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Abstract

In this report we present two new ways of enforcing monotone con-
straints in regression and classification trees. One yields better results
than the current LightGBM, and has a similar computation time. The
other one yields even better results, but is much slower than the cur-
rent LightGBM. We also propose a heuristic that takes into account that
greedily splitting a tree by choosing a monotone split with respect to its
immediate gain is far from optimal. Then, we compare the results with
the current implementation of the constraints in the LightGBM library,
using the well known Adult public dataset. Throughout the report, we
mostly focus on the implementation of our methods that we made for
the LightGBM library, even though they are general and could be imple-
mented in any regression or classification tree.

The best method we propose (a smarter way to split the tree coupled
to a penalization of monotone splits) consistently beats the current imple-
mentation of LightGBM. With small or average trees, the loss reduction
can be as high as 1% in the early stages of training and decreases to
around 0.1% at the loss peak for the Adult dataset. The results would be
even better with larger trees. In our experiments, we didn’t do a lot of
tuning of the regularization parameters, and we wouldn’t be surprised to
see that increasing the performance of our methods on test sets.
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1 Results

1.1 Summary of the important results

Figure 1: Loss and AUC vs. number of iterations
relative to the constrained LightGBM baseline, for
our best method and the unconstrained method, on

the train and test sets

On figure 1 are represented the most important results of the report. Overall,
our best method generates a consistent and significant loss reduction, which
also helps us improve common metrics. Therefore we think our method should
become the standard for enforcing monotone constraints, and replace the current
LightGBM method.
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1.2 Dataset and preprocessing

The Adult dataset is a well known public dataset extracted by Barry Becker
from the 1994 Census database 1. The task of this dataset is classification. We
need to classify individuals depending on whether or not they earn more than
50,000$ a year. The dataset is fairly imbalanced as for around 75% of entries,
people earn less than 50,000$ a year (which doesn’t mean that around 75% of
people earned less than 50,000$ in 1994, because entries have to be weighted by
the survey weights). If a person earns more than 50,000$ a year, its label will
be 1. Otherwise, it will be 0.

Description of the data The description of the data is extremely important
as we need to know which variable are locally monotone. Table 1 summarizes
for each variable its type (continuous or discrete) and if the labels should be
locally monotone with respect to it.

Variable Type Labels’ relationship to the variable
age continuous Monotonically increasing

workclass discrete None
fnlwgt continuous None

education discrete None
education num continuous Monotonically increasing
marital status discrete None
occupation discrete None
relationship discrete None

race discrete None
sex discrete None

capital gain continuous None
capital loss continuous None
hours per week continuous Monotonically increasing
native country discrete None

Table 1: Summary of the Adult dataset variables

Treatment of the data The variables education and education num are
bijective. We chose to remove the education variable as the labels are mono-
tonically increasing with respect to the other one. Then, we chose to one-hot
encode all the categorical variables.

In order to test the different algorithms, de decided to perform Monte-Carlo
cross validation (or repeated random sub-sampling validation). For each exper-

1Adult data set Dua, D. and Graff, C. (2019). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information
and Computer Science.
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iment, we perform N trials where we randomly split the set into a training set
and a testing set. The results are then averaged across all the trials. The ratios
we are using are shown on table 2.

Set Ratio Number of data points
Training set 65% 31747
Testing set 35% 17095

Total 100% 48842

Table 2: Split ratio of the data into training and testing

Parameters used The parameters we used for our experiments were set as
stated in table 3. The remaining parameters not mentioned in table 3 were set to
LightGBM’s default values2. Finally, we set the variables age, education num

and hours per weeks to be monotonically increasing. We decided to perform
gradient boosting. We picked the specific depth 5 to have trees that wouldn’t
overfit too much, otherwise it would make our new methods perform better than
what they actually do on the training set and worse on the test set (because
they will be able to overfit better as they are less ”constraining”).

