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Interferometric Graph Transform:
a Deep Unsupervised Graph Representation

Edouard Oyallon

Abstract

We propose the Interferometric Graph Transform
(IGT), which is a new class of deep unsupervised
graph convolutional neural network for building
graph representations. Our first contribution is to
propose a generic, complex-valued spectral graph
architecture obtained from a generalization of the
Euclidean Fourier transform. We show that our
learned representation consists of both discrim-
inative and invariant features, thanks to a novel
greedy concave objective. From our experiments,
we conclude that our learning procedure exploits
the topology of the spectral domain, which is nor-
mally a flaw of spectral methods, and in particular
our method can recover an analytic operator for
vision tasks. We test our algorithm on various
and challenging tasks such as image classifica-
tion (MNIST, CIFAR-10), community detection
(Authorship, Facebook graph) and action recog-
nition from 3D skeletons videos (SBU, NTU),
exhibiting a new state-of-the-art in spectral graph
unsupervised settings.

1. Introduction

Recently, a huge interest has arisen in canonical repre-
sentations for non-Euclidean domains, which has lead to
the development of Graph Convolutional Neural Networks
(GCNN) (Bronstein et al., 2017; Kipf & Welling, 2016).
They are useful to describe many types of data: social net-
works (Wu et al., 2019b), manifolds (Henaff et al., 2015),
3D-skeletons (Mazari & Sahbi, 2019), molecules (De Cao &
Kipf, 2018), and text (Defferrard et al., 2016a), etc. Mainly
two classes of architectures address this representation learn-
ing task: on one side, the spatial graph convolution meth-
ods (Wu et al., 2019b) which rely on node neighborhoods
of a given graph, and on the other side, spectral methods
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(Defferrard et al., 2016b), which heavily rely on spectral
representations estimated from a given Laplacian operator.
We consider the latter: in this setting, typical successful
representations are obtained from deep GCNN, whose fil-
ters are often learned through supervision (Bronstein et al.,
2017). We also note that GCNNs on regular grid exhibit a
significant performance gap with their Euclidean domain
counterpart, indicating that more effort must be done to in-
corporate efficiently this geometry. In this work, we propose
a new class of spectral architecture which is unsupervisedly
infered from a graph’s Laplacian.

By design, standard spectral methods suffer from several
inherent issues, which also apply to Euclidean domain. A
first issue is the lack of topology of the Laplacian’s eigenvec-
tors. For the sake of illustration, observe that for a smooth
felL? (Rk), k > 0, the Fourier transform of its Laplacian
satisfies:

Vw € R*, Af(w) = —[w]?f(w).

Here, the topology of the eigenbasis (e.g., a cosine family)
is difficult to exhibit from its corresponding eigenvalues.
For instance, two rather different frequencies (e.g., w1 #
w9) with the same amplitude (e.g., ||w1|| = ||w2||) will not
be distinguished by a spectral clustering algorithm based
solely on |lwl||. This typically leads to filters which are
isotropic and not selective to a specific direction, which also
holds for spatial methods (Bronstein et al., 2017). A second
issue is that the graph convolution employs filters which
are built from local operators such as a Laplacian matrix:
this typically leads to a smoothing operator (Kampffmeyer
et al., 2019; Li et al., 2018; NT & Maehara, 2020; Wu
et al., 2019a). Thus, in those settings, spectral GCNN lose
the ability to discriminate high-frequency attributes of a
signal, which are also usually unstable and thus difficult to
capture (Mallat, 1999). In our work, we address those two
issues by learning a complex-valued isometry in the spectral
domain, which has, for instance, the ability to recover the
spectral topology of 2D frequencies, without incorporating
any specific prior: the filters are anisotropic and smooth in
frequencies.

With GCNN, many architecture choices and design remain
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unclear and are obtained from a trial and error engineering
process, such as the choice of a pooling operator or the
non-linearity. Contrary to this, we motivate each building-
block of our architecture from the scope of obtaining smooth
graph representation. Furthermore, if the operators of a deep
network are trained end-to-end, they lack interpretability
(e.g., explicit layer objective) because an end-to-end opti-
mization algorithm can specify freely the weights of the
internal layers of a neural network (Oyallon, 2017). For
the sake of analysis, we learn each layer successively via a
greedy procedure (Belilovsky et al., 2018; 2019).

