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ON THE STABILITY OF KINK SOLUTIONS
OF THE Φ4 MODEL IN 1 + 1 SPACE TIME

DIMENSIONS

Jean-Marc Delort, Nader Masmoudi

Abstract. — A kink is a stationary solution to a cubic one dimensional wave
equation

(
∂2
t − ∂2

x

)
φ = φ − φ3 that has different limits when x goes to −∞

and +∞, like H(x) = tanh(x/
√

2). Asymptotic stability of this solution under
small odd perturbation in the energy space has been studied in a recent work
of Kowalczyk, Martel and Muñoz. They have been able to show that the per-
turbation may be written as the sum a(t)Y (x)+ψ(t, x), where Y is a function
in Schwartz space, a(t) a function of time having some decay properties at
infinity, and ψ(t, x) satisfies some local in space dispersive estimate. These re-
sults are likely to be optimal when the initial data belong to the energy space.
On the other hand, for initial data that are smooth and have some decay at
infinity, one may ask if precise dispersive time decay rates for the solution in
the whole space-time, and not just for x in a compact set, may be obtained.
The goal of this paper is to attack these questions.

Our main result gives, for small odd perturbations of the kink that are
smooth enough and have some space decay, explicit rates of decay for a(t)
and for ψ(t, x) in the whole space-time domain intersected by a strip |t| ≤
ε−4+c, for any c > 0, where ε is the size of the initial perturbation. This
limitation is due to some new phenomena that appear along lines x = ±

√
2

3 t
that cannot be detected by a local in space analysis. Our method of proof
relies on construction of approximate solutions to the equation satisfied by
ψ, conjugation of the latter in order to eliminate several potential terms, and
normal forms to get rid of problematic contributions in the nonlinearity. We
use also the Fermi Golden Rule in order to prove that the a(t)Y component
decays when time grows.
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Résumé. — Un “kink” est une solutions stationnaire de l’équation des
ondes cubique en dimension un

(
∂2
t − ∂2

x

)
φ = φ − φ3 qui a des limites

différentes lorsque x tend vers −∞ et +∞, comme H(x) = tanh(x/
√

2). La
stabilité asymptotique de petites perturbations impaires d’une telle solution
a été étudiée dans un travail récent de Kowalczyk, Martel et Muñoz. Ils ont
montré que la solution perturbée peut s’écrire sous la forme a(t)Y (x)+ψ(t, x),
où Y (x) est une fonction dans l’espace de Schwartz, a(t) une fonction du
temps ayant certaines propriétés de décroissance à l’infini, et où ψ(t, x)
vérifie certaines estimations dispersives localisées en espace. Ces résultats
sont probablement optimaux lorsque les données initiales sont dans l’espace
d’énergie. Par contre, pour des données initiales régulières et décroissantes à
l’infini, se pose la question d’obtenir des taux de dispersion explicites pour la
solution, valables dans tout l’espace temps et pas seulement pour x dans un
compact. Le but de cet article est d’aborder ces questions.

Notre principal résultat donne, pour de petites perturbations impaires
régulières et décroissantes à l’infini du “kink”, des taux explicites de
décroissance pour a(t) et ψ(t, x), pour x décrivant la droite réelle et t
vérifiant |t| ≤ ε−4+c, c > 0 étant une constante arbitraire et ε désignant la
taille de la perturbation initiale. La restriction sur l’intervalle de temps sur
lequel nous obtenons les estimations est due à un nouveau phénomène, qui
apparâıt en temps de l’ordre ε−4, le long de droites x = ±

√
2

3 t, et qui ne
peut être détecté par une analyse locale en espace. Notre méthode de preuve
repose sur la construction de solutions approchées à l’équation vérifiée par ψ,
conjugaison de celle-ci dans le but d’éliminer plusieurs termes potentiels, et
formes normales afin de se débarrasser de contributions problématiques de la
non-linéarité. Nous utilisons également la règle d’or de Fermi afin d’obtenir
la décroissance en temps voulue de a(t)Y (x).
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CHAPTER 0

INTRODUCTION

This book is devoted to the study of dispersive estimates for small pertur-
bations of a stationary solution (the “kink”) of a cubic wave equation of the
form

(
∂2
t − ∂2

x

)
φ = φ − φ3, in one space dimension. Before discussing that

equation and stating our results, we shall give a general presentation of the
framework in which this study lies.

0.1. Long time existence for perturbed evolution equations

The question of long time (or global) existence of solutions to nonlinear
dispersive equations, like the wave equation, has been a major line of research
for at least the last fifty years. Let us start from the following simple model
that encompasses several equations

(0.1.1)
(
Dt − p(Dx)

)
u = N(u)

where u : (t, x) → u(t, x) is a function defined on I × Rd, with I interval of
R, with values in C, where Dt = 1

i
∂
∂t , p(Dx) = F−1[p(ξ)û(ξ)], F−1 denoting

inverse Fourier transform, and where N(u) is some nonlinearity. The function
p(ξ) may be equal to p(ξ) = |ξ|, in which case (0.1.1) is an half-wave equation,
to p(ξ) =

»
1 + |ξ|2, corresponding to a half-Klein-Gordon equation, to p(ξ) =

1
2 |ξ|

2 in the case of a Schrödinger equation. The right hand side in (0.1.1) is
a nonlinear expression, that we denote by N(u), though it may contain also
factors like Dx

|Dx|u,
Dx
〈Dx〉u, or their conjugates, or even first order derivatives of

u in general. For instance, a Klein-Gordon equation of the form

(0.1.2)
(
∂2
t −∆ + 1

)
φ = F (φ, ∂tφ,∇xφ)
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with real valued φ, will be reduced to (0.1.1) defining u =
(
Dt+

»
1 + |Dx|2

)
φ,

so that
∂tφ = i

2(u− ū), ∇xφ = 1
2∇x

(
1 + |Dx|2

)− 1
2 (u+ ū),

and setting
(0.1.3)

N(u) = F
(1

2
(
1 + |Dx|2

)− 1
2 (u+ ū), i(u− ū)

2 ,
1
2∇x

(
1 + |Dx|2

)− 1
2 (u+ ū)

)
,

which is a non local nonlinearity. One may proceed in the same way for
a quasi-linear version of (0.1.2), i.e. equations where the right hand side of
(0.1.2) contains second order derivatives, and is linear in these second order
derivatives. Then N(u) depends also on first order derivatives of (u, ū).

When one wants to study long time existence for solutions of equations like
(0.1.1) or (0.1.2), one of the possible ways is to try to perturb initial data
corresponding to a stationary solution, and to show that this perturbation
gives rise to a global solution that will remain, for long or all times, close
to the stationary solution. Of course, the simplest stationary solution that
one may consider is the zero one, in which case one is led to study (0.1.1)
with small initial data. Since the right hand side vanishes at least at order
two at zero, one may hope that it might be considered as an higher order
perturbation.

This framework has been considered by many authors since the mid-
seventies, starting with problems of the form (0.1.1) in higher space dimen-
sions. Let us explain why the question is easier in high space dimensions
describing some classical results.

0.2. The use of dispersion

A key point in the study of equations of the form (0.1.1) is the use of
dispersion. Consider first the linear equation

(
Dt − p(Dx)

)
u = 0. Assuming

that p(ξ) is real valued, p(Dx) is self-adjoint when acting on L2 or on Sobolev
spaces, so that one has preservation of the Sobolev norms of u along the
evolution: ‖u(t, ·)‖Hs = ‖u(0, ·)‖Hs for any t. If one considers instead equation
(0.1.1), a Sobolev energy estimate gives just that, as long as the solution exists,
one has for any t ≥ 0,

(0.2.1) ‖u(t, ·)‖Hs ≤ ‖u(0, ·)‖Hs +
∫ t

0
‖N(u)(τ, ·)‖Hs dτ,

so that one needs, in order to control uniformly the left hand side, to be able
to estimate the integral term in the right hand side. If one considers a simple
model where N(u) is given by N(u) = P (u, ū), where P is an homogeneous
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polynomial of order r ≥ 2, one has, for s > d
2 where d is the space dimension,

a bound
‖N(u)‖Hs ≤ C‖u‖r−1

L∞ ‖u‖Hs ,

so that (0.2.1) implies

(0.2.2) ‖u(t, ·)‖Hs ≤ ‖u(0, ·)‖Hs + C

∫ t

0
‖u(τ, ·)‖r−1

L∞ ‖u(t, ·)‖Hs dτ.

As a consequence, by Gronwall lemma,

(0.2.3) ‖u(t, ·)‖Hs ≤ ‖u(0, ·)‖Hs exp
[
C

∫ t

0
‖u(τ, ·)‖r−1

L∞ dτ
]
.

One thus sees that, if we want to get a control of ‖u(t, ·)‖Hs for large t, one
needs to obtain as well a priori estimates for ‖u(τ, ·)‖L∞ . In particular, to get
a uniform global bounds in (0.2.3), one would need the right hand side of this
inequality to be bounded i.e.

∫+∞
0 ‖u(τ, ·)‖r−1

L∞ dτ < +∞.
One may try to guess what are the best estimates one may expect for

‖u(τ, ·)‖L∞ from those holding true for solutions to the linear equation
(
Dt −

p(Dx)
)
u = 0. As the solution is given by

(0.2.4) u(t, x) = 1
(2π)d

∫
eitp(ξ)+ixξû0(ξ) dξ

where u0 = u(0, ·), one sees from the stationary phase formula that if u0 is
smooth enough and has enough decay at infinity, ‖u(t, ·)‖L∞ = O(t−

κ
2 ), where

κ depends on the rank of the Hessian of p(ξ). In the case of the wave equation
p(ξ) = |ξ|, κ = d − 1, while for Schrödinger or Klein-Gordon equations (i.e.
p(ξ) = |ξ|2

2 or p(ξ) =
»

1 + |ξ|2, κ = d. Conjecturing that the same decay will
hold for solutions of the nonlinear equation, we would get that the integral
in the right hand side of (0.2.3) will converge if κ

2 (r − 1) > 1, so that if
d−1

2 (r − 1) > 1 for the wave equation and d
2(r − 1) > 1 for the Klein-Gordon

or Schrödinger ones.

0.3. Vector fields methods and global solutions

The above heuristics turn out to give a correct answer for nonlinear wave
equations, if one considers general nonlinearities: actually, in this case, smooth
enough decaying initial data of small size give rise to global solutions when
d ≥ 4 if the nonlinearity does not depend on u and is at least quadratic (i.e.
r ≥ 2) as it has been proved by Klainerman [50], Shatah [75], including for
quasi-linear nonlinearities. In the same way, for Klein-Gordon equations with
quadratic nonlinearities, global existence holds if d ≥ 3 (see Klainerman [49],
Shatah [76]). Moreover, the solutions scatter i.e. have the same long time
asymptotics as the solution of a linear equation.
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Let us recall the “Klainerman vector fields method” that provides a powerful
way of proving that type of properties. We consider an equation of the form

(0.3.1) �u = f(∂tu,∇xu)

where u is a function of (t, x) in R × Rd, � = ∂2
t − ∆x and f is a

smooth function vanishing at least at order 2 at the origin. Instead of
� in the linear part of (0.3.1), one may more generally take the operator∑
j,k g

jk(∂tu,∇xu)∂j∂k, where x0 = t and the coefficients gjk are smooth
and satisfy

∑
j,k g

jk(0, 0)∂j∂k = �, so that the method is not limited to
semi-linear equations, but works as well for quasi-linear ones, that is one
of its main interests. For the sake of simplification, we shall just discuss
(0.3.1), referring to the original paper of Klainerman [51] and to the book
of Hörmander [42] for the more general case. The Sobolev energy inequality
applied to (0.3.1) together with nonlinear estimates for the right hand side
imply that, if s > d

2 , the energy Es(t) = ‖∂tu(t, ·)‖2Hs +‖∇xu(t, ·)‖2Hs satisfies,
as long as ‖u′(τ, ·)‖L∞ is bounded,

(0.3.2) Es(t)
1
2 ≤ Es(0)

1
2 + C

∫ t

0
‖u′(τ, ·)‖L∞Es(τ)

1
2 dτ,

where we set u′ for (∂tu,∇xu). This is the analogous of (0.2.2) for the solution
of (0.3.1) and in order to exploit this estimate, one needs to show that t →
‖u′(t, ·)‖L∞ is integrable. The Klainerman vector fields method allows one to
deduce such a property from L2 estimates for the action of convenient vector
fields on u. More precisely, one introduces the Lie algebra of vector fields
tangent to the wave cone t2 = |x|2, generated by

t∂xj + xj∂t, j = 1, . . . , d
xi∂xj − xj∂xi , 1 ≤ i < j ≤ d

t∂t +
d∑
j=1

xj∂xj

(0.3.3)

and if one denotes by (Zi)i∈I the family of fields given by (0.3.3) or by the
usual derivatives ∂t, ∂xj , j = 1, . . . , d, we set, for I = {i1, . . . , ip} ⊂ Ip, ZI =
Zi1 · · ·Zip and |I| = p. Then, as ZI commutes to � by construction, one gets
from (0.3.1)

(0.3.4) �ZIu = ZIf(∂tu,∇xu)

from which it follows that, if t ≥ 0,

(0.3.5) ‖ZIu(t, ·)‖L2 ≤ ‖ZIu(0, ·)‖L2 +
∫ t

0
‖ZIf(∂tu,∇xu)(τ, ·)‖L2 dτ.
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Using that ZI is a composition of vector fields, one deduces from Leibniz rule
that, setting u′N = (ZIu′)|I|≤N ,

‖u′N (t, ·)‖L2 ≤ ‖u′N (0, ·)‖L2

+
∫ t

0
C
(
‖u′N/2(τ, ·)‖L∞

)
‖u′N/2(τ, ·)‖L∞‖u′N (τ, ·)‖L2 dτ.

(0.3.6)

This is thus an inequality of the form (0.3.2), and in order to deduce from it
an a priori bound for the left hand side of (0.3.6), one again needs a disper-
sive estimate for ‖u′N/2(τ, ·)‖L∞ in O(τ−

d−1
2 ). This estimate follows from the

Klainerman-Sobolev inequality

(0.3.7) (1 + |t|+ |x|)d−1(1 + ||t| − |x||)|w(t, x)|2 ≤ C
∑
|I|≤ d+2

2

‖ZIw(t, . . . )‖L2

for the proof of which we refer for instance to Proposition 6.5.1 in [42]. This
implies in particular that, if we take N large enough so that N

2 + d+2
2 ≤ N ,

one has for t ≥ 0

(0.3.8) ‖u′N/2(t, ·)‖L∞ ≤ C(1 + t)−
d−1

2 ‖u′N (t, ·)‖L2 .

One deduces from (0.3.6) and (0.3.8) a priori bounds of the form
(0.3.9) ‖u′N (t, ·)‖L2 ≤ Aε

(0.3.10) ‖u′N/2(t, ·)‖L∞ ≤ Bε(1 + t)−
d−1

2

by a bootstrap argument when d ≥ 4: If one assumes that (0.3.9), (0.3.10)
hold for t in some interval [0, T ], one shows that if A,B have been taken
large enough in function of the initial data, and if ε is small enough, then
(0.3.9), (0.3.10) hold on the same interval with (A,B) replaced by (A/2, B/2).
One has just to plug (0.3.9), (0.3.10) in (0.3.6), and to use that (1 + t)−

d−1
2

is integrable in order to prove (0.3.9) with A replaced by A/2. Concerning
(0.3.10) with B replaced by B/2, it follows from (0.3.8) and (0.3.9) if B is
taken large enough with respect to A. Combining these a priori bounds with
local existence theory for smooth data shows that solutions are global, for ε
small enough, and satisfy (0.3.9), (0.3.10) for any time.

The same type of arguments works more generally when f in (0.3.1) vanishes
at order r ≥ 2 at zero and (d−1)

2 (r − 1) > 1.
Of special interest is the limiting case of long range nonlinearities when

(d−1)
2 (r − 1) = 1. This happens in particular if d = 3, r = 2 i.e. for quadratic

nonlinearities in three space dimension. In this case, one gets in general that
data of size ε > 0 give rise to solutions existing over a time interval of length
at least ec/ε for some c > 0, but finite time blow up may occur. Neverthe-
less, if the solution satisfies a special structure, the so called “null condition”,
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global existence holds true (see Klainerman [51]). We again refer to the book
of Hörmander [42] and references therein for more discussion of long time
existence for wave equations, in particular in two space dimension, and to Al-
inhac [2] for the study of blow-up phenomena when solutions are not global.
We also refer to Christodoulou and Klainerman [11] and to Lindblad and
Rodnianski [62] for applications to general relativity.

In section 0.4 below we discuss the case of long range nonlinearities for
Schrödinger and Klein-Gordon equations in one space dimension, which is the
relevant framework for the problem we study in this book. To conclude the
present section, let us make some comments on another well known way of
exploiting the dispersive character of wave (or other linear) equations, namely
Strichartz estimates. The vector fields method that we described above has
the advantage of providing explicit decay rates for the solution (and, combined
with other arguments, may even furnish precise information on asymptotic
behavior of solutions). Moreover, it applies to quasi-linear equations, even if
we described it just on a simple semi-linear case. On the other hand, it is
limited to the study of equations with small and decaying data.

When one deals with semi-linear equations, and wants to study solutions
whose data do not have further decay than being in some Sobolev space, one
may instead use Strichartz estimates. Recall that they are given, for a solution
u to a linear wave equation,

(∂2
t −∆)u = F

u(0, ·) = u0, ∂tu(0, ·) = u1,
(0.3.11)

defined on I × Rd, where I is an interval containing 0, by
(0.3.12) ‖u‖LqtLrx(I×Rd) ≤ C

[
‖u0‖L2 + ‖u1‖Ḣ−1 + ‖F‖

Lq̃
′
t L

r̃′
x (I×Rd)

]
where the indices satisfy

1
q̃

+ 1
q̃′

= 1, 1
r̃

+ 1
r̃′

= 1

1
q

+ d

r
= d

2 ,
1
q̃′

+ d

r̃′
= d

2 + 2

1
q

+ d− 1
2r ≤ d− 1

4 ,
1
q̃

+ d− 1
2r̃ ≤ d− 1

4
(q, r, d) 6= (2,∞, 3), q, r ≥ 2, r <∞
(q̃, r̃, d) 6= (2,∞, 3), q̃, r̃ ≥ 2, r̃ <∞.