Parameter Value
objective "binary"

boosting "gbdt"

num leaves 32
depth 5

min data in leaf 100
seed 42

bagging seed 42
feature fraction seed 42

drop seed 42
data random seed 42

Table 3: Parameters chosen

1.3 Loss and metrics vs. iterations

The unconstrained method represents an upper bound of the achievable per-
formance on the training set (we cannot learn better with constraints than
without). We use the current constrained LightGBM implementation as a base-
line and plot our results according to it.

2LightGBM parameters
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On figure 2, it can be seen that our new methods learn more efficiently than
the LightGBM baseline and consistently beat it on the training set for the loss
and for all metrics. On the testing set, we also mostly beat the baseline. How-
ever, with many iterations we start to overfit, and therefore some metrics can
get below the baseline, but this could be offset by tuning the regularization
parameters of the gradient boosting scheme.

On these figures, it seems like the slow method is not that useful as a com-
bination of the fast method and penalization achieves almost the same results.
However, for different datasets, and different parameters, especially if we were
trying to build bigger trees, then the slow method could achieve significantly
better results.

1.4 Stability of the loss for with respect to the penaliza-
tion parameter

On figure 3, it can be observed that our heuristic penalty is able to reduce the
loss when it is set correctly. Precise tuning is not required as the results seem
pretty stable, and the improvement is consistent (even though it is offset by
the boosting effect). However, one must be careful to not set the penalization
parameter too high, otherwise, it may prevent any monotone split in the whole
tree. Figure 3 only depicts the results for the fast method. However, the slow
method yields very similar results.

1.5 Computation time for each method

On figure 4, we report the computational cost for each method. We measured
it using the timeit module in Python (so the results are not very precise, as
the standard deviation can be as high as 1ms). These statistics were created
using either 2000, 10000, or close to 50000 random entries. The execution times
were measured over 1 boosting iteration, using a maximum depth of 10 and a
maximum number of leaves of 40, and the trees were filled with the maximum
number of leaves every time. The results are averaged across 5000 runs.

Even though these results are a bit noisy, we can draw very useful insights
from them. Overall, whether we are using LightGBM or our new fast method,
the difference in computational costs is not very significant. The slow method is,
however, much slower than the current LightGBM. Nonetheless, the difference
mitigates when the dataset is bigger and building histogram is a more important
task.

1.6 Plots of the first trees generated by each method

On figures 5, 6, 7, 8, 9 and 10, we plotted the first trees generated by our
different methods to see how they would differ. Here are a few things to notice
to understand the tree visualizations,
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• The trees are all compared to the unconstrained tree. A red leaf means
that the leaf does not appear in the unconstrained tree. A red node
means that the node does not appear in the unconstrained tree (either the
splitting feature is different or the threshold is different, or the parent of
the node is different). A red gain means that the gain for the same node
in the unconstrained tree is different;

• A green node means that the node is monotonically increasing;

• Blue numbers on the nodes show the order in which the nodes have been
split.

Here are a few observations coming from the comparison of the trees,

• As anticipated, the monotone features are extremely important, because
they appear in many nodes in the first trees;

• Up to a certain point (until the first monotone split), all trees are similar
to the unconstrained tree;

• For the penalized method, we can indeed see that no monotone split hap-
pened in the first levels of the tree;

• The outputs of the first tree are all negative because the dataset is imbal-
anced and there are a lot more 0’s than 1’s;

• The trees get even more different as the algorithms keep running;

• Gains for the unconstrained method seem generally greater than for the
rest of the methods, which makes sense. Also, the unconstrained method
has more leaves on this example, which is also coherent.

2 Explanations of the new methods

2.1 New ways of constraining trees

We developed 2 new ways of constraining trees. Both yield better results than
the current LightGBM constraining method. One of the method is about as fast
as the current LightGBM. The other method is much slower (can be as much
as twice as slow in extreme worst case scenarii), but is also more accurate. In
this section, we will present both.

