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Abstract

Aircraft engine fan blades are notably designed to withstand impact loading in-

volving large deformation, high strain rate, non-proportional loading paths and

self-heating. Due to their high strength-to-weight ratio and good toughness,

Ti-6Al-4V titanium alloys are promising candidates for the blades leading edge.

An extensive experimental campaign on a Ti-6Al-4V titanium alloy provided

in the form of cold rolled plates has been carried out. The thermo-mechanical

characterization consisted in tension, compression and shear tests performed at

various strain rates and temperatures, and under monotonic as well as alternate

loading paths. A constitutive model has been accordingly developed accounting

for the combined effect of plastic orthotropy and tension/compression asymme-

try, nonlinear isotropic and kinematic strain hardening, strain rate hardening,

and thermal softening. The constitutive model has been implemented as a

user material subroutine into the commercial finite element computation code

LS-DYNA. The performances of the model have been estimated by conducting

numerical simulations considering a volume element under various loading paths

as well as the specimens used for the experimental campaign.
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1. Introduction

In the certification of aircraft engines regarding accidental events, real scale

ballistic tests including bird strike or fan blade loss must be passed without

compromising the engine performance. During such tests the fan blades undergo

large deformation, high strain rate, non-proportional multi-axial loading, load5

reversals and self-heating until potential fracture. In the numerical simulation-

aided design of impact-resistant fan blades, a constitutive model able to account

for all these parameters is thus needed. This work focuses on Ti-6Al-4V titanium

alloys known for their high strength-to-weight ratio and good toughness [1] and

accordingly considered as promising candidates for the leading edge of multi-10

component fan blades.

Ti-6Al-4V is a quasi-α titanium alloy which can have various microstruc-

tures, among which the bimodal form considered here, consisting of relatively

“soft” primary α phase nodules with an hexagonal close packed (HCP) crystal-

lography within a harder body centered cubic (BCC) β matrix containing tiny15

secondary α laths. Both dislocation glide and mechanical twinning (mostly of

the tensile {101̄2}(1̄011) type) are activated in Ti-6Al-4V upon plastic defor-

mation, as reported by Prakash and Coghe et al [2, 3]. Cold rolled plates of

a Ti-6Al-4V titanium alloy usually exhibit a strong texture [4]. As reported

in Lee et al. [5], primary α grains usually tend to rotate so that their 〈0001〉20

direction becomes perpendicular to the rolling direction. An orthotropic behav-

ior can thus be observed with a significantly different yield strength along the

rolling, transverse and normal directions of the plate. Hill’s criterion [6] has

been widely used to model the plastic behaviour of orthotropic materials due

to its simplicity [7–9]. It consists in incorporating a fourth order tensor in the25

equivalent stress in order to make the yield stress dependent on the orientation.
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Plastic anisotropy evolving with strain has also been addressed by Baltov and

Sawcsuk [10] by defining the fourth order tensor as a polynomial decomposition

of notably the strain invariants [11]. Karafillis and Boyce [12] proposed a linear

transformation of the stress tensor itself to induce orthotropy in plastic yielding30

without compromising the convexity of the yield function [13]. Some examples

of this strategy can be seen in [14–18]. Moreover, a generalized version of the

Karafillis and Boyce yield surface was later proposed by Bron and Besson [19]

to improve the description of plastic anisotropy.

The strength differential between tension and compression often observed in35

titanium alloys and other HCP metals is generally ascribed to the different acti-

vation of 〈c+ a〉{112̄2}〈112̄3〉 slip systems [20] and mechanical twinning [2, 21]

depending on the loading direction. To model this effect, some authors have

proposed asymmetric yield criteria including the third invariant of the stress

tensor [22, 23]. Khan et al. proposed a criterion that manages to independently40

include the orthotropy, by means of the Hill criterion, and the asymmetry, by in-

troducing a function depending on the Lode parameter [24]. With this method,

the strength differential is successfully captured with only one material coeffi-

cient. Similarly, the CPB06 yield criterion [25] can simultaneously capture the

orthotropy and the strength differential by combining a linear transformation45

of the stress deviator tensor and a yield function of the principal stresses. The

simplicity, applicability and accuracy of this last model has made it widely used

as seen in [26–28]. Furthermore, distortional models such as the Homogeneous

yield function-based Anisotropic Hardening (HAH) model [29] has been proven

useful when considering an evolving anisotropy that continuously distorts and50

rotates the yield surface as it was later on successfully applied on titanium

[30]. A last example worth mentioning for the modeling of asymmetry was

proposed by Longère [31] who included a definition of a viscous stress depen-

dent on the hydrostatic pressure (while maintaining the plastic yield criterion

pressure-independent).55

Bauschinger effect in the mechanical behavior of metals and alloys has been

extensively studied, for example in Zhonghua and Gu [32, 33] for dual-phase steel
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or Helbert et al. [34] for titanium alloys. Since ballistic events on fan blades

induce load reversals, it is crucial to take kinematic hardening into account in

the constitutive modeling of Ti-6Al-4V. A kinematic hardening-related internal60

variable was introduced in the Prager model to describe this effect [35], nonlinear

extensions for the evolution of this variable were later on proposed by Armstrong

and Frederick [36] and Chaboche [37]. As kinematic hardening may produce

transient effects and permanent softening, mixed coupled hardening models are

proposed in the literature to predict such effects [38–40]. Another alternative65

to reproduce the Bauschinger effect is through the yield surface distortion as it

is proposed with the HAH model [29].

The behavior of titanium alloys is known to be strongly strain rate depen-

dent, see e.g. Minaar and Zhou [41] or Tuninetti and Habraken [26]. The

engineering-oriented Johnson-Cook constitutive model [42] is widely employed70

to describe the hardening due to strain rate. Yet, it scarcely fits the experi-

mental behavior of HCP metals and some modifications have been proposed to

improve the agreement with experiments, see e.g. Khan et al. [43]. Alterna-

tively, an additive formulation where strain rate and plastic deformation effects

are treated separately is also used to model viscoplasticity (see Longère [44]).75

The strong temperature-dependence of Ti-6Al-4V titanium alloys is also

well-known, see e.g. Seo et al. [45]. Therefore, a thermal softening function is

generally considered to describe the decrease of the yield stress with increasing

temperature. In addition, due to its low heat capacity, significant self-heating

induced temperature rise may occur under adiabatic conditions at high load-80

ing rates [46, 47]. Consequently, a competition between strain and strain rate

hardening and thermal softening takes place along the deformation process po-

tentially leading to material instability and further strain localization under

adiabatic shear banding, see e.g. Longère and Dragon [48].

There is an extensive literature dedicated to modeling the above mentioned85

effects individually. Yet, scarce are the models that can simultaneously take into

account all the features observed in Ti-6Al-4V titanium alloys. For instance,

Tancogne-Dejean et al. [49] modeled the orthotropy of a Ti-6Al-4V with a non-
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associated plastic law using the Lankford coefficients. However, the strength-

differential is not described in their work. Both the effects of orthotropy and90

strength differential were well modelled in Gilles et al. [4] for a Ti-6Al-4V but at

room temperature and within the quasi-static regime. Later on, Tunineti and

Habraken [26] used an anisotropic model with an added temperature dependence

but it was limited by the strain rate range of the calibration. A more extended

investigation was done by Khan et al. [50] where anisotropy, temperature, strain95

rate as well as multiaxial non-proportional loading were modeled, although no

considerations were made regarding the adiabatic conditions at high strain rate.

Furthermore, these authors did not include either kinematic hardening necessary

to reproduce the load reversals appearing during a ballistic event.

The aim of the present work is to palliate this deficiency by developing an100

advanced constitutive model able to simultaneously describe all the effects in-

volved during a ballistic event on a structure made of Ti-6Al-4V alloy, namely

related to (i) texture-induced loading orientation, (ii) load-reversals as well

as non-proportionality, (iii) strain rate and (iv) temperature. Accounting for

the salient effects of the underlying micro-mechanisms, a phenomenological ap-105

proach is developed within the irreversible thermodynamics framework instead

of a polycrystalline formalism as proposed by e.g. Zhang et al. [51] or Mayeur

and McDowell [52].

The paper is divided in three parts. The first part is dedicated to the ex-

perimental characterization of the mechanical behavior under monotonic and110

cycling loadings at various strain rates and temperatures, as well as stress re-

laxation tests. The second part presents in detail the constitutive model. The

third part is dedicated to the numerical implementation of the model in the

commercial finite element computation code LS-DYNA and the evaluation of

its performances at the volume element scale and then at the structure scale.115
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2. Experimental Characterization

The following section summarizes the results of an extensive experimental

campaign under a wide range of strain, strain rate, temperature and loading

path. The low strain rate (quasi static) tests are performed by using conven-

tional tension-compression testing machines and the high strain rate (dynamic)120

tests by means of compression and tension split Hopkinson pressure bar (SHPB)-

type set-ups. After a brief presentation of the material under consideration, the

experimental results are shown and commented in detail.

2.1. Ti-6Al-4V grade under consideration

The Ti-6Al-4V alloy with a bimodal microstructure under consideration is125

provided in the form of a 16 mm-thick cold-rolled sheet. The size of the equiaxed

α phase nodules ranges from a few microns up to 30µm (see Figure 1a). Figure

1b shows an orientation map for the α phase issued from an EBSD (Electron

Back-Scatter Diffraction) analysis of the sheet. The observed zone of approxi-

mately 3 mm2 presents clearly zones with different orientations. These “macro-130

zones” are inherited from the orientation of the prior β grains formed during

previous thermomechanical treatments of the alloy [53], and it produces some

scatter in the experimental results since the scale of these zones approaches

that of the specimens tested. Even though the texture is locally pronounced,

in average the global texture is not very marked, as shown by the pole figures135

obtained by X-ray diffraction presented in Figure 1c.

