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Abstract

A kink is a stationary solution to a cubic one-dimensional wave equation (8? - Bi)qﬁ =
¢ — ¢3 that has different limits when x goes to —oo and 400, like H(x) = tanh(%).
Asymptotic stability of this solution under small odd perturbation in the energy space
has been studied in a recent work of Kowalczyk, Martel and Mufioz. They have been
able to show that the perturbation may be written as the sum a(z)Y(x) + ¥ (¢, x),
where Y is a function in Schwartz space, a(¢) a function of time having some decay
properties at infinity, and v (¢, x) satisfies some local in space dispersive estimate.
These results are likely to be optimal when the initial data belong to the energy space.
On the other hand, for initial data that are smooth and have some decay at infinity,
one may ask if precise dispersive time decay rates for the solution in the whole space-
time, and not just for x in a compact set, may be obtained. The goal of this work is to
attack these questions.

Our main result gives, for small odd perturbations of the kink that are smooth
enough and have some space decay, explicit rates of decay for a(¢) and for ¥ (¢, x) in
the whole space-time domain intersected by a strip |t| < €~**¢, for any ¢ > 0, where
€ is the size of the initial perturbation. This limitation is due to some new phenomena
that appear along lines x = =+ */Tit that cannot be detected by a local in space analysis.
Our method of proof relies on construction of approximate solutions to the equation
satisfied by ¥, conjugation of the latter in order to eliminate several potential terms,
and normal forms to get rid of problematic contributions in the nonlinearity. We use
also Fermi’s golden rule in order to prove that the a(z)Y component decays when
time grows.

Keywords. Kink, nonlinear Klein—Gordon equations, normal forms, Fermi’s golden
rule
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Chapter 1

Introduction

This book is devoted to the study of dispersive estimates for small perturbations of
a stationary solution (the “kink”) of a cubic wave equation of the form

(07 —2)p = ¢ — 9>,

in one space dimension. Before discussing that equation and stating our results, we
shall give a general presentation of the framework in which this study lies.

1.1 Long time existence for perturbed evolution equations

The question of long time (or global) existence of solutions to nonlinear dispersive
equations, like the wave equation, has been a major line of research for at least the
last fifty years. Let us start from the following simple model that encompasses several
equations

(Di = p(Dx))u = N(u). (1.1
where u : (¢, x) — u(t, x) is a function defined on I x R4, with I interval of R,
with values in C, where D; = ll% p(Dx) = F Y p§)i(§)), F ! denoting inverse
Fourier transform, and where N(u) is some nonlinearity. The function p(£) may be
equal to
e p(&) = |&|, in which case (1.1) is an half-wave equation,
e p(§) = V1 + |£]?, corresponding to a half-Klein-Gordon equation,
o p§) = %|§ |2 in the case of a Schrodinger equation.

The right-hand side in (1.1) is a nonlinear expression, that we denote by N (u), though

it may contain also factors like %u, (D—’;)u, or their conjugates, or even first-order

derivatives of u in general. For instance, a Klein—-Gordon equation of the form
(32 — A+ 1)¢ = F(¢.0,¢. V) (1.2)

with real-valued ¢, will be reduced to (1.1) defining u = (D; + V1 + |Dx|?)¢,
so that

i _ 1 _1 _
01 = 5(u—u), Ve = va(1+|Dx|2) 2(u + i),
and setting

Nu) = FG(1 1D ) 2 i), Q %Vx(l D) 2 +a)), (1.3)
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which is a non-local nonlinearity. One may proceed in the same way for a quasi-linear
version of (1.2), i.e. equations where the right-hand side of (1.2) contains second-
order derivatives, and is linear in these second-order derivatives. Then N(u) depends
also on first-order derivatives of (u, u).

When one wants to study long time existence for solutions of equations like (1.1)
or (1.2), one of the possible ways is to try to perturb initial data corresponding to
a stationary solution, and to show that this perturbation gives rise to a global solution
that will remain, for long or all times, close to the stationary solution. Of course, the
simplest stationary solution that one may consider is the zero one, in which case one
is led to study (1.1) with small initial data. Since the right-hand side vanishes at least
at order two at zero, one may hope that it might be considered as an higher-order
perturbation.

This framework has been considered by many authors since the mid-seventies,
starting with problems of the form (1.1) in higher space dimensions. Let us explain
why the question is easier in high space dimensions describing some classical results.

1.2 The use of dispersion

A key point in the study of equations of the form (1.1) is the use of dispersion. Con-
sider first the linear equation (D; — p(Dy))u = 0. Assuming that p(£) is real valued,
p(Dy) is self-adjoint when acting on L? or on Sobolev spaces, so that one has preser-
vation of the Sobolev norms of u along the evolution: ||u(¢,- )| gs = ||u(0,- )| gs for
any ¢. If one considers instead equation (1.1), a Sobolev energy estimate gives just
that, as long as the solution exists, one has for any ¢ > 0,

t
(@, )llzs < [u(0, )| as +/0 INQ)(z,)as d, (1.4)

so that one needs, in order to control uniformly the left-hand side, to be able to esti-
mate the integral term on the right-hand side. If one considers a simple model where
N(u) is given by N(u) = P(u,u), where P is an homogeneous polynomial of order
r > 2, one has, for s > 4 \where d is the space dimension, a bound

2
IN@) s < Cllullzs llul g,
so that (1.4) implies
t
e, ) las < (w0, ) ||as + C[O lu(z. )z llu, Hlas dr. (1.5)

As a consequence, by Gronwall’s lemma,

t
e, azs < 1. )ls exp(C/O (e, )= dr). (1.6)
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One thus sees that, if we want to get a control of ||u(z, - )|| gs for large ¢, one needs to
obtain as well a priori estimates for ||u(z, )| L. In particular, to get a uniform global
bounds in (1.6), one would need the right-hand side of this inequality to be bounded,
ie. f0+°°||u(r, 5=t dt < +o0.

One may try to guess what are the best estimates one may expect for ||u(z, - )| Lo
from those holding true for solutions to the linear equation (D; — p(Dy))u = 0. As
the solution is given by

u(t,x) =

7 [ €@ de 17
where vy = u(0, - ), one sees from the stationary phase formula that if ¢ is smooth
enough and has enough decay at infinity, ||u(z,-)||L = O(I_%), where k depends
on the rank of the Hessian of p(£). In the case of the wave equation p(§) = |€ | one
has k = d — 1, while for Schrédinger or Klein-Gordon equations (i.e. p(§) = 3 HE
or p(§) = V1 + |£|?), k = d. Conjecturing that the same decay will hold for solu-
tions of the nonlinear equation, we would get that the integral on the right-hand side
of (1.6) w111 converge if 5(r — 1) > 1, so that if d 1(r — 1) > 1 for the wave equa-
tion and < s(r—=1)>1 for the Klein—Gordon or Schrodmger ones.

1.3 Vector fields methods and global solutions

The above heuristics turn out to give a correct answer for nonlinear wave equations if
one considers general nonlinearities: actually, in this case, smooth enough decaying
initial data of small size give rise to global solutions when d > 4 if the nonlinearity
does not depend on u and is at least quadratic (i.e. r > 2) as it has been proved
by Klainerman [50], Shatah [75], including for quasi-linear nonlinearities. In the
same way, for Klein—Gordon equations with quadratic nonlinearities, global existence
holds if d > 3 (see Klainerman [49], Shatah [76]). Moreover, the solutions scatter, i.e.
have the same long time asymptotics as the solution of a linear equation.

Let us recall the “Klainerman vector fields method” that provides a powerful way
of proving that type of properties. We consider an equation of the form

Ou = f(0:u, Vyu), (1.8)

where u is a function of (¢, x) in R x R4, 0O = 8% — Ay and f is a smooth function
vanishing at least at order 2 at the origin. Instead of [J in the linear part of (1.8),
one may more generally take the operator ), ; g’ k(a,u Vxu)d;dg, where xo = ¢
and the coefficients g/¥ are smooth and satlsfy Z x & k(o, 0)d;dx = O, so that the
method is not limited to semilinear equations, but works as well for quasi-linear ones,
that is one of its main interests. For the sake of simplification, we shall just discuss
(1.8), referring to the original paper of Klainerman [51] and to the book of Horman-
der [42] for the more general case. The Sobolev energy inequality applied to (1.8)

together with nonlinear estimates for the right-hand side imply that, if s > %, the
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energy Es(t) = ||0:u(t, )||%{‘ + ||qu(t,~)||12qs satisfies, as long as ||u/(z, - )| L is
bounded,

t
Es(t)? < E,(0)® + C[ ' (z, )| Es(2)? dz., (1.9)
0

where we set u’ for (d;u, Vyu). This is the analogous of (1.5) for the solution of (1.8)
and in order to exploit this estimate, one needs to show that ¢ > ||u(¢, )| Lo is
integrable. The Klainerman vector fields method allows one to deduce such a property
from L? estimates for the action of convenient vector fields on u. More precisely,
one introduces the Lie algebra of vector fields tangent to the wave cone 2 = |x|?,
generated by

1dx; + x;04, j=1....4d,

Xi0x;, —xj0x;, 1 <i<j<=d,

d
19, + ) xjdy
j=1

and if one denotes by (Z;);eyq the family of fields given by (1.10) or by the usual
derivatives 8;,8xj, j=1,...,d,weset, for [ ={iy,...,ip} Cd?, AR Zi -+ Zi,
and |7| = p. Then, as Z! commutes to [J by construction (up to a multiple of the
equation), one gets from (1.8) essentially

Oz =71 f(3,u, Vyu) (1.11)

(1.10)

from which it follows that, if t > 0,
t
1Z"u(@, )2 < 1270, )2 + [ 1Z" £ @, Vau)(z, )2 d. (1.12)
0

Using that Z7 is a composition of vector fields, one deduces from Leibniz rule that,
setting u'y, = (Z")11<n,
t
[y (8. )22 < Wiy (0.9)llz2 + /0 C(luya (. )ee)
X o (7. )lzoe fady (v, )2 d. (1.13)

This is thus an inequality of the form (1.9), and in order to deduce from it an a pri-
ori bound for the left-hand side of (1.13), one again needs a dispersive estimate for
flu'y /2(1’, )||zeo in O(T_L?). This estimate follows from the Klainerman—Sobolev
inequality

A+ e[+ DA+ [l = Ix)w@. 0P <€ >0 125w )2 (1.14)

11<942

for the proof of which we refer for instance to [42, Proposition 6.5.1]. This implies in
particular that, if we take N large enough so that % + % < N, one has fort > 0,

_d—1
1y /21, )lLee < C(L+ 072 [y (2, ) 2 (1.15)



Vector fields methods and global solutions 5

One deduces from (1.13) and (1.15) a priori bounds of the form
[y (2, )2 < Ae, (1.16)
_d=1
[wy/o (@ )Lee < Be(1+1)7 2 (1.17)

by a bootstrap argument when d > 4: If one assumes that (1.16) and (1.17) hold
for ¢ in some interval [0, T'], one shows that if A, B have been taken large enough in
function of the initial data, and if € is small enough, then (1.16) and (1.17) hold on the
same interval with (A4, B) replaceddb_y1 (é, %). One has just to plug (1.16) and (1.17)
in (1.13), and to use that (1 +¢)~ 2 is integrable in order to prove (1.16) with A
replaced by %. Concerning (1.17) with B replaced by g, it follows from (1.15) and
(1.16) if B is taken large enough with respect to A. Combining these a priori bounds
with local existence theory for smooth data shows that solutions are global, for ¢
small enough, and satisfy (1.16) and (1.17) for any time.

The same type of arguments works more generally when f in (1.8) vanishes
at order » > 2 at zero and (d_l)(r —1)>1.

2
Of special interest is the limiting case of long range nonlinearities when

d—1
2

r—1)=1.

This happens in particular if d = 3,r = 2, i.e. for quadratic nonlinearities in three
space dimension. In this case, one gets in general that data of size ¢ > 0 give rise to
solutions existing over a time interval of length at least e for some ¢ > 0, but finite
time blow-up may occur. Nevertheless, if the solution satisfies a special structure,
the so-called “null condition”, global existence holds true (see Klainerman [51]). We
again refer to the book of Hérmander [42] and references therein for more discussion
of long time existence for wave equations, in particular in two space dimension, and
to Alinhac [2] for the study of blow-up phenomena when solutions are not global. We
also refer to Christodoulou and Klainerman [11] and to Lindblad and Rodnianski [62]
for applications to general relativity.

In Section 1.4 we discuss the case of long range nonlinearities for Schrodinger
and Klein—-Gordon equations in one space dimension, which is the relevant frame-
work for the problem we study in this book. To conclude the present section, let us
make some comments on another well known way of exploiting the dispersive char-
acter of wave (or other linear) equations, namely Strichartz estimates. The vector
fields method that we described above has the advantage of providing explicit decay
rates for the solution (and, combined with other arguments, may even furnish precise
information on asymptotic behavior of solutions). Moreover, it applies to quasi-linear
equations, even if we described it just on a simple semilinear case. On the other hand,
it is limited to the study of equations with small and decaying data.

When one deals with semilinear equations, and wants to study solutions whose
data do not have further decay than being in some Sobolev space, one may instead
use Strichartz estimates. Recall that they are given, for a solution u to a linear wave
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equation,
9> — Au = F,
@ =2 (1.18)
u(0,-) =uo, du(0,-) =u,
defined on I x R?, where I is an interval containing 0, by
el rxmay < € (ollza + Nl + 1F g ooy (119
where the indices satisfy
1+1_1 1_|_1_1 1 d _d 1+d_d+2
g ¢  F P 7 q r 2 q¢ ¥ 2 7
1 d—l<d—1 1 d—1<d—1
¢ 2r T 4 G T4 (1.20)

(q.r.d) #(2,00,3), q,r>2,r <00
(q,7,d) #(2,00,3), ¢,F>2,F<o0.

We refer to the book of Tao [83] and references therein for the proof. These estimates
express both a smoothing and a time decay property of the solution. Because of that,
they are useful both in the study of local existence with non-smooth initial data or for
global existence and scattering problems in the semilinear case, including for large
data. We shall not pursue here on that matter, as this is not the kind of methods we
shall use below, since we are more interested in explicit decay rates of solutions. We
refer to [83] for some of the many applications of these Strichartz estimates.

1.4 Klainerman-Sobolev estimates in one dimension

The preceding section was devoted to the use of Klainerman vector fields in the frame-
work of wave equations in higher space dimensions. In the present section, we shall
focus on the case of (half-)Klein—Gordon or Schrédinger equations in dimension one,
as this is the closest framework to our main theorem. As a prerequisite, we shall
describe first how (a variant of) the method of Klainerman vector fields allows one
to get dispersive decay estimates for solutions when the nonlinearity vanishes at high
enough order at initial time. We start with the simplest model of gauge invariant non-
linearities, to which more general equations may be in any case reduces by the normal
forms me%hods we shall discuss later. Denote thus for & in R, p(§) = /1 + &2 or
p(§) = > and consider equation (1.1) with N(u) = [u|?Pu with p € N*, i.e.

(D: = p(Dx))u = aul*Pu,

(1.21)
Uls=1 = Uy,

where for convenience of notation we take the initial data at time ¢t = 1, ¢ is a com-
plex number and uo will be given in a convenient space. One has the following
statement.
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Theorem 1.4.1. Let p be larger than or equal to 2 in (1.21). There are sy, py in
N such that, for any s > s, there are g9 > 0,C > 0 and for any ¢ € 0, &¢], any
u € H*(R) satisfying

luollas + llxuollz2 <e, (1.22)

the solution to (1.21) is global and satisfies for any t > 1,
€

7

||M([,-)||Hs = CS, ||M([,')||WD(),OO = C (123)

where ||w||wro.co = ||{Dx)POw| poo.

We shall present the proof following arguments due to Hayashi and Tsutsumi [40]
in the case of Schrédinger equations. For Klein—Gordon equations, the first proof of
such a result is due to Klainerman and Ponce [52] and Shatah [75], using a different
method. We shall describe here a unified approach for both equations. Notice also
that for Klein—Gordon equations, global existence result hold for much more general
nonlinearities. We shall give references to that in the forthcoming sections.

Idea of proof of Theorem 1.4.1. We apply the Klainerman vector fields idea, except
that instead of using true vector fields, we make use of the operator

Ly = x+1p'(Dy). (1.24)

This operator commutes to the linear part of the equation, [L4, D; — p(Dy)] = 0.
Moreover, because the nonlinearity is gauge invariant, a Leibniz rule holds. Actually,
in the case of Schrédinger equations, one has a bound

1Ly (PPl 2 < Cllull |l Lyull 2 (1.25)
that follows using that if p(§) = % then L+ = x + tDy and then
Ly (lu]*Pu) = Ly (uP*'u?)
= (p+ D(Lsw)|ul?® — puPT1aP VL u.
(p + 4 +

When p(€) = /1 + £2, one has an estimate similar to (1.25) up to replacing the L™
norm by a W*0-*° one, for some large enough pg, and up to some remainders that do
not affect the argument below (see [20]). We shall pursue here the argument in the
Schrédinger case. Applying L+ to (1.21) and using the commutation property seen
above and (1.25), we obtain

(Dy — p(D))(Lyu) = Opa([[ull7% | L1ullL2) (1.26)

so that one has by L? energy inequality

t
IL+u(, )2 < [L+u(, )2 +C/ he(z, 2 I L ule, )2 de. (1.27)
1
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The proof of the theorem now proceeds with a bootstrap argument: One wants to find
constants 4 > 0, B > 0 such that

lu(@, )llas < Ae,

ILyu(t, )2 < Ae, (1.28)
&

NG

for any ¢ > 1, as long as € > 0 is small enough. Assume that these inequalities hold
true for ¢ in some interval [1, T']. Then, it is enough to show, using equation (1.21),
that for ¢ in the same interval [1, T'], one has in fact the better estimates

”u([’ )”Loo <B

A
t’. s S ~ K
e, s < S

A

ILyu(t, )2 < 76 (1.29)
B ¢
u(z,- o < ———.
lu, )l i

Actually, estimates (1.28) hold on some interval [1, T] if one has taken A, B large
enough, because of assumptions (1.22) made on the initial data, and of Sobolev
embedding in order to get the L bound.

To show that (1.28) implies the first two estimates (1.29), one uses (1.5) (with r
replaced by 2p + 1) and (1.27). Plugging there the a priori bounds (1.28), one gets
for any ¢ in [1, T,

t
e, Ylas < luollas + CBP 4s2+! / T dx,
! ) (1.30)
VL. Y2 < |Lyu(l, ) g + CB2P A2+ / P dr
1

with p > 1. Consequently, using assumption (1.22), taking A large enough and ¢
small enough, one gets the first two inequalities (1.29). To obtain the last one, one
uses Klainerman—Sobolev estimates, that allow one to recover an L bound with the
right time decay from an L? one for L u. In the case we are treating p(§) = % this
is very easy: one writes, by the usual Sobolev embedding

1 1
lwlizee < Cllwl 2 I Dxwll 7.
x2
Applying this with w = e' 27 u(¢, - ), one gets
¢ } )
(. )llzee < ﬁllu(t,-)llellLJru(h-)IILz- (1.31)
Plugging the first two inequalities (1.28) inside the right-hand side, one gets

e
u(t,)||pe < —=CA,
ez, )l i
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which gives the last bound (1.29) if B is chosen large enough relatively to A and
concludes the proof. ]

1.5 The case of long range nonlinearities

In equation (1.21) we limited ourselves to the case p > 1, which may be considered
as a short range case: actually, if we consider |u|?? as a potential, the time decay
of ||u(t,-)||ree in =% shows that [llu(z,)|??|| oo is time integrable at infinity. This
played an essential role in order to bound the integrals on the right-hand side of (1.30).
Thought, a variant of Theorem 1.4.1 holds as well when p = 1:

Theorem 1.5.1. Let p(§) = /1 +£2 or p(§) = % in one space dimension, a a
real constant. There are sg, pg in N, § > 0 such that for any s > s, there are &g > 0,

C > 0 so that, for any ¢ € 10, &g], any ug in H® (R) satisfying (1.22), the solution of

(D¢ — p(Dx))u = alul*u,

(1.32)
u|t=1 = Uo

is defined for any t > 1 and satisfies there
€

NG

lu(t, Yas < Cet®,  lu(t,-)|weoo < C (1.33)

Remarks. We make the following observations.

* A difference between the conclusion of Theorem 1.4.1 and the above statement is
that the Sobolev estimate is not uniform: a slight growth in % is possible. Actu-
ally, § may be taken of the form C&? for some constant C.

e The form of the nonlinearity is important, at the difference with the short range
case of the preceding section. For instance, one cannot take on the right-hand side
of (1.32) for o an arbitrary complex number. The fact that o should be real is an
example of a null condition that has to be imposed in order to get global solutions.

e The proof of the theorem provides also modified scattering for u as ¢ goes to
infinity.

Let us give some references. For the Schrodinger case, a first proof of Theo-
rem 1.5.1 and of modified scattering of solutions is due to Hayashi and Naumkin [38].
See also Katayama and Tsutsumi [46] and, more recently, Lindblad and Soffer [65],
Kato and Pusateri [47] and Ifrim and Tataru [45]. In the case of Klein—Gordon equa-
tions, including in the case of quasi-linear nonlinearities satisfying a null condition,
we refer to Moriyama, Tonegawa and Tsutsumi [71], Moriyama [70], Delort [ 18-20],
Lindblad and Soffer [63], Lindblad [64] and Stingo [82]. See also Hani, Pausader,
Tzvetkov and Visciglia [37] for some further applications.

Before explaining the general strategy of proof of Theorem 1.5.1, let us describe
informally how the dispersive estimate in (1.33) will be proved, using an auxiliary
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ODE deduced from (1.32). We make this derivation in the case p(§) = %f 2 deferring
to next paragraph the case of general p. Denote by ¢(x) = —%xz and look for a solu-
tion to (1.32) under the form

elte(F)
NG

where A(, y) is a smooth function. Plugging this Ansatz inside equation (1.32) with
p(Dx) = 1 D2, one gets

u(t,x) =

A(t, )t—c) (1.34)

o 1
DiA(t,y) = Z1A@ »PAG y) + 55 Dy A y). (1.35)

If one ignores the last term (that will be proved a posteriori to be a time integrable
remainder), one gets that A solves the ODE

DAt y) = %lA(r,y)le(t,y) (1.36)

from which follows, as « is real, that |A(¢, y)| = |A(1, y)| for all ¢ > 1, whence
A, y) = A(1L, y) exp(ial A1, y)[* log?).

One thus gets a uniform bound for A, and also discovers that the phase of oscillation
of (1.34) involves a logarithmic modification that reflects modified scattering, i.e. one
gets when time goes to infinity
1 X x?2 X\ |2
u(lt,x) ~ —A4 (—)ex —— +ia‘A (—)) log ¢
(7, x) Ji ol P( 21 ol g

for some function Ag. Of course, to establish this rigorously, one has to show that the
last term in (1.35) is really a remainder whose addition to the right-hand side of (1.36)
does not modify the analysis of asymptotic behavior of solutions.