(0.3.13)

We refer to the book of Tao [83] and references therein for the proof. These
estimates express both a smoothing and a time decay property of the solution.
Because of that, they are useful both in the study of local existence with non
smooth initial data or for global existence and scattering problems in the
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semi-linear case, including for large data. We shall not pursue here on that
matter, as this is not the kind of methods we shall use below, since we are
more interested in explicit decay rates of solutions. We refer to [83] for some
of the many applications of these Strichartz estimates.

0.4. Klainerman-Sobolev estimates in one dimension

The preceding section was devoted to the use of Klainerman vector fields in
the framework of wave equations in higher space dimensions. In the present
section, we shall focus on the case of (half)-Klein-Gordon or Schrödinger equa-
tions in dimension one, as this is the closest framework to our main theorem.
As a prerequisite, we shall describe first how (a variant of) the method of
Klainerman vector fields allows one to get dispersive decay estimates for solu-
tions when the nonlinearity vanishes at high enough order at initial time. We
start with the simplest model of gauge invariant nonlinearities, to which more
general equations may be in any case reduces by the normal forms methods
we shall discuss later. Denote thus for ξ in R p(ξ) =

√
1 + ξ2 or p(ξ) = ξ2

2
and consider equation (0.1.1) with N(u) = |u|2pu with p ∈ N∗ i.e.(

Dt − p(Dx)
)
u = α|u|2pu

u|t=1 = u0,
(0.4.1)

where for convenience of notation we take the initial data at time t = 1, α is
a complex number and u0 will be given in a convenient space. One has the
following statement:

Theorem 0.4.1. — Let p be larger or equal to 2 in (0.4.1). There are s0, ρ0
in N such that, for any s ≥ s0, there are ε0 > 0, C > 0 and for any ε ∈]0, ε0],
any u ∈ Hs(R) satisfying
(0.4.2) ‖u0‖Hs + ‖xu0‖L2 ≤ ε,
the solution to (0.4.1) is global and satisfies for any t ≥ 1

(0.4.3) ‖u(t, ·)‖Hs ≤ Cε, ‖u(t, ·)‖W ρ0,∞ ≤ C
ε√
t

where ‖w‖W ρ0,∞ = ‖〈Dx〉ρ0w‖L∞.

We shall present the proof following arguments due to Hayashi and Tsut-
sumi [40] in the case of Schrödinger equations. For Klein-Gordon equations,
the first proof of such a result is due to Klainerman and Ponce [52] and
Shatah [75], using a different method. We shall describe here a unified ap-
proach for both equations. Notice also that for Klein-Gordon equations, global
existence result hold for much more general nonlinearities. We shall give ref-
erences to that in the forthcoming sections.
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Idea of proof of Theorem 0.4.1: We apply the Klainerman vector fields idea,
except that instead of using true vector fields, we make use of the operator

(0.4.4) L+ = x+ tp′(Dx).

This operator commutes to the linear part of the equation, [L+, Dt−p(Dx)] =
0. Moreover, because the nonlinearity is gauge invariant, a Leibniz rule holds.
Actually, in the case of Schrödinger equations, one has a bound

(0.4.5) ‖L+(|u|2pu)‖L2 ≤ C‖u‖2pL∞‖L+u‖L2

that follows using that if p(ξ) = ξ2

2 , then L+ = x+ tDx and then

L+(|u|2pu) = L+(up+1ūp) = (p+ 1)(L+u)|u|2p − pup+1ūp−1L+u.

When p(ξ) =
√

1 + ξ2, one has an estimate similar to (0.4.5) up to replacing
the L∞ norm by a W ρ0,∞ one, for some large enough ρ0, and up to some
remainders that do not affect the argument below (see [20]). We shall pursue
here the argument in the Schrödinger case. Applying L+ to (0.4.1) and using
the commutation property seen above and (0.4.5), we obtain

(0.4.6)
(
Dt − p(Dx)

)
(L+u) = OL2

(
‖u‖2pL∞‖L+u‖L2

)
so that one has by L2 energy inequality

(0.4.7) ‖L+u(t, ·)‖L2 ≤ ‖L+u(1, ·)‖L2 + C

∫ t

1
‖u(τ, ·)‖2pL∞‖L+u(τ, ·)‖L2 dτ.

The proof of the theorem now proceeds with a bootstrap argument: One wants
to find constants A > 0, B > 0 such that

‖u(t, ·)‖Hs ≤ Aε
‖L+u(t, ·)‖L2 ≤ Aε

‖u(t, ·)‖L∞ ≤ B
ε√
t

(0.4.8)

for any t ≥ 1, as long as ε > 0 is small enough. Assume that these inequalities
hold true for t in some interval [1, T ]. Then, it is enough to show, using
equation (0.4.1), that for t in the same interval [1, T ], one has in fact the
better estimates

‖u(t, ·)‖Hs ≤ A

2 ε

‖L+u(t, ·)‖L2 ≤
A

2 ε

‖u(t, ·)‖L∞ ≤
B

2
ε√
t
.

(0.4.9)
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Actually, estimates (0.4.8) hold on some interval [1, T ], if one has taken A,B
large enough, because of assumptions (0.4.2) made on the initial data, and of
Sobolev embedding in order to get the L∞ bound.

To show that (0.4.8) implies the first two estimates (0.4.9), one uses (0.2.2)
(with r replaced by 2p + 1) and (0.4.7). Plugging there the a priori bounds
(0.4.8), one gets for any t in [1, T ]

‖u(t, ·)‖Hs ≤ ‖u0‖Hs + CB2pAε2p+1
∫ t

1
τ−p dτ

‖L+u(t, ·)‖L2 ≤ ‖L+u(1, ·)‖Hs + CB2pAε2p+1
∫ t

1
τ−p dτ

(0.4.10)

with p > 1. Consequently, using assumption (0.4.2), taking A large enough
and ε small enough, one gets the first two inequalities (0.4.9). To obtain the
last one, one uses Klainerman-Sobolev estimates, that allow one to recover a
L∞ bound with the right time decay from an L2 one for L+u. In the case
we are treating p(ξ) = ξ2

2 , this is very easy: one writes, by the usual Sobolev
embedding

‖w‖L∞ ≤ C‖w‖
1
2
L2‖Dxw‖

1
2
L2 .

Applying this with w = ei
x2
2t u(t, ·), one gets

(0.4.11) ‖u(t, ·)‖L∞ ≤
C√
t
‖u(t, ·)‖

1
2
L2‖L+u(t, ·)‖

1
2
L2 .

Plugging the first two inequalities (0.4.8) inside the right hand side, one gets
‖u(t, ·)‖L∞ ≤ ε√

t
CA, which gives the last bound (0.4.9) if B is chosen large

enough relatively to A and concludes the proof. 2

0.5. The case of long range nonlinearities

In equation (0.4.1) we limited ourselves to the case p > 1, which may be
considered as a short range case: actually, if we consider |u|2p as a potential,
the time decay of ‖u(t, ·)‖L∞ in t−

1
2 shows that ‖|u(t, ·)|2p‖L∞ is time integrable

at infinity. This played an essential role in order to bound the integrals in the
right hand side of (0.4.10). Thought, a variant of Theorem 0.4.1 holds as well
when p = 1:

Theorem 0.5.1. — Let p(ξ) =
√

1 + ξ2 or p(ξ) = ξ2

2 in one space dimension,
α a real constant. There are s0, ρ0 in N, δ > 0 such that for any s ≥ s0, there
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are ε0 > 0, C > 0 so that, for any ε ∈]0, ε0], any u0 in Hs(R) satisfying (0.4.2),
the solution of (

Dt − p(Dx)
)
u = α|u|2u

u|t=1 = u0
(0.5.1)

is defined for any t ≥ 1 and satisfies there

(0.5.2) ‖u(t, ·)‖Hs ≤ Cεtδ, ‖u(t, ·)‖W ρ0,∞ ≤ C
ε√
t
.

Remarks: • A difference between the conclusion of Theorem 0.4.1 and the
above statement is that the Sobolev estimate is not uniform: a slight growth
in tδ is possible. Actually, δ may be taken of the form Cε2 for some constant
C.
• The form of the nonlinearity is important, at the difference with the short

range case of the preceding section. For instance, one cannot take in the right
hand side of (0.5.1) for α an arbitrary complex number. The fact that α should
be real is an example of a null condition that has to be imposed in order to
get global solutions.
• The proof of the theorem provides also modified scattering for u as t goes

to infinity.
Let us give some references. For the Schrödinger case, a first proof of

Theorem 0.5.1 and of modified scattering of solutions is due to Hayashi and
Naumkin [38]. See also Katayama and Tsutsumi [46] and, more recently,
Lindblad and Soffer [65], Kato and Pusateri [47] and Ifrim and Tataru [45].
In the case of Klein-Gordon equations, including in the case of quasi-linear
nonlinearities satisfying a null condition, we refer to Moriyama, Tonegawa
and Tsutsumi [71], Moriyama [70], Delort [18, 19, 20], Lindblad and Sof-
fer [64], Lindblad [63] and Stingo [82]. See also Hani, Pausader, Tzvetkov
and Visciglia [37] for some further applications.

Before explaining the general strategy of proof of Theorem 0.5.1, let us
describe informally how the dispersive estimate in (0.5.2) will be proved, using
an auxiliary ODE deduced from (0.5.1). We make this derivation in the case
p(ξ) = ξ2

2 , deferring to next paragraph the case of general p. Denote by
ϕ(x) = −x2

2 and look for a solution to (0.5.1) under the form

(0.5.3) u(t, x) = eitϕ(x/t)
√
t

A
(
t,
x

t

)
where A(t, y) is a smooth function. Plugging this Ansatz inside (0.5.1) with
p(Dx) = D2

x
2 , one gets

(0.5.4) DtA(t, y) = 1
t
|A(t, y)|2A(t, y) + 1

2t2D
2
yA(t, y).
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If one ignores the last term (that will be proved a posteriori to be a time
integrable remainder), one gets that A solves the ODE

(0.5.5) DtA(t, y) = 1
t
|A(t, y)|2A(t, y)

from which follows that |A(t, y)| = |A(1, y)| for all t ≥ 1, whence A(t, y) =
A(1, y) exp

[
i|A(1, y)|2 log t

]
. One thus gets a uniform bound for A, and also

discovers that the phase of oscillation of (0.5.3) involves a logarithmic modifi-
cation that reflects modified scattering, i.e. one gets when time goes to infinity

u(t, x) ∼ 1√
t
A0

(x
t

)
exp
[
−ix

2

2t + i
∣∣∣A0

(x
t

)∣∣∣2 log t
]

for some function A0. Of course, to establish this rigorously, one has to show
that the last term in (0.5.4) is really a remainder whose addition to the right
hand side of (0.5.5) does not modify the analysis of asymptotic behavior of
solutions.

One may perform such a derivation in a rigorous way using a wave-packets
analysis as in Ifrim-Tataru [45] or using a semi-classical approach as we do
here. The idea is the following: because of formula (0.5.3), u appears naturally
as a function of t and x

t , so that it is natural to write it in terms of a new
unknown v by

(0.5.6) u(t, x) = 1√
t
v
(
t,
x

t

)
,

where v will satisfy an equation

(0.5.7) Dtv −
1
2t
(
x ·Dx +Dx · x

)
v − p

(Dx

t

)
v = α

t
|v|2v.

By (0.5.3), we expect v(t, x) to oscillate like eitϕ(x). We compute for any
smooth function a(t, x)

p
(Dx

t

)[
eitϕ(x)a(t, x)

]
=
[
p(∂xϕ(x))a(t, x) +O(t−1)

]
eitϕ(x).

One expects thus that the main contribution to the left hand side of (0.5.7)
will be obtained replacing Dx

t by ∂xϕ. This gives an ODE which is nothing
but (0.5.4) if we replace v by eitϕ(x)A(t, x). In other words, we obtain an
ODE allowing us to describe the asymptotics of the solution starting from the
quantum problem given by the PDE (0.5.5) and reducing it to the classical
problem obtained making in (0.5.7) the substitution Dx

t → ∂xϕ. We explain
below, in the strategy of proof of Theorem 0.5.1, the rigorous way of doing so
controlling the errors.
Strategy of proof of Theorem 0.5.1: The starting point of the proof is the
same as for Theorem 0.4.1, except that the inequalities to be bootstrapped
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read now as

‖u(t, ·)‖Hs ≤ Aεtδ

‖L+u(t, ·)‖L2 ≤ Aεtδ

‖u(t, ·)‖W ρ0,∞ ≤ B
ε√
t

(0.5.8)

instead of (0.4.8), with δ > 0 a small number. Again, one has (0.4.10) with
p = 1 and the integral term replaced by

∫ t
1 τ
−1+δ dτ ≤ δ−1tδ. If ε2δ−1 is small

enough, one deduces from (0.4.10) that the first two inequalities in (0.5.8)
actually hold with A replaced by A/2. On the other hand, one cannot deduce
the L∞ estimate in (0.5.8) from the Sobolev and L2 ones using (0.4.11), as the
lack of uniformity in the estimate of ‖L+u(t, ·)‖L2 would just provide a bound
in O(t−

1
2 +0) instead of O(t−

1
2 ). On thus needs an extra argument to obtain the

L∞ estimates (since the L2 ones cannot be expected to be improved). There
have been several approaches to do so, that all rely on the derivation from the
PDE (0.5.1) of an ODE, that may be used in order to get the optimal L∞ decay
(and the asymptotics of the solution). That ODE may be written either on the
solution itself or on its Fourier transform (actually on the profile eitp(ξ)û(t, ξ) of
the Fourier transform). As indicated in the preceding paragraph, the method
we shall use in this book, inspired in part from the approach of Ifrim and
Tataru [45] based on wave packets, relies on a semiclassical version of the
equation satisfied by a rescaled unknown.

We introduce as a semiclassical parameter h = 1
t ∈]0, 1] and define from

the unknown u the new unknown v through (0.5.6). If we denote ‖v‖Hs
h

=
‖〈hDx〉sv‖L2 , then ‖u(t, ·)‖Hs = ‖v(t, ·)‖Hs

h
. The last estimate in (0.5.8) is

equivalent to getting a O(ε) bound for ‖〈hDx〉ρ0v(t, ·)‖L∞ . Plugging (0.5.6)
inside (0.5.1), one gets

(0.5.9)
(
Dt −OpW

h (xξ + p(ξ))
)
v = hα|v|2v

where the semiclassical Weyl quantization OpW
h associates to a “symbol”

a(x, ξ) the operator

(0.5.10) v → OpW
h (a)v = 1

2πh

∫
ei(x−y) ξ

ha
(x+ y

2 , ξ
)
v(y) dydξ.

The above formula makes sense for more general functions a than the one
a(x, ξ) = xξ + p(ξ) appearing in (0.5.9). We do not give here these precise
assumptions, referring to Appendix A11 below. Let us just remark that one
may translate the action of operator L+ on u by

(0.5.11) L+u(t, x) = 1√
t

(
L+v

)(
t,
x

t

)
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with

(0.5.12) L+ = 1
h

OpW
h (x+ p′(ξ))

so that the second a priori assumption (0.5.8) may be translated as
(0.5.13) ‖L+v‖L2 = O(εh−δ).
This brings us to introduce the submanifold
(0.5.14) Λ = {(x, ξ) ∈ R× R;x+ p′(ξ) = 0}
that is actually the graph

(0.5.15) Λ = {(x, dϕ(x));x ∈]− 1, 1[} with ϕ(x) =
√

1− x2

given by the following picture:

The idea is to deduce from (0.5.9) an ODE restricting the symbol xξ+ p(ξ)
to Λ. By (0.5.15) and a direct computation, (xξ + p(ξ))|Λ = ϕ(x), so that we
would want to deduce from (0.5.9) an ODE of the form
(0.5.16)

(
Dt − ϕ(x)

)
w = hα|w|2w +R

where w should be conveniently related to v and R being a remainder such
that

∫+∞
1 ‖R(t, ·)‖W ρ0,∞

h
dt = O(ε).

We notice first that a priori bound (0.5.13) provides a uniform estimate for
v cut-off outside a

√
h-neighborhood of Λ. The idea is as follows:
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First, contributions to v cut-off for high frequencies have nice bounds
if we assume the first a priori estimate (0.5.8): actually, it implies
‖〈hDx〉sv(t, ·)‖L2 = O(εh−δ), so that if χ ∈ C∞0 (R) is equal to one close
to zero, β > 0 is small and s0 >

1
2 , one gets by semiclassical Sobolev estimate

‖OpW
h

(
χ(hβξ)

)
v‖L∞ ≤ Ch−

1
2 ‖〈hDx〉s0OpW

h

(
χ(hβξ)

)
v‖L2

≤ Ch−
1
2 +β(s−s0)‖〈hDx〉sv‖L2

≤ Cεh−
1
2−δ+β(s−s0).

(0.5.17)

Consequently, for any fixed N in N, if sβ is large enough, we get a O(εhN )
bound for (0.5.17). This shows that one may assume essentially that v̂ is
supported for hβ|ξ| ≤ C for some constant, some small β > 0. In the rest
of this section, in order to avoid technicalities, we shall argue as if we had
actually |ξ| ≤ C. The case hβ|ξ| ≤ C may be treated similarly, up to an extra
loss h−β′ in the estimates of the remainders, β′ > 0 being as small as we want.
This extra loss does not affect the general pattern of the reasoning.

Take γ in C∞0 (R), equal to one close to zero, with small enough support,
and decompose
(0.5.18) v = vΛ + vΛc

where

(0.5.19) vΛ = OpW
h

(
γ
(x+ p′(ξ)√

h

))
v, vΛc = OpW

h

(
(1− γ)

(x+ p′(ξ)√
h

))
v

i.e. vΛ (resp. vΛc) is the contribution to v that is microlocally located inside
(resp. outside) a

√
h-neighborhood of Λ. Then vΛc satisfies, as a consequence

of the L2 estimate (0.5.13), a uniform L∞ bound: define γ1(z) = (1−γ)(z)
z and

write

vΛc = OpW
h

(
γ1

(x+ p′(ξ)√
h

)(x+ p′(ξ)√
h

))
v

= h
1
2 OpW

h

(
γ1

(x+ p′(ξ)√
h

))
(L+v) + remainder.

(0.5.20)

Since, at fixed x, ξ → γ1

(
x+p′(ξ)√

h

)
is supported inside an interval of length

O(
√
h), one may show that the L∞ norm of the first term in the right hand

side of (0.5.20) is essentially bounded from above by h−
1
4 times its L2 norm

i.e.
(0.5.21) ‖vΛc‖L∞ ≤ Ch

1
4 ‖L+v‖L2 .