2.2. Experimental set-up: low vs. high strain rate

The loading direction-related component ε of the logarithmic strain tensor

ε is defined as ε = ln (1 + εN ), where εN = ∆l
l0

is the nominal strain with ∆l

the gauge length elongation given by the extensometer and l0 the initial gauge140

length. Under the small strain assumption tentatively adopted here, the strain

ε is partitioned into elastic εe and plastic εp contributions, viz. ε = εe + εp, for

the uniaxial tests (this assumption is discussed later on in the following section

dedicated to constitutive modeling, see section 3.1). The corresponding stress
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90 µm

(a)

1 mm

TD

RD

(b)

(c)

Figure 1: Microstructure of the as-received material in the RD-TD plane a) atomic force

microscopy b) α phase orientation map obtained by EBSD and c) pole figures obtained by

X-ray diffraction.

component σ of the Cauchy stress tensor σ is given by σ = (F/A) · (1 + εN ),145

where F is the load and A the initial cross-section area.

The stress triaxiality ratio χ used in the following is defined as χ = −p/σvm
where p and σvm represent the pressure and von Mises equivalent stress, respec-

tively, with p=-Trσ/3, σvm =
√

3
2s : s, s = σ + pI the deviatoric stress tensor,

I being the identity tensor.150

Various types of specimens have been machined along four directions: the

rolling (RD), transverse (TD) and normal (ND) direction, as well as a diagonal

(DD) direction in the RD-TD plane pointing 45◦ with respect to the rolling

direction. Specimens are ranked in Figure 2 according to increasing stress tri-

axiality ratio χ from left to right.155

2.2.1. Low Strain Rate

The tension dog-bone specimen dimensions in Figure 2 for χ ' 1/3 are

2 mm× 3 mm× 6 mm (thickness x width x gauge length). A shorter specimen is

used for the normal direction (ND) since the dimensions are limited by the sheet
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8mm

φ7mm

χ ' −1/3

(a) Compression.

R1mm
5mm

1.3mm

1.2mm

χ ' 0.0

(b) Shear.

6mm
3mm

2mm

χ ' 1/3

(c) Smooth specimen.

R2mm

5mm

1.2mm

χ ' 1/2

(d) Notch of 2 mm.

R0.5mm

5mm

1.2mm

χ ' 2/3

(e) Notch of 0.5 mm.

R2mm

5mm

2.2mm

R0.5mm

χ ' 1.0

(f) Double notch.

Figure 2: Specimen geometries and corresponding stress triaxiality ratio χ (determined by

preliminary numerical simulations). The nominal strain is measured with a mechanical ex-

tensometer of an initial length of 12 mm whose position is indicated with red dots.

thickness. Its cross section remains the same, but the gauge length is reduced160

to 4 mm. For compression (χ ' −1/3), cylindrical specimen dimensions are

8 mm× 7 mm (height x diameter). For the cyclic tests, a cylindrical specimen

of a radius of 8 mm and a gauge length of 8 mm is employed. Notched shear

and tension specimens (χ ' 0, 1/2, 2/3, 1.0) have been machined so as to widen
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the stress triaxiality ratio range under consideration. Two notch radii of 2 mm165

and 0.5 mm are employed to reach expected average χ of about 1/2 and 2/3 in

tension (according to preliminary finite element simulations, not shown here).

In addition, a specimen notched both in width and thickness is used to get

a χ close to 1.0. Moreover, in order to get an average χ close to 0, the shear

specimen geometry designed by Roth [54] has been used. For the shear specimen,170

the notches are machined with a constant radius which is suited for medium

ductility materials. Additionally, both notches are separated by a slight offset

which avoids too severe tensile stresses on the border when largely deformed.

A series of displacement-controlled quasi-static tests are performed along the

different orientations under tension and compression loading with strain rates175

ranging from |ε̇| ' 10−4 s−1 to 10−1 s−1.

The load is measured by load cells of 10 kN or 100 kN depending on the size

of the specimens.

In the case of compression tests at room temperature, an axial clip-on ex-

tensometer with 12.5 mm gauge length and +/- 5 mm displacement range is180

mounted on the rigid plates compressing the sample. Some grease was applied

as lubricant on the samples surface in order to minimize the barreling effect.

During tension tests as well as under cyclic loadings (and uniaxial compression

at high temperature), the strain is measured by tracking marker points on the

sample surface. For high temperature tests, an oven reaching temperatures of185

up to 350 ◦C is employed. The temperature of the sample is controlled by a ther-

mocouple and does not fluctuate by more than 2 ◦C around the setpoint during

the whole mechanical test. For the tests on shear and notched specimens, the

nominal strain is measured by employing a clip-on mechanical extensometer of

12 mm-initial gauge length.190

2.2.2. High Strain Rate

Split-Hopkinson pressure bars (SHPB) set-ups are used for compression and

tension tests at high strain rates of up to |ε̇| ' 1.5× 103 s−1, at room temper-

ature. For tension tests, the load-inversion device developed by Dunand et al.
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[55] and extended by Roth et al. [56] is used. In order to obtain the desired195

high loading rate, the tensile specimen is 1.2 mm× 3 mm× 10 mm (thickness x

width x gauge length) and the compression specimen is 4.7 mm× 5.4 mm (height

x diameter).

According to the one-dimensional analysis of the wave propagation in com-

pression tests [57], the specimen strain rate and load transferred to the specimen200

are measured via strain gauges glued on the input and output bars. In the case

of tensile dynamic tests, the force is still measured with a strain gauge on the

output bar. The strain field in the sample is obtained by digital image correla-

tion (DIC), based on images captured with a Phanton v7.3 high speed camera.

A frame rate of up to 105 Hz with a resolution of 304× 64 px2 is employed to205

observe the zone of interest of 10× 3 mm2 covered with speckle painting using

an airbrush. The VIC-2D software is used for DIC and the mean strain in the

gauge length is measured using a virtual extensometer following the relative

displacement of two points of the speckle.

2.3. Experimental results210

In a first approximation, the uniaxial component σ measured along the load-

ing direction is assumed to be additively decomposed into a kinematic hardening

contribution σKH , an isotropic hardening contribution σIH and a viscous con-

tribution σv which all depend on a finite number of parameters, namely the ori-

entation θ, the triaxiality χ, the temperature T , the accumulated plastic strain215

κ and the plastic strain rate κ̇ (in this section, we tentatively assume κ ' |εp|
and κ̇ ' |ε̇p| under monotonic uniaxial loading). The stress σ accordingly reads

|σ| ' σKH (θ, χ, κ, T ) + σIH (θ, χ, T, κ) + σv (κ̇, θ, χ, κ, T ) (1)

where the kinematic and isotropic hardening contributions σKH and σIH are

assumed to be rate independent. The aim is to identify each contribution.

In a first step, the dependence on the loading direction θ, loading path220

χ, temperature T and strain rate κ̇ is quantified by an analysis of the total

stress (σKH + σIH + σv). For this purpose, monotonic, cyclic and relaxation
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loadings are employed. Secondly, the contributions of the rate independent

stress (σKH + σIH) and the viscous stress (σv) are identified.

For confidentiality reasons, the stress values determined in the following are225

normalized, viz. σ̃ = σ/σRD0
, where σRD0

is the yield stress at 0.2 % of plastic

strain along the rolling direction at room temperature and ε̇ ' 10−3 s−1. Like-

wise, the force is normalized with respect to the reference stress just mentioned

and the initial cross section A of the specimen as F̃ = F/ (A · σRD0
).

2.3.1. Monotonic loading230

At least two specimens per orientation and configuration are tested.

* Effect of the loading direction θ

Examples of quasi-static tests performed along four directions are plotted

in Figure 3. According to this Figure, the highest yield stress is found along

the transverse direction (which is consistent with the high fraction of c axes235

of the HCP phase in this direction on the pole figures in Fig.1c) followed by

the rolling (along which a smaller, but non negligible fraction of c axes are

aligned) and the diagonal direction, in both tension and compression. The

normal direction (orthogonal to most c axes) has, accordingly, the lowest yield

stress. The anisotropy is more accentuated under compression loading.240

* Effect of loading sign χ=-1/3,1/3

As shown in Figure 3 for all directions and Figure 4 for the rolling direction

in particular, a strong yield stress differential between tension and compression

is observed. According to Figure 4, the yield stress in compression is higher than

in tension by around 20 %. The hardening for both types of loading is strongly245

non linear at small plastic strain and tends to become linear at large plastic

strain. The nonlinear part is more pronounced under compression loading while

the linear part is (quasi) similar (same slope) under tension and compression

loading. Similar results were found for the other directions (not shown here).

* Effect of the strain rate κ̇250

In Figure 5 are superimposed the results of tension and compression tests car-

ried out at various loading rates ranging from quasi-static to dynamic regimes.
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(a) Tension tests.
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(b) Compression tests.

Figure 3: Stress vs plastic strain. Tension and compression. Influence of the direction.

|ε̇| ' 10−3 s−1, T = 25 ◦C

.

12



0  0.1 0.2

|εp|

0   

0.25

0.5 

0.75

1   

1.25

1.5 

|σ̃
|(
−
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Figure 4: Stress vs plastic strain. Tension-Compression superimposition. |ε̇| ' 10−3 s−1,

T = 25 ◦C, Rolling direction RD.