One may perform such a derivation in a rigorous way using a wave-packets analy-
sis as in Ifrim and Tataru [45] or using a semiclassical approach as we do here. The

idea is the following: because of formula (1.34), u appears naturally as a function of ¢
and )t—‘, so that it is natural to write it in terms of a new unknown v by

1 X
u(t,x) = —v(t, —), 1.37
() = —o(n] (137)
where v will satisfy an equation
1 D o
D,U—Z(X-DX—FD,C-x)v—p(Tx)v:?|v|2v. (1.38)

By (1.34), we expect v(t, x) to oscillate like ¢//™*). We compute for any smooth
function a(t, x),

P(%) (eittp(X)a(t,X)) = (p(axga(x))a(t’x) + O(I_l))ei"/’(x)_
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One expects thus that the main contribution to the left-hand side of (1.38) will be
obtained replacing % by dx¢. This gives an ODE which is nothing but (1.35) if
we replace v by e!??™) A(z, x). In other words, we obtain an ODE allowing us to
describe the asymptotics of the solution starting from the quantum problem given by
the PDE (1.36) and reducing it to the classical problem obtained making in (1.38) the
substitution % > 0x¢. We explain below, in the strategy of proof of Theorem 1.5.1,
the rigorous way of doing so controlling the errors.

Strategy of proof of Theorem 1.5.1. The starting point of the proof is the same as for
Theorem 1.4.1, except that the inequalities to be bootstrapped read now as

e, )las < Ast?,

ILyu(, )2 < der’, (139)
e

Vit

instead of (1.28), with § > 0 a small number. Again, one has (1.30) with p = 1 and
the integral term replaced by flt 148 dr < 87118 If €267 is small enough, one
deduces from (1.30) that the first two inequalities in (1.39) actually hold with A
replaced by %. On the other hand, one cannot deduce the L°° estimate in (1.39)
from the Sobolev and L? ones using (1.31), as the lack of uniformity in the estimate
of ||L+u(t,-)| ;2 would just provide a bound in O(Z_%JFO) instead of O(t_%). On
thus needs an extra argument to obtain the L estimates (since the L? ones cannot
be expected to be improved). There have been several approaches to do so, that all
rely on the derivation from the PDE (1.32) of an ODE, that may be used in order to
get the optimal L*° decay (and the asymptotics of the solution). That ODE may be
written either on the solution itself or on its Fourier transform (actually on the profile
e!P@g(¢, &) of the Fourier transform). As indicated in the preceding paragraph, the
method we shall use in this book, inspired in part from the approach of Ifrim and
Tataru [45] based on wave packets, relies on a semiclassical version of the equation
satisfied by a rescaled unknown.

We introduce as a semiclassical parameter h = % €10, 1] and define from the
unknown u the new unknown v through (1.37). If we denote ||v ||H;§ = [[{(hDx)*v| 2,
then ||u(z,-)|gs = |v(z, ')”HZ‘ The last estimate in (1.39) is equivalent to getting an
O(e) bound for |[(hDx)Pov(t,- )| Loo. Plugging (1.37) inside (1.32), one gets

(D: — Op) (x& + p(§)))v = hav[*v, (1.40)

where the semiclassical Weyl quantization Op}l"’ associates to a “symbol” a(x, £) the
operator

[u(z.-)llweo-co < B

1 .
v OpY (@)v = —/el(x—y)ia(x + y,g)v(y) dyds.  (141)
2mh 2
The above formula makes sense for more general functions a than the one

a(x,§) = x& + p(§)
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appearing in (1.40). We do not give here these precise assumptions, referring to
Appendix D below. Let us just remark that one may translate the action of opera-

tor L4 on u by

Liu(t,x) = %(:ﬁ#})(z, ;)
with |
0Py (x + p'(§))

so that the second a priori assumption (1.39) may be translated as

£y =

|£40llz2 = O@h™).
This brings us to introduce the submanifold
A={(x,E)eRxR:x+ p'(§) =0}
that is actually the graph
A ={(x.do(x)):x €]-1,1]} withg(x)=+1—x2

given by the following picture.

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

The idea is to deduce from (1.40) an ODE restricting the symbol x& + p(§) to A.
By (1.46) and a direct computation, (x& + p(£))|a = ¢(x), so that we would want

to deduce from (1.40) an ODE of the form

(Dr — p(x))w = ha|w|*w + R,

(1.47)
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where w should be conveniently related to v and R being a remainder such that

+o00
| IRy di = 06,

We notice first that the a priori bound (1.44) provides a uniform estimate for v
cut-off outside a \/E—neighborhood of A. The idea is as follows:

First, contributions to v cut-off for high frequencies have nice bounds if we
assume the first a priori estimate (1.39): actually, it implies

I(hDx)*v(t.-)]lL2 = O(eh™),

so that if y € Cg°(R) is equal to one close to zero, B > 0 is small and s¢ > 1 one
gets by semiclassical Sobolev estimate

_1
lOp)Y (x(HP&))vree < ChTZ|[(hDy)*00p) (x(hPE))vl|,2
< Chm24B6—50 (kD) v |2 (1.48)
< Ceh=3~8+B(=50),

Consequently, for any fixed N in N, if sB is large enough, we get an O(¢h®) bound
for estimate (1.48). This shows that one may assume essentially that v is supported
for hB|&| < C for some constant, some small 8 > 0. In the rest of this section, in
order to avoid technicalities, we shall argue as if we had actually |£| < C. The case
hP|&| < C may be treated similarly, up to an extra loss A~#" in the estimates of the
remainders, B’ > 0 being as small as we want. This extra loss does not affect the
general pattern of the reasoning.
Take y in C5°(R), equal to one close to zero, with small enough support, and
decompose
V=20 +Vpe, (1.49)

where

VA = Op}lV(y(L\/pE/(g)))v, Vpe = Op)ZV((l — y)(L\/pE/(é)))v, (1.50)

i.e. vy (resp. v ) is the contribution to v that is microlocally located inside (resp.
outside) a \/ﬁ—neighborhood of A. Then v, satisfies, as a consequence of the L2
estimate (1.44), a uniform L° bound: define y;(z) = % and write

x+p'E)\x+ 1)
S v )k

= h%OphW ()/1 (Lj%/(g)))($+ v) + remainder.

Since, at fixed x, & — y1((x + p’(§))/~/h) is supported inside an interval of length
O(~/I), one may show that the L norm of the first term on the right-hand side

Vpe = OPhW (Vl (
(1.51)
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of (1.51) is essentially bounded from above by h™* times its L2 norm, i.e.
1
lvpcllzoe < Ch¥||L4v] 2. (1.52)

(Actually, if one takes into account the fact that on the support of ¥ one has |§] <ch™ B
instead of |§| < C, one would get a power & 17" instead of 7%, for some 0 < B <1
in (1.52), that would not change the estimates below). In any case, combining with
(1.44), we get an estimate

[vpellzee = O(h3™¥), & > 0 small. (1.53)

If we assume a uniform a priori bound for v (that follows from the third inequality
(1.39) and from (1.37)), we see that (1.53) implies that the difference [v|?v — v, |?v
will be O(e3h 18 ), so that replacing on the right-hand side of equation (1.40) h|v|?v
by h|v, |*v induces an error of the form of R in (1.47), i.e. we have

(D; — Op)Y (x€ + p(§))v = halvy|*va + R. (1.54)

We make act next Op), (y((x + p’(§)) /~/h)) on that equality. We get at the left-
hand side (D; — OphW (x& + p(§)))v, and a commutator whose principal contribu-
tion may be written as

3
_ h—ZOpZV(V'(X + p'(§)
vh
This is of the same form as (1.51), up to an extra A factor, so that, argumg asin (1.52)
and (1.53), we bound the L norm of (1.55) by Cehi=8' = Cet=3t9 As 8 >0
is small, this is an integrable quantity that may enter in the remainders on the right-
hand side of (1.47). As the action of Op) (y((x + p’(£))/~/)) on the right-hand side
of (1.54) may be written under the same form, up to a modification of the remainder,
we get

))(;ﬁ+v). (1.55)

(D — Opy (x€ + p(§)))up = halus|’uy + R. (1.56)
We make now a Taylor expansion of x& + p(£) on A given by (1.45) and (1.46). As
F(xE + pE))a = 0, we get

xE+ p§) = o(x) + O((x + p'(§))%). (1.57)

The action of Opzv((x + p'(£))?) on v, may be written essentially as (1.55), so
provides again a contribution to R in (1.56). Finally, plugging (1.57) inside (1.56), we
see that we get an equation of the form (1.47) for w = v, . This implies in particular
that 3% lva(2,-)|? is time integrable (since the coefficient « in (1.56) is real) and thus
that ||v, (¢, -)||Le is bounded. Coming back to the expression (1.37) of u in terms of
v =V, + Ve, remembering (1.53) and adjusting constants, one gets that the a priori
assumptions (l 39) imply that the last inequality in these formulas holds true with B
replaced by 5 (the reasoning for W?0-> norms instead of L ones being similar).

This shows that the bootstrap argument holds. Moreover, the ODE (1.47) may be used
also in order to get asymptotics for ¥ when times goes to infinity. |
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1.6 More general nonlinearities and normal forms

In model (1.32), we considered only a special case of nonlinearity namely o|u|?u. We
used this special structure in order to get a Leibniz type rule (see (1.25)). However,
we know that we should be able to obtain global solutions even for (some) cubic or
quadratic nonlinearities that have a more general form. This is done in [18, 19] for
quasi-linear Klein—Gordon equations with a nonlinearity satisfying a null condition
(see also Stingo [82]). One makes use of “real” Klainerman vector fields instead of
the operator L above. On the other hand, for other equations like Schrédinger ones,
the natural operator to be used in order to exploit dispersion is an operator like L,
that is not a vector field. It is possible to reconcile both points of view using normal
forms. Moreover, the use of the latter allows also one to treat quadratic nonlinearities.
Consider as a model

(D¢ — p(Dx))u = aou? + oful?u,
ul;=1 = Uo,

where p(§) = /1 + £2, ap is a complex number and « a real one. We would like to
prove the analogous of Theorem 1.5.1, namely:

(1.58)

Theorem 1.6.1. There are sg, pg in N, § > 0 such that, for any s > sg, there are
g0 > 0, C > 0 so that, for any ¢ € 10, &¢], any ug in H*(R) satisfying (1.22), the
solution of (1.58) is global and satisfies for any t > 1,

€

Ji

(e, s < Cet®, Nu(t,)|weoo < C (1.59)

Remarks. We make the following observations.

e Again, one can obtain also the asymptotics of the solution when ¢ goes to infinity,
and in particular show modified scattering, and not just the dispersive estimate
(1.59).

¢ One may consider more general quadratic and cubic nonlinearities than on the
right-hand side of the first equation in model (1.58), as soon as they satisfy the
null condition (see [18, 19, 82]).

The key idea of the proof is essentially to reduce (1.58) to (1.32) by normal
forms. One cannot expect to get directly energy estimates on (1.58): for instance,
the quadratic part of the nonlinearity has Sobolev norm bounded from above by
Cllu(t,-)||Loe lu(t, )|l as, so taking into account the a priori L estimate in (1.39),
by (Ce//t)||u(t,-)||gs. One thus would get an inequality of the form (1.6) with
r = 2, which would give only exponential time control. Though, as shown first by
Shatah [76] and Simon and Taflin [77], one may easily reduce the quadratic nonlin-
earity in (1.58) to a cubic one.

Lemma 1.6.2. Define

mee) = (Jreg+irg-ViTE T R?)
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Then m(&1, &) is well defined,

Im(£1,&)| < C (1 + min(|&], |£2])) (1.60)

and if one sets

1

Op(m)(uy,uz) = )2

/eix(sl+sz)m(gl,gz)ﬁl(él)ﬁz(&)dsl dgy, (161

one has for a fixed py and any large enough s,
1Op(m)(ur, u2) s < C(lurllweooeuallms + lurllaslluzllweoss).  (1.62)

Moreover, the map given by u — u — Op(m)(u, u) is a diffeomorphism from the open
set HS N {u € WP : |lu|weo.co < r} to its image, for small enough r, and if u is
in that set, and solves equation (1.58), then w = u — Op(m)(u, u) solves

(D: = p(Dx))w = ajw*w —2ao0p(m) (w?, w) + R(w),  (1.63)
where R is a sum of contributions of degree of homogeneity larger than or equal to 4.

Proof. Estimate (1.60) follows by an immediate computation. It implies that one does
not lose derivatives when applying Op(m) to a couple (11, u3), i.e. that (1.62) holds
without losing on s on the right-hand side. This allows one to construct the local
diffeomorphism v — w. When one makes act D; — p(Dy) on Op(m)(u, u), one gets
using equation (1.58), on the one hand

Op(m)(p(Dx)u.u) + Op(m)(u, p(Dx)u) — p(Dx)Op(m)(u. u) (1.64)

which, because of the definition of m is equal to u2, and on the other hand contribu-
tions of the form

Op(m)(ctou® + a|ul*u,u), Op(m)(u, cou® + ofu[*u). (1.65)

If we compute the left-hand side of (1.63), we thus see that (1.64) compensates the
quadratic term, and that we are left on the right-hand side with the |u|?u term and
expressions of the form (1.65). If we express u in terms of w = u — Op(m)(u, u),
we shall get the cubic terms on the right-hand side of equation (1.63), and higher-
order terms R(w). These higher-order contributions are essentially of the form

R; = Op(my)(w, ..., w,w,...,w)

withk > 4, my = my(&1,..., &) a smooth function satisfying convenient estimates,
and Ry defined as in (1.61) from

Op(my)(u1, ..., ug) = /eix@”L'“*Ek)mk(&, o)

xuy(§1) ... ug (k) dér - d&.

(2m)k (1.66)
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Then R(w) satisfies estimates of the form
IR@)[lzs < Cllwllyoo.colwlas (1.67)

if w stays in some ball of Wr0-%°j e. plays the role of a perturbation that is at least
quartic. |

The preceding lemma thus reduces the case of a quadratic nonlinearity to a cubic
one. Of course, the cubic term on the right-hand side of (1.63) is non-local, but this is
not a real extra difficulty. Because of that, in order not no be disturbed by unessential
technicalities, we shall pursue the reasoning considering a simple variant of (1.63),
namely

252 (1.68)

with « real, 1, o complex, forgetting any contribution homogeneous of order larger
than or equal to 5 that is in any case easier to treat. Moreover, the special structure
of the nonlinear terms on the right-hand side does not matter except the fact that o
is real.

We have already noticed that a term like u> is not compatible with the action
of L, on the right-hand side. The same holds for u2#%?2. In order to get around that
difficulty, one may try to perform a normal form in order to get rid of cubic or quartic
terms. Nevertheless, unlike the quadratic case, one my not eliminate all these terms.
Actually, to get rid of u2#? for instance, one would have to introduce a new unknown
of the form u — Op(m4)(u, u, i, i), where m4 would be the inverse of

(D: — p(Dy))u = alul*u 4+ aju® + asu

V18- 18+ 1+ g+ 148 - VTH G+ + 87 (169)

But such a quantity vanishes for some values of (§1,...,&4). The idea to overcome
that difficulty is to use “space-time normal forms” introduced by Germain, Masmoudi
and Shatah in [29-32], and Germain and Masmoudi [28] (see also the review paper
of Lannes [58] and the works of Hu and Masmoudi [44], Deng, Ionescu, Pausader
and Pusateri [21], Wang [84] and Deng and Pusateri [22] for further applications and
extensions of the method). These authors define and use space-time normal forms
on the profiles of the solutions, namely the functions e ~/7(Px)y Here, we present
an equivalent approach based on u itself and on microlocal cut-offs similar to those
introduced in (1.50), following [20]. Actually, introducing again from u the unknown
v given by (1.37), we rewrite (1.68) as

(D, — Ophw(xé + p(E)))v = ha|v|]®v + hav? + h%azvzﬁz (1.70)

using notation (1.41). The idea of space-time normal forms may be described in a geo-
metrical way as follows. As we have seen above, a term like v2? in (1.70) may not
be fully eliminated by a usual (time) normal form since (1.69) may vanish for some
values of the arguments. Though, we have seen in (1.34) that v defined by (1.37) is
expected to be a function oscillating as e’ % which means that we expect that v is
“concentrated” on the manifold A defined in (1.45), (1.46). This means that, up to
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remainders having better time decay, we should hope to be able to design a normal
form eliminating the term v22 of (1.70) as soon as (1.69) does not vanish when the
frequencies &1, & (corresponding to v) are set equal to dg(x) (by characterization
(1.46) of A) and &3, &4 (corresponding to v) are set equal to —d¢(x). Notice that
restricted to this subset, (1.69) is just equal to —1, so does not vanish. Of course, in
order to justify that, we need to explain how we may reduce ourselves to the fact that
v may be replaced by a function that is frequency localized on A, up to convenient
remainders, and show how this allows one to prove energy estimates for the solution
of (1.70). Our goal will thus be to prove the following:

Proposition 1.6.3. The solution v of (1.70) satisfies estimates of the form

t
ot ey < @ )llas +C | o )12 0000 (1 + v(z, )l yeo0)
h 1 W)

h(t)
dt
<M ey, —

(1.71)

and
1200t )llz2 = 124001
t
2
€ [ e (14 I ) (172
dt
x vz )z
where h = %, h(zr) = %, ”v”Hﬁ = |[{hDx)*v|12, ”U”W}fo,oo = |[{(hDx)Pov| Lo and

£+ is defined in (1.43).

Remark. These estimates are the translation on v of bounds of the form (1.5) and
(1.27) on u according to (1.37). Consequently, if we prove them, we shall get, as in
the proof of Theorem 1.5.1, that an a priori set of inequalities of the form (1.39) will
imply that the first two of these bounds hold with A replaced by %.

Proof of the proposition. As indicated before the statement, in order to get (1.71) and
(1.72), we have to perform a “space-time” normal form. More precisely, we shall
decompose in the v3, v252 terms of (1.70) each factor v as

UV =0U\ +2Ac, (173)

where v 4 will have better bounds than v, so that cubic or quartic terms involving at
least one factor v 4 will provide remainders. In a second step, we shall get rid of the
remaining nonlinearities o1v3, o2v% ;2 by a normal form process. The function
v, in (1.73) will be defined as in (1.49), except that we cut-oft around an O(1)-
neighborhood of A instead of an O(~/h) one, i.e. we define now

vy =O0py (y(x + p'(§))v. vpe = Opy (1 =) (x + p'(§)))v. (1.74)
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(Actually, the above definition is the correct one when the frequency £ stays in a com-
pact set. It should be adapted for large &, but we forget this technical detail in this
introduction.) Then v, will satisty estimates with an O(h) gain, as we may write it
essentially under the form

e = hOpy (y1(x + p'(EN) (L), (1.75)
where y1(z) = %, so that
laclle = ChlE1v] 2.
Decomposing on the right-hand side of (1.70) v = v + v 5, one has thus
(D; —Op) (x£ + p())v = ha|vPv +hay (vy)® + 3w} 0% +h>S(v), (1.76)

where S(v), coming from monomials involving at least one factor v ., satisfies an
estimate of the form
IS@)l2 = CllvllZeoll£vll2 (1.77)

as long as ||v||zoo stays bounded. Actually, one has to be more careful when making
the above estimates, since A has a degeneracy when & goes to infinity. The preceding
reasoning works for |€| staying in a compact set , or equivalently for x staying in
a compact subset of |—1, 1[. The general case is a little bit more involved, and in
particular estimate (1.77) holds with [|v||ze~ replaced by [[v||w,0-> for some po.

Since making act the operator £ on S makes lose a factor 4~ (see the defini-
tion (1.43) of £4), we get that

R Z+SW)lL2 < ChlvllZeoll€+v] L2, (1.78)

which will be the kind of estimate we want for remainders. By (1.25) with p =1,
rewritten in terms of the unknown v, we have also

hIL+ (V)2 < Chlv|Zeo [ £40] 2. (1.79)

On the other hand, the remaining contributions on the right-hand side of (1.77) would
not satisfy such estimates, but may now be eliminated by normal forms. Actually,
take y in C§°(IR), equal to one close to zero, and define

2

4
ma(x, €1, 8) = [[ 2+ p'EN [ xx = &)

j=1 =3
x[-y1+g-1+8+ 1+8 (1.80)

T N (e ey

This function is well defined, as the term inside the bracket does not vanish on the
support of the cut-off: actually (again forgetting what happens for large frequencies),
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on the support of the cut-oft, §; = do(x) +o0(1), j =1,2, § = —de(x) +o(1),
Jj = 3,4, so that the term inside the bracket is equal to —1 4 o(1), and thus does not
vanish. Consequently, if we define

: / XEETE) 6 ey (1.81)

~ )t
X D5 (E1)D 5 (E2)0A (E3) VA (Ba) dEy -+ dEa,

one obtains that

(D, — Op) (x§ + V1 + £2))(Opy(ma)(vy.....0y)) = vA 4 + remainder,

where the remainder, coming from the nonlinearities of the equation, contains at least
one h factor. Defining in the same way some cubic symbol m3, in order to eliminate
the 23\ term in (1.76), one gets that

(D: — Opy) (x& + v/1+ £2)) (v — hOp,(m3) (V5. v, Vp)

3 (1.82)
— h20py,(ma)(vy,....0,)) = h2S(v) + ha|v[*v

for a new S (v) satisfying (1.77).

In other words, we have reduced ourselves to an equation where the right-hand
side has the same structure as in (1.7) (up to changing the unknown u to v by (1.37)),
modulo a remainder 42S(v) that has better time decay. Using estimates of the form
(1.78)—(1.79), one thus gets, applying L? energy inequalities to (1.82) and denoting

w = v — hOp;, (m3) (v, 15 v4) — K0P, (ma) (vy..... T ).

that
! ) dt
1Lrw(. )z = I €w@. Dz + | Jo@ )lzeollLrv(z. )iz —. (1.83)
1

As one may show that ||£w(z,-)]||z2 is equivalent to | £4+v(z,-)| 2, one does get
an estimate of the form (1.72). [ ]

Remark. As already mentioned, in the proof of Proposition 1.6.3, we argued as if the
frequencies were staying in a compact set. When one makes the reasoning taking into
account what happens also for large frequencies, one gets a lower bound of the bracket
in (1.80) computed for £; in a convenient neighborhood of +d¢(x) by a negative
power of (dg(x)). Since for all j, (do(x)) ~ (&) if (§1,...,&4) is in the support
of (1.80), one may write (dg(x)) ~ 1 + max,(|&1],...,|&4|), and the bounds one
gets in general for a symbol of the form m4 is

ma(x. &1, ... E0)] < C(1+ maxa(&i ... [Ea)" (1.84)
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for some Ny. Because of that, one gets bounds of type
10px(ma) (v, ... D) s < ClIVI, pg.00 V]| 115 (1.85)
h

for any s and with py depending only on Ny. In other words, coming back to the
unknown u, one obtains an estimate similar to (1.62). These inequalities (1.84) and
(1.85) explain why one gets in Proposition 1.6.3 upper bounds involving Whp 0-09
norms instead of L°° ones.