(Actually, if one takes into account the fact that on the support of v̂, |ξ| ≤ ch−β

instead of |ξ| ≤ C, one would get a power h
1
4−β

′ instead of h
1
4 , for some
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0 < β′ � 1 in (0.5.21), that would not change the estimates below). In any
case, combining with (0.5.13), we get an estimate

(0.5.22) ‖vΛc‖L∞ = O(εh
1
4−δ

′), δ′ > 0 small.
If we assume a uniform a priori bound for v (that follows from the third
inequality (0.5.8) and from (0.5.6)), we see that (0.5.22) implies that the dif-
ference |v|2v− |vΛ|

2vΛ will be O(ε3h
1
4−δ

′), so that replacing in the right hand
side of (0.5.9) h|v|2v by h|vΛ|

2vΛ induces an error of the form of R in (0.5.16)
i.e. we have
(0.5.23)

(
Dt −OpW

h (xξ + p(ξ))
)
v = h|vΛ|

2vΛ +R.

We make act next OpW
h

(
γ
(
x+p′(ξ)√

h

))
on that equality. We get at the left hand

side
(
Dt−OpW

h (xξ+p(ξ))
)
vΛ and a commutator whose principal contribution

may be written as

(0.5.24) − h
3
2

i
OpW

h

(
γ′
(x+ p′(ξ)√

h

))
(L+v).

This is of the same form as (0.5.20), up to an extra h factor, so that, argu-
ing as in (0.5.21), (0.5.22), we bound the L∞ norm of (0.5.24) by Cεh

5
4−δ

′ =
Cεt−

5
4 +δ′ . As δ′ > 0 is small, this is an integrable quantity that may en-

ter in the remainders in the right hand side of (0.5.16). As the action of
OpW

h

(
γ
(
x+p′(ξ)√

h

))
on the right hand side of (0.5.23) may be written under the

same form, up to a modification of the remainder, we get

(0.5.25)
(
Dt −OpW

h (xξ + p(ξ))
)
vΛ = hα|vΛ|

2vΛ +R.

We make now a Taylor expansion of xξ+p(ξ) on Λ given by (0.5.14), (0.5.15).
As d

dξ (xξ + p(ξ))|Λ = 0, we get

(0.5.26) xξ + p(ξ) = ϕ(x) +O
(
(x+ p′(ξ))2).

The action of OpW
h

(
(x+p′(ξ))2) on vΛ may be written essentially as (0.5.24), so

provides again a contribution to R in (0.5.25). Finally, plugging (0.5.26) inside
(0.5.25), we see that we get an equation of the form (0.5.16) for w = vΛ. This
implies in particular that ∂

∂t |vΛ(t, ·)|2 is time integrable (since the coefficient
α in (0.5.25) is real) and thus that ‖vΛ(t, ·)‖L∞ is bounded. Coming back to
the expression (0.5.6) of u in terms of v = vΛ +vΛc , remembering (0.5.22) and
adjusting constants, one gets that the a priori assumptions (0.5.8) imply that
the last inequality in these formulas holds true with B replaced by B/2 (The
reasoning for W ρ0,∞ norms instead of L∞ ones being similar). This shows
that the bootstrap argument holds. Moreover, the ODE (0.5.16) may be used
also in order to get asymptotics for u when times goes to infinity. 2
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0.6. More general nonlinearities and normal forms

In model (0.5.1), we considered only a special case of nonlinearity namely
α|u|2u. We used this special structure in order to get a Leibniz type rule (see
(0.4.5)). However, we know that we should be able to obtain global solutions
even for (some) cubic or quadratic nonlinearities that have a more general
form. This is done in [18, 19] for quasi-linear Klein-Gordon equations with a
nonlinearity satisfying a null condition (see also Stingo [82]). One makes use
of “real” Klainerman vector fields instead of the operator L+ above. On the
other hand, for other equations like Schrödinger ones, the natural operator to
be used in order to exploit dispersion is an operator like L+, that is not a
vector field. It is possible to reconcile both points of view using normal forms.
Moreover, the use of the latter allows also one to treat quadratic nonlinearities.
Consider as a model (

Dt − p(Dx)
)
u = α0u

2 + α|u|2u
u|t=1 = u0

(0.6.1)

where p(ξ) =
√

1 + ξ2, α0 is a complex number and α a real one. We would
like to prove the analogous of Theorem 0.5.1, namely

Theorem 0.6.1. — There are s0, ρ0 in N, δ > 0 such that, for any s ≥ s0,
there are ε0 > 0, C > 0 so that, for any ε ∈]0, ε0], any u0 in Hs(R) satisfying
(0.4.2), the solution of (0.6.1) is global and satisfies for any t ≥ 1

(0.6.2) ‖u(t, ·)‖Hs ≤ Cεtδ, ‖u(t, ·)‖W ρ0,∞ ≤ C
ε√
t
.

Remarks: • Again, one can obtain also the asymptotics of the solution
when t goes to infinity, and in particular show modified scattering, and not
just the dispersive estimate (0.6.2)
• One may consider more general quadratic and cubic nonlinearities than

in the right hand side of (0.6.1), as soon as they satisfy the null condition (see
[18, 19, 82]).

The key idea of the proof is essentially to reduce (0.6.1) to (0.5.1) by normal
forms. One cannot expect to get directly energy estimates on (0.6.1): for
instance, the quadratic part of the nonlinearity has Sobolev norm bounded
from above by C‖u(t, ·)‖L∞‖u(t, ·)‖Hs , so taking into account the a priori L∞
estimate in (0.5.8), by Cε√

t
‖u(t, ·)‖Hs . One thus would get an inequality of

the form (0.2.3) with r = 2, which would give only exponential time control.
Though, as shown first by Shatah [76] and Simon and Taflin [77], one may
easily reduce the quadratic nonlinearity in (0.6.1) to a cubic one.
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Lemma 0.6.2. — Define

m(ξ1, ξ2) =
(»

1 + ξ2
1 +

»
1 + ξ2

2 −
»

1 + (ξ1 + ξ2)2
)−1

.

Then m(ξ1, ξ2) is well defined,

(0.6.3) |m(ξ1, ξ2)| ≤ C
(
1 + min

(
|ξ1|, |ξ2|

))
and if one sets

(0.6.4) Op(m)(u1, u2) = 1
(2π)2

∫
eix(ξ1+ξ2)m(ξ1, ξ2)û1(ξ1)û2(ξ2) dξ1dξ2

one has for a fixed ρ0 and any large enough s

(0.6.5) ‖Op(m)(u1, u2)‖Hs ≤ C
[
‖u1‖W ρ0,∞‖u2‖Hs + ‖u1‖Hs‖u2‖W ρ0,∞

]
.

Moreover, the map u→ u−Op(m)(u, u) is a diffeomorphism from Hs ∩ {u ∈
W ρ0,∞; ‖u‖W ρ0,∞ < r} to its image, for small enough r, and if u is in that
set, and solves equation (0.6.1), then w = u−Op(m)(u, u) solves

(0.6.6)
(
Dt − p(Dx)

)
w = α|w|2w − 2α0Op(m)(w2, w) +R(w)

where R is a sum of contributions of degree of homogeneity larger or equal to
4.

Proof. — Estimate (0.6.3) follows by an immediate computation. It implies
that one does not lose derivatives when applying Op(m) to a couple (u1, u2) i.e.
that (0.6.5) holds without losing on s in the right hand side. This allows one
to construct the local diffeomorphism u→ w. When one makes act Dt−p(Dx)
on Op(m)(u, u), one gets using equation (0.6.1), on the one hand

(0.6.7) Op(m)
(
p(Dx)u, u

)
+ Op(m)

(
u, p(Dx)u

)
− p(Dx)Op(m)(u, u)

which, because of the definition of m is equal to u2, and on the other hand
contributions of the form

(0.6.8) Op(m)
(
α0u

2 + α|u|2u, u), Op(m)
(
u, α0u

2 + α|u|2u).

If we compute the left hand side of (0.6.6), we thus see that (0.6.7) compensates
the quadratic term, and that we are left in the right hand side with the |u|2u
term and expressions of the form (0.6.8). If we express u in terms of w = u−
Op(m)(u, u), we shall get the cubic terms in the right hand side of (0.6.6), and
higher order terms R(w). These higher order contributions are essentially of
the form Rk = Op(mk)(w, . . . , w, w̄, . . . , w̄), with k ≥ 4, mk = mk(ξ1, . . . , ξk)
a smooth function satisfying convenient estimates, and Rk defined as in (0.6.4)
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from

Op(mk)(u1, . . . , uk) = 1
(2π)k

∫
eix(ξ1+···+ξk)

×mk(ξ1, . . . , ξk)û1(ξ1) . . . ûk(ξk) dξ1 . . . dξk.

(0.6.9)

Then R(w) satisfies estimates of the form

(0.6.10) ‖R(w)‖Hs ≤ C‖w‖3W ρ0,∞‖w‖Hs

if w stays in some ball of W ρ0,∞ i.e. plays the role of a perturbation that is
at least quartic.

The preceding lemma thus reduces the case of a quadratic nonlinearity to
a cubic one. Of course, the cubic term in the right hand side of (0.6.6) is
non local, but this is not a real extra difficulty. Because of that, in order not
no be disturbed by unessential technicalities, we shall pursue the reasoning
considering a simple variant of (0.6.6), namely

(0.6.11)
(
Dt − p(Dx)

)
u = α|u|2u+ α1u

3 + α2u
2ū2

with α real, α0, α1 complex, forgetting any contribution homogeneous of order
larger or equal to 5 that is in any case easier to treat. Moreover, the special
structure of the nonlinear terms in the right hand side does not matter except
the fact that α is real.

We have already noticed that a term like u3 is not compatible with the
action of L+ on the right hand side. The same holds for u2ū2. In order to
get around that difficulty, one may try to perform a normal form in order to
get rid of cubic or quartic terms. Nevertheless, unlike the quadratic case, one
my not eliminate all these terms. Actually, to get rid of u2ū2 for instance, one
would have to introduce a new unknown of the form u − Op(m4)(u, u, ū, ū),
where m4 would be the inverse of

(0.6.12) −
»

1 + ξ2
1 −
»

1 + ξ2
2 +
»

1 + ξ2
3 +
»

1 + ξ2
4 −
»

1 + (ξ1 + · · ·+ ξ4)2.

But such a quantity vanishes for some values of (ξ1, . . . , ξ4). The idea to over-
come that difficulty is to use “space-time normal forms” introduced by Ger-
main, Masmoudi and Shatah in [29, 30, 31, 32] and Germain-Masmoudi [28]
(see also the review paper of Lannes [58] and the works of Hu and Mas-
moudi [44], Deng, Ionescu, Pausader and Pusateri [21], Wang [84] and Deng
and Pusateri [22] for further applications and extensions of the method).
These authors define and use space-time normal forms on the profiles of the
solutions, namely the functions e−itp(Dx)u. Here, we present an equivalent ap-
proach based on u itself and on microlocal cut-offs similar to those introduced
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in (0.5.19), following [20]. Actually, introducing again from u the unknown v
given by (0.5.6), we rewrite (0.6.11) as

(0.6.13)
(
Dt −OpW

h

(
xξ + p(ξ)

))
v = hα|v|2v + hα1v

3 + h
3
2α2v

2v̄2

using notation (0.5.10). The idea of space-time normal forms may be de-
scribed in a geometrical way as follows. As we have seen above, a term like
v2v̄2 in (0.6.13) may not be fully eliminated by a usual (time) normal form
since (0.6.12) may vanish for some values of the arguments. Though, we have
seen in (0.5.3) that v defined by (0.5.6) is expected to be a function oscil-
lating as eiϕ(x)/h, which means that we expect that v is “concentrated” on
the manifold Λ defined in (0.5.14), (0.5.15). This means that, up to remain-
ders having better time decay, we should hope to be able to design a normal
form eliminating the term v2v̄2 of (0.6.13) as soon as (0.6.12) does not vanish
when the frequencies ξ1, ξ2 (corresponding to v) are set equal to dϕ(x) (by
characterization (0.5.15) of Λ) and ξ3, ξ4 (corresponding to v̄) are set equal to
−dϕ(x). Notice that restricted to this subset, (0.6.12) is just equal to −1, so
does not vanish. Of course, in order to justify that, we need to explain how
we may reduce ourselves to the fact that v may be replaced by a function that
is frequency localized on Λ, up to convenient remainders, and show how this
allows one to prove energy estimates for the solution of (0.6.13). Our goal will
thus be to prove the following:

Proposition 0.6.3. — The solution v of (0.6.13) satisfies estimates of the
form

‖v(t, ·)‖Hs
h
≤ ‖v(1, ·)‖Hs

+ C

∫ t

1
‖v(τ, ·)‖2

W
ρ0,∞
h(τ)

(
1 + ‖v(τ, ·)‖W ρ0,∞

h(τ)

)
‖v(τ, ·)‖Hs

h(τ)

dτ

τ

(0.6.14)

‖L+v(t, ·)‖L2 ≤ ‖L+v(1, ·)‖Hs

+ C

∫ t

1
‖v(τ, ·)‖2

W
ρ0,∞
h(τ)

(
1 + ‖v(τ, ·)‖W ρ0,∞

h(τ)

)
‖L+v(τ, ·)‖L2

dτ

τ

(0.6.15)

where h = 1
t , h(τ) = 1

τ , ‖v‖Hs
h

= ‖〈hDx〉sv‖L2, ‖v‖W ρ0,∞
h

= ‖〈hDx〉ρ0v‖L∞
and L+ is defined in (0.5.12).

Remark: These estimates are the translation on v of bounds of the form
(0.2.2), (0.4.7) on u according to (0.5.6). Consequently, if we prove them, we
shall get, as in the proof of Theorem 0.5.1, that an a priori set of inequalities
of the form (0.5.8) will imply that the first two of these bounds hold with A
replaced by A/2.
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Proof of the Proposition: As indicated before the statement, in order to
get (0.6.14), (0.6.15), we have to perform a “space-time” normal form. More
precisely, we shall decompose in the v3, v2v̄2 terms of (0.6.13) each factor v as
(0.6.16) v = vΛ + vΛc

where vΛc will have better bounds than v, so that cubic or quartic terms
involving at least one factor vΛc will provide remainders. In a second step,
we shall get rid of the remaining nonlinearities α1vΛ

3, α2vΛ
2v̄Λ

2 by a normal
form process. The function vΛ in (0.6.16) will be defined as in (0.5.18), except
that we cut-off around a O(1)-neighborhood of Λ instead of a O(

√
h) one i.e.

we define now
(0.6.17) vΛ = OpW

h

(
γ(x+ p′(ξ))

)
v, vΛc = OpW

h

(
(1− γ)(x+ p′(ξ))

)
v.

(Actually, the above definition is the correct one when the frequency ξ stays
in a compact set. It should be adapted for large ξ, but we forget this technical
detail in this introduction). Then vΛc will satisfy estimates with an O(h) gain,
as we may write it essentially under the form
(0.6.18) vΛc = hOpW

h

(
γ1(x+ p′(ξ))

)
(L+v)

where γ1(z) = (1−γ)(z)
z , so that ‖vΛc‖L2 ≤ Ch‖L+v‖L2 . Decomposing in the

right hand side of (0.6.10) v = vΛ + vΛc , one has thus

(0.6.19)
(
Dt −OpW

h (xξ + p(ξ))
)
v = hα|v|2v + hα1(vΛ)3

+ h
3
2α2vΛ

2v̄2
Λ + h2S(v)

where S(v), coming from monomials involving at least one factor vΛc , satisfies
an estimate of the form
(0.6.20) ‖S(v)‖L2 ≤ C‖v‖2L∞‖Lv‖L2

as long as ‖v‖L∞ stays bounded. Actually, one has to be more careful when
making the above estimates, since Λ has a degeneracy when ξ goes to infinity.
The preceding reasoning works for |ξ| staying in a compact set , or equivalently
for x staying in a compact subset of ] − 1, 1[. The general case is a little bit
more involved, and in particular estimate (0.6.20) holds with ‖v‖L∞ replaced
by ‖v‖W ρ0,∞

h
for some ρ0.

Since making act the operator L+ on S makes lose a factor h−1 (see the
definition (0.5.12) of L+), we get that
(0.6.21) h2‖L+S(v)‖L2 ≤ Ch‖v‖2L∞‖L+v‖L2

which will be the kind of estimate we want for remainders. By (0.4.5) with
p = 1, rewritten in terms of the unknown v, we have also
(0.6.22) h‖L+(|v|2v)‖L2 ≤ Ch‖v‖2L∞‖L+v‖L2 .



0.6. MORE GENERAL NONLINEARITIES AND NORMAL FORMS 29

On the other hand, the remaining contributions in the right hand side of
(0.6.20) would not satisfy such estimates, but may now be eliminated by nor-
mal forms. Actually, take χ in C∞0 (R), equal to one close to zero, and define

(0.6.23) m4(x, ξ1, . . . , ξ4) =
2∏
j=1

χ(x+ p′(ξj))
4∏
j=3

χ(x− p′(ξj))

×
[
−
»

1 + ξ2
1 −

»
1 + ξ2

2 +
»

1 + ξ2
3 +

»
1 + ξ2

4 −
»

1 + (ξ1 + · · ·+ ξ4)2
]−1

.

This function is well defined, as the term inside the bracket does not vanish
on the support of the cut-off: actually (again forgetting what happens for
large frequencies), on the support of the cut-off, ξj = dϕ(x) + o(1), j = 1, 2,
ξj = −dϕ(x) + o(1), j = 3, 4, so that the term inside the bracket is equal to
−1 + o(1), and thus does not vanish. Consequently, if we define

(0.6.24) Oph(m4)
(
vΛ, vΛ, vΛc , vΛc

)
=

1
(2π)4

∫
eix(ξ1+···+ξ4)m4(ξ1, . . . , ξ4)v̂Λ(ξ1)v̂Λ(ξ2)̂̄vΛ(ξ3)̂̄vΛ(ξ4) dξ1 · · · dξ4

one obtains that(
Dt −OpW

h (xξ +
√

1 + ξ2)
)[

Oph(m4)(vΛ, . . . , vΛc)
]

= vΛ
2v̄Λ

2 + remainder

where the remainder, coming from the nonlinearities of the equation, contains
at least one h factor. Defining in the same way some cubic symbol m3, in
order to eliminate the vΛ

3 term in (0.6.19), one gets that

(0.6.25)
(
Dt −OpW

h (xξ +
√

1 + ξ2)
)[
v − hOph(m3)(vΛ, vΛ, vΛ)

− h
3
2 Oph(m4)(vΛ, . . . , vΛc)

]
= h2S(v) + hα|v|2v

for a new S(v) satisfying (0.6.20).
In other words, we have reduced ourselves to an equation where the right

hand side has the same structure as in (0.2.4) (up to changing the unknown
u to v by (0.5.6)), modulo a remainder h2S(v) that has better time decay.
Using estimates of the form (0.6.21), (0.6.22) one thus gets, applying L2 energy
inequalities to (0.6.25) and denoting

w = v − hOph(m3)(vΛ, vΛ, vΛ)− h
3
2 Oph(m4)(vΛ, . . . , vΛc),

that

(0.6.26) ‖L+w(t, ·)‖L2 ≤ ‖L+w(1, ·)‖L2 +
∫ t

1
‖v(τ, ·)‖2L∞‖L+v(τ, ·)‖L2

dτ

τ
.