Strain rates of up to 103 s−1 were obtained. While the effect of the strain rate is

not significant between 10−3 s−1 and 10−2 s−1, and even masked by the scatter

from one specimen to the other, a clear shift can be noticed when going from the255

quasi-static to the dynamic range. It is noteworthy that due to inelastic self-

heating at high strain rate, the specimen softens under adiabatic conditions. As

a result, the hardening rate in the dynamic regime is apparently lower than in

the quasi-static case. Equivalent isothermal stress-strain curves are shown later

in Figure 15.260

* Effect of temperature T

Figure 6 shows the results of tensile and compressive tests at various tem-

peratures. While the yield stress decreases quasi-linearly as the temperature

rises (see Figure 7), the hardening rate does not seem to be affected by the

temperature under isothermal conditions.265

As mentioned in the introduction, the yield stress dependence on the tem-

perature can have a strong impact on the self-heating consequences at high

loading rates. Indeed, the competition between thermal softening and plastic

strain as well as strain rate hardening at high loading rates will determine the
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(b) Compression.

Figure 5: Stress vs plastic strain. Tension and compression. Influence of the strain rate.

T = 25 ◦C, Rolling direction RD. The dots in the high strain rate tension curves correspond

to the high speed camera recording shots.
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Figure 6: Stress vs plastic strain. Influence of temperature. |ε̇| ' 10−3 s−1, Rolling direction

RD. Similar effects were observed for the other directions tested as well as compression loading.

potential instability of the material.270

* Effect of stress triaxiality ratio χ

Figure 8 shows the force vs. nominal strain for the specimens in Figure

2. The resistance and the ductility are highly dependent on the notch radii

and resulting stress state, as expected. The highest force and lowest nominal

strain at fracture is observed for the double notched specimen (χ ' 1.0), while275

both single notch specimens exhibit the same peak load (χ ' 0.5 − 0.6), but a

lower fracture strain for the smaller notch radius. As for the shear specimen, a

comparatively lower load and higher nominal strain at fracture is observed with

respect to the other geometries.

The experimental scatter is probably due to small deviations from the nom-280

inal specimens dimension and to the macrozones present in the material (see

Figure 1b).

2.3.2. Reversed loading: σKH vs σIH

In order to quantify the respective contributions of isotropic and kinematic

hardening, tension-then-compression and compression-then-tension tests are car-285
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Figure 7: Stress at 5 % plastic strain vs temperature. Tension and compression. |ε̇| '

10−3 s−1.

16



0 1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

1.25

1.5

1.75

εN (%)

F̃
(−

)

 

 
Notch=2mm
Notch=0.5mm
Double Notch=2x0.5mm
Shear

Figure 8: Load vs strain. Tension. Influence of stress triaxiality. ε̇ ' 10−3 s−1, T = 25 ◦C,

Transverse direction TD.

ried out. These two different sequences also allow to check that the strength

differential deduced from separate tension and compression tests on different

sample geometries is retrieved when a unique sample geometry and test setup

is used.

As an example, Figure 9 shows the recorded stress-strain loops during 2.5290

tension-compression cycles along the rolling direction. The isotropic and kine-

matic components of the material hardening can be deduced from the stress for

which the stress-strain curve during unloading departs from linearity by more

than a given offset [58]. For example, for an offset of δεp = 10−4, the kine-

matic hardening values were found to contribute for more than 30 % to the flow295

stress in Ti-6Al-4V. Yet, changing the offset results in a change of the relative

contributions.

2.3.3. Multi-step relaxation loading: σv

As deduced from tests carried out at different strain rates, a strain rate-

induced overstress is present, see Figure 5 at room temperature. A series of300

stress relaxation periods are therefore introduced during tensile as well as com-
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Figure 9: Stress vs strain. Alternating tension-compression test. |ε̇| ' 5× 10−4 s−1, T =

25 ◦C, Rolling direction RD.

pressive tests, in order to extract the viscous component of the flow stress. The

displacement-controlled tests are interrupted at selected strain amounts and

the total deformation of the specimen remains constant. A drop in stress is

recorded due to viscous relaxation and the test is resumed when the stress level305

has reached a steady state.

In Figure 10 are plotted the stress-strain curves obtained from the multi-step

relaxation loading. The dotted lines are obtained by interpolation between the

end-points of the relaxation periods and represent the rate independent part of

the flow stress. By subtracting it from the total stress, the viscous component310

can be determined from Equation 1 via

σv = σ − (σKH + σIH) (2)

According to Figure 10, the viscous stress remains constant along the de-

formation in tension and compression. Furthermore, no anisotropy is found in

terms of the relaxed stress. Therefore, the viscous component is considered in-

dependent of the loading direction and of the deformation. This enforces the315

previous simplification in Equation 1 of additive decomposition of the stress in
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a strain hardening and a viscous component.

Slight differences in viscous behavior in tension and in compression can be

however noticed. To check if these differences are significant or an artifact due

to the differences in testing devices and specimens geometries, the cylindrical320

specimens used for the reversed loading are employed to measure the relaxed

stress both in tension and in compression. Figure 11 shows the results of a

compression-tension test with two relaxation periods in tension and compres-

sion. The viscous stress, plotted in red, does not show a significant dependence

on the loading direction.325

Some works have reported a temperature dependence of the strain rate sen-

sitivity, see e.g. Tuninetti et al. [26]). For the material under consideration in

the present study, this effect is weak enough to be neglected.

2.4. Analysis and discussion

By extrapolating the steady-state curves (dotted lines) in Figure 10, the rate330

independent initial yield stress at room temperature can be estimated for each

loading direction. It can then be subtracted from the flow stress at various

strain rates so as to determine the viscous stress. Similarly, the viscous stress

measured in the relaxation tests can be used to obtain from Equation 1 the rate

independent stress σKH + σIH = σ − σv.335

In this section, the effects of anisotropy, strain hardening and temperature

on the rate independent stress are analyzed as well as the viscous stress.

2.4.1. Plastic anisotropy and Strength Differential

Figure 12 shows the yield surface in the (σRD,σTD) plane at various plastic

strain amounts. In the case of the diagonal direction, the Cauchy stress com-340

ponents with respect to the rolling and transverse axes are plotted. As for the

normal direction ND, the equivalent biaxial state is used. For the sake of com-

parison, the von Mises yield surface passing through the yield stress along the

rolling direction RD is plotted to quantify the degree of anisotropy. Von Mises

criterion clearly underestimates the yield stresses in compression (the compres-345
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Figure 10: Stress vs plastic strain. Tension and compression. Multi-step relaxation tests. The

drop in stress as the static state is achieved is defined as the strain rate induced overstress or

viscous stress (plotted as a dashed line). |ε̇| ' 5× 10−4 s−1, T = 25 ◦C
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Figure 11: Stress vs strain. Compression-tension test with four relaxation periods on a cylin-

drical specimen. |ε̇| ' 5× 10−4 s−1, T = 25 ◦C, Rolling direction RD. The viscous stress is

plotted in red.

sion under the normal direction ND is shown in the top right quadrant as a

biaxial tensile state). As for the orthotropy, differences are more subtle. The

yield stress in the transverse direction TD tends to be underestimated whereas

those in the normal ND and diagonal DD directions are overestimated by the

isotropic yield criterion. As the deformation increases, the misfit with von Mises350

criterion grows larger as seen in Figure 12.

2.4.2. Strain Hardening

The first cycle from Figure 9 is reconsidered here after removing the viscous

component, to highlight the contributions of the isotropic and the kinematic

hardening. The compressive part of the cycle has been inverted and is compared355

with the tension and compression monotonic stress-strain curves. As observed

in Figure 13, a nonlinear kinematic hardening produces a progressive yielding

during the load reversal. As the cyclic curve goes into compression, a permanent

offset with respect to the monotonic compression appears, as a result of the

Bauschinger effect.360

21



-1.5 -1  -0.5 0   0.5 1   1.5 

σ̃RD (−)

-1.5

-1  

-0.5

0   

0.5 

1   

1.5 

σ̃
T
D
(−

)

Experimental Points
von Mises εp = 0.002
von Mises εp = 0.02
von Mises εp = 0.1

Figure 12: Yield locus in the (σRD,σTD) plane, after viscous component removal. |ε̇| '

10−3 s−1, T = 25 ◦C. The loading in the normal direction is considered equivalent to the

biaxial stress state. The diagonal direction implicitly includes a shear component not repre-

sented in the graph.

2.4.3. Strain Rate Hardening

The viscous component from the curves in Figure 5 is plotted versus the

strain rate in a logarithmic scale on Figure 14 for the tension and compression

tests. The result evidences the linear evolution of the viscous component with

strain rate (in the log scale). The Norton-Perzyna law is accordingly suitable365

to reproduce the observed results. It is expressed as

σv = Yvκ̇
1/nv (3)

2.4.4. Thermal Softening

As shown in Figure 6, the flow stress monotonically decreases with increas-

ing temperature. Although the evolution of the flow stress with respect to

temperature seems linear (see Figure 7), within the limited range of tempera-370

tures investigated, a linear extrapolation would predict negative stress values

before the melting point. A power law is commonly used in literature, and it
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ensures a positive stress until melting [59]:

σ ∝ 1− 〈 T − Tref
Tm − Tref

〉mT (4)

where mT is a material parameter, Tm ' 1630 ◦C the melting point and

Tref = 25 ◦C the reference temperature. The Macaulay brackets 〈x〉 = max (0, x)375

are used.

