ ux .

By Lemma 2.14, we still have µ u ∈ M ϕ (δ, Γ ) and µ u o = 1. Therefore for all x ∈ X and all continuous maps f : F → R, the map

L x,f : Γ → R u → F f (ξ)dµ u x (ξ)
is Γ -invariant. By Lemma 2.5, there exists C > 0 such that L x,f is bounded from above by Ce δ ϕ d(o,x) sup |f |. Therefore, L x,f induces a bounded map on Γ \Γ and we can dene the following application from C(F, R) to R by

µ Θ x : f → Θ u → L x,f (u) = 1 ||µ uo || F f (u -1 ξ)dµ ux (ξ) . (9) 
We get the following.

Lemma 4.3. The family µ Θ = (µ Θ

x ) x∈X induces a Γ -invariant ϕ-conformal density of dimension δ, still written µ Θ , which we call the Θ-average of µ. Moreover, it satises for all γ ∈ Γ,

||µ Θ γo || • ||µ Θ γ -1 o || ≥ 1. (10) 
Proof. It follows from (9) that for all x ∈ X, µ Θ

x is a positive linear map from C(F, R) to R, with ν x (1 F ) ≤ e δd (o,x) . Therefore it induces a unique nite Borel measure on F, which we still denote

  There is a unique open dense orbit of G ξ in F. It is denoted by V (ξ). These are the points which are visible from ξ. It is equal to the set of points

δ ϕ (Γ).We have separated the statements to emphasize on the equality of limit cones, which seems unknown. Since a linear form which vanishes on some open subset of C(Γ) has innite critical exponent, this equality of limit cones follows from the inequality δ ϕ (Γ ) ≥ 1 2 δ ϕ (Γ) for all ϕ which are positive on C(Γ ).The Zariski dense assumption on Γ is necessary to avoid trivial counter-examples as Γ = Γ × {Id} ⊂ Γ × Γ r = Γ for discrete groups in a product, for which Theorem 1.2 is trivially false. Our approach is based on the existence of ϕ-conformal Patterson-Sullivan densities for Γ , which are not dened for discrete groups such as Γ × {Id} ⊂ Γ × Γ r .Let us say that the group Γ ⊂ G is normally irreducible if it intersects trivially all normal subgroups N G when N = G. We will show in Proposition

3.7 that a Zariski dense subgroup Γ < G is normally irreducible if and only if all its non-trivial normal subgroups are Zariski dense

In this reference, L(ξ) is denoted by Q - θ

* This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC starting grant DiGGeS, grant agreement No 715982). † S. Tapie acknowledges support from A.N.R. grant CCEM (ANR-17-CE40-0034) and from the Centre Henri Lebesgue ANR-11-LABX-0020-01 1 1.1

Proof. By construction, ||µ g o || = 1. For all z, z ∈ X, η ∈ F, we have dµ g z dµ g z (η) = dµ gz dµ gz (gη) = e -δϕ(βgη(gz,gz )) = e -δϕ(βη(z,z )) .

Therefore the family ν g is a ϕ-conformal density of dimension δ.

Moreover, for all γ ∈ Γ, we have

gγg -1 * µ gz = g -1 * µ (gγg -1 )gz = µ g γz .

Therefore, µ g ∈ M ϕ (δ, Γ).

The crucial feature linking the measurable properties of the ϕ-conformal densities with the dynamical action of Γ is the so-called Shadow lemma, which is originally due to Sullivan in [START_REF] Sullivan | The density at innity of a discrete group of hyperbolic motions[END_REF] for hyperbolic manifolds. The same proof extends to CAT(-1) metric spaces, see Lemma 1.3 of [START_REF] Roblin | Ergodicité et équiditribution en courbure négative[END_REF]. In the higher rank setting, several variant of the Shadow Lemma are known, depending on the boundary and the densities which are considered. We will use the following version, which rst appeared as Lemme 8.2 of [START_REF] Quint | Mesures de PattersonSullivan en rang supérieur[END_REF] and Theorem 4.7 of [START_REF] Link | Hausdor dimension of limit sets of disccrete subgroups of higher rank Lie groups Geometric and Functional Analysis[END_REF].

Theorem 2.15 (Shadow Lemma, [START_REF] Quint | Mesures de PattersonSullivan en rang supérieur[END_REF][START_REF] Dey | Kapovich Patterson-Sullivan theory for Anosov subgroups[END_REF] ). Let µ be a Γ-equivariant, ϕ-conformal density of dimension δ > 0. For all x ∈ X there exists R 0 > 0 and C > 0 such that for all r > R 0 , and for all γ ∈ Γ.