As one may show that ‖L+w(t, ·)‖L2 is equivalent to ‖L+v(t, ·)‖L2 , one does
get an estimate of the form (0.6.15). 2
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Remark: As already mentioned, in the proof of Proposition 0.6.3, we ar-
gued as if the frequencies were staying in a compact set. When one makes
the reasoning taking into account what happens also for large frequencies,
one gets a lower bound of the bracket in (0.6.23) computed for ξj in a conve-
nient neighborhood of ±dϕ(x) by a negative power of 〈dϕ(x)〉. Since for all
j, 〈dϕ(x)〉 ∼ 〈ξj〉 if (ξ1, . . . , ξ4) is in the support of (0.6.23), one may write
〈dϕ(x)〉 ∼ 1 + max2(|ξ1|, . . . , |ξ4|), and the bounds one gets in general for a
symbol of the form m4 is

(0.6.27) |m4(x, ξ1, . . . , ξ4)| ≤ C
(
1 + max2(|ξ1|, . . . , |ξ4|)

)N0

for some N0. Because of that, one gets bounds of type
(0.6.28) ‖Oph(m4)(v, . . . , v̄)‖Hs

h
≤ C‖v‖3

W
ρ0,∞
h
‖v‖Hs

h

for any s and with ρ0 depending only on N0. In other words, coming back
to the unknown u, one obtains an estimate similar to (0.6.5). These inequali-
ties (0.6.27), (0.6.28) explain why one gets in Proposition 0.6.3 upper bounds
involving W ρ0,∞

h norms instead of L∞ ones.
End of proof of Theorem 0.6.1: As for the proof of Theorem 0.5.1, one has
just to bootstrap estimates (0.5.8), showing that if they hold on some time
interval and A,B have been taken large enough and ε small enough, then they
still hold with A,B replaced by A/2, B/2. We have seen after the statement of
Proposition 0.6.3 that this holds for the first two inequalities (0.5.8). To show
that the last one holds, with B replaced by B/2, one argues as in the proof of
Theorem 0.5.1. Actually, in that proof, we did not really use the special form
of the nonlinearity in (0.5.9) (except the fact that α is real), and the same
arguments hold for an equation like (0.6.11). 2

0.7. Perturbations of nonzero stationary solution

Our main goal in this book is to study the perturbation of a nonzero sta-
tionary solution of a cubic wave equation in dimension one. In this section,
we mention some results and references on that kind of problems. The first
set of questions one may ask is the orbital stability of stationary solutions.

Let us mention first the result of Henry, Perez and Wreszinski [41] that
will be very relevant for us. Consider U a C2 function on an interval [a−, a+]
satisfying U ≥ 0, U(a−) = U(a+) = 0, U ′′(a±) > 0. Assume moreover
that there is a smooth strictly increasing function x → H(x) solving the
equation H ′′(x) = U ′(H(x)), such that limx→±∞H(x) = a± and that E0 =∫
R
[H′(x)2

2 + U(H(x))
]
dx < +∞. Define for any function φ and any q > 0,

dq(φ) = inf
c∈R

∫
R

[
(φ′(x)−H ′(x+ c))2 + q(φ(x)−H(x+ c))2] dx.
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One may state the main result of [41] as follows:

Theorem 0.7.1. — There are positive constants r, q, k such that if (t, x)→
φ(t, x) is the solution of
(0.7.1)

(
∂2
t − ∂2

x

)
φ+ U ′(φ) = 0

satisfying φ(0, ·) ∈ H1
loc(R), ∂xφ(0, ·), ∂tφ(0, ·) ∈ L2(R), and

(0.7.2) dq(φ(0, ·)) < r,

∫
R

[∂tφ(0, x)2

2 +∂xφ(0, x)2

2 +U(φ(0, x))
]
dx < E0+kr2

then φ is globally defined and for any t
(0.7.3) dq(φ(t, ·)) ≤ r.

This theorem means that H is orbitally stable, in that sense that an initial
data that is close enough to H gives rise to a solution that remains at any
time close to a translation of H. It applies in particular to U(φ) = 1

4 [φ2− 1]2,
a± = ±1, H(x) = tanh(x/

√
2) i.e. it shows the orbital stability of the “kink”,

that is the stationary solution H(x) = tanh(x/
√

2) of the Φ4 model given by
the equation
(0.7.4)

(
∂2
t − ∂2

x

)
φ = φ− φ3.

The question of orbital stability has been then widely studied for other
equations. In particular, we refer to Weinstein [86] for orbital stability of
Schrödinger or generalized KdV equations. References to earlier works on
that topic may be found in the reference list of that paper.

Once orbital stability is established for a given equation, the next step is
to study asymptotic stability. For Schrödinger equations, the first results are
due to Buslaev and Perelman [5, 7, 6] in dimension one and to Soffer and
Weinstein [78] in higher dimension. Buslaev and Perelman consider a one
dimensional Schrödinger equation, of the form
(0.7.5) i∂tψ = −∂2

xψ + F (|ψ|2)ψ.
Under convenient assumptions on F , one may construct soliton solutions of
the equation, that have the form

(0.7.6) e−iβ0−itω0+ i
2xv0φ(x− b0 − tv0)

for constants β0, ω0, b0, v0 and where φ is a smooth exponentially decaying
function. The main result of the above references is that if one solves the initial
value problem for (0.7.5), with initial condition close to the preceding soliton
solution, then the solution may be written when time goes to infinity a sum of
a modified soliton, i.e. a function of the form (0.7.6) (with different values of
the parameters β0, . . . , v0), of a solution to a linear Schrödinger equation and
of a remainder that converges to zero in L2.
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In the work of Soffer and Weinstein, one introduces a potential in the linear
part of the operator, i.e. one considers an equation of the form
(0.7.7) i∂tφ = −∆φ+ [V (x) + λ|φ|m−1]φ
in d = 2 or 3 space dimension, and for 1 < m < d+2

d−2 . They assume, among
other things, that the operator −∆ + V (x) has exactly one eigenvalue, that
is moreover strictly negative. They show that for E close to that eigenvalue,
there is a solution of (0.7.7) of the form e−iEtψE(x), with ψE smooth and
decaying. Then, under some further assumption, they prove that, if one solves
the Cauchy problem starting from an initial data that is close to eiγ0ψE0 , for
given E0 close to the eigenvalue, γ0 real, then the solution may be written at
any time t as e(t)ψE(t) + R(t) where E(t) is real, e(t) is in the unit circle of
C and R(t) goes to zero in a weighted Sobolev space. We refer to [78] for
a precise description of the asymptotics of t → E(t), e(t) when time goes to
infinity.

Following the above references, a lot of results concerning asymptotic stabil-
ity for solutions to nonlinear Schrödinger equations or Gross-Pitaevsky ones
have been obtained. Limiting ourselves to one dimensional problems, and
without trying to give an exhaustive list of references, one may cite Buslaev
and Sulem [8], Bethuel, Gravejat and Smets [4], Gravejat and Smets [36],
Germain, Pusateri and Rousset [35], Cuccagna and Pelinovski [16], Cuccagna
and Jenkins [15], Gang and Sigal [25, 26, 27], Cuccagna, Georgiev and Vis-
ciglia [14]. Still in one space dimension, analogous results have been ob-
tained for (generalized) KdV equations, by Pego and Weinstein [73], Germain,
Pusateri and Rousset [34], Martel and Merle [67, 68, 69] and for Benjamin-
Ono equation by Kenig and Martel [48]. Let us point out that for Schrödinger
or gKdV equations, the perturbation of the initial data induces a non zero
translation speed on the stationary solution, so that the perturbed solution is
the sum of a progressive wave and of a dispersive part. This will be in contrast
with the results we shall obtain in this book, where the bound state that is
perturbed will remain stationary.

Let us discuss now some results more closely related to our work, concerning
nonlinear wave equations. A main breakthrough has been made by Soffer and
Weinstein who in [79] consider an equation similar to (0.7.7), but where the
Schrödinger operator is replaced by the wave (or Klein-Gordon) one in three
space dimension, namely
(0.7.8) ∂2

t φ = (∆− V (x)−m2)φ+ λφ3

where λ is some real constant, m > 0 and V is a smooth decaying potential.
One assumes among other things that the −∆ +V +m2 has [m2,+∞[ as con-
tinuous spectrum and that there is a unique positive eigenvalue 0 < Ω2 < m2.
One denotes by ϕ a normalized eigenfunction associated to that eigenvalue,
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so that for any R, θ in R, (t, x) → R cos(Ωt + θ)ϕ(x) is a solution to equa-
tion (0.7.8) when λ = 0. The main result of [79] asserts that if one solves
(0.7.8) with small initial data in weighted Sobolev spaces of smooth enough
and decaying enough functions, the solution at time t may be written under
the form
(0.7.9) φ(t, x) = R(t) cos(Ωt+ θ(t))ϕ(x) + η(t, x)

where R(t) = O(|t|−
1
4 ) and ‖η(t, ·)‖L8 = O(|t|−

3
4 ) when t goes to ±∞. This

result holds under a special non resonance condition, the Fermi Golden Rule,
that we shall further discuss below in the framework of our problem.

The above breakthrough has been at the origin of many other works. Let us
mention in particular Bambusi and Cuccagna [3] who generalized the result of
[80] to a wider framework, namely the case when the operator −∆ + V (x) +
m2 has several eigenvalues instead of just one. Closer to our main result in
this book, let us mention the work where Cuccagna [13] studies asymptotic
stability of a kink solution in three space dimension. More precisely, one
considers the solution H of (0.7.4) as a solution independent of two of the three
space variables of the equation (∂2

t −∆)φ = φ− φ3 on R3. The main result of
[13] asserts that if one starts from initial data that are a small perturbation of
(H, 0) by a smooth compactly supported function on R3, then the solution of
the evolution equation may be written as H + φ(t, ·) where φ(t, ·) is O(|t|−

1
2 )

in L∞. The proof uses the fact that in three space dimension, one has much
better dispersive decay than on the real line.

0.8. The kink problem. I

The main goal of this book is to study long time dispersion for small per-
turbations of the “kink” H(x) = tanh(x/

√
2) that is a stationary solution of

equation (0.7.4) that we recall below(
∂2
t − ∂2

x)φ = φ− φ3.

We have seen in the preceding section (see Theorem 0.7.1) that H is orbitally
stable, and one wants to study its asymptotic stability. In order to do so, one
writes φ under the form
(0.8.1) φ(t, x) = H(x) + ϕ(t

√
2, x
√

2)
and we aim at describing the asymptotics of ϕ, in particular its dispersive
properties, when at initial time ϕ is small in a convenient weighted Sobolev
space. By Theorem 0.7.1, we know that ϕ is globally defined. It satisfies by
direct computation the equation

(0.8.2)
(
D2
t − (D2

x + 1 + 2V (x))
)
ϕ = κ(x)ϕ2 + 1

2ϕ
3
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where

(0.8.3) V (x) = −3
4 cosh−2

(x
2

)
, κ(x) = 3

2 tanh x2 .

The fact that the linear part of equation (0.8.2) contains a non zero potential
has two consequences: first, as seen in the preceding section, the operator
D2
x + 1 + 2V (x) may have bound states (and it has for the potential given by

(0.8.3)). Second, even in the absence of bound states, that operator does not
have nice commutation properties with the operator L+ that we used in order
to get dispersion in sections 0.5, 0.6.

Let us first discuss some results that are known concerning equations of the
form (0.8.2) either in the case of potentials without bound states, or for equa-
tions of that form with V = 0 but where the nonlinearities have coefficients
that are non constant functions of x, as in the right hand side of (0.8.3). Such
results have been proved by Kopylova [53] for linear Klein-Gordon equations
in a moving frame and, in the nonlinear case, by Lindblad and Soffer [66],
Lindblad, Luhrmann and Soffer [61, 60], Lindblad, Luhrmann, Schlag and
Soffer [59], Sterbenz [81]. Very recently, Germain and Pusateri [33] obtained
the most general result in that framework. They consider a model version of
(0.8.2) of the form
(0.8.4)

(
∂2
t − ∂2

x + V (x) +m2)ϕ = a(x)ϕ2

where a(x) is a function similar to κ in the right hand side of (0.8.2), i.e. a
smooth function that has finite limits at ±∞ and whose derivative is rapidly
decaying. The potential V is assumed to be Schwartz and such that −∂2

x + V
has no bound state. One of the results of [33] may be stated as follows

Theorem 0.8.1. — Let V be a generic potential without bound state, m > 0.
There is ε0 > 0 such that for any ε ∈]0, ε0], the equation (0.8.3) has for any
(ϕ0, ϕ1) satisfying∥∥∥(»−∂2

x + V + 1ϕ0, ϕ1
)∥∥∥
H4

+
∥∥∥〈x〉(»−∂2

x + V + 1ϕ0, ϕ1
)∥∥∥
H1
≤ ε

a unique global solution corresponding to the initial data ϕ|t=0 = ϕ0, ∂tϕ|t=0 =
ϕ1. Moreover, the dispersive estimate

(0.8.5)
∥∥∥(»−∂2

x + V + 1ϕ0, ϕ1
)∥∥∥
L∞
≤ Cε(1 + |t|)−

1
2

holds and for some small δ > 0
(0.8.6) ‖ϕ(t, ·)‖H5 + ‖∂tϕ(t, ·)‖H4 ≤ Cε(1 + |t|)δ.

Finally, let us mention that for nonlinearities with coefficients that are
rapidly enough decaying in x, Lindblad, Luhrmann and Soffer [60] (in the
case V ≡ 0) and Lindblad, Luhrmann, Schlag and Soffer [59] (for generic
potentials) could show that a dispersive bound like (0.8.5) does not hold in
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general, and has to be replaced by the product of the right hand side with a
logarithmic loss.

Remark: • The assumption that V is generic is explained in Chapter 1
below. The result of [33] is actually more general than Theorem 0.8.1
above. It also applies to non generic potentials, if one makes in addition
evenness/oddness assumptions. Let us also mention that the question of
asymptotic stability estimates on a compact domain in space, when the
linearized equation on the stationary solution has no bound state, has been
adressed by Kowalczyk, Martel, Muñoz and Van Den Bosch [57] for some
models of semilinear wave equations.

Let us explain the new difficulties one has to take into account to prove a
result of the form above in comparison with the case V ≡ 0. Clearly, if one
wanted to apply the operator L+,m = x+ t Dx

(m2+D2
x)

1
2

(or a “true” Klainerman

vector field like t∂x + x∂t) to equation (0.8.3), its commutator with the po-
tential V would generate a new term with coefficients growing like t, which
makes the method inapplicable. In order to circumvent such a difficulty, two
approaches are possible. The one implemented by Germain and Pusateri re-
lies on the use of the “modified Fourier transform”, which is a version of the
Fourier transform well adapted to −∆ + V instead of being tailored to −∆.
They introduce then the profile g of the solution by

(0.8.7) g(t, x) = eit
√
−∂2

x+V+m2
(
∂t − i

»
−∂2

x + V +m2
)
φ

and its modified Fourier transform g̃(, ξ). The analogue of what does work in
the case V ≡ 0 would be to get estimates of ‖∂ξ g̃(t, ξ)‖L2 (which is related to
‖L+,mφ‖L2 when V ≡ 0). It turns out that, in order to get the most general
statement of their paper, Germain and Pusateri have to introduce a bigger
space than L2 in which ∂ξ g̃ has to be estimated, allowing for some degeneracy
close to a special frequency. They have then to combine estimates in that
space with normal forms constructed from the modified Fourier transform.

The approach we use in this book is the one of wave operators. Let us just
say here that, when V is a potential in S(R), without bound states, one may
construct a bounded operator W+ on L2, such that W ∗+W+ = Id, W+W

∗
+ = Id

and W ∗+(−∆ + V )W+ = −∆. Applying W ∗+ to (0.8.4) one thus gets(
∂2
t − ∂2

x +m2)W ∗+ϕ = W ∗+[a(x)ϕ2].
If w = W ∗+ϕ, one is thus reduced to an equation of the form
(0.8.8)

(
∂2
t − ∂2

x +m2)w = W ∗+[a(x)(W+w)2]
i.e. to an equation for which the linear part has again constant coefficients,
and thus has nice commutation properties relatively to t∂x + x∂t or to L+,m.
Of course, the drawback is that the right hand side of (0.8.8) is no longer a
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local nonlinearity, but involves the operators W+,W
∗
+. In the framework we

shall be interested in, namely odd initial conditions and odd coefficient a(x), it
turns out that W+,W

∗
+ may be expressed from pseudo-differential operators

b(x,Dx), with a symbol b(x, ξ) such that ∂b
∂x(x, ξ) is rapidly decaying when

|x| tends to infinity. We shall explain in more detail in Chapter 1 how we
treat an equation of the form (0.8.8). Let us just say now that if we had a
cubic nonlinearity in the right hand side, one could use directly vector fields
methods on w. For a quadratic nonlinearity, one has to make use first of
normal forms in order to reduce quadratic nonlinearities to cubic ones. The
difference with Lemma 0.6.2 is that, because of the presence of W+,W

∗
+, a(x)

in the right hand side of (0.8.8), one has to consider quadratic corrections of
the form (0.6.4), but with a symbol m(x, ξ1, ξ2) that depends also on x. This
introduces new commutators, involving quadratic operators associated to the
symbol ∂m∂x (x, ξ1, ξ2). Though, as the latter is rapidly decaying in x, and since
we limit ourselves to odd solutions, such terms form remainders that are not
fully negligible, but that may be treated more easily than in the more general
case considered by Germain and Pusateri [33] or Lindblad, Luhrmann and
Soffer [60].