Both methods originally stem from the observation that the current Light-
GBM constraining method is over-constraining the trees. In our methods, when
we make a monotone split, instead of imposing constraints on both children
that make the outputs of all their descendants mutually exclusive, as LightGBM
currently does by setting a mid point, we chose to set up only the necessary con-
straints every time so that the next split would not break the monotone rules.
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More precisely, this means that if the split is monotonically increasing, then the
left child gets the right output as a maximum constraint, and the right child
gets the left output as a minimum constraint. However, is the split is mono-
tonically decreasing, then it means that the left child gets the right output as
a minimum constraint and the right child gets the left output as a maximum
constraint constraint.

Then, when we make any split (monotone or not) in a branch having a
monotone node as a parent somewhere, after making the split, we need to check
that the new outputs are not violating any constraint on other leaves of the
tree. The general idea is that we should start from the node where a split was
just made, go up the tree, and every time a monotone node is encountered,
we should go down in the opposite branch and check that the constraints and
the new outputs from the new split are compatible. If they are not, then the
constraints need to be updated. Therefore making a split in a branch can very
well update the constraints of other leaves in another branch.

2.1.1 The computationally efficient way of constraining trees

In this method, only one minimum constraint and one maximum constraint
need to be stored for each leaf. A constraint is computed as the extremum of
all constraints applied sequentially on a leaf during the construction of the tree.
That makes the constraints very easy to compute, because when a constraint
of a leaf has to be updated, it can be done only by performing a minimum
or a maximum. This method is better than the current LightGBM because it
doesn’t create ”gaps” between leaves, and it is still efficient, because the only
additional thing we need is going through the tree and recomputing some split
sometimes, but usually not that much (especially when we compare it to the
time spent building histograms).

2.1.2 The slower yet more accurate way of constraining the trees

This method is based on the same principle except that for each leaf, for each
feature, for each threshold, we are going to store one minimum and one maxi-
mum constraints. By doing that, we are going to have many different constraints
for every leaf (at most number of features times number of thresholds times 2
for minimum and maximum constraints per leaf, but usually, it is quite a lot
less than that). Then when a split has to be made with respect to a feature,
we can have different left and right constraints for the children depending on
where the constraints were applied on the original leaf. Additionally, when a
split is made, and we start updating the constraints of other leaves, we take
into account the fact that the split may very well have ”unconstrained” some
leaves (as well as constrained others). By doing that we are sometimes able to
split leaves that would not be splittable using the previous methods. Moreover,
since we compute the exact constraints needed everywhere at every iteration of
building the trees, we are not over-constraining any leaf, and therefore trees can

7



get much more accurate. However, when using this method, we need to store
lots of constraints that are going to be updated very often. Furthermore, when
a leaf is ”unconstrained”, then all the constraints need to be computed from
the beginning (otherwise we would need to store which leaves the constraints
come from, and keep them sorted, which, in our opinion, would not be better).
Because of that, this method is quite a lot slower, even though we tried to
implement many optimizations so that it would remain tractable.

2.2 Theoretical example

On figure 11, we imagined a simple situation demonstrating the improvements
of our methods. Let’s imagine that we have a regression problem, with the data
being represented on figure 11a. The only constraint is that the output has
to be monotonically increasing horizontally. The true labels of the points are
given on the right of figure 11a. On figure 11a, we take it as given that the first
split is the same with all methods and that it yields the values written on the
graph. On figure 11b, we assume that the second split is again the same with
all methods and that it yields the values written on the graph. The 3 following
figures depict what would happen for the following split with each method.

• On figure 11c, with LightGBM, since the values on the graph from figure
11a were 0.3 and 0.6, the mid point is 0.45. Therefore, the blue dots are
upper bounded and labelled as 0.45.