Stability to deformations and perturbations of a graph is
motivated and achieved in Gama et al. (2019). In our work,
our representation will clearly not be stable to local changes
in the graph metric due to deformations (see Section 3.2).
Instead, we address the problem of learning invariant to
permutations but discriminative features. This is achieved
through a simple averaging (or smoothing) which is de-
duced from the graph Laplacian, and our linear operators
are optimized to be discriminative and to lead to smooth
features.

We denote our approach Interferometric Graph Transform
(IGT). Our architecture which consists of a cascade of com-
plex isometry, modulus non linearity and linear averaging.
No supervision is needed, and our representation is guaran-
teed to achieve a global invariance over the permutations of
the graph domain, if the final task requires it. Unsupervised
learning is of particular interest for large datasets whose la-
beling cost is high. We also require the adjacency matrix for
learning each linear operator, because our method relies on
the intrisic topology of the data, yet this could be estimated
from the data themselves (Carey, 2017).

The IGT is defined in Section 3.1. First, Section 3.2 defines
a generalization of the complex-valued Euclidean Fourier
Transform. Then, we explain our choice of linear operator
in Section 3.3, and the optimization process is described
in Section 3.3.2. Finally, Section 4 reports our accuracies
at the level of the state of the art on vision, skeletons and
community detection tasks, which indicates the genericity
of our approach. The corresponding code can be found
here: https://github.com/edouardoyallon/interferometric-
graph-transform.

Notations: for some complex or real vectors x =
(«[i])i»y = (y[i])s» we consider the Hermitian scalar prod-
uct (z,y) = >, z[ily[i] and we write ||z||* = (z,z). Also,
j? = —1. The operator norm of a complex or real oper-
ator is given by ||W| = sup, “ﬁ‘;ﬁ”. We write z > 0
iff Vi, z[i] > 0 and x # 0. We also denote {A, B} the
concatenation of the operators A, B, and A* = A", the

transconjugate.

2. Related works

The Group Scattering Transform (Mallat, 2012) is a non-
linear operator which can be interpreted as a complex neural
network defined over a Euclidean space sampled from a reg-
ular grid. Similarly to our work, it corresponds to a cascade
of unitary transform, complex modulus and linear averag-
ing. Yet, the unitary operators are fixed as a dilated wavelets
family and involve no learning procedures. Scattering Trans-
forms are thus difficult to adapt to non-regular grids. To
tackle this issue, Gama et al. (2018; 2019) introduces the
Graph Scattering Networks. They consist in a cascade of
real wavelet transform and absolute value non-linearity. The
wavelet transform is typically defined via the eigenvectors
of the graph Laplacian, and thus suffer from issues stated
in the Introduction. Furthermore, an absolute value is used
in order to introduce a demodulation, yet the filters are not
designed to do so, contrary for instance to a Gabor transform
(Oyallon et al., 2018a). Another comparable architecture
is the Haar Scattering Network (Chen et al., 2014), which
employs Haar wavelets. A Haar tree is defined by forming
pairs of nodes with similar statistics, yet this considerably
reduces the class of graphs that can be represented. Another
proposition was to implement unitary operator for reducing
the variance (Mallat & Waldspurger, 2013), in the specific
case for which the averaging is performed by block. Yet,
integrating the Laplacian’s knowledge in these two formu-
lations remains unclear as well as the link with invariance.
Contrary to wavelet transforms, our operators are not struc-
tured by dilated filters: we shall see that our filters are closer
to a Windowed Fourier transform (Mallat, 1999). Due to
this reason, while our representation has a lot of similarity
with a Scattering Transform, we decided to use a different
name borrowed from (Mallat, 2010).

A large variety of pooling operator has been proposed: lin-
ear pooling (Bruna et al., 2013; Gao et al., 2019; Gao & i,
2019; Luzhnica et al., 2019), attention based pooling (Lee
et al., 2019), max-pooling (Hamilton et al., 2017; Deffer-
rard et al., 2016b), soft-max pooling (Ying et al., 2018) and
more. The general principle which guides the design of
those pooling operators is an intermediary step of dimen-
sionality reduction for handling large graphs and speeding
up computations. To our knowledge, this is the first work
to introduce and motivate a £2-pooling (here, a modulus
non-linearity) for graphs, specifically designed for building
a representation whose discriminability will be preserved
after the composition with a smoothing operator.

A related line of work proposed to combine GCNNs and
auto-encoders (Salha et al., 2019; Kipf & Welling, 2016).
The main idea is to embed the graph representations into a
lower dimensional space thanks to a reconstruction criterion.
Yet, this formulation does not take in account the need of
invariance for addressing certain tasks. Belilovsky et al.
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(2017) applied deep networks to learn models to infer unsu-
pervised graph structures, this however requires restrictions
on the underlying data distribution. On the other hand, (Wu
et al., 2019a) postulates that progressive linear low-pass fil-
tering is a key ingredient responsible for the success of GCN.
Yet, the obtained invariants are linear: in our work, we build
non-linear invariants thanks to a modulus non-linearity.