0.9. The kink problem II. Coupling with the bound state

In the preceding section, we discussed an equation of the form (0.8.4) with
a potential V that has no bound state. In this section, we go back to the
kink problem (0.8.2), where the potential V given by (0.8.3) does have bound
states, so that the preceding discussion does not apply.

Our starting point has been the paper [56] of Kowalczyk, Martel and Muñoz,
where the authors study the asymptotics of solutions of (0.7.4) when one takes
as an initial condition an odd perturbation of (H, 0) that is small enough in
the energy norm. They prove that the perturbation of the solution (ϕ, ∂tϕ)
may be decomposed under the form
(0.9.1) (ϕ(t, x), ∂tϕ(t, x)) = (u1(t, x), u2(t, x)) + (z1(t), z2(t))Y (x)
where Y is in S(R) and is a normalized odd eigenfunction of −1

2∂
2
x + V (x),

zj(t) are scalar functions of time and (u1(t, x), u2(t, x)) is the dispersive part
of the solution. The main result of [56] states that the functions t → zj(t)
decay in time in the sense that∫ +∞

−∞

(
|z1(t)|4 + |z2(t)|4

)
dt < +∞

and that the local energy of (u1, u2) satisfies∫ +∞

−∞

∫
R

(
(∂xu1)2 + u2

1 + u2
2
)
(t, x)e−c0|x| dtdx < +∞.
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At the light of the discussion previously given in the case of small perturbations
of the zero solution of nonlinear Klein-Gordon equations, or for (0.8.4) with
a potential that has no bound state, the above inequalities raise the following
questions: making eventually stronger assumptions on the smoothness/decay
of the initial perturbation, could one get an explicit decay rate for the pre-
ceding quantities, instead of just integral inequalities? Moreover, could one
obtain decay estimates for ‖uj(t, ·)‖L∞ instead of just local in space decay?

A more long term objective might be to obtain for odd perturbations of the
kink solution of (0.7.4) a description as precise as the one that holds when
V ≡ 0 or when V is a potential without bound state. We are far from being
able to achieve that in this paper, where as a first step we aim at describing the
perturbed solution up to time ε−4, if ε is the small size of the smooth decaying
perturbation of the kink at initial time. Recall that if we look for solutions
of (0.7.4) under the form (0.8.1), we get that the perturbation ϕ satisfies
(0.8.2), with notation (0.8.3). We already mentioned that the Schrödinger
operator −∂2

x + 2V (x) has discrete spectrum: it has two negative eigenvalues
−1 and −1

4 and absolutely continuous spectrum [0,+∞[. Eigenvalue −1 will
not be of interest to us as it is associated to an even eigenfunction, while we
solve (0.8.2) for odd initial data. Consequently, restricting ourselves to odd
solutions, one may decompose the solution of (0.8.2) as ϕ = Pacϕ + 〈ϕ, Y 〉Y
where Pac is the projector on the absolutely continuous spectrum [0,+∞[ and
Y is an (odd) normalized eigenfunction associated to eigenvalue −1

4 . Setting
a(t) = 〈Y, ϕ〉, one may deduce from (0.8.2) that (a, Pacϕ) satisfies a coupled
system of ODE/PDE (see (1.1.9) in Chapter 1).

Our main result asserts the following: Let c > 0 be given and consider
(0.8.2) with initial data ϕ|t=1 = εϕ0, ∂tϕ|t=1 = εϕ1 with (ϕ0, ϕ1) satisfying
for some large enough s

(0.9.2) ‖ϕ0‖2Hs+1 + ‖ϕ1‖2Hs + ‖xϕ0‖2H1 + ‖ϕ1‖2L2 ≤ 1.
Then, if ε < ε0 is small enough, the decomposition ϕ(t, ·) = Pacϕ(t, ·) + a(t)Y
of the solution of (0.8.2) satisfies

|a(t)|+ |a′(t)| = O(ε(1 + tε2)−
1
2 )

‖Pacϕ(t, ·)‖L∞ = O(t−
1
2 (ε2
√
t)θ
′
)

(0.9.3)

where θ′ ∈]0, 1
2 [, as long as t ≤ ε−4+c. Let us mention that we limit our

study to positive times (that does not reduce generality) and that, in order to
simplify some notation, we take the Cauchy data at t = 1 instead of t = 0.
Moreover, the statements we get in Theorem 1.1.1 below give more precise
information that (0.9.3). We just stress here the fact that (0.9.3) provides the
information we are looking for, namely an explicit decay rate for a and Pacϕ,
up to time ε−4+c.
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We notice that the dispersive estimate obtained for ‖Pacϕ‖L∞ is pretty
similar to the bound in εt−

1
2 that holds for small solutions of equations (∂t2−

∂2
x + 1)u = N(u). Here, when t ≤ ε−4+c, we get that ‖Pacϕ‖L∞ = O(ε

c
2 θ
′
t−

1
2 ),

i.e. an estimate in c(ε)t−
1
2 , with c(ε) going to zero with zero. Of course, if t

goes close to ε−4, the small factor in front of t−
1
2 in the second estimate (0.9.3)

gets closer and closer to one, and this explains why our result is limited to
times that are O(ε−4+c). We shall comment more on that below.

Let us remark also that for dispersive estimates of the form (0.9.3), there is a
“trivial” regime, corresponding to t ≤ cε−2. For such times, the ODE satisfied
by a(t), from which we shall deduce the first bound (0.9.3), is in a small time
regime, before any singularity could form. On the other hand, to reach a
time of size ε−4+0, one has to use the structure of that ODE, namely exploit
the Fermi Golden Rule that we shall discuss in Chapter 1 below, in order to
exclude blowing up in finite time, and prove the decay estimate (0.9.3).

Let us comment more on the limitation to times t = O(ε−4+0) which con-
trasts with the fact that, when the potential has no bound state, one may
obtain dispersive estimates up to infinity. The new difficulty, when bound
states are present, comes from the fact that in (0.9.3), a(t), a′(t) have a de-
cay in ε

(1+tε2)
1
2

, which is larger than the rate in ε√
t

that holds for dispersive
bounds in the absence of eigenvalues. This has consequences on the estimates
satisfied by the dispersive part of the solution Pacϕ(t, ·). Actually, applying
Pac to equation (0.8.2), one will get an equations that, at first glance, might
seem pretty similar to (0.8.4), since on the range of Pac, −∂2

x + 2V will have
no bound state. Though, a major difference appears in the right hand side:
if, for instance, one plugs in the quadratic term of (0.8.2) the decomposition
ϕ(t, ·) = Pacϕ(t, ·) + a(t)Y , one might get a source term

(0.9.4) a(t)2Pac[κ(x)Y 2]

where a(t) has only a O
(

1√
t

)
decay for t � ε−2 (ant not a ε√

t
bound). This

has dramatic consequences on the solution to the equation itself. Actually, the
solution Pacϕ will have to encompass the solution of the linear equation(

D2
t − (D2

x + 1 + 2V (x))
)
w = a(t)2Pac[κ(x)Y 2]

with zero initial data. We shall solve this equation, but will be able to obtain
for its solution only a bound in t−

1
2 (ε2
√
t)θ′ for t ≤ ε−4+0 and some θ′ > 0.

When doing so, we are not able to obtain O(t−
1
2 ) bounds for w along two lines

x
t = ±

»
2
3 when t� ε−4. Actually, one might expect a logarithmic loss along

these two lines, similar to the ones in the work of Lindblad, Luhrmann and
Soffer [60] and Lindblad, Luhrmann, Schlag and Soffer [59].
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Let us also stress on the fact that, besides (0.9.4), other new terms appear
in comparison to the case of potentials without bound states. For instance, a
contribution like Pac[κ(x)(Pacϕ)a(t)Y ] needs also a specific treatment, as it is
not amenable to standard normal forms treatment. We describe that in more
detail in section 1.7 of Chapter 1.

To conclude this introduction, let us point out the results of Kopylova and
Komech [54, 55] concerning asymptotic stability of a (moving) kink for a
modified version of (0.7.4). In their model, the Hamiltonian of the equation is
tuned in such a way that the projection of equation (0.8.2) on the absolutely
continuous spectrum has coefficients in the nonlinearity that decay when x goes
to infinity (instead of converging to some constant) This allows the authors to
obtain a description of the dispersive behavior of the corresponding solution
for any time.

Finally, let us refer to the recent paper of Chen, Liu and Lu [10] concerning
asymptotic stability of kinks for sine-Gordon equations. Using the integrability
of that equation, they may prove soliton resolution for generic data and show
the full asymptotic stability of kinks under space decaying perturbations (see
Corollary 1.5 of their paper). In particular, the difference between the solution
and the moving kink is shown to decompose, when time goes to infinity, as
the sum of a O(t−

1
2 ) contribution that involves a logarithmic phase correction

and of a more decaying remainder.





CHAPTER 1

THE KINK PROBLEM

1.1. Statement of the main result

Consider φ : R× R→ R a global solution to the nonlinear wave equation

(1.1.1) (∂2
t − ∂2

x)φ = φ− φ3.

The function

(1.1.2) H(x) = tanh
( x√

2

)
is a stationary solution of (1.1.1), and we are interested in describing the
dispersive behaviour in large time of solutions to (1.1.1) corresponding to
initial data that are small, smooth, odd and decaying perturbations of the
state H. It is known that this state is orbitally stable in the energy space by
Henry, Perez and Wreszinski [41], and for odd perturbations in that space,
asymptotic stability with space exponential weight is proved by Kowalczyk,
Martel and Muñoz [56]. This result describes the dispersive behaviour of the
perturbation on compact space domains, but does not give insight into its
behaviour in the whole space time. Our goal is to obtain information when
(t, x) describes Iε × R, where Iε is a time interval of length O(ε−4+0), ε being
the size of the initial data in a convenient space of smooth decaying functions.

We shall look for solutions to (1.1.1) under the form

(1.1.3) φ(t, x) = H(x) + ϕ
(
t
√

2, x
√

2
)
.

We get for ϕ the equation

(1.1.4)
(
D2
t − (D2

x + 1 + 2V (x))
)
ϕ = κ(x)ϕ2 + 1

2ϕ
3

where Dt = 1
i
∂
∂t , Dx = 1

i
∂
∂x and

(1.1.5) V (x) = −3
4 cosh−2

(x
2

)
, κ(x) = 3

2 tanh
(x

2

)
.
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The operator −∂2
x + 2V has [0,+∞[ as its continuous spectrum and has two

eigenvalues −1 and −1
4 . The first one is associated to an even eigenfunction,

and the second one to the odd normalized eigenfunction

(1.1.6) Y (x) =
√

3
2 tanh

(x
2

)
cosh−1

(x
2

)
(see Nikiforov and Uvarov [72] and Kowalczyk, Martel and Muñoz [56]).

We denote by Pac the spectral projector on the continuous spectrum, re-
stricted to odd functions. The spectral projector on the eigenspace associated
to the eigenvalue −1

4 is ϕ→ 〈ϕ, Y 〉Y so that
(1.1.7) Pacϕ = ϕ− 〈ϕ, Y 〉Y
where 〈·, ·〉 denotes the L2 scalar product. If ϕ solves (1.1.4), we set
(1.1.8) a(t) = 〈ϕ, Y 〉
so that (1.1.4) may be written(

D2
t −

3
4

)
a(t) =

〈
Y, κ(x)

(
a(t)Y + Pacϕ

)2 + 1
2
(
a(t)Y + Pacϕ

)3〉(
D2
t − (D2

x + 1 + 2V (x))
)
Pacϕ

= Pac
[
κ(x)

(
a(t)Y + Pacϕ

)2 + 1
2
(
a(t)Y + Pacϕ

)3]
.

(1.1.9)

Our main result asserts that, up to a time of order ε−4, the dispersive part
Pacϕ of (1.1.9) has a time decay in uniform norm of magnitude t−

1
2 , and that

the function a(t) in (1.1.8) has some oscillatory behaviour, with decay in t−
1
2 .

More precisely, we have:

Theorem 1.1.1. — There is ρ0 ∈ N and for any ρ ≥ ρ0, any c > 0, any
θ′ ∈]0, 1

2 [, any large enough N in N, any large enough s in N, there are ε0 in
]0, 1[, C > 0, such that for any couple (ϕ0, ϕ1) of real valued odd functions in
Hs+1(R)×Hs(R) satisfying
(1.1.10) ‖ϕ0‖2Hs+1 + ‖ϕ1‖2Hs + ‖xϕ0‖2H1 + ‖xϕ1‖2L2 ≤ 1,
the global solution ϕ of(

D2
t − (D2

x + 1 + 2V (x))
)
ϕ = κ(x)ϕ2 + 1

2ϕ
3

ϕ|t=1 = εϕ0

∂tϕ|t=1 = εϕ1

(1.1.11)

satisfies when ε ∈]0, ε0[ the following bounds for any t ∈ [1, ε−4+c]:
The oscillatory part a of ϕ given by (1.1.8) may be written

(1.1.12) a(t) = eit
√

3
2 g+(t)− e−it

√
3

2 g−(t)
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where

(1.1.13) |g±(t)| ≤ Cε(1 + tε2)−
1
2 , |∂tg±(t)| ≤ Cεt−

1
2 (1 + tε2)−

1
2 .

The dispersive part Pacϕ(t, ·) satisfies

‖Pacϕ(t, ·)‖W ρ,∞ ≤ Ct−
1
2 (ε2
√
t)θ
′

‖〈x〉−2NPacϕ(t, ·)‖W ρ,∞ ≤ Ct−
3
4 (ε2
√
t)θ
′

‖〈x〉−2NPacDtϕ(t, ·)‖W ρ−1,∞ ≤ Ct−
3
4 (ε2
√
t)θ
′

(1.1.14)

where ‖ψ‖W ρ,∞ = ‖〈Dx〉ρψ‖L∞.

Remarks: • The first estimate (1.1.14) shows that, up to time essentially
equal to ε−4, the dispersive part of the solution decays like t−

1
2 , which is the

behaviour of small global solutions to nonlinear Klein-Gordon equations (see
[18, 19, 63, 82]). Nevertheless, in that case, the upper bound is in O(εt−

1
2 ),

while in (1.1.14), we have a degeneracy of the factor multiplying t−
1
2 when t

goes to ε−4.
• We construct in the proof some approximate solutions that are o(t−

1
2 )

for times t ≤ ε−4+c and ε small. To go past that time seems to require extra
arguments – like devising more accurate approximate solutions – in order to
get a useful pointwise control of Pacϕ for t > ε−4.
• Our estimates are consistent with the ones of Kowalczyk, Martel and

Muñoz [56] in time O(ε−4). Actually, it follows from (1.1.12), (1.1.13) that if
p > 2∫ ε−4+c

1
|a(t)|p dt ≤ Cεp−2

∫ ε−4+c

1

[
‖〈x〉−2N−1Pacϕ(t, ·)‖2H1 + ‖〈x〉−2N−1DtPacϕ(t, ·)‖2L2

]
dt ≤ Cε4θ′

for large enough N . These estimates are in accordance with those proved in
[56] (when p = 4 for the first one) (see Theorem 1.2 in that reference).

1.2. Reduced system

We shall conjugate the second equation (1.1.9) by the wave operator W+
associated to −1

2∂
2
x+V (x). We discuss in Appendix A8.1 below the properties

of such an operator. According to Proposition A8.1.1 of that Appendix, it may
be written, when acting on odd functions, under the form

(1.2.1) W+ = b(x,Dx) ◦ c(Dx),
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where b(x, ξ) is a symbol of order zero satisfying estimates (A8.1.8) and c(ξ) =
eiθ(ξ)1ξ>0 +e−iθ(ξ)1ξ<0 for some odd smooth real valued function θ. Moreover,
if we set A = −1

2∂
2
x + V (x), A0 = −1

2∂
2
x, one has by (A8.1.6), (A8.1.7), for

any Borel function m on R,
m(A)Pac = W+m(A0)W ∗+, m(A0) = W ∗+m(A)W+

W+W
∗
+ = Pac, W

∗
+W+ = IdL2

(1.2.2)

so that applying W ∗+ on the second equation (1.1.9), we get(
D2
t − (D2

x + 1)
)
[W ∗+Pacϕ] = W ∗+

[
κ(x)(a(t)Y + Pacϕ)2]

+W ∗+
[1
2(a(t)Y + Pacϕ)3].(1.2.3)

Let us define
(1.2.4) w = b(x,Dx)∗Pacϕ.

Since Pacϕ is real valued, and since because of the symmetry proper-
ties (A8.1.9) of b(x, ξ), b(x,Dx) and b(x,Dx)∗ preserve the space of real
(resp. even, resp. odd) functions, w is still a real valued odd function. As
c(Dx) ◦ c(Dx)∗ = Id,

Pacϕ = W+W
∗
+Pacϕ = b(x,Dx)w

c(Dx)W ∗+Pacϕ = w,
(1.2.5)

so that making act c(Dx) on (1.2.3) we see that w solves(
D2
t − (D2

x + 1)
)
w = b(x,Dx)∗

[
κ(x)

(
a(t)Y + b(x,Dx)w

)2]
+1

2b(x,Dx)∗
(
a(t)Y + b(x,Dx)w

)3
.

(1.2.6)

We shall study from now on the system given by the first equation (1.1.9) and
(1.2.6). We define
(1.2.7) w0 = b(x,Dx)∗Pacϕ0, w1 = b(x,Dx)∗Pacϕ1.

Since by (1.2.1), (1.2.2), Pac = b(x,Dx) ◦ b(x,Dx)∗, and since b(x,Dx),
[x, b(x,Dx)] are bounded on Sobolev spaces, we get from (1.1.10) that
(1.2.8) ‖w0‖2Hs+1 + ‖w1‖2Hs + ‖xw0‖2H1 + ‖xw1‖2L2 ≤ C0

for some constant C0. Denote by p(Dx) the operator

(1.2.9) p(Dx) =
»

1 +D2
x

and introduce complex values odd unknowns
(1.2.10) u+ =

(
Dt + p(Dx)

)
w, u− =

(
Dt − p(Dx)

)
w = −ū+.

If I = (i1, . . . , ip) is an element of {−,+}p, we shall set
(1.2.11) uI = (ui1 , . . . , uip)
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and we denote also uI,j = uij , so that equivalently

(1.2.12) uI = (uI,1, . . . , uI,p).