• On figure 11d, with the fast method, once the first split is made, the leaf
on the left is given an upper bound of 0.6. Once the second split is made,
every leaf on the left is given an upper bound of 0.5. Therefore, the blue
dots are labelled as 0.5

• On figure 11e, with the slow method, once the first split is made, the leaf
on the left is given an upper bound of 0.6. Once the second split is made,
the top part of the left leaf is given an upper bound of 0.5, and the lower
part of the left leaf is given an upper bound of 0.8. Therefore, the blue
dots are labelled as 0.7, their true value.

We can therefore see that our methods are better at this specific regression
problem, the slow method achieving optimal results with only one tree. Similar
examples happen very often both in regression and classification tasks, when
building trees. Therefore, our methods should consistently yield better results
than the current LightGBM implementation.

2.3 A heuristic penalty for monotone splits

2.3.1 Why penalizing monotone splits is a good idea

The main drawback of adding monotone constraints to a tree is that it may end
up over-constraining the tree because of the greediness of the tree splitting al-
gorithm, and therefore loose in predictive power. By building a tree in a greedy
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fashion, we don’t know how much the constraints of monotone splits are going
to affect the following nodes (it may reduce the gain of the children by a lot).
For our new methods, we don’t know either by how by much a new split is go-
ing to constrain other surrounding leaves and their future children (in the event
that the leaf we are splitting is part of a branch growing from a monotone node).

When using our new method, even though it already yields good results as
we will see in section 1, both these effect happen in almost any tree with rea-
sonable depth when making at least one monotone split. However, we do not
quantify or take into account any of these 2 drawbacks at all in the algorithm.
Yet they can be huge at the first levels of the trees, because the constraints
are going to affect most of the leaves. Therefore, amongst other things, we are
very likely to overestimate the gain generated by splitting a leaf on a monotone
feature; especially early in the trees, where the constraints are going to impact
many leaves.

Unfortunately, this reduction of gain can’t be computed greedily. Indeed, we
would need to know what is going to happen after to quantify it (or we could
try to predict it but that is not an easy task either). However, we were able
to develop a simple heuristic that improves the results, by penalizing monotone
splits early when building trees.

The general idea of the heuristic is that we are likely to not want to make a
monotone split in the first levels of a tree because this is going to constrain too
many leaves. Then, generally, the deeper we go, the more inclined to monotone
spits we are. This is a very general rule than can have many exceptions, but we
believe it is true more often than not. Therefore, we designed a penalty function
that is a function of depth, that will multiply the gain of monotone splits at a
given depth. It is parametrised by only one parameter that we will call γ here
for simplicity, and that allows monotone splits to be penalized the higher they
appear in a tree.

2.3.2 Penalization formula and usage

The final penalty p that will multiply he gain of a node depends on the tunable
parameter γ and on the depth of the node in the tree d, depth 0 being the root.
So we have 0 ≤ d ≤ max depth. The penalty is computed according to the
following formula,

p =

 0 if γ ≥ d+ 1
1− γ

2d
if γ ≤ 1

1− 2γ−1−d else

Moreover, when using the LightGBM framework, we add an extremely small ε
to p, because only splits with a strictly positive gain can be performed, and in
the event that we would only have monotone splits available, we still want split
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one of them.

On figure 12 we plotted what the penalty looks like for different penalization
parameters, as a function of depth. There are some important things to mention
about this penalty function:

• When γ = 0, then there is no penalty at all;

• When γ ∈ [0; 1], then we gradually penalize all depths, and the closer to
1 they are, the more they are penalized;

• When γ ∈ [1; 2], then the penalty for the first level is 0 (we prohibit any
monotone split on this level), and we keep gradually penalizing monotone
splits at all depths, and the closer to depth 2 they are, the more they are
penalized;

• When γ ∈ [2; 3], then the penalty for the first two levels is 0 (we prohibit
any monotone split on these levels), and we keep gradually penalizing
monotone splits at all depths, and the closer to depth 3 they are, the
more they are penalized;

• ...

Therefore, the parameter γ is a very intuitive parameter that shouldn’t confuse
the end user.