The goal of our method is not to describe graphs, yet signals
whose topology is given by a fixed graph. In other words,
the graph we use is not sample dependant. Thus, we do not
compare to unsupervised lines of works such as Ren et al.
(2019); Velickovi¢ et al. (2018). Furthermore, note that one
could consider the larger setting of graphons (Ruiz et al.,
2020), that would allow more flexibility in term of graph
lengths.

3. Interferometric Graph Transform
3.1. Definition

Let d € N be the dimension of interest. We now introduce
the Interferometric Transform, which is defined over signal
x € R?¥*1 without loss in generality'. It consists of a cas-
cade of linear isometries, pointwise modulus non-linearities
and linear averagings. This is similar to Gama et al. (2018)
yet the linear operator is not a family of dilated wavelets.
Formally, for a sequence of complex linear operators W,
we define recursively the real non-linear operator:

{Unﬂx = WUy,

Upx = x.

)

Typically, U,z is a concatenation of signals with same di-
mension as  and the operator W,, = {W*} applies simul-
taneously the same collection of filters W} to each element
of U,x. Given a linear averaging A, we then define the
Interferometric Transform? of order N € N as:

SNJ): {AUN.Z‘,...,AU()J)}. (2)

It is illustrated Fig. 1. We shall choose the {V,, },, approxi-
matively unitary, meaning that there exists 0 < € < 1, such
that for any z € R24+1:

(1= llzl* < [Wal|* + [ Az|* < [lz]I*.  (3)

The operator A is chosen non negative and of norm 1. The
following lemma will be helpful to show that S does pre-
serve the energy of a signal:

Lemma 3.1. IfVz > 0, Ax > 0 and ||A]| < 1, then 30 <
C <1,Vx >0,

Clla| < [|Az]| < [|=[] -

'Up to adding a 0 component, one can always assume it because
the 0-th frequency has no meaningful pairing.

2We recall that we did not employ wavelets, thus leading to a
name different from ”Scattering Transform”.

CUJ-'“WH W2 Sow

Figure 1. An illustration of the IGT with N = 2.

Proof. Since || Az|| < ||z||, then if such C' exists, it satisfies
C < 1. Furthermore, {z > 0} N {||z|| = 1} is compact,
thus, x — || Az is minored by C' and reached: there exists
C,zo > 0, ||zg]| = 1s.t. ||[Azg]] = C > 0 by assumption
on A. O

In this case, Proposition 3.2 shows that .S is approximatively
unitary and is non-expansive.

Proposition 3.2. For N € N, Sy is non-expansive, ie,
Va,y:
[Sne — Snyll < llz —yll, (4)

and also:

[Snal <l - (5)

Furthermore, if ¢ = 0, then:

Jim|Swal| = ] (6)

Proof. For Eq. (4), observe that one has a cascade of non-
expansive operator. For Eq. (5), observe that Sy0 = 0. For
the other side of the inequality, observe that Equation (3)
leads to:

[Unz]|* = | AUn2|* + [Un 12| (7

Thus, a simple sum leads to:

N
> AU | + [Unga2]® = [,
n=0
and from Lemma 3.1, |[Uyz|?> < (1 — C*)N||z|*> = 0
allows to conclude.

O

We will now discuss the specific setting of Interferometric
Transforms defined over graphs G.

3.2. Recovering a Fourier basis

The goal of this section is to introduce our complex oper-
ator which is equivalent to a Fourier Transform designed
specifically for a graph. Here, we will consider signals
whose coordinate’s topology is organized by a graph G,
with 2d 4+ 1 nodes and we name its corresponding Laplacian
operator L. Without loss of generality, we consider graphs
with a single component, the extension to more components
being natural by considering each sub-component individ-
ually. We write the orthogonal diagonalization basis of L:



Interferometric Graph Transform

{e1, ..., ea4+1}, such that Lesg+1 = 0. In our applications,
e2d+1 = (1,...,1) and a typical averaging A that we will
use, corresponds to:

Az = (x,e9441) -

This is a consistant choice with Lemma 3.1. Note that we
need to make an arbitrary choice of basis at the moment that
one eigenvalue is of multiplicity larger than 1. As discussed
in the introduction, the indexes {1, ..., 2d 4 1} of the basis
lacks structure, meaning that the order of the eigenvectors
does not reflect the actual geometry of £. However, stan-
dard approaches (Hammond et al., 2011) sort eigenvectors
according to the amplitude of their eigenvalues and they
employ this topology: here, we propose a rather different
approach which behaves well in constant curvature settings.
Our objective will be to pair basis’ atoms according to the
smoothness of their envelope. This will be analogous to
form Hilbert pairs (Krajsek & Mester, 2007), which corre-
sponds to a pairing of the elements of the basis {e1, ..., ea4}
in order to design an analytic representation (Johansson,
1999). Well localized representations using Hilbert pairs
have typically a smooth modulus (Oyallon et al., 2018a),
and this analogy is a motivation for introducing this notion.
To do so, for a permutation 7 of {1, ..., 2d}, we introduce
the pairing cost:

d 2d+1

C(m) =3 3 \fen ]2 + exor v )2
Zzl k=1 (8)
= Z llexf2i + exzi—1ll1 -
i=1

Observe that a simple application of Cauchy-Schwartz in-
equality leads to C(7) < dv/2d + 1. We propose to find
the permutation 77* such that:

C(r*) = max C(m).

Again, this problem aims at finding permutations such
that pairs of eigen vectors have a complex envelope which
maximizes the energy along the span of A. Observe that
this loss can be written as a separable sum of 2-entries
losses. In this case, an exact solution can be obtained
via a Blossom algorithm (Edmonds, 1965) which runs
in polynomial time. Note that this algorithm combined
with the eigen-decomposition procedure needs to be com-
puted once, and it leads to a computational complexity of
O(d?) in the worst case scenario. We then consider the
matrix F = {F;}i<24+1 whose columns are defined by
V1 <11 <d,

Fi = €r+[2i tJer [2i-1,
Fodt1—i = €xx[2i] — J€nr[2i-1] » 9

Fadt1 = e2d41 -

Observe that if i < d, then F; = Fogp1—; € C24H1. We
can then state the following proposition:

Proposition 3.3. The matrix F is unitary on C23+1,

Proof. For simplicity, assume 7*[i{] = 4. Then, let i s.t.
i < d. Assume first that j < d, j # 4, then eg; L ea;,€e2; L
e?j—lﬂi—l 1 €2j5,€2i—1 L €251, thus -Fz 1 .Fj and also
Fi L F;. Finallyif j =2d + 1 — 4,

(Fi, Fi) = (eai + jezi—1, €2 — je2i—1) = |leail|* — [le2i—1]?
0

O

For illustration purpose, consider the graph G of a grid
of length 2d + 1 with periodic boundary condition, an
eigenbasis of its discrete Laplacian is clasically given, for
kE<d,m<2d+1,by:

1 s 1
eop—1[m] = 2d+lcos(2d+1(mf§)2k), (10)
1 . s 1
egk[m]:g/2d+1sm(2d+1(m—§)2k), (11)

1
NTEah (12)

In this case, we have the following lemma to derive the
optimal pairing 7*:

e2dt1[m] =

Lemma 3.4. An optimal permutation ©* is given by
m™*[n] = n.

Proof. Introducing Az = ﬁ >, x[m], from Cauchy
Schwartz, under the constraint ||z|| = 1, Ax is maximal iff
x[m] = 1,Vm. This is in particular true for |z|[m] = |z[m]|
if z[m] = e¥*™ for some w € R, which is achieved by the

pairing proposed in this Lemma. O
In this case, F;[m] = ﬁej’é‘d%(m_%)%,i < d. This

thus justifies the terminology Fourier Transform for F (up
to a phase multiplication) as one can recover the Discrete
Fourier Transform: our method has a natural interpretation
in the Euclidean case. Pairing those eigen-vectors allows to
introduce an asymetry between the real and imaginary part
of our spectral operator, which will be useful and necessary
for learning a complex unitary operator, that we discuss in
the next section.

3.3. Specifying the isometry layer per layer

3.3.1. AN ENERGY PRESERVING PROCEDURE

We now describe our objective for specifying each operator
W, at order n. The graph filtering operators W,, that we
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consider consists of K filters, meaning that the eigenvalues
{Wk} c C2¥1 k < K of each W can be derived from
F via:

F*WEF = diag(WF),vk < K .

With a slight abuse of notations when non-ambiguous, we
might write diag(W*) as WF. Let us write 21, ..., 2, ... €
RQ*(2d+1) our data points, where Q € N is the number of
input channels. For a signal 2, consider the loss:

(W, 2) = (L= A)z[|* — | A[W2]||*.