Let us write (1.2.6) under the equivalent form

(1.2.13)
(
Dt − p(Dx)

)
u+ =

2∑
j=0

F 2
j [a;u+, u−] +

3∑
j=0

F 3
j [a;u+, u−]

where F 2
j (resp. F 3

j ) will be made of terms that are O(t−1) (resp. O(t−
3
2 )) in

L∞ if the bounds (1.1.12)-(1.1.14) hold true, and are given by the following:
• Contribution depending only on a and not on u± are:

F 2
0 [a;u+, u−] = F 2

0 [a] = a(t)2b(x,Dx)∗[κ(x)Y 2]

F 3
0 [a;u+, u−] = F 3

0 [a] = 1
2a(t)3b(x,Dx)∗[Y 3].

(1.2.14)

• Contributions that are homogeneous of degree j > 0 in (u+, u−) are given
by the following quantities, where if |I| = (i1, . . . , ip), we set |I| = p and
εI = i1 . . . ip:

F 2
j [a;u+, u−] = a(t)2−j ∑

|I|=j
F 2
j,I [uI ], j = 1, 2

F 3
j [a;u+, u−] = a(t)3−j ∑

|I|=j
F 3
j,I [uI ], j = 1, 2, 3,

(1.2.15)

with linear terms in (u+, u−)

F 2
1,I [uI ] = εIb(x,Dx)∗

[
Y (x)κ(x)b(x,Dx)p(Dx)−1uI

]
F 3

1,I [uI ] = 3
4εIb(x,Dx)∗

[
Y (x)2b(x,Dx)p(Dx)−1uI

]
,

(1.2.16)

quadratic terms in (u+, u−)

F 2
2,I [uI ] = 1

4εIb(x,Dx)∗
[
κ(x)

2∏
`=1

b(x,Dx)p(Dx)−1uI,`
]

F 3
2,I [uI ] = 3

8εIb(x,Dx)∗
[
Y (x)

2∏
`=1

b(x,Dx)p(Dx)−1uI,`
]
,

(1.2.17)

and a cubic term in (u+, u−)

(1.2.18) F 3
3,I [uI ] = 1

16εIb(x,Dx)∗
[ 3∏
`=1

b(x,Dx)p(Dx)−1uI,`
]
.

Notice that since κ and Y are odd, as well as u±, and b(x,Dx) preserves odd
functions, F 2

j , F
3
j are odd functions.
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Let us write now the first equation in (1.1.9) in terms of a, u+, u−. We
define

(1.2.19) a+(t) =
(
Dt +

√
3

2

)
a, a−(t) =

(
Dt −

√
3

2

)
a = −ā+

so that a =
√

3
3 (a+ − a−) and we rewrite the first equation (1.1.9) as(

Dt −
√

3
2

)
a+ =

2∑
j=0

(a+ − a−)2−jΦj [u+, u−]

+
3∑
j=0

(a+ − a−)3−jΓj [u+, u−]
(1.2.20)

where the terms independent of u± are

Φ0 = 1
3

〈
Y, κY 2

〉
Γ0 =

√
3

18 〈Y, Y
3〉

(1.2.21)

and for j ≥ 1

Φj [u+, u−] =
∑
|I|=j

Φj,I [uI ]

Γj [u+, u−] =
∑
|I|=j

Γj,I [uI ]
(1.2.22)

with linear expressions

Φ1,I [uI ] =
√

3
3 εI

〈
Y, Y κb(x,Dx)p(Dx)−1uI

〉
Γ1,I [uI ] = 1

4εI
〈
Y, Y 2b(x,Dx)p(Dx)−1uI

〉
,

(1.2.23)

quadratic expressions

Φ2,I [uI ] = 1
4εI
〈
Y, κ

2∏
`=1

b(x,Dx)p(Dx)−1uI,`

〉
Γ2,I [uI ] =

√
3

8 εI

〈
Y, Y

2∏
`=1

b(x,Dx)p(Dx)−1uI,`

〉
,

(1.2.24)

and cubic quantities

(1.2.25) Γ3,I [uI ] = 1
16εI

〈
Y,

3∏
`=1

b(x,Dx)p(Dx)−1uI,`

〉
.
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We shall study from now on system (1.2.13), (1.2.20) with initial data at
t = 1. According to (1.2.10), (1.2.7), (1.2.8), (1.2.19) and the fact that by
(1.1.8), a(1) = 〈εϕ0, Y 〉, ∂ta(1) = 〈εϕ1, Y 〉, with ϕ0, ϕ1 satisfying (1.1.10), we
may assume
(1.2.26) u+|t=1 = εu+,0, a+|t=1 = εa+,0

where u+,0 is a complex valued odd function in Hs(R,C) satisfying

‖u+,0‖2Hs + ‖xu+,0‖2L2 ≤ C2
0

|a+,0| ≤ C2
0

(1.2.27)

for some fixed constant C0.
In the following sections, we shall describe the main steps of the method of

proof of our main result.

1.3. Step 1: Writing of the system from multilinear operators

In section 1.2, we have reduced (1.1.9) to the system made of equations
(1.2.13) and (1.2.20). One may rewrite (1.2.13) on a more synthetic way as(

Dt − p(Dx)
)
u+ = F 2

0 [a] + F 3
0 [a]

+
∑

2≤|I|≤3
Op(m0,I)[uI ]

+ a(t)
∑

1≤|I|≤2
Op(m′1,I)[uI ]

+ a(t)2 ∑
|I|=1

Op(m′2,I)[uI ]

(1.3.1)

with the following notation: The term F 2
0 [a] (resp. F 3

0 [a]) is the quadratic
(resp. cubic) contribution in a obtained setting w = 0 in the right hand side
of (1.2.13). It has structure a(t)2Z2 (resp. a(t)3Z3) for some S(R)-function Z2
(resp. Z3). The other terms in the right hand side of (1.3.1) are expressed in
terms of multilinear operators Op(m)(u1, . . . , up), defined if m(x, ξ1, . . . , ξp) is
a smooth function satisfying convenient estimates, as
(1.3.2)

Op(m)(u1, . . . , up) = 1
(2π)p

∫
eix(ξ1+···+ξp)m(x, ξ1, · · · , ξp)

p∏
j=1

ûj(ξj) dξ1 . . . dξp.

In the right hand side of (1.3.1), we denote by I p-tuples I = (i1, . . . , ip)
where i` = ± and set |I| = p. Then uI stands for a p-tuple uI = (ui1 , . . . , uip)
whose components are equal to u+ or u− defined in (1.2.10). The symbols
m0,I , m′1,I , m′2,I are functions of (x, ξ1, . . . , ξp) with p = |I|. We do not write
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explicitly in this presentation of the proof the estimates that are assumed on
these functions and their derivatives: we refer to Definition 2.1.1 below and to
Appendix A9 for the precise description of the classes of symbols we consider.
Let us just say that symbols m0,I are bounded in x, while their ∂x-derivatives
are rapidly decaying in x. This comes from the fact that the symbol b(x, ξ)
and the functions κ, Y in (1.2.6) satisfy such properties. On the other hand,
symbols m′1,I ,m′2,I (and more generally any symbol that we shall denote as m′
in what follows) decay rapidly in x even without taking derivatives. It turns
out that operators with decaying symbol in x acting on functions we shall
introduce below will give quantities with a better time decay than operators
associated to non decaying symbols.

1.4. Step 2: First quadratic normal form

The goal of the whole paper is to obtain energy estimates for the solution
u+ to (1.2.13) and a+ to (1.2.20).

As we have seen in section 0.6, the first thing to do in order to get Sobolev
estimates for an equation like (1.2.13) is to eliminate the quadratic contri-
butions

∑
|I|=2 Op(m0,I)[uI ]. We do that through a “time normal form” à la

Shatah [76] and Simon-Taflin [77] (see also for one dimensional Klein-Gordon
equations Moriyama, Tonegawa and Tsutsumi [71], Moriyama [70], Hayashi
and Naumkin [39] and the very recent works of Germain and Pusateri [33], of
Lindblad, Luhrmann and Soffer [60] and of Lindblad, Luhrmann, Schlag and
Soffer [59]). Actually, we construct new symbols (m̃0,I)|I|=2 such that

(
Dt − p(Dx)

)[
u+ −

∑
|I|=2

Op(m̃0,I)[uI ]
]

= F 2
0 [a] + F 3

0 [a]

+
∑

3≤|I|≤4
Op(m0,I)[uI ]

+
∑
|I|=2

Op(m′0,I)[uI ]

+
3∑
j=1

a(t)j
∑

1≤|I|≤4−j
Op(m′j,I)[uI ]

(1.4.1)

where in the right hand side, we have eliminated the quadratic contributions
Op(m0,I)[uI ], but made appear new quadratic terms Op(m′0,I)[uI ] given in
terms of new symbols m′0,I that decay rapidly when x goes to infinity. These
corrections come from the fact that, at the difference with a usual normal form
method where one eliminates quadratic expressions like (1.3.2) with p = 2
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and a symbol m(ξ1, ξ2) independent of x, we have here to cope with symbols
m(x, ξ1, ξ2). This x dependence makes appear somme commutator, given es-
sentially in terms of Op(∂m∂x (x, ξ1, ξ2)), with a symbol rapidly decaying in x.
These commutators are the new quadratic terms Op(m′0,I)[uI ] in the right
hand side of (1.4.1). As already mentioned, such expressions will have better
time decay estimates than the quadratic expressions given by non space de-
caying symbols that we have eliminated, and are actually better than most
remaining terms in the right hand side of (1.4.1). They are not completely
negligible, but will be treated only at the end of the reasoning.

1.5. Step 3: Approximate solution

Our general strategy is to define from the solution u+ of (1.4.1) a new
unknown ũ+ that would satisfy similar estimates as those of the bootstrap
(0.5.8) of the introduction. More precisely, we aim at constructing a new
unknown ũ+ for which we could get, for t ∈ [1, ε−4+c] with c > 0 given,
bounds of the following form
(1.5.1) ‖ũ+(t, ·)‖Hs = O(εtδ)

(1.5.2) ‖L+ũ+(t, ·)‖L2 = O
(
(ε2
√
t)θt

1
4
)

(1.5.3) ‖ũ+(t, ·)‖W ρ,∞ = O
((ε2
√
t)θ
′

√
t

)
where δ > 0 is small, θ′ < θ < 1

2 with θ′ close to 1
2 , s� ρ� 1, and where we

denoted ‖w‖W ρ,∞ = ‖〈Dx〉ρw‖L∞ . The first estimate (1.5.1) is the one that
would follow by energy inequality for the solution of (0.5.1), assuming that
(1.5.3) holds (since, for t ≤ ε−4+c, (1.5.3) implies a bound in c(ε)t−

1
2 , with

c(ε) going to zero when ε goes to zero). In the same way, assuming (1.5.3) and
assuming that ũ+ solves an equation of the form (0.4.6) with p = 1, one could
bootstrap a bound of the form (1.5.2). Finally, an estimate of the form (1.5.3)
will have to be deduced from (1.5.2) constructing from the PDE solved by ũ+
an ODE with remainder term controlled from (1.5.2).

Of course, the right hand side of (1.4.1) is far from having the nice structure
of the one of (0.5.1), and this is why we shall have to modify the unknown
u+ in order to eliminate all bad terms in the right hand side of (1.4.1). In
Chapter 3 of the paper we shall get rid of the contributions F 2

0 [a], F 3
0 [a]. These

functions are bounded as well as their space derivatives by t−1〈x〉−N for any
N . Clearly, if we make act L+ on them and compute the L2 norm, we shall
get an O(1) quantity. If we were integrating such a bound, we would deduce
that ‖L+u+(t, ·)‖L2 = O(t), a much worse estimate than the one (1.5.2) we
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want. We shall thus remove from u+ the solution of the linear equation with
force terms F 2

0 [a] + F 3
0 [a] i.e. we shall solve(
Dt − p(Dx)

)
U = F 2

0 [a] + F 3
0 [a]

U |t=1 = 0
(1.5.4)

and then make the difference between (1.4.1) and (1.5.4) in order to eliminate
F 2

0 [a], F 3
0 [a] from the right hand side of the new equation obtained in that

way. Actually, one needs to take also into account at this stage bilinear terms
in (a, u) in (1.4.1). We thus construct in Proposition 3.1.2 an approximate
solution uapp

+ of(
Dt − p(Dx)

)
uapp

+ = F 2
0 (aapp) + F 3

0 (aapp)

+ aapp ∑
|I|=1

Op(m′1,I)(u
app
I ) + remainder

uapp
+ |t=1 = 0

(1.5.5)

where aapp is some approximation of the function a(t) solving the first equation
(1.1.9).

Let us explain what are the bounds satisfied by the approximate solution
uapp

+ of equation (1.5.5) that we obtain in Proposition 3.1.2 using the results of
Appendix A10. We decompose uapp

+ = u′app
+ + u′′app

+ . The term u′app
+ satisfies

the kind of estimates we aim at proving, namely (1.5.1)-(1.5.3) (and actually
slightly better ones) for times t = O(ε−4+c). On the other hand, inequalities
(1.5.1), (1.5.3) hold for u′′app

+ (and even actually slightly better ones), but
L+u

′′app
+ does not verify (1.5.2). On the other hand, L+u

′′app
+ obeys good

estimates in L∞ norms, of the form

(1.5.6) ‖L+u
′′app

+ ‖W r,∞ = O
(
log(1 + t) log(1 + ε2t)

)
that will allow us to estimate conveniently nonlinear terms containing u′′app

+ .
Let us stress that the limitation of our main result to times O(ε−4) comes
from the degeneracy of bound (1.5.2) for L+u

′app
+ when t becomes larger than

ε−4. We do not claim that, in such a regime, an estimate of the form (1.5.2)
would be optimal. But we remark that in the construction of u′app

+ made from
the results of Appendix A10, the main contribution comes from quantities
that have pretty explicit bounds: see Proposition A10.1.4 and in particular
bound (A10.1.39) with ω = 1 (that gives the main contribution to u′app

+ ) and
(A10.1.41) with ω = 1 (that gives the main contribution to L+u

′app
+ ). If we ex-

trapolate estimate (A10.1.39) for t� ε−4 (which is of course not legitimate, as
we prove it only for times O(ε−4)), we see that outside a conical neighborhood
of the two lines x = ±t

»
2
3 , an estimate of |u′app

+ (t, x)| in O(ε2t−
1
2 ) would hold.

On the other hand, along these two lines, a degeneracy happens, and we do
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not expect to be able to prove that, for t� ε−4,
∣∣∣u′app

+
(
t,±t

»
2
3
)∣∣∣√t remains

small (or even bounded). Because of that, we do not hope to push estimates
of the form (1.5.1)-(1.5.3) for such times, without taking into account first
some extra corrections. In particular, going back to (0.9.3), we do not expect
a O(t−

1
2 ) bound for |Pacϕ(t, x)| along these lines.

Notice that such a phenomenon cannot be detected using weighted space
estimates an in Kowalczyk, Martel and Muñoz [56]: actually, along the lines
x = ±t

»
2
3 , a space decaying weight is also time decaying and kills bad bounds

of u′app
+ along these lines. We shall comment more extensively on that issue

in section 1.10 below.

In addition to the proof of estimates of the form (1.5.1)-(1.5.3), we need, in
order to obtain (0.9.3), to study the solution of the first equation (1.1.9). We
do that in section 3.2 of Chapter 3. Setting

a+(t) =
(
Dt +

√
3

2

)
a, a−(t) =

(
Dt −

√
3

2

)
a = −ā+,

the first equation (1.1.9) may be rewritten as(
Dt −

√
3

2

)
a+ =

2∑
j=0

(a+ − a−)2−jΦj [u+, u−]

+
3∑
j=0

(a+ − a−)3−jΓj [u+, u−]
(1.5.7)

where Φj ,Γj are expressions in the solution u+ to (1.3.1) or (1.4.1). The goal
of section 3.2 is to uncover the structure of a+. We write a+(t) = aapp

+ (t) +
O
(
ε3(1+tε2)−

3
2
)
, where aapp

+ (t) has structure (3.2.6), that implies in particular

(1.5.8) aapp
+ (t) = eit

√
3

2 g(t) + more decaying terms.

The main goal of section 3.2 is to prove by bootstrap that g(t) satisfies bounds

(1.5.9) |g(t)| = O(ε(1 + tε2)−
1
2 ), |∂tg(t)| = O(t−

3
2 ).

(Actually, we get more precise bounds for ∂tg: see (3.2.8)). These bounds are
obtained showing that (1.5.7) implies that g satisfies an ODE

(1.5.10) Dtg(t) =
(
α− i

√
6

18 Ŷ2(
√

2)2
)
|g(t)|2g(t) + remainder

where Y2 is some explicit function in S(R) and α is real. The coefficient of
the cubic term in the right hand side comes from some of the terms in the
right hand side of (1.5.7) where we replace u± by the approximate solution
uapp

+ determined in section 3.1. The main contribution to uapp
+ , integrated



52 CHAPTER 1. THE KINK PROBLEM

against a S(R) function, may be computed explicitly in terms of g (see Propo-
sition 3.1.3), and brings the right hand side of (1.5.10). The key point in that
equation is that Ŷ2(

√
2)2 < 0. This implies that g satisfies bounds (1.5.9)

for t ≥ 1 if g(1) = O(ε). The inequality Ŷ2(
√

2)2 < 0 is nothing but Fermi
Golden Rule. Actually, Ŷ2(

√
2)2 ≤ 0 holds trivially and the key point is to

check that Ŷ2(
√

2) 6= 0. This reduces to showing that some explicit integral is
non zero. Kowalczyk, Martel and Muñoz checked that numerically in [56]. In
Appendix A14, we compute explicitly this integral by residues.