End of proof of Theorem 1.6.1. As for the proof of Theorem 1.5.1, one has just to
bootstrap estimates (1.39), showing that if they hold on some time interval and 4, B
have been taken large enough and e small enough, then they still hold with 4, B
replaced by %, g. We have seen after the statement of Proposition 1.6.3 that this
holds for the first two inequalities (1.39). To show that the last one holds, with B
replaced by %, one argues as in the proof of Theorem 1.5.1. Actually, in that proof,
we did not really use the special form of the nonlinearity in (1.40) (except the fact
that « is real), and the same arguments hold for an equation like (1.68). ]

1.7 Perturbations of non-zero stationary solution

Our main goal in this book is to study the perturbation of a non-zero stationary solu-
tion of a cubic wave equation in dimension one. In this section, we mention some
results and references on that kind of problems. The first set of questions one may
ask is the orbital stability of stationary solutions.

Let us mention first the result of Henry, Perez and Wreszinski [41] that will be
very relevant for us. Consider U a C? function on an interval [a_,a] satisfying
U>0,U(-) =U(ay) =0,U"(ax) > 0. Assume moreover that there is a smooth
strictly increasing function x +— H(x) solving the equation

H"(x) = U'(H(x))

such that

lim H(x) =ax
x—Fo00

and that

Eo = /R(H/;x)z n U(H(x))) dx < +00.

Define for any function ¢ and any g > 0,
44(@) = int [ (@)= H'(x + )% + 4@() — HGx +0)) dix.

One may state the main result of [41] as follows.
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Theorem 1.7.1. There are positive constants r,q, k such that if (¢t,x) +— ¢(t,x) is
the solution of

(32 —-92)p+U'(¢) =0 (1.86)
satisfying ¢(0,-) € H! (R), 3x¢(0,-),3:¢(0,-) € L>(R), and

loc
dg(¢(0.-)) <,

2 2 1.87
/ (8’¢(0’x) + PO L g, x))) v < Eo+ k2, 0P
R 2 2
then ¢ is globally defined and for any t
dg($(1.-)) <. (1.88)

This theorem means that H is orbitally stable, in that sense that an initial data
that is close enough to H gives rise to a solution that remains at any time close to a
translation of . It applies in particular to U(¢) = $(¢> — 1), H(x) = tanh(%)
and ax = %1, i.e. it shows the orbital stability of the “kink”, that is the stationary
solution H(x) = tanh(%) of the ®* model given by the equation

(07 —02)p = ¢ — 9> (1.89)

The question of orbital stability has been then widely studied for other equations. In
particular, we refer to Weinstein [86] for orbital stability of Schrodinger or general-
ized KdV equations. References to earlier works on that topic may be found in the
reference list of that paper.

Once orbital stability is established for a given equation, the next step is to study
asymptotic stability. For Schrodinger equations, the first results are due to Buslaev
and Perelman [5-7] in dimension one and to Soffer and Weinstein [78] in higher
dimension. Buslaev and Perelman consider a one-dimensional Schrodinger equation,
of the form

10,y = =329 + F(y|P)y. (1.90)

Under convenient assumptions on F', one may construct soliton solutions of the equa-
tion, that have the form

e—iﬁg—it(ug-ﬁ-%xvo(p(x — by — tvg) (1.91)

for constants Bg, wg, by, vy and where ¢ is a smooth exponentially decaying function.
The main result of the above references is that if one solves the initial value problem
for (1.90), with initial condition close to the preceding soliton solution, then the solu-
tion may be written when time goes to infinity as a sum of a modified soliton, i.e.
a function of the form (1.91) (with different values of the parameters By, ..., vg), of
a solution to a linear Schrédinger equation and of a remainder that converges to zero
in L2
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In the work of Soffer and Weinstein, one introduces a potential in the linear part
of the operator, i.e. one considers an equation of the form

i0;¢0 =—A¢ + (V(x) + Alp|" )¢ (1.92)

in d = 2 or 3 space dimension, and for 1 < m < %. They assume, among other

things, that the operator —A + V/(x) has exactly one eigenvalue, that is moreover
strictly negative. They show that for E close to that eigenvalue, there is a solution of
(1.92) of the form e "/ £ (x), with ¥ £ smooth and decaying. Then, under some
further assumption, they prove that, if one solves the Cauchy problem starting from
an initial data that is close to e?Y0 E,» for given Eq close to the eigenvalue, yq real,
then the solution may be written at any time ¢ as e()Y¥g() + R(t) where E(¢) is
real, e(¢) is in the unit circle of C and R(¢) goes to zero in a weighted Sobolev space.
We refer to [78] for a precise description of the asymptotics of ¢ — E(¢), e(t) when
time goes to infinity.

Following the above references, a lot of results concerning asymptotic stabil-
ity for solutions to nonlinear Schrodinger equations or Gross—Pitaevsky ones have
been obtained. Limiting ourselves to one-dimensional problems, and without try-
ing to give an exhaustive list of references, one may cite Buslaev and Sulem [8],
Bethuel, Gravejat and Smets [4], Gravejat and Smets [36], Germain, Pusateri and
Rousset [35], Cuccagna and Pelinovski [16], Cuccagna and Jenkins [15], Gang and
Sigal [25-27], Cuccagna, Georgiev and Visciglia [14]. Still in one space dimension,
analogous results have been obtained for (generalized) KdV equations, by Pego and
Weinstein [73], Germain, Pusateri and Rousset [34], Martel and Merle [67-69] and
for Benjamin—Ono equation by Kenig and Martel [48]. Let us point out that for
Schrodinger or gKdV equations, the perturbation of the initial data induces a non-
zero translation speed on the stationary solution, so that the perturbed solution is the
sum of a progressive wave and of a dispersive part. This will be in contrast with
the results we shall obtain in this book, where the bound state that is perturbed will
remain stationary.

Let us discuss now some results more closely related to our work, concerning non-
linear wave equations. A main breakthrough has been made by Soffer and Weinstein
who in [79] consider an equation similar to (1.92), but where the Schrodinger operator
is replaced by the wave (or Klein—Gordon) one in three space dimension, namely

P =(A—V(x)—m>)¢ + 1>, (1.93)

where A is some real constant, m > 0 and V is a smooth decaying potential. One
assumes among other things that —A + V + m? has [m?, +oo[ as continuous spec-
trum and that there is a unique positive eigenvalue 0 < Q2 < m?2. One denotes by ¢
a normalized eigenfunction associated to that eigenvalue, so that for any R, 8 in R,
(t,x) — Rcos(2f + 0)p(x) is a solution to equation (1.93) when A = 0. The main
result of [79] asserts that if one solves (1.93) with small initial data in weighted
Sobolev spaces of smooth enough and decaying enough functions, the solution at
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time ¢ may be written under the form
¢(t,x) = R(t)cos(Qt + 0(1))e(x) + n(t, x), (1.94)

where R(t) = 0(|t|_%) and |[n(t, )]s = O(|t|_%) when ¢ goes to £oo. This result
holds under a special non-resonance condition, Fermi’s golden rule, that we shall
further discuss below in the framework of our problem.

The above breakthrough has been at the origin of many other works. Let us men-
tion in particular Bambusi and Cuccagna [3] who generalized the result of [80] to
a wider framework, namely the case when the operator —A + V(x) + m? has several
eigenvalues instead of just one. Closer to our main result in this book, let us mention
the work where Cuccagna [13] studies asymptotic stability of a kink solution in three
space dimension. More precisely, one considers the solution H of (1.89) as a solution
independent of two of the three space variables of the equation (32 — A)¢p = ¢ — ¢>
on R3. The main result of [13] asserts that if one starts from initial data that are
a small perturbation of (H, 0) by a smooth compactly supported function on R3, then
the solution of the evolution equation may be written as H + ¢(z, - ), where ¢ (¢, )
is O(|t|_%) in L°. The proof uses the fact that in three space dimension, one has
much better dispersive decay than on the real line.

1.8 The kink problem. I

The main goal of this book is to study long time dispersion for small perturbations of
the “kink” H(x) = tanh(%) that is a stationary solution of equation (1.89) that we
recall below

(07 — 009 = ¢ —¢°.
We have seen in the preceding section (see Theorem 1.7.1) that H is orbitally stable,
and one wants to study its asymptotic stability. In order to do so, one writes ¢ under
the form

P(t.x) = H(x) + o(tv/2,xV2) (1.95)

and we aim at describing the asymptotics of ¢, in particular its dispersive properties,
when at initial time ¢ is small in a convenient weighted Sobolev space. By Theo-
rem 1.7.1, we know that ¢ is globally defined. It satisfies by direct computation the
equation

1
(D7 — (D +142V(x)))p = k(x)¢> + §¢3, (1.96)

where 3 ;
V(ix) = ~7 cosh—z(g), Kk(x) = Etanhg' (1.97)

The fact that the linear part of equation (1.96) contains a non-zero potential has two
consequences: first, as seen in the preceding section, the operator D2 + 1 + 2V(x)
may have bound states (and it has for the potential given by (1.97)). Second, even in
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the absence of bound states, that operator does not have nice commutation properties
with the operator L that we used in order to get dispersion in Sections 1.5 and 1.6.

Let us first discuss some results that are known concerning equations of the form
(1.96) either in the case of potentials without bound states, or for equations of that
form with V' = 0 but where the nonlinearities have coefficients that are non- constant
functions of x, as on the right-hand side of (1.97). Such results have been proved
by Kopylova [53] for linear Klein—Gordon equations in a moving frame and, in the
nonlinear case, by Lindblad and Soffer [66], Lindblad, Lithrmann and Soffer [60,61],
Lindblad, Lithrmann, Schlag and Soffer [59], Sterbenz [81]. Very recently, Germain
and Pusateri [33] obtained the most general result in that framework. They consider
a model version of (1.96) of the form

(92 — 32 + V(x) + m?)gp = a(x)¢p?, (1.98)

where a(x) is a function similar to x on the right-hand side of (1.96), i.e. a smooth
function that has finite limits at 0o and whose derivative is rapidly decaying. The
potential V' is assumed to be Schwartz and such that —32 + V' has no bound state.
One of the results of [33] may be stated as follows:

Theorem 1.8.1. Let V' be a generic potential without bound state, m > 0. There is
g0 > 0 such that for any € € 10, g9), equation (1.97) has for any (o, ¢1) satisfying

(V=02 +V +190,01) | s + [ () (/=02 + V + 190, 1) | 1 < &

a unique global solution corresponding to the initial data ¢|;=o = g, 0:¢|r=0 = ¢1.
Moreover, the dispersive estimate

(V=02 +V + 190, ¢1) | oo < Ce(1 + [t])~2 (1.99)

holds and for some small § > 0
lo(e, ) lars + 189G s < Ce(l +1])°. (1.100)

Finally, let us mention that for nonlinearities with coefficients that are rapidly
enough decaying in x, Lindblad, Lithrmann and Soffer [60] (in the case V' = 0) and
Lindblad, Lithrmann, Schlag and Soffer [59] (for generic potentials) could show that
a dispersive bound like (1.99) does not hold in general, and has to be replaced by the
product of the right-hand side with a logarithmic loss.

Remark. The assumption that V' is generic is explained in Chapter 2 below. The
result of [33] is actually more general than Theorem 1.8.1 above. It also applies to
non-generic potentials if one makes in addition evenness/oddness assumptions. Let us
also mention that the question of asymptotic stability estimates on a compact domain
in space, when the linearized equation on the stationary solution has no bound state,
has been addressed by Kowalczyk, Martel, Mufioz and Van Den Bosch [57] for some
models of semilinear wave equations.
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Let us explain the new difficulties one has to take into account to prove a result of
the form above in comparison with the case V' = 0. Clearly, if one wanted to apply
the operator

Dy

(m> + D3)?

(or a “true” Klainerman vector field like ¢, 4+ x9d;) to equation (1.97), its commuta-
tor with the potential V' would generate a new term with coefficients growing like ¢,
which makes the method inapplicable. In order to circumvent such a difficulty, two
approaches are possible. The one implemented by Germain and Pusateri relies on the
use of the “modified Fourier transform”, which is a version of the Fourier transform
well adapted to —A + V instead of being tailored to —A. They introduce then the
profile g of the solution by

g(t, x) = it/ =0 +V+m? (a, —iy -2V m2)¢ (1.101)

and its modified Fourier transform g (¢, £). The analogue of what does work in the case
V' = 0 would be to get estimates of ||dgg (¢, )|/ 2 (which is related to ||Ly n¢| 12
when V = 0). It turns out that, in order to get the most general statement of their
paper, Germain and Pusateri have to introduce a bigger space than L? in which 0:8
has to be estimated, allowing for some degeneracy close to a special frequency. They
have then to combine estimates in that space with normal forms constructed from the
modified Fourier transform.

The approach we use in this book is the one of wave operators. Let us just say
here that, when V is a potential in §(R), without bound states, one may construct
a bounded operator W, on L? such that

L+,m=X+l

WIWy=1d, WiW[=1d and W] (—A+ V)W, =-A.
Applying W to (1.98), one thus gets
(97 — 92 + m*)Wip = Wi(a(x)¢?).
If w = W}, one is thus reduced to an equation of the form
(07 = 02 + m*)w = W (a(x)(Wiw)?), (1.102)

i.e. to an equation for which the linear part has again constant coefficients, and thus
has nice commutation properties relatively to 19, + x9; or to L ,,. Of course, the
drawback is that the right-hand side of (1.102) is no longer a local nonlinearity, but
involves the operators W, Wj. In the framework we shall be interested in, namely
odd initial conditions and odd coefficient a(x), it turns out that W, W may be
expressed from pseudo-differential operators b(x, D), with a symbol b(x, £) such
that g—i(x, £€) is rapidly decaying when |x| tends to infinity. We shall explain in more
detail in Chapter 2 how we treat an equation of the form (1.102). Let us just say
now that if we had a cubic nonlinearity on the right-hand side, one could use directly
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vector fields methods on w. For a quadratic nonlinearity, one has to make use first of
normal forms in order to reduce quadratic nonlinearities to cubic ones. The difference
with Lemma 1.6.2 is that, because of the presence of W, W, a(x) on the right-hand
side of (1.102), one has to consider quadratic corrections of the form (1.61), but with
a symbol m(x, £1,&5) that depends also on x. This introduces new commutators,
involving quadratic operators associated to the symbol %—')’:(x, &1, £&,). Though, as the
latter is rapidly decaying in x, and since we limit ourselves to odd solutions, such
terms form remainders that are not fully negligible, but that may be treated more
easily than in the more general case considered by Germain and Pusateri [33] or
Lindblad, Liihrmann and Soffer [60].

1.9 The kink problem II. Coupling with the bound state

In the preceding section, we discussed an equation of the form (1.98) with a poten-
tial V' that has no bound state. In this section, we go back to the kink problem (1.96),
where the potential V' given by (1.97) does have bound states, so that the preceding
discussion does not apply.

Our starting point has been the paper [56] of Kowalczyk, Martel and Mufioz,
where the authors study the asymptotics of solutions of (1.89) when one takes as
an initial condition an odd perturbation of (H, 0) that is small enough in the energy
norm. They prove that the perturbation of the solution (¢, d;¢) may be decomposed
under the form

(p(1.x). 9:p(t, x)) = (u1 (2, %), uz(1. x)) + (21(2). 22(1)) Y (x), (1.103)

where Y isin § (R) and is a normalized odd eigenfunction of —%3% + V(x), zj(t) are
scalar functions of time and (11 (¢, x), u2(z, x)) is the dispersive part of the solution.
The main result of [56] states that the functions ¢ — z; (¢) decay in time in the sense
that
+o00
| (m0l +1a01) dr < +oo
—0o0

and that the local energy of (11, u,) satisfies

400
/ / ((Bxu1)2 +u? + u%)(t,x)e_"o'xl dt dx < +o0.
—oo JR

At the light of the discussion previously given in the case of small perturbations of the
zero solution of nonlinear Klein—Gordon equations, or for (1.98) with a potential that
has no bound state, the above inequalities raise the following questions: making even-
tually stronger assumptions on the smoothness/decay of the initial perturbation, could
one get an explicit decay rate for the preceding quantities, instead of just integral
inequalities? Moreover, could one obtain decay estimates for ||u; (¢, - )| instead of
just local in space decay?
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A more long term objective might be to obtain for odd perturbations of the kink
solution of (1.89) a description as precise as the one that holds when V' = 0 or when
V is a potential without bound state. We are far from being able to achieve that in this
paper, where as a first step we aim at describing the perturbed solution up to time s~*
if € is the small size of the smooth decaying perturbation of the kink at initial time.
Recall that if we look for solutions of (1.89) under the form (1.95), we get that the
perturbation ¢ satisfies (1.96), with notation (1.97). We already mentioned that the
Schrédinger operator —8)26 + 2V(x) has discrete spectrum: it has two negative eigen-
values —1 and —% and absolutely continuous spectrum [0, +oo[. Eigenvalue —1 will
not be of interest to us as it is associated to an even eigenfunction, while we solve
(1.96) for odd initial data. Consequently, restricting ourselves to odd solutions, one
may decompose the solution of (1.96) as ¢ = P,.¢ + (@, Y)Y, where P, is the pro-
jector on the absolutely continuous spectrum [0, +oo[ and Y is an (odd) normalized
eigenfunction associated to eigenvalue —%. Setting a(t) = (Y, ¢), one may deduce
from (1.96) that (a, P,.¢) satisfies a coupled system of ODE/PDE (see (2.9) in Chap-
ter 2).

Our main result asserts the following: Let ¢ > 0 be given and consider (1.96)
with initial data ¢|;=1 = €@y, 0:¢|r=1 = @1 With (g, ¢1) satisfying for some large
enough s,

lpollZrssr + llnllzrs + lIx@ollZ + el < 1. (1.104)
Then, if ¢ < g¢ is small enough, the decomposition ¢(t,-) = Pace(t,-) +a(t)Y of
the solution of (1.96) satisfies

la(®)] + |a'(t)] = O(e(1 + 16%)73),
I Pacg(t, )|z = OG™2(2VD)Y),

where 6’ € ]0, %[, as long as t < e~*¥¢. Let us mention that we limit our study to
positive times (that does not reduce generality) and that, in order to simplify some
notation, we take the Cauchy data at# = 1 instead of t = 0. Moreover, the statements
we get in Theorem 2.1.1 below give more precise information that (1.105). We just
stress here the fact that (1.105) provides the information we are looking for, namely
an explicit decay rate for a and P,.¢, up to time s~47¢.

We notice that the dispersive estimate obtained for || Py || oo is pretty similar to
the bound in &7~ 2 that holds for small solutions of equations (32 — 92 + Du = N(u).
Here, when ¢t < ¢7#7¢_ we get that

(1.105)

cpr 1
[ PacpllLoe = 0(8201 2),

i.e. an estimate in c(s)t_%, with ¢ (¢) going to zero with zero. Of course, if ¢ goes close
to £ 4, the small factor in front of =% in the second estimate (1.105) gets closer and
closer to one, and this explains why our result is limited to times that are O(s~4%¢).
We shall comment more on that below.

Let us remark also that for dispersive estimates of the form (1.105), there is
a “trivial” regime, corresponding to ¢ < ce~2. For such times, the ODE satisfied
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by a(t), from which we shall deduce the first bound (1.105), is in a small time regime,
before any singularity could form. On the other hand, to reach a time of size =470,
one has to use the structure of that ODE, namely exploit Fermi’s golden rule that we
shall discuss in Chapter 2 below, in order to exclude blowing up in finite time, and
prove the decay estimate (1.105).

Let us comment more on the limitation to times t = O(s~*%) which contrasts
with the fact that, when the potential has no bound state, one may obtain dispersive
estimates up to infinity. The new difficulty, when bound states are present, comes
from the fact that in (1.105), a(¢) and a’(¢) have a decay in W which is larger
than the rate in it that holds for dispersive bounds in the absence of eigenvalues.
This has consequences on the estimates satisfied by the dispersive part of the solu-
tion P,.@(t,-). Actually, applying P,. to equation (1.96), one will get an equation
that, at first glance, might seem pretty similar to (1.98), since on the range of P,
—d2 + 2V will have no bound state. Though, a major difference appears on the right-
hand side: if, for instance, one plugs in the quadratic term of (1.96) the decomposition
o(t,-) = Pyeo(t,-) +a(t)Y, one might get a source term

a(t)? Poc(k(x)Y?), (1.106)

where a(¢) has only an O(it) decay for 7 >> £ (ant not a it bound). This has
dramatic consequences on the solution to the equation itself. Actually, the solution
P,.p will have to encompass the solution of the linear equation

(D7 — (D2 +142V(x))w = a(t)? Pac(k(x)Y?)

with zero initial data. We s}}all solve this equation, but will be able to obtain for its
solution only a bound in =2 (¢2 \/1?)9/ for t < &7*%0 and some 6’ > 0. When doing
so, we are not able to obtain O(¢~2) bounds for w along two lines

2
izi\ﬁ
t 3

when ¢t > ¢7*. Actually, one might expect a logarithmic loss along these two lines,
similar to the ones in the work of Lindblad, Lithrmann and Soffer [60] and Lindblad,
Lithrmann, Schlag and Soffer [59].

Let us also stress on the fact that, besides (1.106), other new terms appear in
comparison to the case of potentials without bound states. For instance, a contribution
like Pa(k(x)(Pic@)a(t)Y) needs also a specific treatment, as it is not amenable to
standard normal forms treatment. We describe that in more detail in Section 2.7 of
Chapter 2.

To conclude this introduction, let us point out the results of Kopylova and Komech
in [54,55] concerning asymptotic stability of a (moving) kink for a modified version
of (1.89). In their model, the Hamiltonian of the equation is tuned in such a way that
the projection of equation (1.96) on the absolutely continuous spectrum has coeffi-
cients in the nonlinearity that decay when x goes to infinity (instead of converging



Introduction 30

to some constant) This allows the authors to obtain a description of the dispersive
behavior of the corresponding solution for any time.

Finally, let us refer to the recent paper of Chen, Liu and Lu [10] concerning
asymptotic stability of kinks for sine-Gordon equations. Using the integrability of
that equation, they may prove soliton resolution for generic data and show the full
asymptotic stability of kinks under space decaying perturbations (see Corollary 1.5
of their paper). In particular, the difference between the solution and the moving kink
is shown to decompose, when time goes to infinity, as the sum of an O(I_%) contribu-
tion that involves a logarithmic phase correction and of a more decaying remainder.