Under low strain rate loading the conditions are isothermal, whereas un-

der high strain rate loading, they are (quasi) adiabatic. As a consequence, the

heat generated by plastic dissipation is not evacuated fast enough by conduc-

tion, leading to a local temperature rise and the material is subject to thermal380

softening along the deformation process. Self-heating is usually estimated by

considering that a fraction of the plastic work rate is converted into heat:

∆T ' β

ρc

∫

κ

σdκ (5)

where ρ is the mass density and c is the specific heat of the material. β

represents the inelastic heat fraction also called Taylor-Quinney coefficient [60].

The latter is often assumed constant with values typically ranging between 0.8385
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Figure 14: Stress at 2 % of plastic strain vs plastic strain rate. Tension and compression.

At this plastic strain amount self-heating induced softening under high strain rate is still

negligible. T = 25 ◦C
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and 1. Experimental estimates of β for Ti-6Al-4V may be completely different

from an author to another, see e.g. Mason et al. [61] and MacDougall and

Harding [47], while showing that β does not keep a constant value along the

deformation process. In absence of further information on the right value of β

for the material under consideration, we are here assuming that β = 0.9.390

Equivalent isothermal stress-strain curves may be obtained from adiabatic

stress-strain curves by removing the self-heating induced thermal softening. By

assuming β=0.9 and using Figure 7, isothermal dynamic compression curves can

be estimated, see Figure 15. Accordingly, isothermal, quasi-static and dynamic

curves exhibit a similar strain hardening.395

3. Constitutive Modeling

The extensive experimental campaign detailed in the previous section has

evidenced that the Ti-6Al-4V grade under consideration is subject to significant

(i) anisotropic plasticity which manifests through loading direction dependence,

kinematic hardening and strength differential, (ii) isotropic strain hardening,400

(iii) rate dependence and (iv) thermal softening. Starting from the experimental
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observations, a constitutive model accounting for the above mentioned effects

is built within the irreversible thermodynamics framework. More generally, the

aim of the present work is to develop a constitutive model able to describe

the behavior of metals and alloys within a wide range of strain, strain rate,405

temperature and loading path.

Kinematic considerations are first specified in the context of large elastic-

plastic deformation. The general irreversible thermodynamics framework is then

applied for phenomenologically describing the consequences of the underlying

conservative and dissipative mechanisms. Eventually, constitutive equations are410

applied to the Ti-6Al-4V grade under consideration.

3.1. Finite strain framework

Moderately large elastic-plastic strains have been observed during the experi-

mental campaign, implying a nonlinear geometric formulation. The deformation

gradient F describes the transformation from the initial (undeformed) configu-415

ration to the current (deformed) configuration of the particle coordinates of any

point belonging to the material body. As suggested by [62, 63], the deformation

gradient F may be multiplicativally decomposed into an elastic contribution F e

and a plastic contribution F p:

F =
∂x

∂X
= F e F p (6)

where X and x (X, t) represents the particle coordinates in the initial and420

current configurations, respectively. In this context, F e represents the transfor-

mation between the virtually elastically unstressed (intermediate) configuration

and current configuration, and F p the transformation between the initial con-

figuration and virtually elastically unstressed (intermediate) configuration.

We are here considering an intermediate configuration virtually unstressed425

by a pure elastic stretching V e−1, yielding

F = V eQF p (7)
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where Q represents an orthogonal transformation (rotation). The velocity

gradient l accordingly reads (see Longère et al. [64])

l =
∂v (x)

∂x
= Ḟ F−1 =

∇
V e V e−1 +W + V eḞ p F p−1V e−1 (8)

where v is the particle velocity and where W = Q̇QT represents the rate of

the orthogonal transformation. The decomposition of the deformation gradient430

l into a symmetric part d and a skew-symmetric part w, viz. l = d+ w, yields




d = [l]

S
= de + dp

w = [l]
SS

= W + we + wp
(9)

where





de =

[ ∇
V e V e−1

]S

we =

[ ∇
V e V e−1

]SS ;





dp =
[
V eḞ p F p−1V e−1

]S

wp =
[
V eḞ p F p−1V e−1

]SS (10)

yielding the following expression for the rotation rate W

W = Q̇QT = w −
(
we + wp

)
(11)

Moreover, the objective derivative
∇
a of any second order tensor a reads

∇
a = ȧ−W a+ aW (12)

Under small elastic strain assumption, Equation 10 reduces to435




de =

∇
V e

we = 0

;





dp =
[
Ḟ p F p−1

]S

wp =
[
Ḟ p F p−1

]SS (13)

In addition, assuming tentatively negligible effect of the spin wp in regards

with the spin w (see the assumption of moderate plastic strain in Schieck and

Stumpf [65]), Equation 11 reduces to

W = w (14)
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where the assumption of negligible effects of anisotropy is also used [66].

According to the decomposition of the deformation gradient F in Equation440

7, when working with respect to the current configuration, it is needed to use

the Zaremba-Jaumann objective derivative. Alternatively, it is possible to work

with respect to the Q-rotated or co-rotational configuration, by means of a

push forward and a pull back rotations [67, 68]. The latter method is used in

the following. The rate equations of the constitutive model are consequently445

formulated by using time derivatives with respect to the co-rotational frame:

ȧ
Q

= QT
∇
a Q (15)

For example the Cauchy stress would read in the context of temperature

independent hypo-elasticity as

∇
σ = C : de → σ̇

Q
= C : ε̇e

Q
(16)

In the sequel, the subscript ·Q is dropped for simplicity.

3.2. Irreversible thermodynamics framework450

Constitutive state laws and complementary laws respectively derived from

the state and dissipation potentials are expressed in this subsection.

3.2.1. State potential and constitutive state laws

The internal variable procedure is herein applied within the irreversible ther-

modynamics framework to model the thermo-mechanical behavior of the Ti-6Al-455

4V grade under consideration. The instantaneous state of the material is as-

sumed to be well described via the Helmholtz free energy Ψ whose arguments are

the absolute temperature T , the elastic strain tensor εe, the isotropic hardening

variable (also called cumulated plastic strain) κ, and the kinematic hardening

variable α. Therefore, the Helmholtz state potential can be decomposed into460

four parts: a recoverable energy Ψe, a purely thermal part ΨT and two stored

energies corresponding to the isotropic and kinematic hardening contributions,

ΨpI and ΨpK , see [69]. Considering tentatively state uncoupling between the
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two mechanisms of plasticity and between them and elasticity, the Helmholtz

free energy Ψ is taken of the form465

Ψ
(
εe, κ, α;T

)
= Ψe

(
εe;T

)
+ ΨT (T ) + ΨpI (κ;T ) + ΨpK

(
α
)

(17)

where ΨpK is taken as temperature independent. The specific contributions

to the state potential are defined as





ρΨe

(
εe;T

)
=

1

2
εe : C : εe − αK (T − T0) trace(εe)

ρΨT = − ρc

2T0
∆T 2

ρΨpI (κ;T ) = h (κ) g (T )

ρΨpK

(
α
)

=
1

3
Cα : α

(18)

where ρ is the mass density, C is the elasticity stiffness fourth order tensor,

with Cijkl = λδijδkl + µ (δikδjl + δilδjk), λ and µ being the Lamé coefficients,

K the bulk modulus, with K = λ+ 2
3µ, α the thermal dilatation coefficient, T0470

the initial temperature, and c is the specific heat. h (κ) and g (T ) are the stored

energy of cold work and the thermal softening function, respectively, and the

scalar C is a kinematic hardening-related parameter.

The thermodynamic forces derived from the state potential with respect to

their conjugate variables are given by the constitutive state laws defined below.475





σ = ρ
∂Ψ

∂εe

∣∣∣∣∣
κ,α,T

= ρ
∂Ψe

∂εe

∣∣∣∣∣
T

= C : εe − αK (T − T0) I

ρs = −ρ ∂Ψ

∂T

∣∣∣∣
εe,κ,α

= −ρ
(
∂Ψe

∂T

∣∣∣∣
εe

+
∂ΨT

∂T
+
∂ΨpI

∂T

∣∣∣∣
κ

)

= αKtrace
(
εe
)

+
ρc

T0
∆T − h (κ) g′ (T )

r = ρ
∂Ψ

∂κ

∣∣∣∣
εe,α,T

= ρ
∂ΨpI

∂κ

∣∣∣∣
T

= h′ (κ) g (T )

X = ρ
∂Ψ

∂α

∣∣∣∣∣
εe,κ,T

= ρ
∂ΨpK

∂α

∣∣∣∣∣
T

=
2

3
Cα

(19)
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where σ is the Cauchy stress tensor, s the entropy, r the isotropic hardening

force and X the kinematic hardening force.

Finally, the Gibbs relation reads

ρΨ̇ = σ : ε̇e + rκ̇+X : α̇− ρsṪ (20)

3.2.2. Dissipation and complementary laws

Injecting the Gibbs relation into Clausius-Duhem inequality and using ε̇ =480

ε̇e + ε̇p yield the following expression for the intrinsic dissipation

D = σ : ε̇− ρ
(

Ψ̇ + sṪ
)

= σ : ε̇p − rκ̇−X : α̇ ≥ 0

(21)

which involves force-related quantities A =
(
σ, r,X

)
and flux-related quan-

tities ȧ =
(
ε̇p,−κ̇,−α̇

)
. In the context of the normality rule, the dissipation

may be rewritten in the following form

D = Aȧ = Aλ̇
∂F

∂A
≥ 0 (22)

where F is the plastic potential meeting the required conditions of posi-485

tiveness and convexity and where λ̇ is the positive plastic multiplier. In the

context of rate dependent non-associated plasticity, λ̇ is assumed to derive from

a dissipation potential Ω (f), viz. λ̇ = ∂Ω/∂f , where f represents the yield

function.