2.3.3 Penalization vs. depth plot

On figure 12, we plot the penalty factor that will multiply the gain of monotone
splits, for different depths and penalization parameters.
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3 Conclusion

In this report, we propose two new methods to enforce monotonic constraints
in regression and classification trees, as well as a heuristic to improve the re-
sults. During our tests, we found that our new methods consistently achieve
better results than the current LightGBM constraining method. Our fastest
method does not generate significant additional computational cost compared
to the current LightGBM. Therefore, we believe that our work should replace
the current LightGBM implementation. Finally, as mentioned previously, our
work is not LightGBM-specific and could be implemented in any regression or
classification tree.
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Figure 2: Loss and metrics vs. number of iterations
relative to the constrained LightGBM baseline, for

all methods, on the train and test sets
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Figure 2: Loss and metrics vs. number of iterations
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all methods, on the train and test sets

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

penalization parameter

10
20

30
40

50
75

10
0

15
0

20
0

30
0

40
0

50
0

nu
m

be
r 

of
 tr

ee
s

­0.00% 0.17% 0.26% 0.31% 0.33% 0.15% 0.07% ­1.12% ­1.54% ­2.16% ­4.23%

­0.00% 0.43% 0.44% 0.45% 0.41% 0.23% ­0.04% ­1.25% ­1.70% ­2.46% ­6.73%

­0.00% 0.46% 0.51% 0.62% 0.55% 0.47% 0.23% ­0.69% ­1.20% ­1.98% ­7.97%

­0.00% 0.51% 0.62% 0.66% 0.68% 0.52% 0.39% ­0.41% ­0.91% ­1.67% ­8.87%

­0.00% 0.67% 0.75% 0.78% 0.81% 0.70% 0.57% ­0.07% ­0.64% ­1.36% ­9.32%

­0.00% 0.50% 0.64% 0.71% 0.70% 0.65% 0.63% 0.21% ­0.34% ­0.95% ­10.50%

­0.00% 0.42% 0.56% 0.63% 0.61% 0.55% 0.57% 0.33% ­0.07% ­0.57% ­11.04%

­0.00% 0.35% 0.46% 0.50% 0.53% 0.49% 0.48% 0.40% 0.12% ­0.20% ­11.60%

­0.00% 0.33% 0.45% 0.50% 0.54% 0.50% 0.46% 0.42% 0.15% ­0.06% ­11.81%

­0.00% 0.34% 0.40% 0.43% 0.51% 0.42% 0.43% 0.35% 0.01% ­0.09% ­12.30%

­0.00% 0.28% 0.38% 0.45% 0.36% 0.38% 0.31% 0.26% ­0.11% ­0.17% ­12.66%

­0.00% 0.18% 0.38% 0.41% 0.41% 0.28% 0.27% 0.15% ­0.20% ­0.25% ­12.91%

Loss reduction generated by the penalized splits relative to the unpenalized splits, on the train set

­2%

­2%

­1%

0%

1%

Figure 3: Relative loss reduction for penalized
monotone splits, compared to unpenalized splits, for

different penalization parameters, fot the fast
method

13



2000 10000 ~50000
dataset size

0

2

4

6

8

10

12

ex
ec
ut
io
n 
tim

e 
(m

s)

LightGBM unconstrained
New implementation, unconstrained
LightGBM constrained
New implementation constrained fast method, without penalization
New implementation constrained fast method, with penalization
New implementation constrained slow method, without penalization
New implementation constrained slow method, with penalization

Figure 4: Mean execution time of the different
methods for different dataset sizes averaged over

5000 runs

14



Figure 5: First two trees generated by the
unconstrained method15



Figure 6: First two trees generated by the baseline
LightGBM method
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Figure 7: First two trees generated by our new slow
method, with no penalization
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Figure 8: First two trees generated by our new slow
method, with a penalization parameter of 2
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Figure 9: First two trees generated by our new fast
method, with no penalization
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Figure 10: First two trees generated by our new fast
method, with a penalization parameter of 2
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