Chapter 2
The kink problem

2.1 Statement of the main result

Consider ¢ : R x R — R a global solution to the nonlinear wave equation
(02 —92)p = ¢ —¢°. 2.1)

The function X

H(x) tanh( ﬁ> 2.2)
is a stationary solution of (2.1), and we are interested in describing the dispersive
behaviour in large time of solutions to (2.1) corresponding to initial data that are
small, smooth, odd and decaying perturbations of the state H. It is known that this
state is orbitally stable in the energy space by Henry, Perez and Wreszinski [41], and
for odd perturbations in that space, asymptotic stability with space exponential weight
is proved by Kowalczyk, Martel and Muioz [56]. This result describes the dispersive
behaviour of the perturbation on compact space domains, but does not give insight
into its behaviour in the whole space time. Our goal is to obtain information when
(¢, x) describes I, x R, where I, is a time interval of length O(¢~4%?), & being the
size of the initial data in a convenient space of smooth decaying functions.

We shall look for solutions to (2.1) under the form

¢(t,x) = H(x) + ¢(tV2,x2). (2.3)
We get for ¢ the equation
1
(D7 — (D +142V(x)))p = k(x)¢> + §¢3, (24)
where D; = ll% D, = %% and
3 3
V(ix) = ~21 cosh_z(g), K(x) = Etanh(g). 2.5

The operator —32 + 2V has [0, +00[ as its continuous spectrum and has two eigen-
values —1 and —%. The first one is associated to an even eigenfunction, and the second
one to the odd normalized eigenfunction

Y(x) = ? tanh(%) cosh™! (g) (2.6)

(see Nikiforov and Uvarov [72] and Kowalczyk, Martel and Muifioz [56]).
We denote by P,. the spectral projector on the continuous spectrum, restricted
to odd functions. The spectral projector on the eigenspace associated to the eigen-
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1 -
value —7 is ¢ = (@, Y)Y so that

Pac(p =¢— (‘/),Y)Y, (27)
where (-, -) denotes the L? scalar product. If ¢ solves (2.4), we set
a(t) = (¢.Y) (2.8)

so that (2.4) may be written
(th - %)a(r) = <Y,K(x)(a(t)Y + Pac<p)2 + %(a(t)Y + Pac<p)3>,
(D7 — (D2 +142V(x))) Pacyp (2.9)
= PaC(K(x)(a(t)Y + Pug)’ + %(a(I)Y + Pa0¢)3).

Our main result asserts that, up to a time of order ¢, the dispersive part P,.¢ of
(2.9) has a time decay in uniform norm of magnitude t_li, and that the function a(t)
in (2.8) has some oscillatory behavior, with decay in ¢~ 2. More precisely, we have:

Theorem 2.1.1. There is pg € N and for any p > po, any ¢ > 0, any 8’ € ]0, %[, any
large enough N in N, any large enough s in N, there are gy € |0, 1[, C > 0 such that
for any couple (¢g, 1) of real-valued odd functions in HST1(R) x H*(R) satisfying

lpoliZrssr + i lZrs + lxgolln + lxeill7> < 1, (2.10)

the global solution ¢ of

(D2 — (D2 + 14 2V(0)g = k()@* + ~°.

2
Pli=1 = &¢o, @11
dr@lr=1 = €91
satisfies when & € 10, o[ the following bounds for any t € [1,e~4T€]: The oscillatory
part a of ¢ given by (2.8) may be written
3 3
a(t) = " F gy (1) — e T g_(1), (2.12)
where
g2 (0] < Ce(l+162) 72, [0,82(1)] < Cor™2 (1 +16%)72, (2.13)

The dispersive part P,.p(t,-) satisfies
| Pocg(t, ) lwoce < C173(2N/1)"
1) 72N Pacg(t. ) lwoee < C1=3 (/1) (2.14)
1) 72N Poc D1 (. o100 < C173 (207,
where | |lwo.co = [[{Dx)?V || oo,
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Remarks. We make the following observations.

o The first estimate (2.14) shows that, up to time essentially equal to ¢~*, the dis-
persive part of the solution decays like t_%, which is the behavior of small global
solutions to nonlinear Klein—Gordon equations (see [18,19,64,82]). Nevertheless,
in that case, the upper boundlis in 0(81_%), while in (2.14), we have a degeneracy

of the factor multiplying =2 when ¢ goes to 4.

. . . _1 .
e We construct in the proof some approximate solutions that are o(¢ ~2) for times
t < & *T¢ and ¢ small. To go past that time seems to require extra arguments —

like devising more accurate approximate solutions — in order to get a useful point-

wise control of P, fort > 74,

¢ Our estimates are consistent with the ones of Kowalczyk, Martel and Mufioz [56]
in time O(¢™*). Actually, it follows from (2.12), (2.13) that if p > 2,
g—4+c

/ la(t)|? dt < CeP™2
1

and
g—4+c

[ (007 Pt D + 100028 D Papte 1 ) dir < €
1

for large enough N. These estimates are in accordance with those proved in [56]
(when p = 4 for the first one) (see Theorem 1.2 in that reference).

2.2 Reduced system

We shall conjugate the second equation (2.9) by the wave operator W, associated
to —%8)26 + V(x). We discuss in Appendix A.l below the properties of such an opera-
tor. According to Proposition A.1.1 of that Appendix, it may be written, when acting
on odd functions, under the form

Wi = b(x,Dy)oc(Dy), (2.15)
where b(x, £) is a symbol of order zero satisfying estimates (A.8) and
C(E) = €i9($)]l§>0 + e—i9($)15<0

for some odd smooth real-valued function 6. Moreover, if we set A = —% 32 + V(x),
Ay = —%8%, one has by (A.6) and (A.7), for any Borel function m on R,

m(A) P = Wem(Ag)WS,  m(Ag) = Wim(A)W,

* " (2.16)
WiW! = Py, WiW, =1d;2
so that applying W on the second equation (2.9), we get
(D? = (D2 + D)W Pacp) = W (k(x) (@)Y + Pucp)?)
(2.17)

+ Wj:(%(a(t)Y + Pacg0)3).
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Let us define
w = b(x, Dx)* Pyo. (2.18)

Since P,.¢ is real valued, and since because of the symmetry properties (A.9) of
b(x,&), b(x, Dy) and b(x, D,)* preserve the space of real (resp. even, resp. odd)
functions, w is still a real-valued odd function. As ¢(Dy) o ¢(Dx)* = 1d,

Pyp = W+W-:Pac(p =b(x, Dy)w

2.19
c(Dx)W? Pucg = w, @19
so that making act ¢(Dy) on (2.17) we see that w solves
(D? — (D2 + 1))w = b(x, Dx)*(k(x)(a(t)Y + b(x, Dy)w)?)
(2.20)

+ %b(x, D)*(a(®)Y + b(x, Dy)w)’.

We shall study from now on the system given by the first equation (2.9) and (2.20).

We define .
Wo = b(x7 Dx) Pac(p07

w) = b(X, Dx)*Pac§01-

Since by (2.15) and (2.16), Pyc = b(x, Dy) o b(x, Dx)*, and since b(x, D) and
[x,b(x, Dy)] are bounded on Sobolev spaces, we get from (2.10) that

2.21)

lwoll o1 + lwiliFzs + lxwollz + lxwillz> < Co (2.22)
for some constant Cy. Denote by p(Dy) the operator

p(Dy) = /14 D2 (2.23)

and introduce complex-valued odd unknowns

Uy = (Dz + p(Dx))Uh

_ (2.24)
u_ = (D, — p(D))w = —iy.
If I = (i1,....ip) is an element of {—, +}7, we shall set
ur = Uy, ..., ui,) (2.25)
and we denote also uy ;j = u;;, so that equivalently
us :(ul,l,...,ul,p). (2.26)
Let us write (2.20) under the equivalent form
2 3
(Di — p(D))uy =Y Flaiuyu ]+ Y Fllazuy.u_], (2.27)

Jj=0 Jj=0
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where F j2 (resp. Fj3) will be made of terms that are O(¢™!) (resp. O(t_%)) in L if
the bounds (2.12)—(2.14) hold true, and are given by the following:

¢ Contribution depending only on @ and not on u 4 are
Fylazuy,u-] = Fgla] = a(t)*b(x, Dx)* (k(x)Y?),

2.28
Flla;uy,u_] = Fila] = la(z)3b(x,Dx)*(Y3). (228

+ Contributions that are homogeneous of degree j > 0in (v, u_) are given by the

following quantities, where if | 1| = (i1, ...,ip), weset |[I| = pand ef =iy -+~ ip:
F [aiuy u] =a()>/ Z 1[u1 j =12,
1
= (2.29)
F [aiuy u] =a@)>/ Z 1[u1 j=12,3,
l=j

with linear terms in (44, u—)
F2;lur) = erb(x, Dx)* (Y()c(x)b(x, Dx)p(Dx)"ur),

3 3 . ) . (2.30)
Filur] = jerb(x. Dx) (Y(x)*b(x, Dx) p(Dx)"'ug),
quadratic terms in (¥4, u_)
2
1
Fzz,l[ul] = Zglb(xv Dy)* (K(x) 1_[ b(x, Dx)p(Dx)_lul,Z),
= 2.31)
3 3 * -1
FZ,I[MI] = gb‘]b(x, D)"Y (x) l_[ b(x, Dy)p(Dx) Ure |»
(=1
and a cubic term in (U4, u—)
3 1 * 2 -1
F3 ) = feerb (e, D) | [ [b0x, Do) p(Dx)hure ). (2.32)
{=1

Notice that since « and Y are odd, as well as u4, and b(x, D) preserves odd
functions, sz, Fj3 are odd functions.

Let us write now the first equation in (2.9) in terms of a, u 4+, u_. We define
V3 V3 _
ay(t) = (D, + 7)a, a_(t) = (D, _ —)a — —a, (2.33)

2
‘/Tg (a4 — a—) and we rewrite the first equation (2.9) as

2
(D - ﬁ)a+ = (a4 —a ) &jfus ]

2
Jj=0

3
+ Z(a+ —a )Ty ul,

Jj=0

so thata =

(2.34)
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where the terms independent of u 4 are

1
Dy = 5(Y,KYZ),
(2.35)
V3
Ip=-—(Y,Y?
0= g (1YY
and for j > 1,
[, u Z @ rlurl,
= (2.36)
jlupu] =" Tjsug]
=y
with linear expressions
V3 _
@1 7[ur] = ——er(Y, Yeb(x, Dx) p(Dx) 'uy),
13 (2.37)
Iirlur] = ZW(K Y?b(x, Dx) p(Dx) "up),
quadratic expressions
| 2
D2 r[ur] = ZEI<Y’K£[ b(x, Dx)P(Dx)_1“1,5>,
- (2.38)
V3 -
Do rlur] = ——er{Y.Y [ T2 D) PP ure),
(=1
and cubic quantities
| 3
D3 rur] = E81<Y’e—l_[1b(x’ Dx)P(Dx)_1M1,£>. (2.39)

We shall study from now on system (2.27), (2.34) with initial data at t = 1. Accord-
ing to (2.24), (2.21), (2.22), (2.33) and the fact that by (2.8), a(1) = (g¢o, Y) and
dra(l) = (e, Y), with g, ¢ satisfying (2.10), we may assume

Uili=1 = 8Uty, a4|i=1 = ea4. (2.40)
where u 1 ¢ is a complex-valued odd function in H*(R, C) satisfying
72 =Cg,

lat,ol < Cg

2.41)

for some fixed constant Cy.
In the following sections, we shall describe the main steps of the method of proof
of our main result.



Step 1: Writing of the system from multilinear operators 37

2.3 Step 1: Writing of the system from multilinear operators

In Section 2.2, we have reduced (2.9) to the system made of equations (2.27) and
(2.34). One may rewrite (2.27) on a more synthetic way as

(Di = p(Dx))uy = Fgla] + Flal+ Y Op(mo r)lur]
2<|I|=<3

+a() Y Op(my ] (2.42)

1<|I|=2

+a(t)® > Op(m)y p)lur]

1I|=1

with the following notation: The term F§[a] (resp. Fg[a]) is the quadratic (resp.
cubic) contribution in a obtained setting w = 0 on the right-hand side of (2.27). It has
structure a(t)%Z, (resp. a(t)>Z3) for some § (R)-function Z, (resp. Z3). The other
terms on the right-hand side of (2.42) are expressed in terms of multilinear opera-
tors Op(m)(u1,...,up), defined if m(x, &, ...,&,) is a smooth function satistying
convenient estimates, as

Op(m)(uy1,...,up)

= G [ O )

p (2.43)
< [1#;@) dé - dg,.

J=1

On the right-hand side of (2.42), we denote by I p-tuples I = (iy,...,i,) where
ig = £ and set |I| = p. Then u; stands for a p-tuple u; = (u;,,...,u;,) whose
components are equal to u or u_ defined in (2.24). The symbols my s, m’l,l, m’z’l
are functions of (x,&,...,&,) with p = |I|. We do not write explicitly in this pre-
sentation of the proof the estimates that are assumed on these functions and their
derivatives: we refer to Definition 3.1.1 below and to Appendix B for the precise
description of the classes of symbols we consider. Let us just say that symbols mg,
are bounded in x, while their d,-derivatives are rapidly decaying in x. This comes
from the fact that the symbol b(x, &) and the functions «, Y in (2.20) satisfy such
properties. On the other hand, symbols m’1 I m’z’ ; (and more generally any symbol
that we shall denote as m’ in what follows) decay rapidly in x even without taking
derivatives. It turns out that operators with decaying symbol in x acting on functions
we shall introduce below will give quantities with a better time decay than operators
associated to non-decaying symbols.

2.4 Step 2: First quadratic normal form

The goal of the whole paper is to obtain energy estimates for the solution u 4 to (2.27)
and a4 to (2.34).
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As we have seen in Section 1.6 of the Introduction, the first thing to do in order
to get Sobolev estimates for an equation like (2.27) is to eliminate the quadratic
contributions ZI I|=2 Op(mo,r)[ur]. We do that through a “time normal form” a la
Shatah [76] and Simon and Taflin [77] (see also for one-dimensional Klein—Gordon
equations Moriyama, Tonegawa and Tsutsumi [71], Moriyama [70], Hayashi and
Naumkin [39] and the very recent works of Germain and Pusateri [33], of Lindblad,
Lithrmann and Soffer [60] and of Lindblad, Lithrmann, Schlag and Soffer [59]). Actu-
ally, we construct new symbols (1729,7)|7|=2 such that

(D¢ — p(Dx)) (M+ - Op(ﬁio,l)[ul])

11]=2
= Fglal + Fglal+ Y Op(mo,)url+ Y Op(my lus]
’ 0! 3<|I|<4 [I]=2 > (2.44)
3
+Y a@’ Y Op(m) url.
= 1=|I|=4—j

where on the right-hand side, we eliminated the quadratic contributions Op(mg, 1)[ur],
but made appear new quadratic terms Op(mg, lug] given in terms of new sym-
bols m{)’ ; that decay rapidly when x goes to infinity. These corrections come from
the fact that, at the difference with a usual normal form method where one elim-
inates quadratic expressions like (2.43) with p = 2 and a symbol m(&;, &) inde-
pendent of x, we have here to cope with symbols m(x, &1, &;). This x dependence
makes appear some commutator, given essentially in terms of Op( (x,£1,&)), with
a symbol rapidly decaying in x. These commutators are the new quadratic terms
Op(m(), 7)[ur] on the right-hand side of (2.44). As already mentioned, such expres-
sions will have better time decay estimates than the quadratic expressions given by
non-space decaying symbols that we have eliminated, and are actually better than
most remaining terms on the right-hand side of (2.44). They are not completely neg-
ligible, but will be treated only at the end of the reasoning.

2.5 Step 3: Approximate solution

Our general strategy is to define from the solution u 4 of (2.44) a new unknown % 4
that would satisfy similar estimates as those of the bootstrap (1.39) of the introduc-
tion. More precisely, we aim at constructing a new unknown %4 for which we could
get, for t € [1,e7#T¢] with ¢ > 0 given, bounds of the following form:

it (. )| as = O(et?), (2.45)
IL 4t (2,2 = O((2V/0)14), (2.46)
(82«/5)9/)

i (2.47)

i+ .Y lwoeo = O(
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where § > 0 is small, 0/ < 0 < % with 6’ close to %, s > p > 1, and where we
denoted ||w|we.co = ||[{Dx)Pw| roo. The first estimate (2.45) is the one that would
follow by energy inequality for the solution of (1.32), assuming that (2.47) holds
(since, for t < e747¢, (2.47) implies a bound in c(s)t_%, with c(g) going to zero
when ¢ goes to zero). In the same way, assuming (2.47) and assuming that 7 solves
an equation of the form (1.26) with p = 1, one could bootstrap a bound of the
form (2.46). Finally, an estimate of the form (2.47) will have to be deduced from
(2.46) constructing from the PDE solved by 74 an ODE with remainder term con-
trolled from (2.46).

Of course, the right-hand side of (2.44) is far from having the nice structure of the
one of (1.32), and this is why we shall have to modify the unknown 4 in order to
eliminate all bad terms on the right-hand side of (2.44). In Chapter 4 of the paper we
shall get rid of the contributions FZ[a], Fg[a]. These functions are bounded as well
as their space derivatives by =1 (x)™" for any N. Clearly, if we make act L on
them and compute the L2 norm, we shall get an O(1) quantity. If we were integrating
such a bound, we would deduce that || L1u (¢, )| ;2 = O(f), amuch worse estimate
than the one (2.46) we want. We shall thus remove from u - the solution of the linear
equation with force terms FZ[a] + Fgla], i.e. we shall solve

(D: — p(Dx))U = Fgla] + Fglal.

(2.48)
U|z=1 =0

and then make the difference between (2.44) and (2.48) in order to eliminate FO2 [a]
and F [a] from the right-hand side of the new equation obtained in that way. Actually,
one needs to take also into account at this stage bilinear terms in (a, u) in (2.44). We
thus construct in Proposition 4.1.2 an approximate solution uzfp of

(Dr = p(D))u® = Fg (a™) + F (@)

+ a*P? Z Op(m'y_ ;) (u}™) + remainder, (2.49)
[I|=1

app —
uJ,- |t=1 - O»

where a*? is some approximation of the function a(¢) solving the first equation (2.9).

Let us explain what are the bounds satisfied by the approximate solution ui‘_’p of
equation (2.49) that we obtain in Proposition 4.1.2 using the results of Appendix C.
We decompose uy’ = u'" 4+ u”*. The term u'{" satisfies the kind of estimates
we aim at proving, namely (2.45)—(2.47) (and actually slightly better ones) for times
t = O(¢7*¢). On the other hand, inequalities (2.45) and (2.47) hold for u”* (and
even actually slightly better ones), but L u” e_‘fp does not verify (2.46). On the other

hand, L4 u” ‘ffp obeys good estimates in L* norms, of the form
| L4u" P |lwr.co = O(log(l + 1) log(1 + %1)) (2.50)

that will allow us to estimate conveniently nonlinear terms containing u” ifp. Let us
stress that the limitation of our main result to times O(¢~%) comes from the degen-
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eracy of bound (2.46) for L u’ ?fp when ¢ becomes larger than e~*. We do not claim
that, in such a regime, an estimate of the form (2.46) would be optimal. But we remark
that in the construction of u’ il_ap made from the results of Appendix C, the main contri-
bution comes from quantities that have pretty explicit bounds: see Proposition C.1.4
and in particular bound (C.40) with @ = 1 (that gives the main contribution to u’ ?_lfp
and (C.42) with w = 1 (that gives the main contribution to L1’ é_?:p). If we extrap-
olate estimate (C.40) for t > ¢~* (which is of course not legitimate, as we prove it
only for times O(g™*)), we see that outside a conical neighborhood of the two lines
x = £1/2/3, an estimate of [u* (¢, x)| in O(£2¢~%) would hold. On the other
hand, along these two lines, a degeneracy happens, and we do not expect to be able
to prove that, for ¢ > e=*, [u’FP (¢, £t /2/3)|/7 remains small (or even bounded).
Because of that, we do not hope to push estimates of the form (2.45)—(2.47) for such
times, without taking into account first some extra corrections. In particular, going
back to (1.105), we do not expect an O(I_%) bound for | P,.¢(¢, x)| along these lines.

Notice that such a phenomenon cannot be detected using weighted space esti-
mates an in [56]: actually, along the lines x = +7./2/3, a space decaying weight is
also time decaying and kills bad bounds of u’ f‘,‘_’p along these lines. We shall comment
more extensively on that issue in Section 2.10 below.

In addition to the proof of estimates of the form (2.45)—(2.47), we need, in order
to obtain (1.105), to study the solution of the first equation (2.9). We do that in Sec-

tion 4.2 of Chapter 4. Setting

= —a,,

as(t) = (D, + ?)a a_(t) = (Dt - ?)a

the first equation (2.9) may be rewritten as

3 2 .
(Dz - %)CM =) (ar —a-)> 7 @;fut,u-]
0

/= 2.51)

3
+ D ar —a )Ty u],
j=0

where ®;,I"; are expressions in the solution u4 to (2.42) or (2.44). The goal of
Section 4.2 is to uncover the structure of a.. We write

ap(t) = a™ (1) + 0(3(1 + t6%)73),
where a’* (¢) has structure (4.97), that implies in particular
app it3 .
a;"(t) = e'" "2 g(t) + more decaying terms. (2.52)
The main goal of Section 4.2 is to prove by bootstrap that g(¢) satisfies bounds

180 = O(e(1 +16%)73),  [d:g(t)] = O(™3). (2.53)
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(Actually, we get more precise bounds for d; g: see (4.99)). These bounds are obtained
showing that (2.51) implies that g satisfies an ODE

D,g(t) = (a — iz/—gg?z(ﬁ)z)lg(t)|2g(t) + remainder, (2.54)

where Y is some explicit function in § (R) and « is real. The coefficient of the cubic
term on the right-hand side comes from some of the terms on the right-hand side
of (2.51) where we replace u+ by the approximate solution u"fp determined in Sec-
tion 4.1. The main contribution to uz_l,fp, integrated against an S (R) function, may be
computed explicitly in terms of g (see Proposition 4.1.3), and brings the right-hand
side of (2.54). The key point in that equation is that 1?2(«/5)2 < 0. This implies that
g satisfies bounds (2.53) for ¢ > 1 if g(1) = O(e). The inequality Y>(v/2)2 < 0 is
nothing but Fermi’s golden rule. Actually, ¥5(+/2)% < 0 holds trivially and the key
point is to check that Y>(V/2) = 0. This reduces to showing that some explicit inte-
gral is non-zero. Kowalczyk, Martel and Muiioz checked that numerically in [56]. In
Appendix G, we compute explicitly this integral by residues.