1 C e -δϕϕ(a(x,γx)) ≤ µ x (S(x, γx, r)) ≤ Ce -δϕϕ(a(x,γx)) .

We will now briey present a proof of this Shadow Lemma, since we will need most of its ingredients in the sequel. We follow the same strategy as in Lemma 8.2 of [START_REF] Quint | Mesures de PattersonSullivan en rang supérieur[END_REF] eventhough the notations have evolved in the past 20 years. We rely on two key lemmas which we quote from [START_REF] Dey | Kapovich Patterson-Sullivan theory for Anosov subgroups[END_REF]. Equivalent statements are shown in Section 5 of [START_REF] Quint | Mesures de PattersonSullivan en rang supérieur[END_REF].

We endow F K/M with a K-invariant Riemmanian metric. We have seen in 2.3 the denitions of shadows S(x, y, r), visible sets V (ξ) and its complement L(ξ). Our terminology and notations are close to [START_REF] Dey | Kapovich Patterson-Sullivan theory for Anosov subgroups[END_REF], where we can nd the two following lemmas. Recall that we have xed a K-invariant Riemannian metric on F and that Γ is supposed to be Zariski dense in G. The point o = [K] ∈ X = G/K provides us a xed origin. Lemma 2.16. [DK19, Lemma 6.7] For all x ∈ X, there exists q < µ x (Λ Γ ) and ε such that for all τ ∈ Λ Γ , and all Borel subsets B of F contained in the ε neighborhood of L(τ ), one has : µ x (B) ≤ q.

Lemma 2.17. [DK19, Lemma 6.8] For every ε > 0, there exists r 1 > 0 such that for all r ≥ r 1 and all x ∈ X, the complement of S(x, o, r) in F is contained in a ε-neighborhood of L(τ ) for some τ in S(o, x, 0).

Proof of Theorem 2.15. We x x ∈ X. Let us remark rst that since µ is δ-conformal, for all y ∈ X and all r > 0 we have µ x (S(x, y, r)) = S(x,y,r) e -δϕ(β ξ (x,y)) dµ y (ξ)

(1) It follows from (2) that the upper bound in the shadow principle is a mere consequence of the ϕ-conformality of dimension δ, valid for all Y ⊂ X. All the interest of this property relies hence in the lower bound. Note also that the shadow principle is invariant by scaling of the conformal density. It is hence enough to check it on conformal densities such that ||µ o || = 1, where o ∈ X is a xed origin. The end of this paragraph is devoted to the proof of the following result, which extends Theorem 1.1.1 of [START_REF] Roblin | Un théorème de fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative[END_REF] to higher rank symmetric spaces. Theorem 3.2. Let G be a real linear, semisimple, connected, Lie group with nite center and Γ be a Zariski dense subgroup of G. Let N (Γ) be the normalizer of Γ in G.

For all ϕ ∈ C(Γ) * + , all δ > 0 and all x ∈ X, the orbit Y = N (Γ) • x satises the shadow principle for M ϕ (δ, Γ). 2

Let us rst reduce the proof to a simpler statement, where one of the base points is xed.

Lemma 3.3. Let G be a real linear, semisimple, connected, Lie group with nite center and Γ be a Zariski dense subgroup of G, with normalizer N (Γ). Let us x ϕ ∈ C(Γ) * + , δ > 0 and o ∈ X. The orbit Y = N (Γ) • o satises the shadow principle for M ϕ (δ, Γ) if and only if there exists R, C > 0 such that for all y ∈ Y and all µ ∈ M ϕ (δ, Γ),

Proof. We x o ∈ X and denote by Y = N (Γ) • o the orbit of o under the normalizer of Γ in G.

As already mentionned, we only have to deal with the lower bound of the shadow principle, since the upper bound is satised for all Y ⊂ X. Note also that, by Equation (1) and Lemma 2.5, if Y satises the shadow principle then (4) is satised for all y ∈ Y . Therefore, we are only left with showing that, if for all µ ∈ M ϕ (δ, Γ) and all y ∈ Y , the inequality (4) is satised, then Y satises the shadow principle.

Assume therefore that (4) is satised for all ν ∈ M ϕ (δ, Γ) and all y ∈ Y . Let µ ∈ M ϕ (δ, Γ) be xed. Let x, y ∈ Y , and g ∈ N such that go = x. We have seen in Lemma 2.14 that the family µ g dened for all z ∈ X by µ g z := 1 µ go g -1 * µ gz is also in M ϕ (δ, Γ). Moreover, setting z := g -1 y, we have:

Therefore, since by (4) we have

which is equivalent to the lower bound in the shadow principle by Equation (1) and Lemma 2.5.

2

The result is true for all δ > 0. However, it follows from [Qui02] that when δ < δϕ(Γ) then Mϕ(δ, Γ) = ∅.