1.6. Step 4: Reduced form of dispersive equation

The goal of this step is to rewrite equation (1.4.1) in terms of a new unknown
ũ+ that will satisfy estimates (1.5.1)-(1.5.3). We define

(1.6.1) ũ+ = u+ −
∑
|I|=2

Op(m̃0,I)(uI)− u′app
+ − u′′app

+ ,

and set ũ− = −ũ+. Making the difference between (1.4.1) and (1.5.5), we
show in section 4.2 (see Proposition 4.2.1) that ũ+ satisfies(

Dt − p(Dx)
)
ũ+ =

∑
3≤|I|≤4,I=(I′,I′′)

Op(m̃I)(ũI′ , uapp
I′′ )

+
∑

|I|=2,I=(I′,I′′)
Op(m′0,I)(ũI′ , u

app
I′′ )

+ aapp(t)
∑
|I|=1

Op(m′1,I)(ũI)

+ 1
3

(
eit
√

3
2 g(t) + e−it

√
3

2 g(t)
)2 ∑
|I|=1

Op(m′0,I)(ũI)

+ remainder

(1.6.2)

where:
• For 3 ≤ |I| ≤ 4, m̃I are symbols m̃I(x, ξ1, . . . , ξp), p = |I| = |I ′| + |I ′′|

which are O(1) as functions of x, but O(〈x〉−∞) if one takes at least one
∂x-derivative.
• For 1 ≤ |I| ≤ 2, m′0,I , m′1,I are symbols that are O(〈x〉−∞), even without

taking any derivative.
• Function of time g has been introduced in (1.5.8) and gives the principal

term in the expansion of aapp
+ (t) or a+(t).

• Function aapp(t) =
√

3
3
(
aapp

+ (t)− aapp
− (t)

)
, where

(1.6.3) aapp
+ (t) = eit

√
3

2 g(t) + ω2e
it
√

3g(t)2 + ω0|g(t)|2 + ω−2e
−it
√

3g(t)2
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with convenient constants ω2, ω0, ω−2 and aapp
− (t) = −aapp

+ (t).
We cannot derive directly from equation (1.6.2) the estimate (1.5.2) for

ũ+, as the right hand side of (1.6.2) has not the nice structure (0.5.1). Before
applying an energy method, we shall have to use several normal forms in order
to reduce ourselves to such a nice nonlinearity. As a preparation to that step,
we show in Corollary 4.2.3 that (1.6.2) may be rewritten under the following
equivalent form:

(1.6.4)
(
Dt − p(Dx)

)
ũ+ −

2∑
j=−2

eitj
√

3
2 Op(b′j,+)ũ+ −

2∑
j=−2

eitj
√

3
2 Op(b′j,−)ũ−

=
∑

3≤|I|≤4,I=(I′,I′′)
Op(m̃I)(ũI′ , uapp

I′′ )

+
∑
|I|=2

Op(m′0,I)(ũI) +
∑

I=(I′,I′′),|I′|=|I′′|=1
Op(m′0,I)(ũI′ , u′

app,1
I′′ )

+
∑
|I|=2

Op(m′0,I)(u′
app,1
I ) + remainders

where, in comparison with (1.6.2), all linear terms in ũ+, ũ− have been sent to
the left hand side, and are expressed from symbols b′j,±(t, x, ξ) that are rapidly
decaying in x at infinity. Moreover, in the right hand side, we still use the
convention of denoting by m′0,I symbols rapidly decaying in x, while m̃I are
O(1) in x, with ∂x-derivatives rapidly decaying in x. Furthermore, in the last
two sums in (1.6.4), we replaced u′app by u′app,1, which is actually the main
contribution (in terms of time decay) to u′app. If we set ũ =

[
ũ+
ũ−

]
, we may

rewrite (1.6.4) as a system of the form(
Dt − P0 − V

)
ũ =M3(ũ, uapp) +M4(ũ, uapp)

+M′2(ũ, u′app,1) + remainder
(1.6.5)

where P0 =
ï
p(Dx) 0

0 −p(Dx)

ò
, V is a 2× 2 matrix of operators of the form

(1.6.6) V =
2∑

j=−2
eijt

√
3

2 Op(M ′j(t, x, ξ))

with M ′j 2× 2 matrix of symbols whose entries are given in terms of the b′j,±
in (1.6.4), and where the 2-vectors M3 (resp. M4, resp. M′2) come from the
cubic (resp. quartic, resp. quadratic) terms in the right hand side of (1.6.4).

To obtain the wanted estimates (1.5.1), (1.5.2) for ũ+, we have next to
reduce (1.6.5) to an equation essentially of the form (0.5.1). This is the object
of Step 5 of the proof.
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1.7. Step 5: Normal forms

Equation (1.6.5) has not structure of the form (0.5.1), in that sense that if

we make act L =
ï
L+ 0
0 L−

ò
, with L− = x−tp′(Dx), first L does not commute

to the potential term V, and second the action of L on the nonlinearities in the
right hand side does not give quantities whose L2 norm is O(‖ũ‖2L∞‖Lũ‖L2)
(which is essentially necessary if we want to get (1.5.2) by energy estimates).
To cope with the lack of commutation of L with V, we shall construct a wave
operator and use it to eliminate V by conjugation of the equation. This is
similar to what has been done to pass from the second equation (1.1.9), that
was involving the potential 2V (x) to equation (1.2.3), where there was no
longer any potential. The difference here is that V given by (1.6.6) is time
dependent (with O(t−

1
2 ) decay). We thus cannot rely on existing references,

and have to construct by hand operators B(t), C(t) (depending on time) such
that

(1.7.1) C(t)
(
Dt − P0 − V

)
= (Dt − P0)C(t).

In that way, if ũ solves (1.6.5), then C(t)ũ solves the new equation without
potential

(Dt − P0)C(t)ũ = C(t)M3(ũ, uapp) + C(t)M4(ũ, uapp)
+C(t)M′2(ũ, u′app,1) + remainder

(1.7.2)

(see Proposition 5.1.2). Moreover, since we want to pass from an L2 bound
on Lũ to an L2 bound on LC(t)ũ and conversely, we need to relate L ◦ C(t)
and L, proving that

(1.7.3) L ◦ C(t) = C̃(t) ◦ L+ C̃1(t)

where C̃(t) is bounded on L2 uniformly in t and C̃1(t) is bounded with a small
time growth when t goes to infinity. The construction of operator C(t) is made
in Appendix A12 by a pretty standard series expansion. We notice however
that we need to use in that construction the fact that we are dealing with odd
functions ũ.

Once reduced to (1.7.2), we still have to handle those nonlinear terms in
the right hand side that do not have a structure of the form (0.5.1), i.e. we
have to cope with nonlinearities that have the same structure as in the model
(0.6.11) of section 0.6 of the introduction. We have seen there that problem
may be solved using “space-time normal forms”. We shall follow essentially
the approach of [20], already described in section 0.6 of the introduction, that
we have to adapt to the more general operatorsM3,M4 in the right hand side
of (1.7.2). Remark that the components of the vectorsM3,M4 are, according
to (1.6.4), given by expressions Op(m̃)(ũ±, . . . , uapp

± ) where m̃(x, ξ1, . . . , ξp) is
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a symbol that is O(1) when |x| goes to infinity, but O(〈x〉−∞) if one takes at
least one ∂x-derivative. We have to distinguish between to type of terms, the
characteristic and the non-characteristic ones. The former correspond to the
case when, among the p arguments of Op(m̃)(ũ±, . . . , uapp

± ), p+1
2 are equal to

ũ+ or uapp
+ and p−1

2 are equal to ũ− or uapp
− .

In the case of simple monomial nonlinearities, example of characteristic
terms are given by the right hand side |u+|2u+ of (0.5.1), which, when making
act L+ on it, may be estimated in L2 by ‖u+(t, ·)‖2L∞‖L+u+(t, ·)‖L2 . If m̃
were independent of x, the same would hold for the action of L+ on any
characteristic term like Op(m̃)(ũ±, . . . , ũ±), as L+Op(m̃)(ũ±, . . . , ũ±) could
be expressed from Op(m̃)(L±ũ±, . . . , ũ±), . . . ,Op(m̃)(ũ±, . . . , L±ũ±). Using
the boundedness properties of Op(m̃), one would then estimate the L2 norm
of these quantities by ‖ũ‖p−1

L∞ ‖Lũ‖L2 . As p ≥ 3, one could then obtain estimate
(1.5.2) by energy inequality, as in (0.4.6). Since here m̃ does depend on x, there
is no exact commutation relation in the characteristic case between Op(m̃) and
L+, as some commutators of the form tOp(∂xm̃) have to be taken into account.
It turns out that, because ∂xm̃ is rapidly decaying in x, and because ũ± is
odd, ‖tOp(m̃)(ũ±, . . . , ũ±)‖L2 may be also estimate by the right hand side of
(0.4.6). Actually, the kind of expressions one has to cope with is morally of
the form

(1.7.4) tZ(x)
(
〈Dx〉−1ũ±

)3
where Z is in S(R) (This reflects the fact that ∂xm̃ is rapidly decaying in x).
Since ũ+ is odd, we may write using the definition of L+ = x+ t Dx〈Dx〉

〈Dx〉−1ũ+ = ix

∫ 1

−1

( Dx

〈Dx〉
ũ+

)
(µx) dµ

= i
x

t

∫ 1

−1

[
(L+ũ+)(µx)− µxũ+(µx)

]
dµ.

(1.7.5)

The rapid decay of Z(x) allows one to absorb the powers of x in the right
hand side of (1.7.5), and to estimate the L2 norm of (1.7.4) by

C
[
‖L+ũ+‖L2 + ‖ũ+‖L2

]
‖ũ+‖2L∞

i.e. by the right hand side of (0.4.6) with p = 1. Similar arguments apply
when the factors ũ± are replaced by uapp

± .
The above reasoning disposes of the characteristic components in

Mj(ũ, uapp) in (1.7.2). The non-characteristic ones are for instance of
the form Op(m̃)(ũ+, . . . , ũ+) and we no longer have an approximate com-
mutation property of L+ with such operators. These terms have thus to be
eliminated by a space-time normal form. We construct in Proposition 5.2.1,
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using the results of Appendix A13, operators M̂j , j = 3, 4, such that

(1.7.6) (Dt − P0)M̂j(ũ, uapp) =Mj(ũ, uapp)nch + remainders

where Mj(ũ, uapp)nch denotes the non-characteristic contributions to
Mj(ũ, uapp) in the right hand side of (1.7.2). Actually, M4(ũ, uapp)nch =
M4(ũ, uapp) as only M3 contains characteristic components. In that way, we
deduce from (1.7.2) that

(Dt − P0)
[
C(t)

(
ũ− M̂3(ũ, uapp)− M̂4(ũ, uapp)

)]
= C(t)M′2(ũ, u′app,1) +R

(1.7.7)

where the remainder R satisfies bounds of the form

‖L+R‖L2 = O
(
‖ũ+‖2L∞‖L+ũ+‖L2

)
as in the right hand side of (0.4.6) with p = 1. Notice that to deduce (1.7.7)
from (1.7.6), we have to compare (Dt−P0)C(t)M̂j and C(t)(Dt−P0)M̂j which
by (1.7.1) makes appear a term C(t)VM̂j , but the time and space decay of
operator V allows one to show that such errors form part of the remainder R
in (1.7.7).

One has still in the right hand side of (1.7.7) term C(t)M′2(ũ, u′app,1). Again
M′2 may be expressed in terms of quantities Op(m′)(ũ±, ũ±) (and similar ones
with ũ± replaced by u′app,1

± ), so that one may gain some time decay using
expressions of the form (1.7.5), but as this term is just quadratic, this gain
is not sufficient to include C(t)M′2 into R in (1.7.7). As C(t) − Id has some
time decay, one may prove though that (C(t) − Id)M′2 is a remainder, but
the expression M′2(ũ, u′app,1) still needs to be eliminated from the right hand
side of (1.7.7). We do that in Proposition 5.2.4 of Chapter 5, using results of
Appendix A13. Actually, a quantity like Op(m′)(ũ±, ũ±) may be expressed,
using the x-rapid decay of m′ and the oddness of ũ± as sum of expressions of
the form

(1.7.8) t−2K
(
L`1± ũ±, L

`2
± ũ±), 0 ≤ `1, `2 ≤ 1

where K is an operator of form

(1.7.9) Ÿ�K(f1, f2)(ξ0) =
∫
k(ξ0, ξ1, ξ2)f̂1(ξ1)f̂(ξ2) dξ1dξ2

where the kernel k has rapid decay in 〈ξ0 − ξ1 − ξ2〉. An operator of form
(1.7.8) slightly misses bounds in O(t−1‖L+ũ+‖L2) when we make act on it L±
and take the L2 norm. But it does satisfy such estimates if we cut-off k in
(1.7.9) on a domain |±〈ξ0〉 ± 〈ξ1〉 ± 〈ξ2〉| ≤ ct−

1
2 . Consequently, one may as-

sume that in (1.7.9), k is supported for |±〈ξ0〉 ± 〈ξ1〉 ± 〈ξ2〉| ≥ ct−
1
2 . This extra
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cut-off allows to construct by normal forms a quadratic term M̂′2(ũ, u′app,1)
such that

(Dt − P0)M̂′2(ũ, u′app,1) =M′2(ũ, u′app,1) + remainders.

Subtracting this equation from (1.7.7), one gets finally

(1.7.10) (Dt − P0)̊u = R̂

where

(1.7.11) ů = C(t)
[
ũ−

4∑
j=3
M̂j(ũ, uapp)

]
− M̂′2(ũ, u′app,1).

and where R̂ will satisfy among other things essentially

(1.7.12) ‖LR̂(t, ·)‖L2 = O(t−1‖L+ũ+‖L2).

1.8. Step 6: Bootstrap of L2 estimates

As seen above, the conclusion of the main theorem follows from the boot-
strap of estimates (1.5.1)-(1.5.3). In Chapter 6, we perform the bootstrap of
(1.5.1) and (1.5.2), assuming that (1.5.1)-(1.5.3) hold on some interval [1, T ]
with T ≤ ε−4+c and showing that (1.5.1), (1.5.2) then actually hold with the
implicit constant in the right hand side divided by 2 for instance. As we have
seen, estimate (1.5.2) cannot be obtained making act L directly on (1.6.5),
as the action of L on the right hand side of this equation has bad upper
bounds in L2. On the other hand, making act L on (1.7.10), commuting it to
Dt − P0 and using (1.7.12), one may obtain a bound of the form (1.5.2) for
‖L+ů+(t, ·)‖L2 . Actually, to do so with an improved implicit constant, one
has to show that the right hand side of (1.7.12) is o(t−1‖L+ũ+‖L2) instead of
just O(t−1‖L+ũ+‖L2), but this follows from the estimates we get if t ≤ ε−4+c

and ε� 1. The remaining thing to do is then to relate estimates for L+ů+ in
L2 and estimates for L+ũ+ i.e. to show that the action of L+ on the M̂j ,M̂′2
terms in (1.7.11) do not perturb significantly the a priori bound of the left
hand side. We do that in section 6.1 for M̂j , j = 3, 4 and in section 6.2 for
M̂′2. In this Chapter 6, we also check that the remainder R̂ in (1.7.10) satisfies
(1.7.12). These estimates heavily rely on the boundedness properties of the
different multilinear operators we use, that are discussed in Appendix A11.
Putting all of that together, we conclude the bootstrap for estimates (1.5.1),
(1.5.2) in Proposition 6.3.7.
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1.9. Step 7: Bootstrap of L∞ estimates and end of proof

The only remaining step in order to conclude the proof of the main theorem
is to bootstrap bound (1.5.3). We do that in Chapter 7. We deduce from
equation (1.6.2) satisfied by ũ+ an ordinary differential equation. We proceed
as in [1] for water waves, with simplifications inspired by Ifrim and Tataru [45]
(see also [20, 82]). If we write equation (1.6.2) as (Dt − p(Dx))ũ+ = f+ and
if we define ũ+, f+ by

(1.9.1) ũ+(t, x) = 1√
t
ũ+

(
t,
x

t

)
, f+(t, x) = 1√

t
f+

(
t,
x

t

)
we obtain

(1.9.2)
(
Dt −OpW

h

(
xξ +

√
1 + ξ2

))
ũ+ = f+

where we used a Weyl semiclassical quantization, depending on the parameter
h = 1

t , defined in general by

(1.9.3) OpW
h (a(x, ξ)) = 1

2πh

∫
ei(x−y) ξ

ha
(x+ y

2 , ξ
)
u(y) dydξ.

We decompose then ũ+ = ũΛ + ũΛc where

(1.9.4) ũΛ = OpW
h

(
γ
(x+ p′(ξ)√

h

))
ũ+

with γ in C∞0 (R), equal to one close to zero and with small enough support.
Then ũΛ is localized close to Λ = {(x, ξ);x = −p′(ξ)} i.e. close to {ξ = dϕ(x)}
if ϕ(x) =

√
1− x2 is the phase of oscillations of solutions to linear Klein-

Gordon equations (after rescaling (1.9.1)). One sees that the L2 estimates
(1.5.1), (1.5.2) allow one to get wanted bounds for the component ũΛc (see
Proposition 7.1.1). On the other hand, since ũΛ is microlocalized close to Λ,
one may in the term OpW

h (xξ +
√

1 + ξ2)ũΛ replace the symbol by its restric-
tion to Λ, up to remainders that are well controlled thanks to the L2 estimates
(1.5.1), (1.5.2). This brings an ODE for ũΛ, that implies by integration the
wanted bound (1.5.3). The end of Chapter 7 (section 7.2) puts together these
estimates and those obtained in section 3.2 for a(t) in order to close the boot-
strap argument and prove the main conclusions (1.1.13), (1.1.14).

1.10. Further comments

In the last section of this chapter, we shall explain what is the difficulty
in order to go beyond the time limit ε−4. Since this is much related to a
phenomenon extensively discussed in the papers of Lindblad, Luhrmann and
Soffer [60] and Lindblad, Luhrmann Schlag and Soffer [59], as well as in the
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work of Germain and Pusateri [33], let us first recall some of the results of
[60].