2.6 Step 4: Reduced form of dispersive equation

The goal of this step is to rewrite equation (2.44) in terms of a new unknown 74 that
will satisfy estimates (2.45)—(2.47). We define

Uy =uq — Z Op(rig,r)(ur) —u'* —u"¥, (2.55)
|I]1=2
and set 1i_ = —Z. Making the difference between (2.44) and (2.49), we show in
Section 5.2 (see Proposition 5.2.1) that 1 4 satisfies
(D: — p(Dy))ii4 = > Op(rity ) (it u )

3=|I|=4,1=01",1")

+ > Oplmp )i, ufh)
[I|=2,1=(",1")

+a™(1) Y Op(m ) (iir) (2.56)
|I|=1
1 . 3 . 3 \2
+ g(e”ég(t) + e‘”ég(t)) > Op(mg ;)(iir)
1I]=1

-+ remainder,

where:
e For3 <|I| <4, my are symbols my(x,&1,....&), p = |I| = |I'| +|1"| which
are O(1) as functions of x, but O({x)™°°) if one takes at least one d,-derivative.

o Forl <|I] <2,my ;, m) ; are symbols thatare O((x)~>°), even without taking
any derivative.
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¢ Function of time g has been introduced in (2.52) and gives the principal term in
the expansion of aifp (t) oray(z).

e Function g®*P(¢t) = “/ngzfp (t) — a*P(t)), where

a™ (1) = "7 g(1) + waeV3g(t)? + wolg()2 + w_re " V3g(0)" (2.57)

with convenient constants w;, wg, w— and a®?P(¢) = —c_le_‘fp(t).

We cannot derive directly from equation (2.56) estimate (2.46) for i1, as the
right-hand side of (2.56) has not the nice structure (1.32). Before applying an energy
method, we shall have to use several normal forms in order to reduce ourselves to
such a nice nonlinearity. As a preparation to that step, we show in Corollary 5.2.3 that
(2.56) may be rewritten under the following equivalent form:

2 2
(Di = p(D0))it = Y &2 0p(b )ity = Y €% Op(b] i~

j=-2 J==2

= > Op(iy )iy ufy) + ) Op(mg )(iir)

3<|l|<4,1=0",1") |7]=2 (2.58)
+ > Op(mpy )iy u'F)

I=(1",17), 1'|=|1"|=1

+ Z Op(m{,j,)(u’;pp’l) + remainder,
[I]=2

where, in comparison with (2.56), all linear terms in #% 4, #— have been sent to the left-
hand side, and are expressed from symbols b}’ 4 (2, x,§) that are rapidly decaying in x
at infinity. Moreover, on the right-hand side, we still use the convention of denoting
by mg, ; symbols rapidly decaying in x, while 772; are O(1) in x, with d.-derivatives
rapidly decaying in x. Furthermore, in the last two sums in (2.58), we replaced u’?"?
by u/@p-1, which is actually the main contribution (in terms of time decay) to u'*P.
If wesetu = [';Jr ], we may rewrite (2.58) as a system of the form

(D; — Po— V)it = Ms(ii, u™™) + Mq(ii, u™™)

o ) (2.59)
+ M, (i1, u'*P") + remainder,
where
0 —p(Dx) |’
V is a 2 x 2 matrix of operators of the form
2
i3
V=3 T 0p(Mj(t.x.£) (2.60)

j==2

with M} 2 x 2 matrix of symbols whose entries are given in terms of the b}, in
(2.58), and where the 2-vectors M3 (resp. M, resp. M) come from the cubic (resp.
quartic, resp. quadratic) terms on the right-hand side of (2.58).
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To obtain the wanted estimates (2.45) and (2.46) for i, we have next to reduce
(2.59) to an equation essentially of the form (1.32). This is the object of Step 5 of
the proof.

2.7 Step 5: Normal forms

Equation (2.59) has not structure of the form (1.32), in that sense that if we make act

with L_ = x — tp’(Dy), first L does not commute to the potential term V, and
second the action of L on the nonlinearities on the right-hand side does not give
quantities whose L? norm is O (||#|? o || L1 .2) (Which is essentially necessary if we
want to get (2.46) by energy estimates). To cope with the lack of commutation of L
with 'V, we shall construct a wave operator and use it to eliminate 'V by conjugation
of the equation. This is similar to what has been done to pass from the second equa-
tion (2.9), that was involving the potential 2V (x) to equation (2.17), where there was
no longer any potential. The difference here is that 'V given by (2.60) is time depen-
dent (with O(Z_%) decay). We thus cannot rely on existing references, and have to
construct by hand operators B(¢), C(¢) (depending on time) such that

C(t)(D;— Po— V) = (D; — Po)C(2). (2.61)
In that way, if % solves (2.59), then C(¢)u solves the new equation without potential

(Dy — Po)C(t)u = C(t) M3 (i, u™) + C(t) M4(ti, u™®)

e . (2.62)
+ C(t)M5 (1, u"™ ") + remainder

(see Proposition 6.1.2). Moreover, since we want to pass from an L? bound on Lii to
an L2 bound on LC(¢)i and conversely, we need to relate L o C(¢) and L, proving
that

LoC(t)=C(t)o L+ Ci(2), (2.63)

where C () is bounded on L2 uniformly in ¢ and C;(¢) is bounded with a small
time growth when ¢ goes to infinity. The construction of operator C(¢) is made in
Appendix E by a pretty standard series expansion. We notice however that we need
to use in that construction the fact that we are dealing with odd functions u.

Once reduced to (2.62), we still have to handle those nonlinear terms on the right-
hand side that do not have a structure of the form (1.32), i.e. we have to cope with
nonlinearities that have the same structure as in the model (1.68) of Section 1.6 of the
introduction. We have seen there that this problem may be solved using “space-time
normal forms”. We shall follow essentially the approach of [20], already described in
Section 1.6 of the introduction, that we have to adapt to the more general operators
M3, M4 on the right-hand side of (2.62). Remark that the components of the vectors
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M3, My are, according to (2.58), given by expressions Op (1) (2, . . . ,ui’p), where
m(x,&1,...,&,) is a symbol that is O(1) when |x| goes to infinity, but O({x)~>) if
one takes at least one d,-derivative. We have to distinguish between to type of terms,
the characteristic and the non-characteristic ones. The former correspond to the case
when, among the p arguments of Op(m)(ti s, ..., ui’p), pTH are equal to 74 or uif’p
and pT_l are equal to 1_ or u®P?,

In the case of simple monomial nonlinearities, example of characteristic terms
are given by the right-hand side |u|?u of (1.32), which, when making act L on
it, may be estimated in L? by [|u4(7,-)||7 oo [| L4+ (7, )| z2. If iz were independent
of x, the same would hold for the action of the operator L on any characteris-
tic term like Op(m)(uy,...,1u4), as L4Op(m)(tit,...,ux) could be expressed
from Op(m)(L+ti+,...,Ux),...,0p(n)(tx,..., Litit). Using the boundedness
properties of Op(7i1), one would then estimate the L? norm of these quantities by
|| ||fo_o1 ||Li| ;2. As p > 3, one could then obtain estimate (2.46) by energy inequal-
ity, as in (1.26). Since here m does depend on Xx, there is no exact commutation
relation in the characteristic case between Op(72) and L, as some commutators of
the form #Op(d,m) have to be taken into account. It turns out that, because d,m is
rapidly decaying in x, and because # + is odd, ||Op(#1)(#i+, ..., U+)| 2 may be also
estimate by the right-hand side of (1.26). Actually, the kind of expressions one has to
cope with is morally of the form

—1~ \3
1 Z(x)((Dx)"Miix)”, (2.64)
where Z is in § (R) (This reflects the fact that 0, is rapidly decaying in x). Since

iy is odd, we may write using the definition of L = x + ¢ —(3—;)

1

(Dy) ity = ix / I (l'i;m)(ux) e

1 (2.65)

X ~ ~
=07 [ (o)) = it ()
The rapid decay of Z(x) allows one to absorb the powers of x on the right-hand side
of (2.65), and to estimate the L2 norm of (2.64) by

C(IL+iitl L2 + Nl L2) 41 oo

i.e. by the right-hand side of (1.26) with p = 1. Similar arguments apply when the
factors i+ are replaced by u’f”.

The above reasoning disposes of the characteristic components in M (i, u*?) in
(2.62). The non-characteristic ones are for instance of the form Op(m)(ti 4+, ..., U4)
and we no longer have an approximate commutation property of L with such oper-
ators. These terms have thus to be eliminated by a space-time normal form. We con-
struct in Proposition 6.2.1, using the results of Appendix F, operators M i»J =34
such that

(D; — PO)MJ (1, u™P) = M (i1, u™P) e + remainder, (2.66)



Step 5: Normal forms 45

where M; (i1, u®P),c, denotes the non-characteristic contributions to M (i, u*PP) on
the right-hand side of (2.62). Actually, M4 (@i, u*P)ncn = M4 (i, u?P) as only M3
contains characteristic components. In that way, we deduce from (2.62) that

(D — Po)(C(t) (it — M3 (it u™) — My(it, u*)))

(2.67)
= C(t) M, (i1, u'™") + R,

where the remainder R satisfies bounds of the form
IL+Rllz2 = O(|lig | Zoo | L1tis |I12)

as on the right-hand side of (1.26) with p = 1. Notice that to deduce (2.67) from
(2.66), we have to compare (D; — PO)C(t)ﬂj and C(¢)(D; — Po)e/{/{j which by
(2.61) makes appear a term C (t)"VM 7, but the time and space decay of operator V
allows one to show that such errors form part of the remainder R in (2.67).

One has still on the right-hand side of (2.67) term C(t) M/ (i, u'®P1). Again M),
may be expressed in terms of quantities Op(m’)(ti+, #i+) (and similar ones with i+
replaced by u’ ;‘Epp ’1), so that one may gain some time decay using expressions of the
form (2.65), but as this term is just quadratic, this gain is not sufficient to include
C(t)M), into R in (2.67). As C(t) — 1d has some time decay, one may prove though
that (C(r) — 1d)M), is a remainder, but the expression M) (i1, u'#P1) still needs to
be eliminated from the right-hand side of (2.67). We do that in Proposition 6.2.4 of
Chapter 6, using results of Appendix F. Actually, a quantity like Op(m’)(fi, ti+)
may be expressed, using the x-rapid decay of m’ and the oddness of i, as a sum of
expressions of the form

2K (L e, L20s), 0<€,6, <1, (2.68)

where K is an operator of form

K ) (Eo) = / k(o b1, £2) fu(E1) f (2) dE1 s, (2.60)

where the kernel k& has rapid decay in (§9 — &1 — &). An operator of form (2.68)
slightly misses bounds in O(¢™!||L41i+]/;2) when we make act on it L+ and take
the L2 norm. But it does satisfy such estimates if we cut-off k in (2.69) on a domain
|E£(&) £ (&1) £ (&2)] < ct72, Consequently, one may assume that in (2.69), k is
supported for |+ (&) £ (&1) £ (&)] > ct~2. This extra cut-off allows to construct by

R

normal forms a quadratic term M} (iZ, u’*P!) such that
(D; — Po) M (i, u'*') = M} (i, u'* ') 4 remainder.
Subtracting this equation from (2.67), one gets finally

(D, — Po)ti = R (2.70)
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where

4
— C(t)(ft = MG, uapp)) — M (i1, w1, 2.71)
j=3
and where R will satisfy among other things essentially

ILR(, )2 = O | Lyiig [ 12). (2.72)

2.8 Step 6: Bootstrap of L2 estimates

As seen above, the conclusion of the main theorem follows from the bootstrap of
estimates (2.45)—(2.47). In Chapter 7, we perform the bootstrap of (2.45) and (2.46),
assuming that (2.45)—(2.47) hold on some interval [1, T] with T < ¢~*¢ and show-
ing that (2.45)—(2.46) then actually hold with the implicit constant on the right-hand
side divided by 2 for instance. As we have seen, estimate (2.46) cannot be obtained
making act L directly on (2.59), as the action of L on the right-hand side of this
equation has bad upper bounds in L2. On the other hand, making act L on (2.70),
commuting it to D; — Py and using (2.72), one may obtain a bound of the form
(2.46) for ||L4114(t, )| 2. Actually, to do so with an improved implicit constant,
one has to show that the right-hand side of (2.72) is o(¢t™!|| L], 2) instead of
just O(¢t7Y||L4i4||.2), but this follows from the estimates we get if 1 < £~4+¢ and
£ < 1. The remaining thing to do is then to relate estimates for L1 in L? and
estimates for L 41, i.e. to show that the action of L4 on the M; i M’ terms in (2.71)
do not perturb significantly the a priori bound of the left-hand s1de We do that in
Section 7.1 for JM; i, J = 3,4 and in Section 7.2 for M’ In this Chapter 7, we also
check that the remainder R in (2.70) satisfies (2.72). These estimates heavily rely
on the boundedness properties of the different multilinear operators we use, that are
discussed in Appendix D. Putting all of that together, we conclude the bootstrap for
estimates (2.45)—(2.46) in Proposition 7.3.7.

2.9 Step 7: Bootstrap of L°° estimates and end of proof

The only remaining step in order to conclude the proof of the main theorem is to
bootstrap bound (2.47). We do that in Chapter 8. We deduce from equation (2.56) sat-
isfied by 4+ an ordinary differential equation. We proceed as in [1] for water waves,
with simplifications inspired by Ifrim and Tataru [45] (see also [20, 82]). If we write
equation (2.56) as (D; — p(Dx))i+ = f+ and if we define Q+,i+ by

i (t,x) = %L(z, ’I—C) Folt,x) = %L(z, ;) 2.73)

we obtain

(De = 0p) (v + VT+8) )iz, = /. (2.74)
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where we used a Weyl semiclassical quantization, depending on the parameter & = %,
defined in general by

1 emE (Xt Y
W - i(x—y)
Opy, (a(x,§)) 5o /e ha( 3 ,E)u(y) dy dE. (2.75)
We decompose then 4, = u, + U pc, where

S W (X p’($)>>~
ii, = Op) (y(—ﬂ i, (2.76)
with y in C§°(R), equal to one close to zero and with small enough support. Then
i is localized close to the set A = {(x,&) : x = —p/(§)}, i.e. close to {§ = do(x)}
if ¢(x) = V1 — x2 is the phase of oscillations of solutions to linear Klein—-Gordon
equations (after rescaling (2.73)). One sees that the L? estimates (2.45)—(2.46) allow
one to get wanted bounds for the component i » . (see Proposition 8.1.1). On the other
hand, since i, is microlocalized close to A, in the term Op}lV(xE + V1 +E2)iiy
one may replace the symbol by its restriction to A, up to remainders that are well
controlled thanks to the L? estimates (2.45)—(2.46). This brings an ODE for i A that
implies by integration the wanted bound (2.47). The end of Chapter 8 (Section 8.2)
puts together these estimates and those obtained in Section 4.2 for a(¢) in order to
close the bootstrap argument and prove the main conclusions (2.13) and (2.14).

2.10 Further comments

In the last section of the present chapter, we shall explain what is the difficulty in
order to go beyond the time limit £~#. Since this is much related to a phenomenon
extensively discussed in the two papers of Lindblad, Lithrmann and Soffer [60] and
Lindblad, Lithrmann, Schlag and Soffer [59], as well as in the work of Germain and
Pusateri [33], let us first recall some of the results of [60].

The authors of that paper consider an equation of the form

(De = 1+ D2 = —2 (D)7 (@) + ) e

on R xR, where « is a smooth decaying function (say « € § (R), even if their assump-
tions are weaker), satisfying & (+/3) # 0 or &(—+/3) # 0. They prove that if (2.77) is

supplemented by an initial data u satisfying e = || (x)?u¢| g4 < 1, then the solution
to (2.77) may be decomposed as a sum
u(ta') = ufree(t, X) + umod(t’ x)a (2.78)

where uge. satisfies the same dispersive estimates as a solution a linear Klein—Gordon
. _1

equation, namely ||Ugee(Z,-)||Lo = O(et~2) when ¢ goes to +o0o, and where Umpoq

obeys only the weaker dispersive estimate

1
ttmoa (t. )00 = 0(82%) (2.79)
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(see [60, Theorem 1.1] and in particular formulas (1.12) and (1.15)). Moreover, the
logarithmic loss that appears on the right-hand side of (2.79), in comparison with the
decay of linear solution, in unavoidable. Actually, Lindblad, Lithrmann and Soffer
show that along the rays x = £ «/gt/2, Umod (?, :I:«/§Z/2) behaves when ¢ goes to +00
as

2
ay ;jm L. logt
0o Tl 2 (FN3) — (2.80)

for some complex coefficient ag = O(¢). (See [60, (1.15)] and (1.16) of the same
paper for an explicit expression of a¢ in terms of the solution u to (2.77)). On the
other hand, outside a conical neighborhood of these two rays, umeq has an 273
bound, without any logarithmic loss. In order to relate this with the obstacle that pre-
vents us from going above time ¢ ~* in our own result, let us recall the argument of
the introduction of [60] that explains heuristically the appearance of the logarithmic
factor in (2.80). The idea is that, since ¢(x) on the right-hand side of (2.77) is decay-
ing when x goes to infinity, one may replace there u(z, x) by u(¢, 0), up to terms that
are expected to have a stronger time decay. In that way, an approximation of (2.77) is

(D —/1+ D2)u= —%(Dx)_l(a(x)(u(z,O) +(t,0)). (2.81)

A second approximation (that is justified a posteriori) is to assume that u (¢, 0) will
have the same asymptotic behavior as a solution to a linear Klein—-Gordon equation
restrlcted to x = 0 when ¢ goes to infinity. This allows one to replace in (2.81) u(¢, 0)
by e&- [ so that upeg Will be essentially the solution to

2
(Dt = /14 D2)tmoa = —%((Dx)_la) (2 +2+e72). (2.82)

If more generally one considers an equation of the form

(Di—/1+ D2)u = ;Y(x)e”” (2.83)

with Y in § (R) (or at least smooth enough and decaying enough at infinity), one may
rewrite (2.83) as an equation for u; (f, x) = e **u(z, x) of the form

(D +A— /14 D2)u, = lY(x). (2.84)

If A < 1, the operator /1 + D2 — A is elliptic and the solution to (2.84) will be
ot~ 2) in L* when ¢ goes to infinity: This may be seen using Duhamel formula and
integrating by parts, or equivalently defining

wi = u; + (/1 +D2—2)" ('Y (x)) (2.85)

that satisfies a new equation

(D 4+ A — /14 D2)w, = le?(x), (2.86)
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where Y is some new § (R) function and the new right-hand side is time integrable.
Because of that, the solution to (2.86) will have the same dispersive time decay rate
as a solution to a linear Klein—Gordon equation, i.e. will be O(t_%) in L°°. This is
what happens for the last two terms on the right-hand side of (2.82). On the other
hand, for the first one, one gets an equation of the form (2.83), (2.84) with A = 2, so
that the symbol /1 + £2 — 2 vanishes at § = ++/3. In this case, the analysis of the
solution to (2.86) expressed from Duhamel formula and Fourier transform shows that
an asymptotic behavior of the form (2.80) holds along the two rays x = =+¢ ‘/Tg

The logarithmic loss displayed in (2.80) seems incompatible with the known
methods used to study global existence and asymptotic behavior for Klein—Gordon
equations of the form (1.21) or (2.77) if we no longer assume that (- ) is decaying at
infinity. Actually, [60, Theorem 1.1] as well as [59, Theorem 1.1], uses in an essential
way the fact that the space decay of this coefficient will provide, along the rays over
which (2.80) holds, a time decay that will compensate the logarithmic loss.

Another situation when asymptotic behavior may be obtained for the solution
of a problem of the form (2.77), including with nonlinearities involving terms like
(u+1)2, (u+1u)3 (without space decaying pre-factors), appears if the bad term (2.80)
vanishes. This happens for the non-resonant case &(~/3) = &(—+/3) = 0 treated in
[60, Theorem 1.6] and [59, Theorem 1.1], when one recovers the same asymptotics
as those holding true for equations of the form (2.77) with the function « replaced by
a constant.

The second case when (2.80) vanishes is when ay = 0. This happens for instance
when « is an odd function and the initial condition in (2.77) is also odd (see (2.81)
where the right-hand side vanishes for odd functions u, so that the contributions
coming from (2.82) that were responsible of the bad term (2.80) disappear). Such
a situation is studied by Germain and Pusateri [33], in a more general framework.
They consider equations of the form

(8? — 02 +V(x)+ mz)u = a(x)u?, (2.87)

where a(x) is a smooth function that has different limits at 400 and —oo and V(x)
an S (R) potential that has no bound state. They prove a decay estimate for the solu-
tion in O(t_%) when time goes to infinity, under some orthogonality assumption on
the solution. This assumption always holds for generic potentials, and in the case
of exceptional ones (like the zero potential), it holds under evenness or oddness
conditions on V,a and the initial data. One of the key ingredients in the proof of
[33, Theorem 1.1] is again related to the fact that a bad frequency +3 appears.
Actually, it shows up when one tries to perform a variable coefficients normal form.
In order to overcome this difficulty, the authors introduce functional spaces, involv-
ing dyadic Fourier cut-offs close to the bad frequencies, and measuring the (distorted)
Fourier transform of the solution in such spaces.

Let us go back to the problem we study in this book, and in particular to the lim-
itation of our result to times O(¢~*). We already discussed this issue in Section 2.5
after the introduction of the approximate solution in (2.49). Here, we want to explain
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how the problem we encounter to go beyond time s~# might be related to some of
the works we just described, namely the possible appearance of some extra logarithm
in pointwise estimates of the solution along two rays, as in (2.80). Remark first that
we are dealing only with odd solutions. As already noticed, this implies that the coef-
ficient ag in (2.80) vanishes, so that a solution of a problem of the form (2.77) has
O(t_%) L°° estimates. The point is that, in our problem, we do not study an equation
of the form (2.77) or (2.87), but a coupling between a PDE and an ODE, namely sys-
tem (2.11) or equivalently, a coupling between the PDE (2.27) and the ODE (2.34).
Because of that, our PDE contains a source term given by (2.28), involving expres-
sions of the form

a(t)*Ya(x), a(t)*Ys(x), (2.88)

where Y5, Y3 are S(R) functions and a(t), solution of the ODE, has an oscillatory
behavior of the form

€ +ir 3
e (2:59)

When plugged in (2.88), this shows that our PDE will contain a source term that
has a similar structure as the right-hand side of (2. 82) with oscillating terms eTitV3
instead of e*2/* and pre-factor : J: ~ instead of 8 (for the quadratic contribution
coming from (2.88)). Because of that, and by analogy with the study of [60], we may
expect that the solution to our PDE contains contributions that might grow as 1:’%’
when ¢ goes to infinity.