The yield function f and plastic potential F are written of the form

f
(
σ, r,X, ...

)
= σeq

(
σ,X, ...

)
− σy (r, ...) = σv (κ̇, ...) ≥ 0

F
(
σ, r,X, ...

)
= f + f̂

(
X
) (23)

where σeq is the transformed equivalent stress accounting for the different490

sources of plastic anisotropy, σy the rate independent yield stress, σv the strain

rate induced overstress or viscous stress, and where ... represents other argu-

ments defined later. f̂
(
X
)

is a function involving non-linearity in kinematic

hardening.

30



The normality rule accordingly yields495





ε̇p = λ̇
∂F

∂σ
= λ̇

∂σeq
∂σ

= λ̇n with n =
∂σeq
∂σ

κ̇ = −λ̇∂F
∂r

= −λ̇∂f
∂r

= λ̇

α̇ = −λ̇ ∂F
∂X

= −λ̇
(
∂f

∂X
+
∂f̂

∂X

)
= λ̇m with m = −

(
∂σeq
∂X

+
∂f̂

∂X

)

(24)

These laws are completed by the temperature rise coming from adiabatic

self-heating under high strain rate loading assuming negligible contributions of

thermo-elastic and thermo-plastic couplings [70]. Temperature rise is estimated

from dissipation in Equation 21, see Longère and Dragon [71], according to

ρcṪ ' D = σ : ε̇p − rκ̇−X : α̇ ≥ 0 (25)

3.3. Constitutive equations500

Quantities introduced in the previous subsection are now specified for the

material under consideration in agreement with the experimental observations.

3.3.1. Transformed equivalent stress σeq

Plastic anisotropy entails a loss of coaxiality between the plastic strain rate

and the stress deviator. As the plastic strain rate is derived from the trans-505

formed equivalent stress according to the normality rule, the plastic anisotropy

effects are accounted for in the expression of the transformed equivalent stress.

It is reminded that in the present case plastic anisotropy manifests through

(i) loading direction dependence, (ii) kinematic hardening, and (iii) strength

differential.510

We are here considering the transformed equivalent stress σeq as a function

of three variables, namely the current Cauchy stress second order tensor σ, the

back stress second order tensor X, and a fourth order tensor accounting for the
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texture-induced orthotropy A.

σeq = σeq

(
σ,X;A

)
(26)

Each source of anisotropy is first studied independently of the others and515

then a combination of the three sources is proposed.

* Texture-induced initial orthotropy: X = 0

Following Karafillis and Boyce [12], we introduce the transformed stress

Σ = A : σ also denoted as the Isotropy Plasticity Equivalent (IPE) stress.

The fourth order tensor A is a linear multiplicative operator involving potential520

plastic orthotropy. In the case of an isotropic material, the operator reduces to

the identity tensor, viz. A = I. As a consequence, the transformed stress reads

σeq

(
σ,X;A

)
= σeq

(
Σ, X

)
(27)

Table 1 reports two definitions of the transformed equivalent stress aiming at

accounting for anisotropic plasticity: (i) by incorporating the tensor A directly

in the expression of the equivalent stress, as proposed by Hill [6], and (ii) by525

incorporating it at the stress level, as proposed by Karafillis and Boyce [12].

Table 1: Definitions of transformed equivalent stress in the case of orthotropic plasticity.

Hill (1948) K&B (1993)

σ2
eq = 1

2σ : A : σ
Σ = A : σ

σ2
eq =

1

2
Σ : Σ

The fourth order tensor accounting for anisotropic plasticity can be simplified

as a 6x6 matrix according to major and minor symmetries while stress second
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order tensors are reduced to vectors according to Voigt or Bechterew notations.

A =




A11 A12 A13

A12 A22 A23

A13 A23 A33

A44

A55

A66




(28)

In case of pressure independent-orthotropic plasticity, following condition in530

Equation 29 for anisotropy coefficients in Equation 28 is required and Hill48 [6]

orthotropic matrix is retrieved with 6 independent anisotropy coefficients.





A11 = − (A12 +A13)

A22 = − (A12 +A23)

A33 = − (A13 +A23)

(29)

We are here adopting the 9-anisotropy-coefficient approach in Equation 28

and the pressure independence will be described by applying the linear trans-

formation A to the stress deviator tensor and not to the stress tensor itself, see535

Equation 32 and Table 2 later on.

* Kinematic hardening-induced evolving anisotropy A = I

The approach commonly adopted when dealing with kinematic plastic hard-

ening is to consider the translation of the yield surface by means of the deviatoric

back stress X. For instance, the transformed equivalent stress would read540

σ2
eq =

3

2

(
s−X

)
:
(
s−X

)
=

3

2
ŝ : ŝ (30)

where ŝ =
(
s−X

)

* Strength differential-induced initial anisotropy A = I & X = 0

The strength differential between tension and compression can be assumed

to be a type of anisotropy. As mentioned in the introduction, CPB06 [25],

Khan [24] and Longère [31] propose different methods for describing this effect.545
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In this study, the CPB06 model [25] is chosen as it allows for a simple definition

of the yield surface without resorting to the Lode angle or a coupling with

the viscous component. The CPB06 isotropic yield surface adds a strength

differential parameter k to the definition in Karafillis and Boyce [12] resulting

in the form550

σeq
a =

1

m0
a
{(|S1| − kS1)

a
+ (|S2| − kS2)

a
+ (|S3| − kS3)

a} (31)

where Sp are the eigenvalues of the stress tensor σ, k is the main parameter

defining the material asymmetry, a is a shape parameter of the yield surface,

see Hosford [72] and m0 is a model constant.

The Karafillis and Boyce [12] generalized yield criterion can be recovered for

k = 0 (and the Mises criterion with a = 2). The CPB06 criterion in Equation555

31 can thus be considered as an extended distortion (without a rotation) of such

surface.

* Complete transformed equivalent stress A 6= I & X 6= 0

In order to couple kinematic hardening and plastic orthotropy, two ap-

proaches can be considered, see Table 2. Following Baltov and Sawczuk [10],560

the back stress is first subtracted from the deviatoric stress tensor and the Hill

criterion is then applied. Alternatively, Karafillis and Boyce [12] make use of

their linear operator to transform the difference between the stress tensor and

the back force.

On the other hand, coupling plastic orthotropy and strength differential565

may be achieved following CPB06 [25] approach. Indeed, the authors apply a

linear transformation to the stress deviator: Σp is defined as the eigenvalues of

the transformed tensor Σ = A : s which replaces s in Equation 31, see Table

2. The authors initially proposed a symmetric definition of the 6x6 matrix

representation of the tensor A as in Equation 28, although further simplifications570

using a Hill-like matrix can be made to model the orthotropy as found in [73].

We are here coupling kinematic hardening, plastic orthotropy and strength

differential by combining Karafillis and Boyce [12] and CPB06 [25] methods.
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For that purpose, we are defining the transformed stress eigenvalues as follows,

see Table 2.575

Σ̂p = eig(Σ̂);

Σ̂ = A :
(
s−X

) (32)

Therefore, the complete anisotropic criterion reads

σeq
a =

1

m0
a

{(
|Σ̂1| − kΣ̂1

)a
+
(
|Σ̂2| − kΣ̂2

)a
+
(
|Σ̂3| − kΣ̂3

)a}
(33)

The constant m0 is defined such that the equivalent stress is equal to the

uniaxial stress in tension (compression) if k > 0 (k < 0) for an isotropic material,

i.e. A = I.

m0
a =

[
2

3
(1− |k|)

]a
+ 2

[
1

3
(1 + |k|)

]a
(34)

The coefficients A55 and A66 are herein assumed to be 1 due to the lack of580

information for shear along the normal direction (an alternative approach is to

consider A44 = A55 = A66 as done by Tuninetti and Habraken [26]).

Table 2: Examples of anisotropic plasticity-oriented transformed equivalent stress.

B&S (1965) K&B (1993) CPB06 Present approach

ŝ = s−X

σ2
eq =

1

2
ŝ : A : ŝ

Σ̂ = A
(
σ −X

)

σ2
eq =

1

2
Σ̂ : Σ̂

Σp = eig(Σ)

Σ = A : s

σeq = σeq (Σp, k)

Σ̂p = eig(Σ̂)

Σ̂ = A :
(
s−X

)

σeq = σeq

(
Σ̂p, k

)

3.3.2. Viscous stress σv

Regarding the rate dependent formulation, the experimental results show the

existence of a strain rate induced overstress independent of the anisotropy axes585

and plastic strain and whose temperature dependence within the temperature
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range of interest is negligible. The Norton-Perzyna law is proposed to describe

such behavior [74].

σv = Yvκ̇
1/nv (35)

where Yv and nv are material coefficients.

By following the approach in Perzyna [75], the potential described in Equa-590

tion 22 is accordingly of the form

Ω (f) =
1

nv + 1
〈 f
Yv
〉nv+1 (36)

Indeed, by combining 24.2 and 36, the Norton-Perzyna law in Equation 35

is retrieved

κ̇ = λ̇ =
∂Ω

∂f
= 〈 f

Yv
〉n = 〈σv

Yv
〉n (37)

3.3.3. Rate independent yield stress σy

The radius of the elasticity domain is defined as a temperature dependent595

initial threshold stress σy0 (T ) plus the stress related to the isotropic harden-

ing r(κ, T ). Both the initial threshold stress and isotropic hardening force are

assumed to depend on temperature according to the same thermal softening

function g (T ):

σy = σy0 (T ) + r (κ, T ) = g (T )R (κ) (38)

* Strain hardening600

For the definition of the isotropic hardening, the Swift (power) law and

the Voce (exponential with saturation) law are widely used (see [54, 76] for

a linear combination of both). For the material under consideration, some

initial constant calibration (not shown here) from the monotonic tests have

shown that Swift law fits well the experimental curves. On the other hand,605

Chun et al. [38] and Carbonnière [39] have shown that a coupling between
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isotropic and kinematic hardening is well described by adding a negative Voce-

type exponential law in the expression of the strain hardening function.