If W is an isometry, this quantifies the energy preserved after
an averaging A. We will only consider operators which are
1-Lipschitz and diagonalized by F, thus we consequently
introduce:

C={W;|{W, A}|| <1, F*W*F = diag(W*),Vk} .
13)
Our operator W,, will be specified by the following mini-
mization of the empirical risk L:

A . _ .
W, £ arg Imin ;E(VV, Unzp) = arg Imin L(W). (14)

Appendix A proves that L is concave in W, and is posi-
tive if ||[{W, A}|| < 1. It is very similar to a Procrustes
problem (Schénemann, 1966). Concave minimization has
been well studied, and a global solution of a concave min-
imization over a convex set lays in the extremal points of
this convex set (Horst, 1984; Rockafellar, 1970; Pardalos
& Rosen, 1986). The next proposition characterizes the ex-
tremal point of C, whose proof is defered to the Appendix.

Proposition 3.5. Let S the extremal points of C, then S C
(W [Waz| = (I A)z|, Ve € R*+1}

The Figure 2 represents the spectrum of an operator W
learned from the small natural images of CIFAR-10. Re-
markably, this operator is analytic, meaning that half of the
frequency plane is set to O (up to a per-filter central symetry).
This is natural because the analytic part of a filter is known
to provide a smoother envelope, which is better captured by
a low-pass filtering (Mallat, 1999). In the settings of Oyal-
lon et al. (2018a), this is quantified. Note also that the filters
are localized and smooth in frequency, which indicates that
the learned filters have efficiently used the topology of the
frequency domain, without explicitely incorporating any
specific a priori.

For a general graph, the topology of the frequency index
is in general unknown, meaning that designing an analytic
operator is challenging. On the other hand, our criterion
should enforce filters which have a smooth modulus, i.e.,
which maximize the energy of the envelope |W x| along the
span of A. In the next section, we discuss how to optimize
Eq. (14).

Figure 2. Spectral filters’s modulus \VV{“ | of a first order learned
operator. The 0 frequency corresponds to the center. An approx-
imatively analytic transform is obtained by solving Eq. (14) for
small CIFAR-10 natural images. Observe that the filters are well
localized with various frequency bandwidths, and most of them
are analytic. Some filters have some noisy high frequencies, which
are mainly due a poor conditioning: indeed signals’ energy is
concentrated in a disk around the central frequency.

3.3.2. A PROJECTED GRADIENT METHOD

We propose to minimize Eq. (14) by a projected gradient
descent as derived in (Hager et al., 2016). Obtaining a global
minimizer is a difficult task as explained in Horst (1984). In
order to define our projection, we introduce a Littlewood-
Paley identity (Stein, 1970) T, related to W defined by:

Di= Y [WE2d +1 — ] + [W*]]? i < 2d,
Fogy1 = 22?:1 |Wk[2d + 1]‘27

as well as A relatedto I — A:

Ai =2~ |A[i])2 — |A[2d + 1 i]|? i < 2d,
Asgyr =2 —2|A[2d + 1]]2.

We then define the diagonal matrix P, whose diagonal is:

. LifIy < Ay,
Pi = A, .
’/ﬁ’ otherwise.

Then the convex projection on C is given filter-wise by:

proj(W*) = F*W*PF.

This leads to the following scheme, for a decreasing se-
quence of step size oy and L, the loss at step ¢:

W = proj(W' — o, Vi Ly (W) ,
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with a random initialization W} such as a white noise. In
our experiments, we typically use a stochastic gradient, thus
the loss L; corresponds to the empirical loss over a ran-
domly selected batch of samples. The next section provides
numerical experiments which corroborate that we success-
fully optimized this operator to obtain a discriminative but
smooth representation.

4. Numerical experiments

For each experiments, we combine an IGT representation
with a linear SVM, as implemented by Fan et al. (2008).
We select the order of the IGT such that more than 99%
of the energy is captured, leading at maximum to an order
2. We systematically report state-of-the-art performances
in unsupervised spectral GCN settings. We note that in all
our benchmarks, typical unsupervised representations are
shallow, similarly to our representation, which indicates that
training deep unsupervised representations is a challenging
task. The regularization of the SVM was cross-validated
as C' = 107" k = 0, ...,4; no more than 3 runs have been
done, without any intensive grid search. Also, as a sanity
check, we experimented with random F or W,,, leading
systematically to substential drops in performances.