In this book, we prove that such a possible growth does not happen before at least
time =410, Let us return to the discussion on that issue that we started in Section 2.5.
We introduced in (2.49) a solution udpp of a linear equation with source terms that
are essentially of the form (2.88) (forgettlng the second line of the first equation
in (2.49)). If we retain only the quadratic term a (7)Y, in (2.88), and use (2.89),
this means that we have to solve essentially an equation of the form

2 .
(D= 1+ DU = e M () (2.90)

for some function M in $(R) and zero initial data at + = 1. This is an equation

of the form (2.83), and as we have seen after (2.84), the delicate case is the one

corresponding to the phase 1+/3 in the exponential, so that in the sequel we discuss

only (2.90) with sign +. Then U is one of the contribution to the approximate solution
uy? of (2.49), and we decompose it as U = U’ + U” with essentially

Jt 2
U0 =i [N IEPR R ) drz, @91)
1 + 1¢e
UN([ x) :i/ l(l t)«/1+D2+lth( ) dt (2'92)
’ Ji 1+ 62’

This decomposition corresponds to uy" = u’%" 4+ u”*” introduced before (2.50) in
Section 2.5, and we may prove some good L estimate for L U” (see (2.50)) and
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some good L? estimate for L U’ (of the form (2.46)) for times ¢ = O(¢~**°). This
last L2 bound degenerates when ¢ goes to ¢~*, and actually so does the pointwise
estimate of U’ that is obtained in Appendix C (see (C.40) with @ = 1). We obtain
there for U’ a pointwise bound in

2 . -1
(Ef)<tz(§i §)> . (2.93)

Outside a conical neighborhood of the rays x = F¢ \/2_/3, (2.93) reduces to an £2¢ ™2
decay (whatever the value of 7). On the other hand, along the lines x = Fz,/2/3, we
just get a bound in (¢24/7)/+/1, that provides an O(Z_%) decay only for t = O(g™%).
Past such a time, estimate (2.93) will no longer remain valid and, at the light of the
results of [60] concerning (2.77) and [59], one may not exclude that some log ¢/+/t
behavior might hold along the two preceding rays. Since, unlike in (2.77), we no not
have just nonlinearities involving rapidly space decaying coefficients, we do not know
how such contributions might be handled in the nonlinear problem.







Chapter 3

First quadratic normal form

In Section 2.2 of the preceding chapter, we have introduced an evolution equation
(2.27) for a function u 4. This equation is of the type of (1.58) in the introduction,
except that its nonlinearity is non-local (see (2.31) and (2.32)). In this chapter, we
shall express these nonlinearities in terms of multilinear operators, that are a special
case of classes introduced in Appendix B. This will give us a general framework that
will be stable under the reductions we shall have to perform.

The nonlinearity in our equation contains quadratic terms. We have already
explained in Section 1.6 of the introduction that such terms have to be eliminated
by normal form. This is the goal of Section 3.2 of this chapter, following the guide-
lines explained in Section 2.4 of Chapter 2.

3.1 Expression of the equation from multilinear operators

Let us define the classes of multilinear operators we shall use. They are special cases
of the operators introduced in Appendix B, that will be useful in the rest of the paper.
We introduce in this section only the subclasses we need in Chapter 3.

In this chapter, an order function on R? is a function from R? to R4 such that
there is some Ny € N so that, for any (¢1,...,§,), (§],....§,) € R?,

D
M@, &) <C]E - )M, ... &) 3.1)
j=1

(In Appendix B, we shall allow order functions depending also on a space variable x.)

Deﬁ~niti0n 3.1.1. Let M be an order function on R?, with p € N*, k¢ € N. We denote
by Sk,0(M, p) the space of smooth functions

(yﬁsl’---’gp)'_)a(y’gl,---’%-p),

R xR? - C 3-2)
satisfying for any o € N2,
|9a(y. )] < CM(E)Mo() ™! (3.3)
and for any @ € N”, any o € N*, any N € N,
0505°a(y. )] < CMEMo@(1+ Mo® Y)Y, G4

where My (€) denotes

, o\
Mo@l,...,sp):( 3 <si>2<sj>2)<2<si>2) (3.5)

1<i<j<p i=1
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and is equivalent to 1 4+ max,(|£1], ..., |§,|), max, standing for the second largest of
the arguments.

We denote by S’,Q,O(M, p) the subspace of LS:K’O(M, p) of those a for which (3.4)
holds including for oy, = 0.

The symbols of Definition 3.1.1 are the special case of those defined in Defini-
tion B.1.2 of Appendix B when there is no x dependence in (B.11). We associate to
them operators through the quantization rule

1 ;
Op@(1....vp) = 75 /elx(fl+ 0)a(x, €1, ... &)
P (3.6)
<[]0, der - dtp
j=1
for any a € SNK,O(M, p), any test functions vy, ..., vp. This is the rule defined in

(B.17) of the appendix in the case of general symbols a(y, x, §), specialized to the
subclass of symbols that do not depend on x, as in Definition 3.1.1. We shall also
impose on our symbols the extra condition

a(=y.—€1,....—&) = (=D la(y.&1.....&p). (3.7

Under this condition, the operator Op(a) sends a p-tuple of odd functions to an odd
function.

Let us state the symbolic calculus result that is proved in Appendix B (see Corol-
lary B.2.6, (B.42), (B.43)) and that we shall use below.
Proposition 3.1.2. The following statements hold.

(i) Letn'.n" e N*, n=n"+n"—1 let M'(&1,.... &), M"(Ew. ... En) be
two order functions. Let a (resp. b) be in S, o(M',n’) (resp. S o(M”,n")).
Define

M. &) = M'(r, .. w1 b+ EOM Ew. o En). (38

There are v € N, depending only on the order functions M’ and M", and
a symbol ¢y in S, o(MMg*, n) such that if

c(y7‘§17""$n) =a(yvélv"'75}1'—1751’!’+"'+En)b(y7§n/7""En)

3.9
+c/1(y7$11-"’én)v ( )

then for all test functions vq, . . ., Uy,
Op(a)[vi, ..., V—1,0pb) vy, ..., vy)] = Op(c)[v1,...,va]. (3.10)

Moreover, if a and b satisfy (3.7), so do ¢ and C’l.

@) Ifaisin SO,O(M, 1), there is a symbol a™ in SO,O(M, 1) such that Op(a™) =
Op(a)*. Moreover, if a satisfies (3.7), so does a*.
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‘We shall use the above class of symbols to re-express equation (2.27).

Proposition 3.1.3. For any multiindex I = (iy,...,ip) € {— +} with2 < |I| =
p <3, one may find symbols my_j in 50,0(]_[]17=1 (£,)71, p) satisfying condition (3.7),
and for any multiindex I = (iy, .. ip) e{—,+}P with 1 <|I| = p <2, one may
find symbols m1 ;in S0 0(]_[ (&)Y, p) satisfying condition (3.7), such that equa-
tion (2.27) may be written

(D¢ — p(D))uy = Fglal + Fgla]+ ) Op(mo,r)[ur]
2<|I]=3

+a() Y Op(m) plurl 3.11)

1=<|I|=2

+a()> " Oplmy plurl.

[I|=1
where uy is defined in (2.25) and (2.26).

Proof. Consider first the terms on the right-hand side of equation (2.27) that do
not depend on a, i.e. with notation (2.29) 3"\, F5 [us] and 373 F3 [u1].
These terms are given by the first equality in (2.31) and (2.32). A symbol of the
form /c(y) T, b(y. E)pE)~" or [Tiz; 2(y. &) p(£;)~" belongs respectively to
So.0([T7—,(&/)~".2) and So.0([T;—;(£;)~".3) and because of property (A.9) sat-
isfied by b and the oddness of «, condition (3.7) holds. If we apply the results of
Proposition 3.1.2, we conclude that the contributions to (2.27) that do not depend
on a have the structure of the first sum on the right-hand side of (3.11).

Consider next terms of the form a(t)Fﬁ,[u,], [I|=1or a(t)F23’I[u1], 1] =2
in equation (2.29). They may be expressed from the first line in (2.30) and the second
line in (2.31). Since Y is rapidly decaying, the symbols Y (y)k(y)b(y,£)p(£)~! and
Y(3) [Ti=1 b &) (&)  arein 8§ o((8) 7", 1) and S§ o(IT7=; (§/)7", 2). Because
of the oddness of Y, k and (A.9), they satisfy (3.7). Using again the composition result
of Proposition 3.1.2, and noticing that as soon as at least one of the symbols a and b
in (3.9) is in the S class, so is the composed symbol ¢, we conclude that the linear
term in a(¢) on the right-hand side of (2.27) is given by the second sum in (3.11).

In the same way, the contributions a(t)2F13’ ;[ur] coming from the second line
(2.29) with j =1, with F13,1 given by (2.30), provide the last sum in (3.11). This
concludes the proof. ]

On the right-hand side of equation (3.11), terms with higher degree of homogene-
ity in (a, u) will have better decay estimates. Moreover, an expression of the form
Op(m')[uy] with |I| = p and a symbol m’ in S(’),O(M, p), i.e. with rapid decay in y,
will have better time decay than a term Op(m)[u;] with |/| = p and a symbol m
in SO,O(M, p). Consequently, we expect that the terms in  |;|_, Op(mo,r)[us] will
be, among all 4 -dependent terms on the right-hand side of (3.11), those having the
worst time decay. In next section, we shall get rid of these terms by normal form.
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3.2 First quadratic normal form

Proposition 3.2.1. Define from the symbols mq 1, |I| = 2 of Proposition 3.1.3 new
functions

o1 (y.€1,62) = mo1(y.61.62)(—p(&1 + §2) +irp(§1) + izP(&z))_l (3.12)

if I = (iy.i2). Then g1 belongs to Sy o (H/2'=1 (£/) "My (&1, £2),2). Moreover; there
are new symbols

o (my p)1=2 belonging to Si,o(nf (E7) —1Mo(s) 2),

o M h<iri<ay 1< <3 in S O(H"' ) "I Mo(§)".|1]) for some v,

e (mo,1)3<|1|<4 belonging to S, o(l_[ 1MO(E) |11)

such that

(D — p(Dx))(u+ ~ 3" OpGto.)lur])
|1|=2
= Fla) + Fgla+ ) Op(mo.n)lusl + Y Op(my )lurs] a3
3<|I|<4 |I1=2 '
3
+ a’ Y Opmj plurl.
Jj= 1<|I|<4—j

Finally, all above symbols satisfy (3.7).

Proof. We notice first that

1+ 2((61)(52) — §162)

(1) + (&2) + (51 + &2)
> (1 + maxa([é]. |62]) "
> cMo(§1.6)"

(1) + (&2) — (61 + &) =
(3.14)

This implies that

(&1 + &) + (&) — (51) = c(1 + maxz (&1 + &2, |§2|))_1

which is larger than the right-hand side of (3.14), except when |&>| > |&;]. But then
the left-hand side is larger than one. Consequently, we deduce from these inequalities
that, for any sign i1, i, we have for any @ € N2,

O ({61 + &) +i1(&1) + i2(82)) ‘ < CoMy(£1,5)" 11 (3.15)

This implies that 119 ; belongs to the wanted class of symbols. It obeys trivially (3.7)
since mg,; does.
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Denoting for |I| = 2, u; = (u;,,ui,) as in (2.25), we compute

(D¢ — p(Dx))[Op(rito,1)[ur]]
= —0p(p(§)) o Op(mmo,1)[ur] + Op(rio,1)[i1Op(p(§))ui, , ui,]
+ Op(ritg,1)[ui, . i20p(p(£))u;,] (3.16)
+ Op(rito,)[(Dy — i1 p(Dx))uiy» Ui,
+ Op(mo,1) Uiy, (D¢ — i2p(Dx))tti, ]

By Corollary B.2.7, the sum of the first three terms on the right-hand side may be
written as a contribution to };—, Op(mg ;)[us] in (3.13) plus the expression

Op((—p (&1 + &) + i1 p(§1) + iap(E2))rito, 1) [ur]. (3.17)

By (3.12), (3.17) will cancel the term Z|1|=2 Op(mo,r)[ur] in (3.11). Since the other
terms on the right-hand side of (3.11) are still present in (3.13), we see that to con-
clude the proof, we just need to show that the last two terms in (3.16) provide as
well contributions to the three sums on the right-hand side of (3.13). We express
(D¢ F p(Dx))uy from (3.11) (or its conjugate). To fix ideas, consider for instance

Op (110, (+,i))[(Ds — p(Dx))u4, uj,]. (3.18)

If we replace (D; — p(Dy))u4 by the contribution Fi[a] + Fg[a], which by (2.28)
may be written a(¢)2Y, + a(¢)3Y3, with odd functions Y3, Y3 in § (R), we see apply-
ing Corollary B.2.8 of Appendix B that expression (3.18) will provide contributions
to the Z/ ,a(t)’ lel 1 Op(m’; )[ur] term in (3.13).

We replace next (D; — p(Dy))u4 in (3.18) by the a(t) or a(t)? terms in (3.11).
We use (i) of Proposition 3.1.2, noticing that if in (3.9), either a is in S, o(M', n") or
b is in S,/( o(M"”,n"), then ¢ is in S o(M,n). Consequently, we get contrlbutlons to
a(t) 22<|1|<3 Op(m ;)[ur] and a(t) >111=2 Op(m’ p)[u]in (3.13). Finally, if we
replace in (3.18) (D; — p(Dx))u 4 by the first sum on the right-hand side of (3.11),
we obtain contributions to ) ;<4 Op(mo,r[us]) in (3.13) using again (i) of Propo-
sition 3.1.2. This concludes the proof as property (3.7) of the symbols is preserved
under composition. |






Chapter 4

Construction of approximate solutions

In the preceding chapter, we have performed a quadratic normal form in order to
reduce ourselves to an equation of the form (3.13). The right-hand side of this equa-
tion contains a source term and in Section 4.1 below, we construct an approximate
solution solving the linear equation whose right-hand side is essentially this source
term. We explained this part of the proof in Section 2.5, see equations (2.48)—(2.49).
The construction of the approximate solution relies on Appendix C below.

On the other hand, because of the coupling between a dispersive equation and
the evolution equation for the bound state, we have seen in Section 2.2 that we have
also to study an ordinary differential equation (2.34), which is equivalent to the first
equation in (2.9). We have explained at the end of Section 2.5 what is the form of
that ODE, and how we can show that its solutions are global and decaying using
Fermi’s golden rule. Section 4.2 below is devoted to the asymptotic analysis of this
ODE. Of course, the study is more technical than in the presentation in Chapter 2
since we have to fully take into account those terms on the right-hand side that come
from the interaction between the bound state and the dispersive part of our problem.

4.1 Approximate solution to the dispersive equation

The proof of our main theorem being done by bootstrap, we shall assume that we
know, on some interval [1,T], an approximation of the function ¢ > a(¢) that is
present on the right-hand side of (3.13).
Letsg €]0,1], 4,4’ > 1,6 €]0, %[ (close to %) be given. Let T € [1,e74]. We
shall denote for¢t > 1, ¢ € ]0, g¢],
te = & 2(t?) 4.1)
and assume given functions
1, T] = C, 4 :[1,T] xR — C,
g:[1.7) L [LTIXR = € ws)
1 g(0), (t,x) > ux(1, x)

and x — Z(x) in §(R), real valued, satisfying the following conditions:

_1 _3 ,
18 < A2, |0, < A6 2 + (2VD3173), 1e[1LT).  (43)

3

(Z.iis(t, )] < (VD173 1 e[1,T). (4.4)

Moreover, we assume given W a neighborhood of {—1,1} in R and for any A in
R — ‘W, two functions

t—=> (A1), t> Y1) 4.5)
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satisfying forany ¢ € [1,T],any A € R — W,
o 0] = VD172 Jya(in] = (VD7 (4.6)
and solving the equation
(Dy = VoA, 1) = (Z, i) + Y+ (A, 1). (4.7)
We define from the above data
a(0) = €5 g1) + wrg (123 + wolg (P + w250 ¢V
608 (g(0p+ (0.0) — (g (0.1) (438)
+ e gD+ (V3.0) — 59— (V3.1)).

where wg, w2, w_5 are given complex constants. We set

=, ) = L0 - ), “9)

We assume given, as in the statement of Proposmon 3.2.1, symbols m1 pfor |1 =1
(i.e. I = 4 or —) belonging to the class St 0((5) , 1) satisfying (3. 7) We want to
construct an approximate solution ", + P to the equation

(Di = p(D))u’ = Fgla®™] + Fgla*™] +a*(1) Y Op(m} D™l (4.10)
[I]=1

that is deduced from (3.13) computing the source terms FZ, F; at a®P, and retaining
from the other terms on the right-hand side only those that are linear both in a and u 4.
Before stating the main proposition, let us re-express the source term in (4.10).

Lemma 4.1.1. Under the preceding assumptions on a**®, one may rewrite

FE[a*™] + F3la™] = I + I + I + R(t, x), (4.11)
where 5
.. 3
Lx)= Y /"5 M. x) (4.12)
j€{—2,0,2}

Sfor smooth odd functions of x, M; (t, x), satisfying for any o, N € N,
0 M (t.8)] < Cants (6)7V,

. N R P (4.13)
050, M, (1,8)] < Can ()™ Vite (1 2 +172(2V1)27)
with constants Cy N depending on A, A" in (4.3)—(4.4), where
/3
Ltx)= Y T M) (4.14)

Jje{=3,-1,1,3}
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for smooth odd functions of x satisfying

) _3
0§ M, (1.6)| < Cante >(E)N,

(4.15)
~ _3 ’
1920, M; (1. 8)] < Can (&) V17 (122 +172(2V0)2Y),
and where I3 is a sum of terms
l ..
It.x) = Y e"V3M3 (e x), (4.16)

j=—1

where M /‘3 are odd and satisfy the following conditions: First, for any j with |j| < 1,
any o, N,
- PR R
023 (1,6)] < ContT ()N
- “1,-3 =
080, M} (1.8)] < Cont; 177 (E)N.
Moreover, for j = 1, and when & is a point in a small neighborhood ‘W of the set

{&: /1 + &2 = /3), one may find functions ®1 (¢, €), W, (¢, §), satisfying
D11, 6) < Cr7' 72, |0 (,8) < Cole! (4.18)

(4.17)

such that for £ € ‘W,
DMP(t,8) = (Dr + (V3= V1 +E2))D1(1,6) + U1 (1, %). (4.19)

A similar decomposition holds for x M 13 instead of M 13
Finally, the remainder R in (4.11) satisfies for any «, N € N,

05 R(1,x)| < Cant ™'t

&

Lx)=™N (4.20)

and we have for M;(t, x) in (4.12) the following explicit expressions:
1
Ma(t.x) = 381 ¥ (),
2
Mo (t, x) = §|g(l)|2Y2(X), (4.21)

Moot ) = 50 Vo),
where Y, is given by
Y2(x) = b(x, Dx)*(k(x)Y(x)?) € S(R). (4.22)
Moreover, the constants in all above inequalities depend only on A, A" in (4.3)—(4.4).

Proof. Consider first the contribution FO2 [a?P] that is given according to (2.28), (4.9)
and (4.22) by

1, , ;
F (@ +a")¥a(0).
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We replace az_ifp by its expansion (4.8). We get terms of the following form (up to
irrelevant multiplicative constants):

V3e(1)?Y,,  |gPYa, e V3g() Y (4.23)
) /3 a3
dCEIE (e 'y, 0=t <3, (4.24)

and

V3 (1) (91 (0.0) = 9 (0.1) + 9+ (V3,1) — p_(v/3,0)) Y,
go(1)Re(p4(0.1) — 9_(0.1) + ¢4 (v/3.1) — p_(V/3.1)) Y, (4.25)
eV 1) (1 (0.1) —9-(0.0) + ¢4 (V3,0) — - (V3>

with g2;, j = —1,0, 1 satisfying, according to (4.3), the bounds

1 _3 39/
182/ ()] < CANT", 0,82 ()] < C(A, ANt 2 (1% + 173 (£2V0)3Y), (4.26)

and expressions that are, according to conditions (4.3) and (4.6), O(t, %t_% (x)™)
or O(t7't7(x)™N) for any N, as well as their d, derivatives, so that they will
satisfy (4.20). Terms (4.23) give I, with actually the explicit expression (4.21) for
My, My, M_5. Terms (4.24) provide contributions to I, in (4.14).

To study terms in (4.25) that will provide 73, let us define

Gr(A, 1) = e oA, 1). 4.27)
By (4.7), we have
DiGr(A.t) = (Z iithe ™ + ya(A,1)e” M. (4.28)

Then all contributions in (4.25) may be written under the form e/’ 3m jE(t X),
J =—10,1, with M; * given by linear combinations of expressions

3 (L35 L+ 8=1,0<80<1,ifj =1
2 20(GL(N3.0)Ys. g20(1)G£(EN/3.1)Ys, £ =01, if j =0 (4.29)
V3 (1)L (5N3.1)Ys, L+8=1,0<8,6<1,ifj = —1.
Since by (4.28), (4.6), (4.7), (4.4),
1D g (83/3,1)] < Ct_%(szﬁ)e/

we deduce from (4.3) and (4.6) that (4.17) holds for M 3 which is a combination of
M+ and M —1 <j <l.Inthecase j =1, we have to obtain (4.19), i.e. to find
functlons <I>1 VL %5 é, £ =0, 1 satisfying (4.18), such that if we define according to
the first line in (4. 29)

ME(t.x) = g20()@+((1 = O3.1)Va(x), (4.30)
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for & in the neighborhood W of {—+/2, +/2}, we have
D Mt (1.6) = (D, +(V3-V1+ 52))&@@,5) +UE,0E). @3
Let us apply (4.7) with A replaced by A(§) = /1 + &2 —£+/3 and § € W, so that
A(£) remains close to Z~/3, and thus outside a neighborhood of {—1,1}. We may
then find functions ¢4 (A(§),1), ¥+ (A(§), ) such that

(D = V1 + 8+ £33)p (M), 1) = (Z, 1) + Y (A(E). 1) (4.32)

with estimates of the form
lp2(M®.01 = VD172 [P (E).0] = VD71 (4.33)
uniformly for & in ‘W. Define
O (1,8) = 9+ (M), e 1703 g0 (1) P2 (6).
Then (4.33) implies that

(Dr = (VI+8 = V3))b5(0.8)

=(Z, fti)e_it(l_g)ﬁgze(t)?z(g)

. ) (4.34)
+ YA€), e 0OV g (1) D (8)
+ r(A(E), e 11=OV3D 0y (1) V2 (£).
On the other hand, (4.30), (4.28), (4.6) and (4.26) imply that
DiME(1.6) = (Z.iix)e O3 g5 () F2(8) + RE((1.6) (4.35)
with
0 RE, (1. 8)] < Cr a7 (VD) (8)7Y (4.36)

for any N. Making the difference between (4.34) and (4.35), and using (4.3) and
(4.6), we obtain that (4.31) holds, with functions ®F,, Wi, satisfying (4.18) since
the last two terms in (4.34) and (4.36) are

_1 ’
O 7  + 1,272V 3%y = 01 Y)

fort < g4,

As xM 1i,e (¢, x) is also of the form (4.30), with Y, replaced by xY,, the same
reasoning applies to that function and shows that (4.19) holds as well for x M 13 (with
different functions 5)1, \fll on the right-hand side).