Therefore, a combination of Swift and (negative) Voce expressions is herein

considered in view of coupling isotropic and kinematic hardening. The adopted610

forms for the strain hardening function h′ (κ) in Equation 19 and radius R (κ)

in Equation 38 read

h′ (κ) = Q0 (ε0 + κ)
n − C

D
(1− exp (−Dκ))

R (κ) = R0 + h′ (κ)

(39)

where R0, Q0, ε0 and n are the Swift law-related postive constants and C

and D are (negative) Voce law-related positive constants.

* Thermal softening615

As previously evidenced by the experimental campaign, the thermal soften-

ing function g(T ) is of the form

g (T ) = 1− 〈 T − Tref
Tm − Tref

〉mT (40)

where Tm is the melting point and Tref and mT material constants.

3.3.4. Complementary laws

Following the decomposition made in Equation 24, the plastic strain rate is620

expressed as

ε̇p = κ̇
∂σeq
∂σ

= κ̇n (41)

where n = ∂σeq/∂σ represents the yield direction. It can be shown that the

explicit expression for n is

n =

3∑

p=1


 1

ma
0

(
|Σ̂p| − kΣ̂p

σeq

)a−1 (
sgn

(
Σ̂p

)
− k
)

 J : A :

(
vp ⊗ vp

)
(42)
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where vp is the eigenvector corresponding to the eigenvalue Σ̂p. The outer

product · ⊗ · is here used and J is the fourth order tensor projecting σ onto its625

deviatoric plane s. The deviator operator J is defined in the index form as

Jijkl =

[
1

2
(δikδjl + δilδjk)− 1

3
δijδkl

]
(43)

To describe nonlinear kinematic hardening, function f̂
(
X
)

in Eq 23 is taken

of the form (see [35])

f̂
(
X
)

=
3D

4C
X : X (44)

The rate of the kinematic hardening variable in Equation 24 accordingly

reads630

α̇ = −κ̇
(
∂f

∂X
+

3D

2C
X

)
= κ̇m (45)

It can be easily shown that ∂σeq/∂X = −n. With this expression, the normal

tensor m recovers the non linear definition seen in Armstrong and Frederick [36]

and Chaboche [37]:

m = n− 3D

2C
X

α̇ = ε̇p −Dκ̇α
(46)

It is noteworthy that the material constants C and D coincide with the Voce

law constants in Equation 39.635

Injecting the different expressions in Equations 41 and 46 into Equation 25

yields the following expression for the temperature rise

Ṫ =
1

ρc

(
σeq − r +

2

3
CDα : α

)
κ̇ (47)

As mentioned previously, the temperature rise is usually estimated via the

inelastic heat fraction β, also known as the Taylor-Quinney coefficient [60],
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defined as the fraction of the plastic work rate converted into heat, or640

Ṫ =
β

ρc
σvmκ̇ (48)

The coefficient β is often arbitrarily assumed constant with a value typically

ranging from 0.8 to 1.0 without much physical motivation to back it up [77]

and despite many experimental evidences of its dependence on strain and even

strain rate and temperature itself (see Macdougall and Harding [47]). As done in

Longère [59], this coefficient may be deduced consistently from the constitutive645

model. In the present case, it reads

β =
σeq − r + 2

3CDα : α

σvm
(49)

This expression for β intrinsically accounts for potential dependence on

strain, strain rate and temperature and is used in the sequel. In the present

work, following a thermodynamic approach, the inelastic heat fraction β is con-

sistently deduced from the constitutive model and accordingly evolves along the650

loading path. For high strain rate tension loading, starting from a value close

to 0.95, β is slightly decreasing with increasing strain, reaching a value close to

0.8 at 0.3 of plastic strain. This evolution for β is close to the one reported in

Rosakis et al. [78].

3.4. Summary of the constitutive equations655

Rate equations of the constitutive model are summarized below.

* Constitutive state laws





σ̇ = C : ε̇e − αKṪ

Ẋ =
2

3
Cα̇

ṙ = h′′ (κ) g (T ) κ̇+ h (κ) g′ (T ) Ṫ

(50)
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where





h (κ) =
Q0

n+ 1
(ε0 + κ)

n+1 − C

D
(Dκ− exp (−Dκ))

g (T ) = 1− 〈 T − Tref
Tm − Tref

〉mT

(51)

* Yield function

f
(

Σ̂, k, r
)

= σeq

(
Σ̂p, k

)
− [R0g (T ) + r (κ, T )] = σv (κ̇) ≥ 0 (52)

where660

σeq

(
Σ̂p, k

)
=

1

m0
a

{(
|Σ̂1| − kΣ̂1

)a
+
(
|Σ̂2| − kΣ̂2

)a
+
(
|Σ̂3| − kΣ̂3

)a}

Σ̂p = eig(Σ̂)

Σ̂ = A :
(
s−X

)
(53)

* Complementary laws





κ̇ = 〈 f
Yv
〉nv

ε̇p = κ̇n

α̇ = ε̇p −Dκ̇α

Ṫ =
βσvm
ρc

κ̇

(54)

where





n =

3∑

p=1


 1

ma
0

(
|Σ̂p| − kΣ̂p

σeq

)a−1 (
sgn

(
Σ̂p

)
− k
)

 J : A :

(
vp ⊗ vp

)

β =
σeq − r + 2

3CDα : α

σvm

σvm =

√
3

2
s : s

(55)
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* Initial conditions





εp (0) = 0

X (0) = 0

r (0) = 0

T (0) = T0

(56)

* Material constants

Elasticity: E = 110 GPa, ν = 0.3665

Anisotropy (9): a, k,A11, A22, A33, A44, A12, A23, A13, A55 = A66 = 1

Viscosity (2): Yv, nv

Hardening (6): R0, Q0, ε0, n, C,D

Temperature (2): mT , Tref = 25 ◦C, Tm = 1600 ◦C

4. Model implementation, identification and validation670

This section aims at showing the numerical procedure used to implement the

material constitutive equations as a user material subroutine in a commercial

finite element code (LS-DYNA) using an explicit time integration of the rate

equations. The identification of the material coefficients using the commercial

software Z-set is then pursued so as to check the validity of the model as well675

as its limitations. Finally, a validation using notched specimens is performed.

4.1. Numerical procedure

The numerical time integration of the constitutive equations starts with a

finite differences scheme in the co-rotational frame. This means a push forward

operation has been previously performed. The elastic strain rate is therefore680
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approximated as an increment between times ti and ti+1 which can be decom-

posed in a volumetric part (not playing a role in the viscoplastic problem here

defined) and a deviatoric part.




ṗ = −Kε̇v + 3αKṪ = K

(
ε̇T − ε̇v

)

ṡ = 2µε̇e
dev

→





∆p = K
(
∆εT −∆εv

)

∆s = 2µ∆εe
dev

(57)

where ε̇T = 3αṪ = 3α
(
Ṫiso + Ṫadia

)
is the thermal strain rate related

to the increase in temperature (i) under isothermal conditions, i.e. a global685

external temperature and (ii) due to the adiabatic self-heating of the material.

Hence, two thermal strain increments can be defined: ∆εTiso = 3α∆Tiso and

∆εTadia = 3α∆Tadia.

The total strain increment is accordingly decomposed in an elastic, plastic

and two thermal components.690

∆ε = ∆εe + ∆εp +
1

3
∆εTisoI +

1

3
∆εTadiaI (58)

The corresponding volumetric and deviatoric parts are





∆εv = trace
(
∆ε
)

= trace
(
∆εe

)
+ ∆εTiso + ∆εTadia

∆ε
dev

= ∆εe
dev

+ ∆εp
dev

(59)

The strategy used to integrate the equations is based on a two-step elastic

prediction-plastic correction algorithm [79] (see Figure 17). An explicit integra-

tion of the total strain increment from the equilibrium equations is considered

as the input variable in the algorithm.695

The plastic correction is carried out with a direct integration of the Perzyna

formulation (see [75]). The yield surface value to be used is a first order ap-

proximation based on its value at the previous increment and an estimation of

its increment.

κ̇ = 〈 f
Yv
〉nv → ∆κ = 〈f

i+1/2

Yv
〉nv∆t = 〈f

i + 1
2∆f

Yv
〉nv∆t (60)
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In order to integrate Equation 60, an approximation of the yield surface700

increment is done by expanding its partial derivatives with respect to its argu-

ments.