4.1. Image classification

In each vision experiments, we consider the Laplacian ob-
tained from a regular grid and we follow Henaff et al. (2015)
combined with our Lemma 3.1: we can explicitely consider
the standard 2D Discrete Fourier Transform. Note that shuf-
fling image’s pixels (assuming that the Laplacian is shuffled
consistantly) does not affect our algorithm: our method al-
lows to recover the Euclidean grid structure without being
explicitely incorporated, contrary to a 2D CNN. We limited
our experiments to a single layer, because it already captures
most of the signals’ energy. We compared our numerical
performances against a Gabor Scattering Transform (An-
dreux et al., 2018) as well as a Haar Scattering Transform.
In Chen et al. (2014), two settings are considered: one for
which the geometry is known (2D grid), and one for which
it is not (no grid). Also in Chen et al. (2014), an ensembling
of models, combined with a supervised feature selection
algorithm is used, as well as a Gaussian SVM. Instead, for
the sake of comparison, we have re-run their code for a
single model followed by a Linear SVM, which leads to a
substantial drop in performances. In both settings, our oper-
ators have K7 = 40 filters. The operator W is learned via
SGD with batch size 64, for 5 epochs. We reduced an initial
learning rate of 1.0 by 10 at iterations 500, 1000 and 1500.
Oyallon & Mallat (2015) and Bruna & Mallat (2013) found
that averaging Scattering representations with a low-pass
filter over a windows of length 27/ = 23 was optimal, thus
we did not change this hyper parameter: if ¢ ; is a Gaussian

Table 1. Classification accuracies on CIFAR-10. Sup. and Acc.

stand respectively for Supervision and Accuracy.

METHOD DEPTH SupP. AcCC.
RAW DATA X 39.7
SPECTRAL GCN

IGT (OURS) 1 X 52.4
HAAR SCATTERING (NO GRID) 2 X 46.3
(KNYAZEV ET AL., 2019) 3 Vv 50.6
(SUCH ET AL., 2017) 1 Vv ~ 52
2D CNN

GABOR SCATTERING 1 X 64.9
HAAR SCATTERING (2D GRID) 4 X 43.4
(ZAGORUYKO & KOMODAKIS, 2016) 40 Vv 94.1

filter of length 27, we consider in those experiments:
Ax(u) =z % ¢y(u/2”). (15)

4.1.1. CIFAR-10

CIFAR-10 is a challenging dataset of small 32 x 32 colored
images, which consists of 5 x 10* images for training and
10* for testing. Table 1 reports our performances with a lin-
ear classifier. Observe that our method improves by about
10% the classification from the raw data. We also compare
our work with supervised spectral methods, and we achieve
similar performances without supervision. Despite incor-
porating more pointwise non-linearity, a Haar Transform
performs substantially worse, which indicates that Haar fea-
tures are not discriminative enough. Our spectral method
leads to state-of-the-art performances, competitive with su-
pervised methods. By incorporating the Euclidean domain
knowledge, a Gabor Scattering outperforms by 10% the
IGT, and adding some additional supervision and more non-
linearity leads to the state of the art on CIFAR10 (Zagoruyko
& Komodakis, 2016).

4.1.2. MNIST

MNIST is a simple dataset of small 28 x 28 images, which
consists of 6 x 10* images for training and 10* for test-
ing. Table 2 reports the accuracy of our method. Again,
our method outperforms unsupervised spectral represen-
tations: for instance, IGT outperforms (Zou & Lerman,
2019) which defines a Scattering Transform based on graph
wavelets. Adding some supervisions, such as in Defferrard
et al. (2016b), allows to obtain competitive performances
with spatial convolutional methods (Bruna & Mallat, 2013).

4.2. Action prediction

‘We now consider several 3D skeletons datasets, whose ob-
jective is to predict an action from a sequence of frame.
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Table 2. Classification accuracies on MNIST.

Table 4. Classification accuracies on NTU, with a final linear clas-
sifier.

METHOD DEPTH SUP. AcCC.
RAW DATA i « 93.8 METHOD DEPTH VIEW  SUB
GCN RAW DATA - 229 319
IGT (OURS) 1 X 96.1 UNSUPERVISED
(Zou & LERMAN, 2019) 2 X 95.6 IGT (OURS) 1 54.6  60.5
HAAR SCATTERING (NO GRID) 6 X 82.3 IGT (OURS) 2 55.6 599
(DEFFERRARD ET AL., 2016B) 2 Vv 99.1 (EVANGELIDIS ET AL., 2014) 2 414 38.6
7D CNN (VEMULAPALLI ET AL., 2014) - 52.8 50.1
HAAR SCATTERING (2D GRID) 4 X 88.6 SUPERVISED
GABOR SCATTERING 1 X 98.6 (LTET AL., 2019) >2 90.1 96.4
(DEFFERRARD ET AL., 2016B) 2 Vv 99.3

Table 3. Accuracies on SBU, via a standard 5-fold procedure.