We have thus obtained that the first term FZ[a®P] in (4.11) has the wanted struc-
ture.
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To study FO3 [a®P], we notice that by (2.28), (4.9), (4.8), it may be written as
a linear combination of expressions of the form (4.24) (with Y, replaced by another
function in §(R)), that have been already treated, and of products of an §(R) func-
tion by expressions that are, by (4.3) and (4.6), O(t; 1¢=1), so that form part of the
remainder term (4.20). ]

We may now state the main proposition of this section.

Proposition 4.1.2. Assume that properties (4.3)— (4.7) hold. One may construct
a function uapp :[1,T] x R — C (where T < &™* is the length of the interval on
which aapp is deﬁned by (4.8)), solving the equation

(Dt = p(DEF = F§ (@) + F3(a*)
+a® ) 0pimy D) + REX). 437
[Il=1
uéfp|t=1 =0,

where m'| ; is the symbol in the last sum of (3.13), where the remainder R satisfies
bounds

|0%R(t, x)| < Cont; 't og(1 + 1) (x)™V (4.38)
for any a, N in N, with constants Cy N(A, A") depending on the constants A, A’
in (4.3), and where uefp has the following structure: One may decompose

u :[_)P / app + " app

where u'’{ P satisfies for any r € N,

1/, e < C(A, A1, (4.39)
||u’app(t Nlwree < C(A, A )8 (4.40)
ILu ()l < C(A ANF (VD) + (2VDe¥), (@41
where
Ly =x+1p'(Dy), (4.42)
and where """ satisfies for any r,
re? \2
", ) ar < C(A,A’)s((t82>) , (4.43)
)
[P (2, ) lwroo < C(A, A& log(1 + 1), (4.44)
IL4u" P (2, ) ||wroee < C(A, A')log(1 + 1) log(1 + &°1). (4.45)

For the action of the half-Klein—Gordon operator on u’e_lfp, we have estimates

I(Ds = p(D W™ (1, ) | e < C(A, A)s% 3 (4.46)
and
IL4+(D; — p(D W@, )| < C(A, AN~ (V0 + (2D Fe). (4.47)
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. .. app
Moreover, we may write also another decomposition of u", of the form

ua_lfp(l,x) = u‘fp’ (t,x)+ X4(t,x), (4.48)
p,1 .
where u+ is a sum
WPl )= Y U, (4.49)
j€{—2,0,2}

where U; 1 solves the equation

/3
(Dy — p(D))Uj 1 = &'V Mj (1. x).
Uj+li=1 =0,

(4.50)

with source term M given by (4.21). The second contribution Xy on the right-hand
side of (4.48) may be also written as a sum

3
Z U, x),

j:_
/3
with U ; solving an equation of the form (4.50), with source terms e’ 15 M (2, x),
where M ; satisfies for any o, N,
|02 B (1,§)| < Can (A AN 173 ()N @.51)

and for any symbol m’ in the class S(’),O((E)_l, 1) of Definition 3.1.1, one has for any
o, N € N estimates

|xN3§Op(m’)(2+(Z,X))|EC(A,A’)(ZE + 7y +l_182)10g(1+l) (4.52)

In addition, all constants C(A, A’) in the above inequality depend only on A and A’
in (4.3) and (4. 4)
Moreover u'l? > may be decomposed as ufp’l =u'P 'y u”” ' with u
(resp. u““Pp ) satisfying (4.39)—(4.41) and (4.46), (4.47) (resp (4. 4%) (4.45)).
Finally, all functions above are odd.

/dpp 1

Proof. The proof of the proposition will be divided in several steps, and use the results
of Appendix C below.

First step. We have decomposed in equation (4.11) the source term of (4. 37) i.e.
FZ[a®™P] + Fg'[a®P]. In this first step, we construct a first contribution u®y PP o the
solution of (4.37) taking as forcing term the contribution /; given by (4.1 2) to (4.11),
i.e. we solve, with the notation (4.12)

(D — p(D))uP™! = 3 itV % M (t, x),
Jj€{-2,0,2} (4.53)

W =0,

+
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The functions M; 0n the right-hand side are given by (4.21), satisfy (4.13), and one
may thus write u’y top.1 under the form (4.49), with U; 1 given as the solution of (4.50).
We apply Appendlx C. The solution of (4.50) is given by (C.3) with A = j +/3/2 and
may be decomposed according to (C.4) in U/, + U/’, . We define

rapp,1 __ i rapp,1 __ "
Wy = Z U, wy = Z Ui+ (4.54)

Jj€{=2,0,2} Jj€{-2,0,2}

and check that they give contributions to ", u”" that satisfy (4.39)~(4.41) and
(4.43)—(4.45). By (4.13), the functions M; on the right-hand side of (4.53) satisfy
(C.7) with v =1, i.e. Assumption (H1); holds. By (i) of Proposition C.1.1, we
thus get bounds of the form (4.39)—(4.41), and by (i) of Proposition C.1.2, we have
(4.43)—(4.45). We shall define the contribution uapp’ in (4.48) by

app, rapp,1 17app,1
=u +u
+ +

u'f , (4.55)

i.e. by the right-hand side of (4.49). Moreover, as M; is odd in x, so are U; 4, U jf’ n
and UV .

Second step. We consider now the term 1nvolv1ng Op(m1 ;) on the rlght hand side

of (4.37), where we replace u’" by udpp’ given by (4.49) (with y@P-1 = —u’” b,
ie.
a™(@) Y Y Op(my)(Ur) (4.56)

[11=1;€{~2,0,2}

with U;_ = —U ;. Recall that we decomposed U; ; = = U, + U/, according to
(C.4). Let us examine first the contribution coming from Op(m1 1)(U v '7) to (4.56).
The symbol m1 ; lies in S{ o((E)7' M, 1), which is contained in S} (1 1) (recall
that My = 1 when there is only one £ variable), and it satisfies (3. 7) Since U ”
is defined by (C.4) with A = j V3 3/2 from some odd M;, we may apply Prop051—
tion C.2.1, with M; satisfying Assumption (H1){, i.e. (C.7) with @ = 1 according
to (4.13). We shall thus get from (C.89)

Op(m_)(U/',) = e M) %) + (. x) 4.57)
with for any , N, by (C.91),
|0%r(t, x)| < Ca,stt_l log(1 + t)(x)_N (4.58)
and where M) satisfies by (C.90)
02M ) (t.x)| < Canty < )7V,
o . , L (4.59)
020 MO (1, )] = Cats (1572 + 17320037 ) ()Y,

By conjugation, we shall have also

Op(m) )(U)) = e MO (t.x) + r_(1.x) (4.60)
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with M](l_) (resp. r—) satisfying also (4.59) (resp. (4.58)). We plug (4.57) and (4.60)
in (4.56) and use the expression (4.8)—(4.9) of a®P. We get that (4.56) is a sum of
quantities of the following form:

e Terms of the form
eli'ts M“)(tx) j'=-3,-1,1,3, (4.61)

coming from the product of the first term in (4.8) (or its conjugate) and of the
M a ) terms in (4.57) and (4.60). One gets thus smooth odd functions of x, that
satlsfy by (4.59) and (4.3) estimates

_3
02M D (1.x)| < Cante  (x )‘N,
(4.62)

020, MV (0, x)| < Cants (1 +1 3 2V1)3%) (x)

e Terms satisfying (4.38) and thus contributing to R in (4.37). These terms come
from the product of (4.57) or (4.60) with all terms on the right-hand side of (4.8),
except e’ V3/2 g(?) (and its conjugate), and from the product of a*P with ry in
(4.57) and (4.60). As

_1
27, 2 <ct7 ]!

ift < e7*, we do get that these terms satisfy (4.38).

e Terms of the form

a™ (@) Yy Y. Op(m) (U ), (4.63)

1I=1,€{~2,0,2}

where U j’ ; is given by (C.4) in terms of M; satisfying Assumption (H1),, with
o = 1. We shall see in fifth step below that (4.63) satisfies also (4.38) and thus
contributes to R.

It follows thus from (4.53) and the fact that (4.56) is given by (4.61) up to remainders,
that

(De — p(D))u! —a™(1) Y Op(my NPy =11 — ;P + R(1.x). (4.64)
|I]=1
where I is given by (4.12), I{" is the sum of terms (4.61) and R satisfies (4.38).
Making the difference between (4.37) and (4.64), we get, taking (4.11) into account
(Di — p(D)) ¥ —uf™)

=L+ I+ IV + a™ () Z Op(m'y 1) (uy™ — w3 + R(1, %), (4.65)
1I]=1

with R satisfying (4.38). Notice that by (4.62), I 2(1) has the same form as I, given by
(4.14) and (4.15) so that we shall be able to treat both terms altogether.
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Third step. We now construct an appr0x1mate solution in order to eliminate />+1, 1
on the right-hand side of (4.65). Define uapp’ as the solution to the linear equation

D = I + 1.V,
(D= p( );gz 27T (4.66)
uy 2 lt=1 = 0.

As the right-hand side has structure (4 14) with M; satisfying (4.15), we may express
the solution as a sum Zje{ 3-1,1,3 Uj, +(t, x), where U; 4 is obtained from the j-th
term in (4.14) and expressed under form (C.3) with A = j V3 3/2. By (C.4),

o/ "
Ut =Ujr +Uj4

and since (4.15) shows that (C.7) holds with @ = 3/2, Assumption (H1);/, holds.

By Proposition C.1.1, bounds (C.18)—(C.20) with @ = 3/2 hold for U]’+, and by
Proposition C.1.2, (C.24), (C.25) and (C.27) are true. If we set
W= Y U = Y U (4.67)

je{=3,-1,1,3} je{=3,-1,1,3}

this shows that these functions provide to u"S", u”*" contributions satisfying esti-

mates (4.39)—(4.41) and (4.43)—(4.45).
Let us study
a* (1) Y Op(my )™?). (4.68)
1I]=1
If we apply Proposition C.2.1, using that Assumption (H1)3 /2 holds, we get from
(C.89), (C.90), (C.91) and the fact that a®P(¢) is O(t, 1 2) that the contribution of
u/L P2 1o (4.68) is O(t; 't~ (x)™"), i.e. may be included in R satisfying (4.38).
On the other hand, if we replace in (4.68) uapp’ by u/,*P2, we shall get terms of
the form (4 63), with U; ! 1 givenby (C.4) in terms of M; satlsfymg Assumption (H1),,
with w = 5. These terms are thus better than those in (4.63) and the fact that they
fulfill remamder estimates (4.38) will be seen in Step 5 below.
Consequently, we have shown that

(D¢ = p(D))uP? —a*™ (1) > Op(m ™?) = L + I3 + R(t.x) (4.69)
|I]=1

with R satisfying (4.38). Making the difference between (4.65) and (4.69), we get

(D= (D) (T =T ")

= I3 +a™(0)( Z Op(m} N —u™ —u?)) + R, x). 470
[I]=1

Fourth step. We construct an approximate solution in order to eliminate /3 in (4.70),
i.e. we solve 5

a"“lt o 4.71)



Approximate solution to the dispersive equation 69

with I3 given by equation (4.16). For each contribution e/’ [M (z,x) to (4.16),
with —1 < j <1, we get an equation of the form (C.2) with A = j V3. Moreover,
by (4.17)—(4.19) assumptions (C.8)—(C.10) hold (the last two ones being empty if
A= V3 with j = 0or —1), i.e. Assumption (H2) of section (C.2) holds. We may
thus apply (ii) of Proposition C.1.1 and Proposition C.1.2 that allow to write uap P3 as

a sum

U’ = Z Upt(t.x), Uy =Uj + U/, 4.72)
j—
with Uj, satisfying (C.21)—(C.23) and U”+ satisfying (C.28)—(C.30). If we now set
uifpa u[l_app’ +u'} apP:3 with
1

u/, PP3 Z L @x), = YU (), (4.73)
J== j==
it follows that (4.39)—(4.41) and (4.43)—(4.45) hold true. Let us check that
a™ () Y Op(my )™ (4.74)
1I]=1

is a remainder satisfying (4.38). Since we are here under Assumption (H2), we shall
apply Proposition C.2.4 splitting each U; 1 in (4.72) as

Ui+ = U;ﬂL’l + U]{,’Jﬁ1 (4.75)
_1
according to (C.110). Then by (C.111), and the fact that a®® = O(t, 2), the contri-

bution coming from U jf/ 4.1 obeys remainder estimates (4.38), so that (4.74) may be
written as a contribution to R in (4.37) and as

a*™(t) Y Op(my ') (4.76)
[I|=1
with
P = Z Ul (). 4.77)

j=-—1
We shall see in Step 5 below that (4.76) provides also a contribution to R. Conse-
quently, we have obtained that

(Dy — p(D))UP? —a™ (1) > Op(my )F™?) =I5 + R(t.x).
[I|=1

Making the difference with (4.70), we conclude that 1" will solve (4.37) if and only

if
3
(1= p(D0) (s = Yt

=1

3
—a™ (1) Y Op(m’u)(ul Z PP‘) = R(1.x).

[7]=1
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Consequently, we just have to take uapp ap L uap P2 4 u?fpﬁ. We have checked
that then estimates (4.39)—(4.41) and 4. 43) (4.45) hold. It remains to check that
terms of the form (4.63) and (4.76) provide remainders, and that estimates (4.46)—
(4.47) hold true, as well as the properties of the decomposition (4.48). This will be
done in the following steps.

Fifth step. Let us show that (4.63) and (4.76) are remainders. Let us use the same
notation U/ Jj+ 4 for either U 4 in (4.63) or U; / i+ in (4.77). Notice that since the func-
tions M; in (4.12), (4. 14) (4 16) are odd i 1n X, so are the U / 4 defined from them.
Moreover, as m' ; is in S1 o({(E)71, 1), we may write

Op(m} 1) (U} 1) = Op(it1, £)({Dx) ' Uj 1) (4.78)

with /i)  in §7 (1, 1). By oddness of U; ,

_ ix (/D
(Dx) 1Uj’,+=_ _1( al )(t,/uc)d,u

2 (Dy) 7t
zx
2t

4.79)

((L+ L ux) — pxUJ L (1, px)) dp

As m has rapidly decaying coefficients in x, we rewrite (4.78) as a linear combi-
nation of expressions

1

for new symbols m1 ; in the class S! 0(1 1). Using (C. 92) withw = 1 or (C.112), we
bound any L norm of x# 9% acting on (4.80) by C&?¢t~1. Taking into account that
a®P(t)is O(t, 1/2) we see that (4.63) and (4.76) satisfy (4.38) (using again t < &™%).

Sixth step. We shall prove estimates (4.46) and (4.47). Recall that by definition

/app __ ./ app,l / app,2 / app,3
wit=uy +u, +uy

with u/, P! given by (4.54), u/, P2 given by (4.67) and u’, *PP3 given by (4. 73).
Consequently, the term (D,—p(Dx))u’ PP is a sum of expressions (D;—p(D))U ] 4o
where U j’, is given by an integral of the form (C.4) (resp. (C.110)) with M replaced
by an M; satisfying either (4.13) (for those coming from (4.54)) or (4.15) (for those
coming from (4.67)) (resp. satisfying (4.17) for those coming from (4.73)). Conse-
quently, for contributions of the form (C.4),

1

( p(Dx))U//+ =73

oo . T
TP @IA Ty () My(r, ) dr, (481)
1 Vil
where y(t) = tx/(r) and A; is some integer multiple of @ In other words, we
obtain still an expression of the form of the first line in (C.4), but with a gain of a fac-
tor 1. Estimates (4.39) and (4.41) that we have already obtained for u’** furnish
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thus (4.46) and (4.47) multiplying them by ¢! (the change of cut-off ¥ does not
matter, as it has support contained in the one of y). This shows also that (4.46) and
(4.47) hold for 1/#P-1 4 34/%P-2 The case of u'*P-3 is similar, using (C.110) to get an
expression of the form (4.81), but with X( u ) replaced by %(7), i.e. again an integral
of form (C.110) with the gain of a pre- factor 1~

Seventh step. We have to establish still (4.48). The contribution uif’p’l on the right-
hand side is the one that has been defined in the first step by (4.53), with right-hand
side glven in terms of M; defined in (4.21). The term X, in (4.48) is thus given
by uapp’ + uapp >~ introduced in (4.67) and (4.72). These functions are constructed as
sums of contrlbutlons U that satisfy equations of the form (4.50), where the source
term satisfies (4.15) or (4‘17) and thus (4.51). It remains to show (4.52). As m’ has
rapidly decaying coefficients in x, we may forget the x factor in (4.52), and are thus
reduced to the study of 9%Op(m’) (uapp’ ) and 0°Op(m’) (uapp’ ).
Consider first 920p(m”) (u’f™ %). By (4.67), we express that from

3%Op(m’ )(U-/+), 8§Op(m/)(Uj/:+). (4.82)

As Assumption (H1),, holds with w = accordmg to (4.15), the second term above
is given by (C.89) of Proposition C.2. 1 It follows from (C.90) and (C.91) that its
modulus is smaller than

_3
t; 2 + &3t Mog(1 + 1),

so than the right-hand side of (4.52). On the other hand, Op(m)(U; ) has been
expressed in fifth step under the form (4.80). If we plug there estimates (C.92), we
see that the modulus of the first term in (4.82) is O (e3¢~ 1), so better than the right-
hand side of (4.52).

Consider next d$Op(m”) (ua]p p.3 ). Solving (4.71), we have written uffp > under the
form Z] ——1 (U] 4, + U/, ) according to (4.75). If we plug this decomposition
in d¢Op(m’)(-), we get on the one hand expressions of the form (C. 111) that are
bounded by the right-hand side of (4.52). For the contribution 0¢Op(m’) (U i +1)> we
use again that we can write an expression of the form (4.80) and bounds (C.112).
We get an estimate in O(g2¢~!) that is better than the right-hand side of (4.52). This
concludes the proof. |

To conclude this section, let us compute some integrals that will be useful in
the sequel.

Proposition 4.1.3. Let Y, be the function defined in (4.22). The functions U; .,
j = —=2,0,2, on the right-hand side of (4.49) satisfy the following:
/ Us,+(t,x)p(D) " Yo dx = (ea + i) V3g (1) + 7 (1), (4.83)

where o is real,

Ba = —%ifz(ﬁ)z (4.84)
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for the function Y, defined in (2.6), and where r(t) satisfies
()| < C(A, A’)(g%—% b ez—%(gw;)%f’/) <CcA A (485)
Moreover;
/ Uo.+ (1) p(Dy) " Yo dx = aolg () + (1), (4.86)
-1 _ 2, —ity/3
/Uz,_(t,x)p(Dx) Yodx =a_,g(t) e + r(1), (4.87)

where o, —y are real constants, and where r satisfies (4.85). Finally, the function
34 in (4.48) satisfies

’/EJr(t,x)p(Dx)_le dx’ (4.88)

_3 _1
<CA At 2 + 27 + 171, ?) log(1 +1).

Proof. Let us establish (4.83). The function U, 4 is defined as the solution of (4.50)
with j = 2 and M, on the right-hand side given by (4.21). We write (4.83) as

oo [ Gase0p@ Fa-6) d

Since Y> is odd, we get from equation (C.124) applied with Z &) =—p@E)! Vs &),
M(t, &) = My(t,8), A = /3, a contribution to r and two integral terms. By (4.21),
the second one is

B V3 (1= x ) Ya(e)?
or ) V3-1+8& J1+§
which may be written since Y, is real and odd, under the form o/zei 13 g(t)? for some
real o).

Using the definition (C.123) of y;, and the fact that ¥5(&)? is even, the first term
on the right-hand side of (C.124) brings the contribution

deg(t)? (4.89)

; +o00

_ l_eitﬁg(t)Z lim / eir(«/ 1+§'2—\/§)—01X(E _ ﬁ)

o omordo (4.90)
RA0s |

V1+E2
Denote by &(¢) the reciprocal of the change of variables & — ¢ = /3 — /1 + &2

defined from a neighborhood of & = V2t0a neighborhood of { = 0. We rewrite
(4.90) as

dEdt

¢

0] dt. (4.91)

. +o0 . R
~ Lty tim / T (€ (D) — VDT (E D))

3 o—=>0+ Jo
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Notice that

. oo —it¢—ot : c—1 : 1
Ul_l)r(r)1+ ; e dt =—-i(¢—1i0) —nSO—zp.V.Z.

Plugging in (4.91), we obtain an expression a5 + if> with o real and B, given
by (4.84).

To obtain (4.86) and (4.87), we apply again Proposition C.3.1 but with A = 0 or
A = —+/3 so that x2 = 0 and in (C.124) the first term on the right-hand side disap-
pears. Only the second one and r remain, so that one gets no imaginary contribution
to (4.86) and (4.87).

Finally, let us prove (4.88). As Y5 is in § (R), the integral may be expressed as an
integral of Op(m’)(X ) for the symbol m’ = Y,(x)p(§)~', so that (4.52) brings the
conclusion. |

4.2 Asymptotic analysis of the ODE

In this section, we shall prove that solutions of the ordinary differential equation
(2.34) have a certain asymptotic expansion by a bootstrap argument.

We make some a priori assumptions on the functions ®; and I'; on the right-hand
side of (2.34).

Assumption (H)). Assume that 1 is a solution to equation (2.27) defined on the set
[1,T] x R for some T < &% such that the functions ®, and T';, Jj =1,2,3, defined
on (2.36) satisfy the inequality

3 3,
(@200 (o )ou—(to N+ e 22T (0 )ou— (2. )

= (4.92)

< B/l—% (82\/;)20/

for some constant B’, some 6’ € ]0, %[ (close to %), allt € [1, T], and assume that the
function ®; given by (2.36) satisfies for any ¢ € [1, T'],

‘q)l(u-i-(lv ')’ u—(t’ )) - ?(Y’ YK(X)b(X, Dx)p(Dx)_l(qu - u?p)>

— (Z.iiy) — (z,a_>)( < B3 (2 VD)7,

(4.93)

where uifp is the approximate solution constructed in Section 4.1, Z is a function
in § (R), ti1 are functions verifying inequality (4.4) such that forany A in R —{—1, 1},
one may find functions ¢+ (A, 7) and Y+ (4, 7) as in (4.5), solving equation (4.7) and
such that estimates (4.6) hold true, for A outside a given neighborhood W of {—1, 1}
in R.
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We consider on the interval [1, 7'] the solution a4 of equation (2.34), namely

3 2 .
<D, - %_)aJr = Z(a+ —a )" ®j[uy,u_]
/=0 (4.94)

3
+ Z(a+ —a )/ Tjluy,u]
=0

with an initial condition at ¢ = 1 satisfying
lar (D] = Aoe (4.95)

for some constant Ay. We introduce as a second assumption an estimate on a., that
we give in terms of upper bounds (4.99) below:

Assumption (H)). The solution of equation (4.94) with initial condition (4.95) exists
on some interval [1,7] with T < &= and satisfies on that interval the following
requirements: One may write

ay(t) = aif’p(t) + S(@), (4.96)
where a’* (¢) has the structure
@TP(1) = 5 g(t) + w0ag (126 + wolg () + w_2g (1) eV
+ e (1) (¢4 (0,1) — 9_(0,1)) (4.97)
+ e T g D) (04 (V3.1) — - (V3,1)
and where
S(1) = 03g()*e¥5 + w1 |g()Pge T + w_sg@) e T (4.98)

with the following notation:

e The coefficients w; in (4.97) (resp. (4.98)) are real (resp. complex) constants that
will be chosen below.

e The function g satisfies, for some constants A, A" and ¢ € [1, T,

_1 _3 ,
2] < A1 2, 19,g(0)] = A2 +173EVD3Y),  (4.99)
where 0’ € ]0, L[ is close to % and has been introduced in (H7).

e The functions ¢ (0, 1), p+(+/3, 1) satisfy conditions (4.5)~(4.7) with Z and i+
introduced in (4.93), i.e. one has estimates
1

o0l < (VD172 Y] < (VDT
(Z.dis, )] < (VD717
(when ¢ is small enough) and one has the equation
(Di = V(A1) = (Z,ux(r,-)) + ¥+ (A, 1) (4.101)
for A = 0 or v/3.