∆f =
∂f

∂σ
: ∆σ +

∂f

∂X
: ∆X +

∂f

∂κ
∆κ+

∂f

∂T
∆T

= n : ∆strial

−
(

2µn : n+ g′
(
T i
)
R
(
κi
) ∂T
∂κ

∣∣∣∣
i

+ g
(
T i
)
R′
(
κi
)

+ n :
∂X

∂κ

)
∆κ0

(61)

An initial estimation of the plastic strain increment is defined as

∆κ0 = 〈 f
i

Yv
〉nv∆t (62)

The partial derivative of the temperature with respect to the plastic strain

is obtained by using the reduced heat expression in Equation 25.705

∂T

∂κ

∣∣∣∣
i

=
βiσivm
ρc

(63)

The reason for this first order approximation is to delay instabilities as the

imposed strain increments become large. Figure 16 shows a comparison between

the forward Euler integration (using the yield function at the time instant tn)

and the first order approximation just described. When compared to an implicit

solution, where convergence to the exact solution is presumed, the forward Euler710

shows instabilities for very high strain rates. Some slight oscillations can be

observed on the stress-strain curve as well as some larger ones when computing

the plastic strain rate. Therefore, a first-order approximation of the yield surface

at the time instant tn+1/2 provides with a much closer and more stable solution

with respect to the implicit one without recurring to a computationally costly715

implicit loop.

Once the cumulative equivalent plastic strain κ is integrated, the rest of

the state variables, i.e., the kinematic variable and the temperature can be
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Figure 16: Uniaxial tensile simulation at the element scale.
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updated. A discrete approximation of Equations 45 and 48 as well as Equation

46 is considered:720





∆α =

(
ntrial − 3D

2C
Xi

)
∆κ

∆T =
1

ρc
βiσieq∆κ

(64)

Finally the update of the stress state is performed by means of a correction

where the plastic strain and thermal increment contributions are subtracted.

This return algorithm uses the yield direction at the trial stress state under the

assumption that a radial correction is sufficient to correct the stress.





∆p = ∆ptrial +K∆εTv I = ∆ptrial +Kα∆TI

∆s = ∆strial − 2µ∆εp
dev

= ∆strial − 2µntrial∆κ
(65)

A summary of the numerical integration is described in the flowchart de-725

picted in Figure 17.

∆ptrial = −K
(
∆εv −∆εTiso

)

∆strial = 2µ∆ε
dev

f
(
σi + ∆σtrial

)
> 0

∆κ = 〈f
i+ 1

2
∆f

Yv
〉nv∆t

σi+1 = σi + ∆σtrial

∆α =

(
ntrial − 3D

2C
Xi

)
∆κ

∆T =
1

ρc
βiσieq∆κ

∆p = ∆ptrial +Kα∆TI

∆s = ∆strial − 2µntrial∆κ
σi+1 = σi + ∆pI + ∆s

yes

no

Figure 17: Numerical integration flow chart.
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4.2. Model constants calibration at the volume element scale

The commercial software Z-set is chosen to carry out the identification of

the material coefficients. Three stages are considered for the calibration of the

material parameters: (i) 9 coefficients for the anisotropy (using the von Mises730

criterion as the starting point of the optimization, i.e. a = 2, k = 0 and

Aij = Iij), (ii) 2 coefficients for the viscosity (once the anisotropy has been

identified) and finally (iii) 7 coefficients for the strain hardening and thermal

softening identification.

A volume element under uniaxial tension and compression at various strain735

rates along various directions is considered for the calibration. The inverse-

problem identification of the material constants is performed using a gradient-

based optimization method [80]. In particular, the Levenberg-Marquardt algo-

rithm [81] is employed for the least-square minimization between the numerical

and experimental results:740

C
(
p
)

=
1

2

T∑

i=1

N∑

j=1

wj
(
σEXPj (ti)− σNUMj

(
p, ti

))2
(66)

where C is the cost function to minimize, p the set of material constants to

identify, wj a weight parameter and the subscripts i and j are used to denote

different times and tests respectively. For confidentiality reason, the values of

the coefficients are not given.

* Calibration of the orthotropy and strength differential related coefficients745

In order to identify the anisotropy, the parameters a, k, A11, A22, A33, A44,

A12, A23 and A13 are fitted. For that purpose, the stress-strain tension and

compression curves from the monotonic quasi-static tests run at 10−3 s−1 are

used. Figure 18 shows the result of such identification. The tension-compression

differential is well captured as well as the orthotropy for both types of loadings.750

* Calibration of the viscoplasticity related coefficients

Only the viscosity coefficients Yv and nv are considered in this stage. As

seen with the dynamic tensile testing in Figure 5, the combined effect of self-

heating induced softening and the poor camera resolution is responsible for
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Figure 18: Stress vs strain. Tension and compression. Orthotropy related constants identifi-

cation. |ε̇| ' 10−3 s−1, T = 25 ◦C

47



a poor measurement of the hardening curves. For this reason, the viscosity755

identification uses only compression stress-strain curves from monotonic quasi-

static and dynamic loading plus the tension curves in the quasi-statique regime.

Figure 19 shows a comparison with the identified numerical viscous model with

the experimental data. The Norton law proves itself the right approximation to

reproduce the overstress observed in the experiments.760

Moreover, the tensile yield stress in the dynamic regime (at low strains, i.e.

before the onset of self-heating softening) which is not used for identification is

well estimated.

* Calibration of the strain hardening and thermal softening related coefficients

The last part of the identification is the mixed isotropic and kinematic hard-765

ening and thermal softening where parameters R0,K, ε0, n, C,D,mT are iden-

tified. Figure 20 summarizes the prediction capability of the model were both

the monotonic and the reversed loadings are well fitted.

The material constants are summarized in Table 3.

Table 3: Material constants after calibration. Hardening coefficients Q0, C, and Yv are

normalized with respect to R0 (ungiven value for confidential reason), i.e. Q̃0 = Q0/R0,

C̃ = C/R0, Ỹv = Yv/R0. In a same way, Ãij = Aij/A11 (with A11 ungiven for confidential

reason) and A55 = A66 = 1.

E(MPa) ν Tref (◦C) Tm(◦C) mT

110,000 0.3 25 1600 0.6

Q̃0 n ε0 C̃ D Ỹv(s
1/nv ) nv

0.93 0.33 1.E-08 23.22 95.3 0.16 7.0

a k A22 A33 A12 A23 A13 A44

2 -0.17 0.994 0.983 0.327 0.260 0.242 0.710

4.3. Verification at the specimen scale770

Finite Element simulations of the specimen loadings considered in the exper-

imental campaign are herein presented to verify the performance of the model
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Figure 19: Stress at 2 % of plastic strain vs plastic strain rate. Tension and compression.

Viscoplasticity related constants identification. T = 25 ◦C, Rolling direction RD

at the scale of a structure. The simulations used full integration 3D solid ele-

ments and some mass scaling for the explicit integration in LS-DYNA. Figure 21

shows a comparison between the numerical and the experimental results for the775

monotonic tension and compression specimens. For the tensile tests, the quasi-
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Figure 20: Stress vd strain. Results of the final identification. ε̇ = 103 s−1, T = 25 ◦C, Rolling

direction RD.

static loading is well captured until necking. On the other hand the dynamic

tensile tests are simulated by considering both isothermal and adiabatic condi-

tions. It can be observed that with the latter, the thermal softening produces

a better match with the experimental data for both tension and compression.780

The noise in the simulation is mainly due to the elastic waves bouncing and is

highly dependent on the meshing.

The combination of a relatively low frame rate (considering the short dura-

tion of the loading) and an early spalling of the speckle painting results in an

incomplete and scattered stress-strain curve in the elasto-plastic regime at high785

loading rates. This explains the difference of hardening between experimental

(apparently lower hardening) and numerical (stronger hardening) results.

The tests on notched tensile and shear specimens with significantly different

levels of stress triaxiality ratio are here compared in order to evaluate the model

performance (it is noteworthy that they were not used in the calibration stage).790

In Figure 22, the superimposition of experimental and computed load/strain

curves is shown. The verification is made by comparing the applied vs. com-

puted load and the measured vs. computed strain (from an extensometer with
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Figure 21: Load vs strain. Tension and compression. Tests within the quasi-static and

dynamic regimes. T = 25 ◦C, Transverse direction TD
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Figure 22: Load vs strain. Comparison of experimental and simulated curves for notched and

shear specimens. ε̇ ' 10−3 s−1, T = 25 ◦C, Transverse direction TD.

the same gauge length). For the three notched geometries with a positive tri-

axiality, the overall level of force as well as the hardening up to necking is795

correctly predicted with only a slight overestimation, especially for the 0.5 mm

radius notch. However, this disparity remains lower than the experimental scat-

ter. For the shear specimen, the simulation perfectly matches the experimental

curve until fracture. The constitutive model seems thus to correctly model the

overall behavior of the material in a wide range of stress triaxiality ratios.800

Some experimental and simulated displacement or strain maps were com-

pared for tension loading of notched specimens on which a speckle painting was

applied. An example is shown in Figure 23, according to which one can conclude

to a satisfactory experiment-simulation correlation.

5. Concluding remarks805

An extensive experimental campaign has been performed on a Ti-6Al-4V

titanium alloy, consisted in tension, compression and shear tests performed at

various low and high strain rates and temperatures, and under monotonic as
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Figure 23: Experimental vs. numerical vertical displacement. Low strain rate tension loading

of a notched specimen of radius 2 mm. ε̇ ' 10−3 s−1, T = 25 ◦C, Transverse direction TD.

well as alternate loading path. Relying upon the experimental results, an ad-

vanced rate and temperature dependent constitutive model has been developed810

accounting for the effects of loading orientation, strength asymmetry, and non-

linear, isotropic and kinematic hardening. The model has been implemented as

a user material subroutine in the commercial finite element computation code

LS-DYNA and its performances have been evaluated at the structure scale con-

sidering notched and shear specimens.815

Given the large number of parameters (strain rate, temperature, loading

orientation, strength asymmetry, isotropic and kinematic hardening) it accounts

for, this model is expected to apply to a wide range of engineering materials

without significant modifications of its structure. In particular, a change in the

titanium alloy thermo-mechanical treatment is expected to result in a change820

in some material constant values and not in the model itself.
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[46] J. Galán López, P. Verleysen, J. Degrieck, Thermal Effects During Tensile

Deformation of Ti-6Al-4V at Different Strain Rates, Strain 49 (2013). doi:

10.1111/str.12042.985

[47] D. Macdougall, J. Harding, A constitutive relation and failure criterion

for Ti6Al4V alloy at impact rates of strain, Journal of the Mechanics and

Physics of Solids 47 (5) (1999) 1157–1185. doi:10.1016/S0022-5096(98)

00086-6.