4.2.2. NTU

METHOD DEPTH Acc.
RAW DATA - 92.7
UNSUPERVISED

IGT (OURS) 1 91.3£1.0
IGT (OURS) 2 94.5+1.0
(KACEM ET AL., 2018) 93.7
SUPERVISED

(WU ET AL., 2019A)° 1 96.0
(MAZARI & SAHBI, 2019) 1 98.6

For each dataset, a (handcrafted) skeleton represented as
a graph is provided, based on human body connectivity,
whose nodes are the coordinates of some human body parts
(not images). Here, we preprocess our datasets using the
representation proposed by Mazari & Sahbi (2019), which
consists of a temporal barycenter of each node’s coordinates
taken along non-overlapping windows of equal time length.
We note that our goal is not to propose a new better pre-
processing method than the other works we compared to,
yet to improve the initial features, thus we reported the raw
data accuracy.

4.2.1. SBU

Eeach SBU sample describes a two person interaction, and
SBU contains 230 sequences and 8 classes (6,614 frames).
The corresponding graph has 30 nodes. The accuracy is
reported as the mean of the accuracies of a 5-fold procedure.
We used an order 2 IGT, with K; = Ky = 30 filters for
each operator. We train our operators for 5 epochs, with
a batch size of 64, an initial learning rate of 1.0, dropped
by 10 at the iterations 10, 20 and 30. Table 3 reports the
accuracy of various supervised and unsupervised method
on SBU. An IGT improves by about 2% a linear classifier
on the raw data. Furthermore, our method achieves simi-
lar performances compared to supervised methods, while
outperforming unsupervised representations.

NTU is a challenging dataset for large scale human action
analysis (Shahroudy et al., 2016), with 60 different classes
and 56880 samples, corresponding to 40 subjects and 80
different views. The corresponding graph has 50 nodes. Two
procedures allow to report the accuracy. In cross-subject
evaluation, 40 subjects are split into training and testing
groups, consisting of 20 subjects such that the training and
testing sets have respectively 40,320 and 16,560 samples.
For cross-view evaluation, the samples are split according
to different cameras view, such that the training and testing
sets have respectively 37,920 and 18,960 samples.

We use K; = 10 and Ky = 5 filters respectively for our
two learned operators. We trained via SGD our representa-
tion, with a batch size of 64, an initial learning rate of 1.0
being dropped by 10 at iterations 100, 200 and 300. Table 4
reports the accuracies for various unsupervised and super-
vised methods. First, observe that our method improves by
about 30% a linear SVM trained on the raw features. It also
outperforms all the unsupervised methods, yet a sigificant
gap of 30% exists with supervised algorithm.

Here, we note that a global invariant to permutations was
not required, thus we did not average our representation.
In this case, a linear invariant is obtained from a linear
SVM, which can freely adjust the degree of invariance to
the supervised task which is considered, yet it leads to an
extra-computational cost. Table 5 corresponds to an ablation
of our method and indicates that here, not averaging our rep-
resentation improves accuracies. Note also that in this case,
first and second orders perform similarly: it indicates that
the second order doesn’t recover more informative attributes
yet this doesn’t invalidate any claims done. It also leads to a
substential increasing of dimension. However, with an av-
eraging, the second order brings a significant improvement
over the first order because it recovers more information.
Without averaging our representation, the accuracies vary
by less than 1%.
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Table 5. Ablation experiments on NTU, with IGT.

ORDER AVERAGING VIEW SUB
1 Vv 39.7 44.0
2 Vv 49.3 529
1 X 54.6  60.5
2 X 55.6 59.9

4.3. Community detection

We reproduce the experiments of Gama et al. (2019) using
their provided source code, and we compare our representa-
tion with a Graph Scattering Transform (GST) using various
mother wavelets. In all our experiments, we used a single
order IGT, and our operator is learned with a SGD with con-
stant step size of 10~ and batch size of 64. We followed
the same evaluation procedure as Gama et al. (2019). Our
experiments suggest that selecting a linear operator accord-
ing to a smoothness criterion can improve the numerical
performances compared to a wavelet transform, which is
stable to deformations.