(4.100)
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We shall bootstrap Assumption (H)), i.e. estimates (4.99) assuming that (H)
holds:

Proposition 4.2.1. Let ¢ €10, 1] and 6’ € ]0, %[, 0’ close to % There are constants
A, A’ g9 > 0 such that if Assumption (H') holds and if the solution a of (4.94)
exists on [1,T] and has structure (4.96) with g satisfying (4.99) on [1,T], then if
£€10,e0, T < e 4T¢, one has actually, for any t € [1,T],

1 _1 1 _3 ,
g0 = 5467, 10ig0] = 54/ (17 + 73 EVDE). (4.102)

As a first step towards the proof of the proposition, let us rewrite equation (4.94).

Lemma 4.2.2. There are a real constant y1 and complex constants y3, y—1, V—3 such
that, under the assumptions of the proposition,

(- ?)CH = % g0 g () (11 - if—ffz(ﬁ)z)

/3 i3 —

+ e g (1)Pys + R 2 () 22Oy @103
PV p— ’

+ e ¥ () Y,

+ (ay —a-)*®o + (at —a-)’Ty

+(ay —a)(Z,uy)—(Z,u_)) +r(t),

where r(t) satisfies
3 /
r(0)] < C(4, 4", B2 (V1) (4.104)
for a constant depending only on the constants A, A’, B" of (4.99), (4.92), (4.93).

Proof. Consider thegright-hand side of equation (4.94). By (4.92), the ®, contribution
is bounded by B't 3 (¢2/1)2%', so satisfies (4.104). By (4.96), (4.97), (4.99), (4.100)

las ()] + la_(6)] < C(Ay; * (4.105)

so that (4.92) implies that the contributions (a4 — a_)3_f Iy, j =1,2,3,to (4.94)
satisfy (4.104). We are thus left with studying

Oo(ay —a_)? + ®uy,u_l(ay —a_)+ Tolay —a_)>. (4.106)

The first and last terms in (4.106) are present on the right-hand side of (4.103). Con-
sider (a4 — a_)®;. By (4.93), up to another contribution to r, we get on the one hand
the last but one term on the right-hand side of (4.103) and the quantity

NE] _
= (@ —a){Y. Ye(x)b(x. Dx) p(Dy) Ll — uPy)
that, according to the definition (4.22) of Y,, may be written

‘?(u —a-){(Y2, p(Dx) ™ (uf® — u™)). (4.107)
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We replace above ui'fp by expansion (4.48). According to (4.88),

_3 _1
(Y2, p(Dx) 'Z4)| < C(A ANt 2 + 171> + 171, 2) log(1 +1).

If we use also (4.105) and (4.1), we conclude, since
_1
172 < Ct72(2V1), 1,217 1% < Cr2(2V0), Tl < Ct3(2V0),

that (4.107) satisfies inequality (4.104) (if we absorb the logarithm using that we
assume &2/t < 85 0 < —, and that we take & small). We are thus left with the
contribution to (4.107) of

?(Uu —a_){(Ya., p(Dx) " P! —urly) (4.108)

with ua pp-1 given by (4.49). The bracket above has been computed in (4.83), (4.86)
and (4. 87) It is in particular O(C(A4, A )t_l) By equations (4.96)—(4.100) the diffe-
rence ay — ¢'V3/2g is bounded by C(A) (17 + 1, 124=1/2(62 /1)¥'), so that if we
replace in (4.108) a1 by e'’ V3/2 g, we get an error bounded by

C(4, A )( e z(&{)") < C(A, A3 (2 VD)%Y (4.109)

so that we get a remainder. Consequently, using again (4.49), we have reduced (4.108)
to

ﬁ

(50 F 450N Y (. p(D0 7 Ui + Tp))] @110)

Jj€{-2,0,2}

up to remainders. We have computed the bracket above in (4.83), (4.86) and (4.87).
Up to terms bounded by the product of (4.85) with 7, 1/ 2 which still provides remain-
ders satisfying (4.104), we get that (4.110) is given by

L _
A E g (1) + AT g0 (1) + ey g ()P + e E Y35 () s

where y; are complex constants, with y; = ‘/75(2040 4+ ay + a—p +iB5), where «y,
o, 0o are real and B, is given by (4.84). We obtain thus the first four terms on the
right-hand side of (4.103). This concludes the proof. ]

‘We shall next compute from expression (4.96) of a4 and from (4.103) an equation
satisfied by g.

Lemma 4.2.3. One may choose the coefficients w;, =3 < j <3, j # 1, in (4.97)
and (4.98) such that if a4 is given by (4.96) and satisfies (4.103), then g solves

Dig(t) = (o= if—ffz(ﬁ)z)m(z)ﬁg(z) + (), (4.111)
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where « is real, ?2(«/5)2 is negative and r(t) satisfies
()] < C(A)E 27 VD +C(4, 4, B) (r;2 + 17N VD
I TN LN o TNt L z—z(ezﬁ)%"’),

where C(-) are constants depending only on the indicated quantities.

(4.112)

Proof. Let us express in a more explicit way the right-hand side of (4.103). By equa-
tions (4.96)—(4.100),

. /3 i —2 —i
a:(t) = (€7 g(0) + g (12" V? + wo|g () + w28(1) ¢ *V?)

(4.113)

w

< C 2 VDY + CA)y

for constants C(A) depending only on A.
It follows that

(a+() —a_(0))® = e"™3g(1)* + 202 + e V35 (1)
+ 2e3"’§g(r)3(w2 + w_3)
+ zeff%g(ng(z)(zwo oyt o) (G114)
+2e710F |g(r)|2g(r)(2wo + w2+ w_2)
+2e73% D) (@2 + ) + (1),

where r satisfies (4.112).
In the same way

(a+() —a-(1))* = T g(t)3+3e” *g0Pg()
+3¢7F g0 8@ + gD + (1)

where r satisfies (4.112). We plug (4.114)—(4.115) in the right-hand side of (4.103).
We get, as ©¢, I'g given by (2.35) are real constants, the expression

(4.115)

¢V3Dog(t)? +2g(1) 2o + e V3 Dog(1)

+ e 2 g0 Pe)(y, - if—ffz(ﬁ)z)

+ T g1y, + e gDy + e T gy, G110
e F g ()(Z.iy) — (Z.5-)

e GO (Zg) — (Z.02) + (1),

where Zj’ Jj = —3,—1,1,3, are new constants with Y, real, Y 3V 075 depending
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on w_,, g, W butnot on w_3, w—_1, w3, and where r(¢) satisfies (4.112), and contains
in particular the product of (Z, ii+) with a, (1) — e/*™V3/2g(t), a_(1) + €'V3/2g(1),
according to estimates (4.113) and (4.100).

On the other hand, we may compute the left-hand side of (4.103) replacing a by
its expression (4.96). We get, using (4.101) with A = 0 or V3,

(D, — ?)M —it% D.g + ?e"’ﬁwzg(t)2 — ?cvolg(l)l2
_ 3%§w_2e_i’ﬁm2 + «/§w3e3i’§g(f)3
N R NP0 30) @.117)
— 2«/§w_3e_3”§m3
+ T g(1)(Z,i4) — (Z.0-)
4 e RGO Z, k) — (Z.62) + 1),

where r1(t) is made of terms of the form

O(IgD:g)). O(1D:ge+(0,1)]), O(ID;gp+(v/3,1)]),

5 (4.118)
0(1gy+(0,0)), O(gy+(v3,0)). O(g*Dig).
By a priori estimate (4.99) and (4.100), these terms are bounded by
C(A, A)( 4232V 13 (VDY + 223 )
(4.119)

I TN

the last contribution coming from the first two terms in the second line of (4.118). We

choose now the free parameters w;, j € {—3,...,3} — {1} setting
V3 B 2J§q> B 4J§¢
w3 = sz w2 = 3 o wo = 3 Yo
V3 2V3 o V3
w_1=—— , W_p = ——— , W_3 = ———
1 3 Y, 2 9 0 3 6 Y 3

(which is possible as y Y Y do not depend on w_3,w—_1,w3). In that way,
when we make the difference between the two expressions (4.116) and (4.117) of
(D — 25 ) we obtain equation (4.111) with a remainder satisfying (4.119). This
concludes the proof, as Yz(«/_ ) being purely imaginary (since Y5 is real and odd),
Yz(\/_)2 < 0 and moreover, by Proposition G.1.2, Yz(«/_) # 0. ]

Proof of Proposition 4.2.1. Let us show first that under the assumptions of the propo-
sition, the first inequality of (4.102) holds if A has been chosen large enough, ¢ small
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enough and ¢ < ¢#7¢_ In a first step, consider the case when ¢ is small, i.e. let us
show that there is 79 € ]0, 1] such thatif 1 <t < ro , and ¢ is small enough,

)= At
g®)] < 41‘5 . (4.120)

Since for these ¢ one has % <11 < ¢?, the a priori bound (4.99), equation (4.111)
and estimates (4.112) imply that, for any such ¢,

lg()] < |g(D)| + KA3*t + C(A, A, B') (1T + &%),

where K = |o — i‘{—sgfz(ﬁ)2| and C(-) is a new constant depending on A, A’, B/
(and 7). If A4 is taken such that

lg(D)] =

oo|::;
Sle

and tp small enough so that

1
KA%t < ,
* T 162
and if we take ¢ small enough, we get, using that 8’ is close to , that
A A -1
N < ——=e<—t1 2,
i.e. (4.120).
We shall thus study from now on equation (4.111) forz > ’g and initial condition

at ro bounded by fs In this regime, for some new constant C(A4, A’, B’), (4.112)
1mphes

Ir(0)] < C(4, 4 B (73 (20" +172), (4.121)

remembering that ¢ stays in [rge ™2, e74¢]. For ¢ in [rg, 27¢], set

_ 1 s
e(t) = e 1(1 +t)2g(82). (4.122)
We deduce from (4.111) and (4.121) thatif 8 = —‘{—Ef’g(ﬁ)z > 0,

_le()  —BHia >
D) = 51+ o leOPe@ + RO, (4.123)

where

PR 14+t ’ 1+1¢ P
|R(z)|sc(A,A,B)(( 3) e+ ,2)2)
C(A, A, B) 3 ; e
SO e ),
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Denote w(t) = |e(t)|?. Then

1
dew(r) = 1——1—t(w(t) —2Bw(1)* 4+ Q(1)), (4.125)
where according to (4.124), for t € [tg, e721¢],
[0(1)] < C(s%c + sro_%)|w(t)|% (4.126)

for some constant depending on A4, A", B’, t9. Moreover, we have

w(te) < (%)2. 4.127)

We fix A large enough so that (%)2 — 2/3(%)4 < —% and then take & < g¢ small
enough (in function of A, A’, B’, 7o) such that (4.126) implies |Q(¢)| < 1|w(r)|"/2.
Then it follows that if, at some time 7., w(?«) reaches (%)2, the right-hand side
of (4.125) is strictly negative. Consequently, taking (4.127) into account, we get

w(t) < (%)2 for any ¢ in [rg, £27¢]. Using (4.122), we conclude that

A -1
)] < 5ts

for ¢ in [;—2, £~4%¢]. This gives the first inequality of (4.102).
To get the second one, we notice that we may bound the right-hand side of (4.112)
by
=3 =32 /30
C(A)(ts 2 +172(2/1)27)
’ _3 ,
+CA, A, B’)(s + (82\/2)67>(t8 N ICNO L

for new constants C(A), C(A, A’, B"), depending only on the indicated arguments.
Plugging this in (4.111), we get

9,80)] = Klg0P + (C(A) + C(A, A, Be(t. o) (1* + 1732V

with
lim sup e(t,e) =0.
E0F e[y e—4+e]
If we plug there the first inequality of (4.102), choose A’ large enough relatively to
A, so that

K 42 C(A A
—_ <
(3) +ew =3
and then take & small enough relatively to A, A’, B’, we get the second inequality
of (4.102). This concludes the proof. ]



Chapter 5

Reduced form of dispersive equation

In Section 3.2, we performed a quadratic normal form on equation (3.11) satisfied by
u 4 in order to get equation (3.13). On the other hand, in Section 4.1, we constructed
some approximate solution solving equation (4.37). Making the difference between
(3.13) and (4.37), we shall get an equation for the action of D; — p(Dx) on

iy =uy— Y Op(ior)ur) —uf’.
=

The goal of this chapter is to invert in convenient spaces the map u 4 — i, to obtain
an expression for u 4 in terms of 4+ and to write down the equation satisfied by 7
in closed form.

5.1 A fixed point theorem

We establish first some abstract theorem. We consider E, F' two Bgnach spaces witl~1
norms || - || £, || - [| 7. We consider also two other normed spaces E, F suchthat E N E
(resp. F' N F) is also a Banach space. We set Br(r), Bg(r) for the closed ball of
center zero, radius r in F, E. We assume given a function
P (ENF)x(ENF)— ENF,
W", )= @W", f)

satisfying the following estimates: There are C > 0,0 > 0 such that for any parame-
ter A > 1, any u”, f, f1, f> in E N F, one has

le@”, Hlle < C(l"Ir + 1) (1" + 1 f1lE). (5.2)

D", Hlr < CA(|u"lF + 1 f1F)?
+CA (e + 1A 1F) (2 + 11 f 1l
1D@”, f1) — D", f)ll £
<C(u’IF + I filr + 1L1F) A = flE (5.4)
+C(l"le + 1 file + | AlE) A~ fllF,
D", f1) — D", f2)llF
<CA(lu"IF + IAilr + 1 L2l F)
+ 27 (e + A llE + 1 AIENIA - flF
+ CAY (W + 1 ALE + 1 AIENIA = fllE

5.1

(5.3)

(5.5)
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We assume also that if, in addition to preceding assumptions, u” is in F and fis
in E, then ®(u”, f) is in E, with estimate

1", Nz = CUlu"llzlu"Ie + (Iu"le + 1 £11F)1S 1 5) (5.6)

and if f1, f> are in E,

[o@”, fi) = @W”, )z < C(Iu"lIlr + I Aillr + I LlF) A = faollg. (5.7)

Lemma 5.1.1. There is ro > 0 such that for any r in]0, ro[, any A > 1, any u’,u”, it
in BE(rA) N Br(rA=9), the fixed point problem

f=u+u+ou", f) (5.8)

has a unique solution f in B (3rA) N Br(3rA™%). Moreover, if one defines induc-
tively

" a,g) =a+ P, g),

5.9
" (' a,g) = " a, ' " a,g) = @' (', a,®" (", a,g)),

and if one sets
€x =27 (Ilu"llr + 1l F + il F) + 27 (" lE + 'l + 7] £),

one has for any N > 1 and a new constant C > 0,

If =N " v +i.u)|E
<NV f =g
+CVTEN T (W e + Il + N e)Lf — oI F (5.10)
If =N " ' + i)l F
<CVHEN|f —u'|lp + CVTENAT f — ||k,

Furthermore, if one assumes that u’, il are also in E and u" is also in F, then fis
in E and one has for any N > 1,

- - N
If =N + @) g < CV (I + il e + 1)V =o'l (5.10)
Proof. We define the usual sequence of approximations

fver =N W a0 =u + 0+ W, fN),
Jo=0

using notation (5.9). By (5.2) and (5.3), we have

Ifn+ille < Ille + llille + C (" IlF + L fnlle) (el + 1 i le)
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and
I fveille < Wlle + llidlle + C A7 (Iu"llF + Il fw ]l F)

+ A7 (e e + 1N IE)) (e + 1L Al ).
It follows that if u’, u”, i are in Bp(rA~%) N Bg (Ar) with r small enough, one has

for any N,

4 - 1
I fn+illE < §(||”/||E + |lill g) + FIlE.

4 - 1
I/N+1llF = g(”“/”F + |l F) + gllu”llF.

In particular, ( fy )y remains bounded in Br (3rA~%) N Bg (3Ar). Moreover, by (5.4)
and (5.5) and the above bounds, for r small enough, ( fy)y converges in E N F to
alimit f satisfying

f=u+a+ow, f)=d W v+, f).

Then (5.10) with N = 1 follows from (5.4) and (5.5). One obtains the general case
by induction, using (5.4) and (5.5). In the same way, (5.11) follows from (5.7). [ ]

We shall apply the preceding lemma with £ = H*(R), F = W»*°(R), s > 0,
A =1t >1, p e N. We define the spaces E, F by

E={fel>R):xf eL’(R)}, F={feWP®R):xf e W ®[R)} (5.12)
and we endow them with norms depending on the parameter ¢:

IA g =tllfll2 + Ixflle2. g =l fllwece + lIxf lwo.co.

The functions u’, u” of (5.8) will be the functions u"*, u”*" of Proposition 4.1.2.

By (4.39)—(4.41) applied with a large enough r, and using (4.42), we get

[P, )llE < C(A, A)e,
[P )| < C(A, A')e?, (5.13)
Pl g < CA, AN + 13 (2 V) Fes),
In particular, for ¢ small, t%[[u"S* (¢, )| F + ¢ 7" P (2, - )| g may be made as small
as we want (uniformly in ¢ < &~#) if & > 0 is small enough. In the same way, by

(4.43)—(4.45)
[, )l < C(A, A)e,

"1, )F < C(A, A)e2(log(1 + 1), G149
Ju"P(, )l 5 < C(A, A)re?(log(l + 1),

Again, for t < &%, we see that 17 |[u”"(¢,-)||F + ¢t~ "} (¢, )| g may be made
as small as we want for ¢ > 0 small.
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We shall take some function 74 in Bg(Ar) N Bp(A~°r) N E, and shall solve
in ¥ the equation

Uy =uq — Z Op(ritg, 1) (ur) —u'§* —u"*f", (5.15)
=

where 719, 1 are symbols in S~1,0(]_[12~=1 ()71 My, 2) defined in Proposition 3.2.1. Set-

ting f4 = uy —u"’, we rewrite (5.15) as

fr=uP i + Q"L f), (5.16)
where
W, fr) = ) Oplio, ) ("™ + f)r). (5.17)
11]=2

Let us check that the assumptions of Lemma 5.1.1 are satisfied by the preceding map.

Lemma 5.1.2. [f we take E = H*(R), F = W"*(R), with s, p large enough and
E ., F defined by (5.12), then inequalities (5.2) to (5.7) are satisfied by the function ®
defined by (5.17).

Proof. To prove (5.2) we have to check that, for any / with |/| = 2,
10pGit0, 1) (" + f)r)llas < C(Ilu" lwoco + 11 f lwese) (1" ls + 11 f llzrs)

which follows from (D.32) if p is large enough, since Proposition D.1.6 applies in
particular to symbols that are independent of x, which is the case of elements of
S1.0 (]_[J2~=1 (£,)"1 My, 2) according to Definition 3.1.1. In the same way, (5.3) may be
written

10p(ito, 1) (" + f)1)llwoce
< C(7(Iu"llwe.co + 11 £ lwe.co)
+ e (e s+ 1S s ) (1" lwoce + 1L f we.ce)
which follows from (D.39) with r = 1 if (s — p)o is large enough. Inequalities (5.4)
and (5.5) are proved in the same way using the bilinearity of Op(s1¢,1).

Let us prove (5.6) and (5.7). To simplify notation, consider for instance the case
1 = (2,0). It is enough to prove the estimates

10p(0, 1) (f1. /)2 = Cllfillwosell f2ll 2. (5.18)
1xOp(io, ) (f1. f)lIL2 = C(tll fillwoeo + lIxfillwooo) |l f2ll 2 (5.19)
1xOpGito, ) (f1. f2)lIL2 = Cll fillweoo (]l f2ll2 + Ix/2ll22) (5.20)

(and the symmetric ones) in order to get (5.6) and (5.7). But (5.18) (resp. (5.19))
follows from (D.33) (resp. (D.37)) if on the right-hand side of the latter inequality we
estimate

ILsvjllweoee < C(Ilxvslweose + tllv; lymo+1.0).
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To get (5.20), one applies instead (D.33) after commuting x to Op(#2¢,7) in order to
put it against the f, argument.
This concludes the proof of the lemma. ]

We may now state the main result of this section, that will show that the implicit
equation (5.16) may be solved in f4, and that we get an expansion for f in terms

/app  /7app ~
of u' ", u" " and uy.

Proposition 5.1.3. Let u"", u""{* be function satisfying (5.13)~(5.14). Let also i
be a function of (t, x) € [1, T] x R, with T < e~*%¢ satisfying for some 0 < 0’ < <
% (0" and 6 being close to % ), some § > 0, some constant D the following estimates

liiy(t.)| g < Det®,

2 o’
4@, )F < D%, (5.21)
iy (2.)]| g < Dt (>V0)P.

Then, if € is small enough, there is a unique function fy in E N F with

2/t 0’
| fllF < 3max(C(A4,A"), D) max(az(log(l +1))2, %), (5.22)
I f+E < 3max(C(4, A), D)et®
such that, setting f- = — f4,
fr=u +ar+ Y Oplito,) ("™ + f)r). (5.23)

|I|=2

Moreover, one may find symbols (my),<|1|<4 in the class St.0 (]_[y=|1 (E) My ))
Sfor some v, such that one may write the solution f to (5.23) under the form

fr=u+iy+ > Opmp)(ir.ufl) + R (5.24)
2<|I<4
I=(I/,I'/)

where R satisfies

09 .o\ 4

IR, )||gs < C'(A, A, D)(W%) et (5.25)
9 .o\ 4

xR, )2 < C'(A, A, D)(W%) t%(ezﬁ)e (5.26)

for some new constants C'(A, A’, D), ¢ > 0 as small as we want.

Proof. Equation (5.23) may be written under the form (5.16)