59

https://doi.org/10.1016/J.IJMECSCI.2011.03.005
https://doi.org/10.1016/J.IJMECSCI.2011.03.005
https://doi.org/10.1016/J.IJMECSCI.2011.03.005
https://doi.org/10.1016/s0022-5096(98)00020-9
https://doi.org/10.1016/J.IJPLAS.2003.06.005
https://doi.org/10.1016/J.IJPLAS.2003.06.005
https://doi.org/10.1016/J.IJPLAS.2003.06.005
https://doi.org/10.1016/J.ENGFRACMECH.2012.11.009
https://doi.org/10.1016/J.ENGFRACMECH.2012.11.009
https://doi.org/10.1016/J.ENGFRACMECH.2012.11.009
https://doi.org/10.1016/j.ijimpeng.2004.04.010
https://doi.org/10.1016/j.ijimpeng.2004.04.010
https://doi.org/10.1016/j.ijimpeng.2004.04.010
https://doi.org/10.1111/str.12042
https://doi.org/10.1111/str.12042
https://doi.org/10.1111/str.12042
https://doi.org/10.1016/S0022-5096(98)00086-6
https://doi.org/10.1016/S0022-5096(98)00086-6
https://doi.org/10.1016/S0022-5096(98)00086-6


[48] P. Longère, A. Dragon, Dynamic vs. quasi-static shear failure of high990

strength metallic alloys: Experimental issues, Mechanics of Materials

80 (PB) (2015) 203–218. doi:10.1016/j.mechmat.2014.05.001.

[49] T. Tancogne-Dejean, C. C. Roth, U. Woy, D. Mohr, Probabilistic fracture

of Ti-6Al-4V made through additive layer manufacturing, International

Journal of Plasticity 78 (2016) 145–172. doi:10.1016/j.ijplas.2015.995

09.007.

[50] A. S. Khan, R. Kazmi, B. Farrokh, Multiaxial and non-proportional loading

responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide

ranges of strain rates and temperatures, International Journal of Plasticity

23 (6) (2007) 931–950. doi:10.1016/J.IJPLAS.2006.08.006.1000

[51] M. Zhang, J. Zhang, D. McDowell, Microstructure-based crystal plastic-

ity modeling of cyclic deformation of Ti–6Al–4V, International Journal of

Plasticity 23 (8) (2007) 1328–1348. doi:10.1016/J.IJPLAS.2006.11.009.

[52] J. Mayeur, D. McDowell, A three-dimensional crystal plasticity model for

duplex Ti–6Al–4V, International Journal of Plasticity 23 (9) (2007) 1457–1005

1485. doi:10.1016/J.IJPLAS.2006.11.006.

[53] K. Le Biavant, S. Pommier, C. Prioul, Local texture and fatigue crack

initiation in a Ti-6Al-4V titanium alloy, Fatigue & Fracture of Engineering

Materials & Structures 25 (2002) 527–545. doi:10.1046/j.1460-2695.

2002.00480.x.1010

[54] C. C. Roth, D. Mohr, Determining the strain to fracture for simple shear for

a wide range of sheet metals, International Journal of Mechanical Sciences

149 (2018) 224–240. doi:10.1016/J.IJMECSCI.2018.10.007.

[55] M. Dunand, G. Gary, D. Mohr, Load-Inversion Device for the High Strain

Rate Tensile Testing of Sheet Materials with Hopkinson Pressure Bars,1015

Experimental Mechanics 53 (2013). doi:10.1007/s11340-013-9712-y.

60

https://doi.org/10.1016/j.mechmat.2014.05.001
https://doi.org/10.1016/j.ijplas.2015.09.007
https://doi.org/10.1016/j.ijplas.2015.09.007
https://doi.org/10.1016/j.ijplas.2015.09.007
https://doi.org/10.1016/J.IJPLAS.2006.08.006
https://doi.org/10.1016/J.IJPLAS.2006.11.009
https://doi.org/10.1016/J.IJPLAS.2006.11.006
https://doi.org/10.1046/j.1460-2695.2002.00480.x
https://doi.org/10.1046/j.1460-2695.2002.00480.x
https://doi.org/10.1046/j.1460-2695.2002.00480.x
https://doi.org/10.1016/J.IJMECSCI.2018.10.007
https://doi.org/10.1007/s11340-013-9712-y


[56] C. C. Roth, G. Gary, D. Mohr, Compact SHPB System for Interme-

diate and High Strain Rate Plasticity and Fracture Testing of Sheet

Metal, Experimental Mechanics 55 (9) (2015) 1803–1811. doi:10.1007/

s11340-015-0061-x.1020

[57] H. Zhao, G. Gary, On the use of SHPB techniques to determine the

dynamic behavior of materials in the range of small strains, Interna-

tional Journal of Solids and Structures 33 (23) (1996) 3363–3375. doi:

10.1016/0020-7683(95)00186-7.

[58] J. Dickson, J. Boutin, L. Handfield, A comparison of two simple methods1025

for measuring cyclic internal and effective stresses, Materials Science and

Engineering 64 (1) (1984) L7–L11. doi:10.1016/0025-5416(84)90083-1.

[59] P. Longère, Respective/combined roles of thermal softening and dynamic

recrystallization in adiabatic shear banding initiation, Mechanics of Mate-

rials 117 (2018) 81–90. doi:10.1016/J.MECHMAT.2017.10.003.1030

[60] G. I. Taylor, H. Quinney, The latent energy remaining in a metal after cold

working, Proceedings of the Royal Society of London. Series A, Containing

Papers of a Mathematical and Physical Character 143 (849) (1934) 307–

326.

[61] J. Mason, A. Rosakis, G. Ravichandran, On the strain and strain1035

rate dependence of the fraction of plastic work converted to heat:

an experimental study using high speed infrared detectors and

the kolsky bar, Mechanics of Materials 17 (2) (1994) 135 – 145.

doi:https://doi.org/10.1016/0167-6636(94)90054-X.

URL http://www.sciencedirect.com/science/article/pii/1040

016766369490054X

[62] E. H. Lee, D. T. Liu, Finite-strain elastic—plastic theory with application

to plane-wave analysis, Journal of applied physics 38 (1) (1967) 19–27.

61

https://doi.org/10.1007/s11340-015-0061-x
https://doi.org/10.1007/s11340-015-0061-x
https://doi.org/10.1007/s11340-015-0061-x
https://doi.org/10.1016/0020-7683(95)00186-7
https://doi.org/10.1016/0020-7683(95)00186-7
https://doi.org/10.1016/0020-7683(95)00186-7
https://doi.org/10.1016/0025-5416(84)90083-1
https://doi.org/10.1016/J.MECHMAT.2017.10.003
http://www.sciencedirect.com/science/article/pii/016766369490054X
http://www.sciencedirect.com/science/article/pii/016766369490054X
http://www.sciencedirect.com/science/article/pii/016766369490054X
http://www.sciencedirect.com/science/article/pii/016766369490054X
http://www.sciencedirect.com/science/article/pii/016766369490054X
http://www.sciencedirect.com/science/article/pii/016766369490054X
http://www.sciencedirect.com/science/article/pii/016766369490054X
https://doi.org/https://doi.org/10.1016/0167-6636(94)90054-X
http://www.sciencedirect.com/science/article/pii/016766369490054X
http://www.sciencedirect.com/science/article/pii/016766369490054X
http://www.sciencedirect.com/science/article/pii/016766369490054X


[63] E. Lee, Elastic-Plastic Deformation at Finite Strains, Journal of Applied

Mechanics 36 (1) (1969) 1–6. doi:10.1115/1.3564580.1045

[64] P. Longère, A. Dragon, H. Trumel, T. de Resseguier, X. Deprince, E. Pe-

titpas, Modelling adiabatic shear banding via damage mechanics approach,

Vol. 55, 2003.

[65] B. Schieck, H. Stumpf, The appropriate corotational rate, exact formula

for the plastic spin and constitutive model for finite elastoplasticity, In-1050

ternational Journal of Solids and Structures 32 (24) (1995) 3643–3667.

doi:10.1016/0020-7683(95)00007-W.

[66] J. Mandel, Equations constitutives et directeurs dans les milieux plastiques

et viscoplastiques, International Journal of Solids and Structures 9 (6)

(1973) 725–740. doi:10.1016/0020-7683(73)90120-0.1055

[67] T. Hughes, J. Winget, Finite rotation effects in numerical integration of rate

constitutive equations arising in large-deformation analysis, International

Journal for Numerical Methods in Engineering 15 (12) (1980) 1862–1867.

doi:10.1002/nme.1620151210.

[68] P. Longère, Numerical integration of rate constitutive equations in pres-1060

ence of large strains and rotations, Mechanics Research Communications

95 (2019) 61–66. doi:10.1016/J.MECHRESCOM.2018.12.001.

[69] B. Halphen, Q. S. Nguyen, Sur les Matériaux Standard Généralisés, Journal
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