4.3.1. AUTHORSHIP ATTRIBUTION

This dataset consists of a graph with 188 nodes representing
a bag-of-words for some collection of texts. The objective
is to decide if a writer is the author of a given text. The
benchmarking of this dataset consists of reporting the accu-
racy given a number of training sample. Observe on Figure
3, that IGT systematically outperforms Gama et al. (2019)
for each training size.

0.90 4

0.85 4

£ 0.801

/N

Classification accuracy
5}
5

0701 44— Diffusion
Monic Cubic

=4 Tight Hann

0651 —— GFT

—— 1GT

400 600 800 1000 1200 1400

Number of training samples

Figure 3. Authorship attribution. We compare our IGT with vari-
ous mother wavelets proposed in Gama et al. (2018). The accuracy
is a function of the number of training samples.

4.3.2. FACEBOOK GRAPH

The dataset consists of a synthetic 234 nodes graph mod-
eling some Facebook interactions. A diffusion process is
initiated at some node, and the objective is to determine
which community this original node belongs to. In order
to make this dataset challenging, a fraction of the edge is
dropped and the classification accuracy is reported for var-
ious probability of edge failure. 2 x 103 points are used
from training and 2 x 10% points for testing. Figure 4 re-
ports our performances. Obtaining 100% on the test set, our
method solves this dataset, which clearly outperforms GST
introduced in Gama et al. (2018) for each wavelet family.

1.04

|
/1 1

]
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Monic Cubic
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— v
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Probability of edge failure

Figure 4. Facebook graph. We compare our IGT with various
mother wavelets proposed in Gama et al. (2018). The classification
accuracy is reported as well as its variance, as a function of the
fraction of edges dropped.

5. Conclusion

In our work, we introduced the Inteferometric Graph Trans-
form, which is an unsupervised, generic and interpretable
representation that is guaranteed to obtain smooth features.
We introduced a complex unitary transform for graphs ana-
log to a Fourier transform. Thanks to our concave optimiza-
tion procedure motivated by invariance and energy preserva-
tion considerations, we obtain performances at the level of
the state of the art on many various complex benchmarks. In
vision settings, we observe that our method obtains analytic
and well structured operators, which is surprising.

In a future work, we would like to extend this method to
hybrid models, combining IGT and deep supervised GCN
models, as done in Oyallon et al. (2018b; 2017) for natural
images on a regular grid. Another question which is still
open, is to understand if it would be possible to provide a low
dimensional mapping (Jacobsen et al., 2017) of our spectral
basis, similar to the index of a IN-dimensional Fourier basis.
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A. Proof that L is concave and positive.

We will use the notations previously introduced as well as:
zp = Unzp .
As L(W) = >_ LW, zp), we will simply study Vz,

W = (W, 2) = (T = A)z]* — [AW=]]]*.

Observe first that if ||{W, A}|| < 1, then | 4| < 1, and:
Wz|| < [[(T-A)|
Thus,
[W=[]| < [[(T— A)z]]
and:
[AW=[|| < [[(T—A)z]|.

Consequently, ({(W, z) > 0,Vz, VW € C. Furthermore, let
W1, W € C two operators and 0 < A < 1. Then:

[(AW1 + (1 = \)Wa)z| S AWz + (1 — X)|[Waz

where for z € R", ¢ > 0iff x; > 0. If Ax > 0 when
x > 0, then:

A|(>\W1 +(1- )\)Wg)z\ < AWz + (1 = X)) AWz,
which implies (as all coordinates are non negative):
[AJAW L +(1=X)Wa) 2 |* < [INA[W3 [2+(1-X) A[Wa 2|2,

yet one can use the fact that = — [|z||? is convex to conclude.
Thus, W — £(W, z) is convex in W.

B. Proof of Proposition 3.5

Proof. Observe that F linearly conjugates C to {W €
CRHDIE Sy WA+ W2 +1 )P+ | Afi)> +
|A2d +1 —d])2 < 1,Vi < d, 50, [WF2d + 1] +
|A[2d + 1]|*> < 1}. The extremal points of the latter
are simply 8’ = {W e CEHDXK SN 1yk[]2 4
[Wk[2d + 1 —4])? + |A[{]]> + |A[2d + 1 —i]]? = 1,Vi <
d, S0 [WF[2d +1])2 + | A[2d + 1]]? = 1}, which is con-
jugated by F* to S. But S’ corresponds to the spectrum of
an isometry, leading to the conclusion. O