Normal subgroup and critical exponent

Let Γ be a discrete subgroup of G and Γ Γ be a Zariski dense normal subgroup of Γ. Let ϕ ∈ C(Γ ) * + be xed. We now nish the proof of Theorem 1.6 by showing the lower bound inequality for all the critical exponents δ ϕ (Γ) and δ ϕ (Γ ).

Denition 3.8. A set Y ⊂ X is said to have bounded geometry if for all R > 0 there exists

In particular any orbit of a discrete group of isometry of X has bounded geometry.

The following proposition appears in Roblin [Rob05, Lemma 1.2.4] for conformal densities in CAT(-1) space. We extend it to higher symmetric spaces.

Proposition 3.9. Let δ > 0 and Y ⊂ X be a set with bounded geometry which satises the shadow principle for M ϕ (δ, Γ).

Then for all µ = (µ x ) x∈X ∈ M ϕ (δ, Γ), the critical exponent of the series

is at most δ.

Proof of Proposition 3.9. Let r > 1 be the real rank of G and (ε i ) i=1,...,r be a basis of a * , such that

Our proof rely on the following uniform multiplicity bound for the covering of Y by the shadows {S(o, y, r 0 ) ; y ∈ R n1,...,nr }.

Lemma 3.10. Let Y be a set with bounded geometry. For all R 0 > 0, there exists B R0 > 0 such that for all (n 1 , ..., n r ) ∈ N r , the covering y∈Y ∩Rn 1 ,...,nr S(o, y, R 0 ) has multiplicity bounded by B R0 .

Proof. Let us x r > 0, (n 1 , ..., n r ) ∈ N r . For all y 1 ∈ Y , we write

We have to show that cov(y 1 ) is bounded by a constant depending only on R 0 . Let us x y 1 ∈ Y , and let y 2 ∈ Y and η ∈ F be such that

We represent η by a geometric Weyl chamber w : a + → X. By denition of shadows, there exists

A direct corollary of Proposition 3.9 is the following result, originally due to Roblin [Rob05, Theorem 2.2.1] for groups acting on CAT(-1) spaces.

Corollary 3.11. Let Γ be a discrete subgroup of G and Γ a Zariski dense normal subgroup of Γ.

For all ϕ ∈ C(Γ ) * + the critical exponents according to ϕ satisfy:

Proof. Since Γ is Zariski dense, by Theorem 2.13 there exists µ ∈ M ϕ (δ ϕ (Γ ), Γ ). By Theorem 3.2, we know that Γ • o satises the shadow principle for M ϕ (δ ϕ (Γ ), Γ ). Therefore, for all s > δ ϕ (Γ )

Proposition 3.9 implies γ∈Γ µ γo e -sϕ(a(o,γo)) < +∞.

Moreover by (3), there exists C > 0 such that for all γ ∈ Γ, we have µ γo ≥ ||µ o || C e -δϕ(Γ )ϕ(a(o,γo)) .

We get hence that for all s > δ ϕ (Γ ), such that Θ(1 G ) = 1 and which is right invariant, i.e. for all g ∈ G and all f ∈ ∞ (G), we have

Such map Θ is called a right-invariant mean on G.

If Γ is a discrete group, a normal subgroup Γ Γ is co-amenable in Γ if the quotient group Γ \Γ is amenable.

We refer for instance the reader [START_REF] Juschenko | Amenability of discrete groups by examples[END_REF] for various characterizations and examples of amenable discrete groups. Let us present an important characterization of amenability, which illustrates how this property is related to the growth of the group.

Let G be a discrete group. For all nite set S ⊂ G, and all subset A ⊂ G, we dene the S-boundary of A to be

x . Moreover, it immediately follows from Lemma 2.14 that the family µ Θ = (µ Θ x ) x∈X belongs to M ϕ (δ, Γ).

Eventually, let us x γ ∈ Γ. Since Θ is invariant under right multiplication by elements of Γ, we have :

where the last inequality follows from the Jensen inequality applied to t → t -1 .

Proof of Theorems 1.6

Let us x a discrete Zariski dense subgroup Γ of G, and a Zariski dense normal subgroup Γ Γ.

Assume moreover that Γ is co-amenable in Γ, and let Θ be a right-invariant mean on Γ \Γ. Let ϕ ∈ C(Γ ) * + be xed.

We have seen in Section 2.2.3 that there exists µ ∈ M ϕ (δ ϕ (Γ ), Γ ). Let µ Θ be the Θ-average of µ given by Lemma 4.3. We dene

It follows from (10) that for all γ ∈ Γ, we have γ ∈ Γ + or γ -1 ∈ Γ + . Therefore, for all s ∈ R, Moreover, by Proposition 3.9, the critical exponent of s → γ∈Γ+ ||µ Θ γo ||e -sϕ(a(o,γo)) is at most δ ϕ (Γ ). Therefore we have δ ϕ (Γ) ≤ δ ϕ (Γ ), which concludes the proof of Theorem 1.6.