The authors of that paper consider an equation of the form

(1.10.1)
(
Dt −

»
1 +D2

x

)
u = −1

2〈Dx〉−1[α(·)(u+ ū)2]
on R × R, where α is a smooth decaying function (say α ∈ S(R), even if
their assumptions are weaker), satisfying α̂(

√
3) 6= 0 or α̂(−

√
3) 6= 0. They

prove that if (1.10.1) is supplemented by an initial data u0 satisfying ε =
‖〈x〉2u0‖H4 � 1, then the solution to (1.10.1) may be decomposed as a sum

(1.10.2) u(t, ·) = ufree(t, x) + umod(t, x)

where ufree satisfies the same dispersive estimates as a solution a linear Klein-
Gordon equation, namely ‖ufree(t, ·)‖L∞ = O(εt−

1
2 ) when t goes to +∞, and

where umod obeys only the weaker dispersive estimate

(1.10.3) ‖umod(t, ·)‖L∞ = O
(
ε2

log t√
t

)
(see Theorem 1.1 in [60] and in particular formulas (1.12) and (1.15)). More-
over, the logarithmic loss that appears in the right hand side of (1.10.3), in
comparison with the decay of linear solution, in unavoidable. Actually, Lind-
blad, Luhrmann and Soffer show that along the rays x = ±

√
3

2 t, umod
(
t,±

√
3

2 t
)

behaves when t goes to +∞ as

(1.10.4) a2
0√
8
ei
π
4 ei

t
2 α̂(∓

√
3) log t√

t

for some complex coefficient a0 = O(ε). (See (1.15) in [60] and (1.16) of
the same paper for an explicit expression of a0 in terms of the solution u to
(1.10.1)). On the other hand, outside a conical neighborhood of these two
rays, umod has a ε2t−

1
2 bound, without any logarithmic loss. In order to relate

this with the obstacle that prevents us from going above time ε−4 in our own
result, let us recall the argument of the introduction of [60] that explains
heuristically the appearance of the logarithmic factor in (1.10.4). The idea is
that, since α(x) in the right hand side of (1.10.1) is decaying when x goes to
infinity, one may replace there u(t, x) by u(t, 0), up to terms that are expected
to have a stronger time decay. In that way, an approximation of (1.10.1) is

(1.10.5)
(
Dt −

»
1 +D2

x

)
u = −1

2〈Dx〉−1[α(x)
(
u(t, 0) + ū(t, 0)

)2]
.

A second approximation (that is justified a posteriori) is to assume that u(t, 0)
will have the same asymptotic behavior as a solution to a linear Klein-Gordon
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equation restricted to x = 0 when t goes to infinity. This allows one to replace
in (1.10.5) u(t, 0) by ε eit√

t
, so that umod will be essentially the solution to

(1.10.6)
(
Dt −

»
1 +D2

x

)
umod = −ε

2

2t
(
〈Dx〉−1α

)[
e2it + 2 + e−2it].

If more generally one considers an equation of the form

(1.10.7)
(
Dt −

»
1 +D2

x

)
u = 1

t
Y (x)eiλt

with Y in S(R) (or at least smooth enough and decaying enough at infinity),
one may rewrite (1.10.7) as an equation for uλ(t, x) = e−iλtu(t, x) of the form

(1.10.8)
(
Dt + λ−

»
1 +D2

x

)
uλ = 1

t
Y (x).

If λ < 1, the operator
√

1 +D2
x− λ is elliptic and the solution to (1.10.8) will

be O(t−
1
2 ) in L∞ when t goes to infinity: This may be seen using Duhamel

formula and integrating by parts, or equivalently defining

(1.10.9) wλ = uλ +
(»

1 +D2
x − λ

)−1[t−1Y (x)]
that satisfies a new equation

(1.10.10)
(
Dt + λ−

»
1 +D2

x

)
wλ = 1

t2
Ỹ (x)

where Ỹ is some new S(R) function and the new right hand side is time inte-
grable. Because of that, the solution to (1.10.10) will have the same dispersive
time decay rate as a solution to a linear Klein-Gordon equation i.e. will be
O(t−

1
2 ) in L∞. This is what happens for the last two terms on the right hand

side of (1.10.6). On the other hand, for the first one, one gets an equation of the
form (1.10.7), (1.10.8) with λ = 2, so that the symbol

√
1 + ξ2−2 vanishes at

ξ = ±
√

3. In this case, the analysis of the solution to (1.10.10) expressed from
Duhamel formula and Fourier transform shows that an asymptotic behavior
of the form (1.10.4) holds along the two rays x = ±t

√
3

2 .
The logarithmic loss displayed in (1.10.4) seems incompatible with the

known methods used to study global existence and asymptotic behavior for
Klein-Gordon equations of the form (0.4.1) or (1.10.1) if we no longer assume
that α(·) is decaying at infinity. Actually, Theorem 1.1 of [60] as well as The-
orem 1.1 of [59], uses in an essential way the fact that the space decay of this
coefficient will provide, along the rays over which (1.10.4) holds, a time decay
that will compensate the logarithmic loss.

Another situation when asymptotic behaviour may be obtained for the solu-
tion of a problem of the form (1.10.1), including with nonlinearities involving
terms like (u + ū)2, (u + ū)3 (without space decaying pre-factors), appears
if the bad term (1.10.4) vanishes. This happens for the non-resonant case
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α̂(
√

3) = α̂(−
√

3) = 0 treated in Theorem 1.6 of [60] and Theorem 1.1 of [59],
when one recovers the same asymptotics as those holding true for equations
of the form (1.10.1) with the function α replaced by a constant.

The second case when (1.10.4) vanishes is when a0 = 0. This happens for
instance when α is an odd function and the initial condition in (1.10.1) is
also odd (see (1.10.5) where the right hand side vanishes for odd u’s, so that
the contributions coming from (1.10.6) that were responsible of the bad term
(1.10.4) disappear). Such a situation is studied by Germain and Pusateri [33],
in a more general framework. They consider equations of the form

(1.10.11)
(
∂2
t − ∂2

x + V (x) +m2)u = a(x)u2

where a(x) is a smooth function that has different limits at +∞ and −∞
and V (x) a S(R) potential that has no bound state. They prove a decay
estimate for the solution in O(t−

1
2 ) when time goes to infinity, under some

orthogonality assumption on the solution. This assumption always holds for
generic potentials, and in the case of exceptional ones (like the zero potential),
it holds under evenness or oddness conditions on V, a and the initial data. One
of the key ingredients in the proof of Theorem 1.1 of [33] is again related to
the fact that a bad frequency ±

√
3 appears. Actually, it shows up when one

tries to perform a variable coefficients normal form. In order to overcome this
difficulty, the authors introduce functional spaces, involving dyadic Fourier
cut-offs close to the bad frequencies, and measuring the (distorted) Fourier
transform of the solution in such spaces.

Let us go back to the problem we study in this book, and in particular to
the limitation of our result to times O(ε−4). We already discussed this issue in
section 1.5 after the introduction of the approximate solution in (1.5.5). Here,
we want to explain how the problem we encounter to go beyond time ε−4

might be related to some of the works we just described, namely the possible
appearance of some extra logarithm in pointwise estimates of the solution
along two rays, as in (1.10.4). Remark first that we are dealing only with odd
solutions. As already noticed, this implies that the coefficient a0 in (1.10.4)
vanishes, so that a solution of a problem of the form (1.10.1) has O(t−

1
2 ) L∞

estimates. The point is that, in our problem, we do not study an equation of
the form (1.10.1) or (1.10.11), but a coupling between a PDE and an ODE,
namely system (1.1.11) or equivalently, a coupling between the PDE (1.2.13)
and the ODE (1.2.20). Because of that, our PDE contains a source term given
by (1.2.14), involving expressions of the form

(1.10.12) a(t)2Y2(x), a(t)3Y3(x)
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where Y2, Y3 are S(R) functions and a(t), solution of the ODE, has an oscilla-
tory behavior of the form

(1.10.13) ε√
1 + tε2

e±it
√

3
2 .

When plugged in (1.10.12), this shows that our PDE will contain a source
term that has a similar structure as the right hand side of (1.10.6), with
oscillating terms e±it

√
3 instead of e±2it and pre-factor ε2

1+tε2 instead of ε2

t (for
the quadratic contribution coming from (1.10.12)). Because of that, and by
analogy with the study of [60], we may expect that the solution to our PDE
contains contributions that might grow as log t√

t
when t goes to infinity.

In this book, we prove that such a possible growth does not happen before at
least time ε−4+0. Let us return to the discussion on that issue that we started
in section 1.5. We introduced in (1.5.5) a solution uapp

+ of a linear equation
with source terms that are essentially of the form (1.10.12) (forgetting the
second line of the first equation in (1.5.5)). If we retain only the quadratic
term a(t)2Y2 in (1.10.12), and use (1.10.13), this means that we have to solve
essentially an equation of the form

(1.10.14)
(
Dt −

»
1 +D2

x

)
U = ε2

1 + tε2
e±it

√
3M(x)

for some function M in S(R) and zero initial data at t = 1. This is an equation
of the form (1.10.7), and as we have seen after (1.10.8), the delicate case is the
one corresponding to the phase t

√
3 in the exponential, so that in the sequel

we discuss only (1.10.14) with sign +. Then U is one of the contribution to
the approximate solution uapp

+ of (1.5.5), and we decompose it as U = U ′+U ′′

with essentially

(1.10.15) U ′(t, x) = i

∫ √t
1

ei(t−τ)
√

1+D2
x+it

√
3M(·) ε2dτ

1 + τε2
,

(1.10.16) U ′′(t, x) = i

∫ t

√
t
ei(t−τ)

√
1+D2

x+it
√

3M(·) ε2dτ

1 + τε2
.

This decomposition corresponds to uapp
+ = u′app

+ + u′′app
+ introduced before

(1.5.6) in section 1.5, and we may prove some good L∞ estimate for L+U
′′

(see (1.5.6)) and some good L2 estimate for L+U
′ (of the form (1.5.2)) for

times t = O(ε−4+0). This last L2 bound degenerates when t goes to ε−4, and
actually so does the pointwise estimate of U ′ that is obtained in Appendix A10
(see (A10.1.39) with ω = 1). We obtain there for U ′ a pointwise bound in

(1.10.17) (ε2
√
t)√
t

〈
t

1
2

(x
t
±
…

2
3

)〉−1

.
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Outside a conical neighborhood of the rays x = ∓t
»

2
3 , (1.10.17) reduces to

a ε2t−
1
2 decay (whatever the value of t). On the other hand, along the lines

x = ∓t
»

2
3 , we just get a bound in (ε2

√
t)√
t

, that provides a O(t−
1
2 ) decay only

for t = O(ε−4). Past such a time, estimate (1.10.17) will no longer remain
valid and, at the light of the results of [60] concerning (1.10.1) and [59], one
may not exclude that some log t√

t
behavior might hold along the two preceding

rays. Since, unlike in (1.10.1), we no not have just nonlinearities involving
rapidly space decaying coefficients, we do not know how such contributions
might be handled in the nonlinear problem.





CHAPTER 2

FIRST QUADRATIC NORMAL FORM

In section 1.2 of the preceding chapter, we have introduced an evolution
equation (1.2.13) for a function u+. This equation is of the type of (0.6.1) in the
introduction, except that its nonlinearity is non local (see (1.2.17), (1.2.18)).
In this chapter, we shall express these nonlinearities in terms of multilinear
operators, that are a special case of classes introduced in Appendix A9. This
will give us a general framework that will be stable under the reductions we
shall have to perform.

The nonlinearity in our equation contains quadratic terms. We have al-
ready explained in section 0.6 of the introduction that such terms have to be
eliminated by normal form. This is the goal of section 2.2 of this chapter,
following the guidelines explained in section 1.4 of Chapter 1.

2.1. Expression of the equation from multilinear operators

Let us define the classes of multilinear operators we shall use. They are
special cases of the operators introduced in Appendix A9, that will be useful
in the rest of the paper. We introduce in this section only the subclasses we
need in Chapter 2.

In this chapter, an order function on Rp is a function from Rp to R+ such
that there is some N0 in N so that, for any (ξ1, . . . , ξp), (ξ′1, . . . , ξ′p) in Rp

(2.1.1) M(ξ′1, . . . , ξ′p) ≤ C
p∏
j=1
〈ξj − ξ′j〉

N0M(ξ1, . . . , ξp).

(In Appendix A9, we shall allow order functions depending also on a space
variable x).
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Definition 2.1.1. — Let M be an order function on Rp, with p in N∗, κ in
N. We denote by S̃κ,0(M,p) the space of smooth functions

(y, ξ1, . . . , ξp)→ a(y, ξ1, . . . , ξp)
R× Rp −→ C

(2.1.2)

satisfying for any α in Np

(2.1.3) |∂αξ a(y, ξ)| ≤ CM(ξ)M0(ξ)κ|α|

and for any α in Np, any α′0 in N∗, any N in N

(2.1.4) |∂αξ ∂
α′0
y a(y, ξ)| ≤ CM(ξ)M0(ξ)κ|α|

(
1 +M0(ξ)−κ|y|

)−N
where M0(ξ) denotes

(2.1.5) M0(ξ1, . . . , ξp) =
( ∑

1≤i<j≤p
〈ξi〉2〈ξj〉2

)( p∑
i=1
〈ξi〉2

)− 1
2

and is equivalent to 1 + max2(|ξ1|, . . . , |ξp|), max2 standing for the second
largest of the arguments.

We denote by S̃′κ,0(M,p) the subspace of S̃κ,0(M,p) of those a for which
(2.1.4) holds including for α′0 = 0.

The symbols of Definition 2.1.1 are the special case of those defined in
Definition A9.1.2 of Appendix A9 when there is no x dependence in (A9.1.3).
We associate to them operators through the quantization rule
(2.1.6)

Op(a)(v1, . . . , vp) = 1
(2π)p

∫
eix(ξ1+···+ξp)a(x, ξ1, . . . , ξp)

p∏
j=1

v̂j(ξj) dξ1 . . . dξp

for any a in S̃κ,0(M,p), any test functions v1, . . . , vp. This is the rule defined in
(A9.1.9) of the appendix in the case of general symbols a(y, x, ξ), specialized
to the subclass of symbols that do not depend on x, as in Definition 2.1.1. We
shall also impose on our symbols the extra condition
(2.1.7) a(−y,−ξ1, . . . ,−ξp) = (−1)p−1a(y, ξ1, . . . , ξp).
Under this condition, the operator Op(a) sends a p-tuple of odd functions to
an odd function.

Let us state the symbolic calculus result that is proved in Appendix A9 (see
Corollary A9.2.6, (A9.2.25), (A9.2.26)) and that we shall use below.

Proposition 2.1.2. — (i) Let n′, n′′ be in N∗, n = n′+n′′−1, M ′(ξ1, . . . , ξn′),
M ′′(ξn′ , . . . , ξn) be two order functions. Let a (resp. b) be in S̃κ,0(M ′, n′) (resp.
S̃κ,0(M ′′, n′′)). Define
(2.1.8) M(ξ1, . . . , ξn) = M ′(ξ1, . . . , ξn′−1, ξn′ + · · ·+ ξn)M ′′(ξn′ , . . . , ξn).
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There are ν ∈ N, depending only on M ′,M ′′, and a symbol c′1 in S̃′κ,0(MMνκ
0 , n)

such that if
c(y, ξ1, . . . , ξn) = a(y, ξ1, . . . , ξn′−1, ξn′ + · · ·+ ξn)b(y, ξn′ , . . . , ξn)

+c′1(y, ξ1, . . . , ξn)
(2.1.9)

then for all test functions v1, . . . , vn

(2.1.10) Op(a)[v1, . . . , vn′−1,Op(b)(vn′ , . . . , vn)] = Op(c)[v1, . . . , vn].
Moreover, if a, b satisfy (2.1.7), so do c and c′1.

(ii) If a is in S̃0,0(M, 1), there is a symbol a∗ in S̃0,0(M, 1) such that
Op(a∗) = Op(a)∗. Moreover, if a satisfies (2.1.7), so does a∗.

We shall use the above class of symbols to re-express equation (1.2.13).

Proposition 2.1.3. — For any multiindex I = (i1, . . . , ip) in {−,+}p with
2 ≤ |I| = p ≤ 3, one may find symbols m0,I in S̃0,0(

∏p
j=1 〈ξj〉

−1, p), satisfying
(2.1.7), for any multiindex I with 1 ≤ |I| = p ≤ 2, one may find symbols m′1,I
in S̃′0,0(

∏p
j=1 〈ξj〉

−1, p) satisfying (2.1.7), such that equation (1.2.13) may be
written (

Dt − p(Dx)
)
u+ = F 2

0 [a] + F 3
0 [a]

+
∑

2≤|I|≤3
Op(m0,I)[uI ]

+ a(t)
∑

1≤|I|≤2
Op(m′1,I)[uI ]

+ a(t)2 ∑
|I|=1

Op(m′2,I)[uI ]

(2.1.11)

where uI is defined in (1.2.11), (1.2.12).

Proof. — Consider first the terms in the right hand side of (1.2.13) that do
not depend on a i.e. with notation (1.2.15)

∑
|I|=2 F

2
2,I [uI ] and

∑
|I|=3 F

3
3,I [uI ].

These terms are given by the first equality (1.2.17) and (1.2.18). A symbol of
the form κ(y)

∏2
`=1 b(y, ξj)p(ξj)−1 or

∏3
`=1 b(y, ξj)p(ξj)−1 belongs respectively

to S̃0,0
(∏2

`=1 〈ξj〉
−1, 2

)
, S̃0,0

(∏3
`=1 〈ξj〉

−1, 3
)

and because of property (A8.1.9)
satisfied by b and the oddness of κ, condition (2.1.7) holds. If we apply the
results of Proposition 2.1.2, we conclude that the contributions to (1.2.13) that
do not depend on a have the structure of the first sum in the right hand side
of (2.1.11).

Consider next terms of the form a(t)F 2
1,I [uI ], |I| = 1 or a(t)F 3

2,I [uI ], |I| = 2
in (1.2.15). They may be expressed from the first line in (1.2.16) and the second
line in (1.2.17). Since Y is rapidly decaying, the symbols Y (y)κ(y)b(y, ξ)p(ξ)−1

and Y (y)
∏2
`=1 b(y, ξj)p(ξj)−1 are in S̃′0,0(〈ξ〉−1, 1) and S̃′0,0(

∏2
j=1 〈ξj〉

−1, 2).



68 CHAPTER 2. FIRST QUADRATIC NORMAL FORM

Because of the oddness of Y, κ and (A8.1.9), they satisfy (2.1.7). Using again
the composition result of Proposition 2.1.2, and noticing that as soon as at
least one of the symbols a and b in (2.1.9) is in the S̃′ class, so is the composed
symbol c, we conclude that the linear term in a(t) in the right hand side of
(1.2.13) is given by the second sum in (2.1.11).

In the same way, the contributions a(t)2F 3
1,I [uI ] coming from the second

line (1.2.15) with j = 1, with F 3
1,I given by (1.2.16), provide the last sum in

(2.1.11). This concludes the proof.

In the right hand side of (2.1.11), terms with higher degree of homogeneity
in (a, u±) will have better decay estimates. Moreover, an expression of the
form Op(m′)[uI ] with |I| = p and a symbol m′ in the class S̃′0,0(M,p), i.e.
with rapid decay in y, will have better time decay than a term Op(m)[uI ]
with |I| = p and a symbol m in S̃0,0(M,p). Consequently, we expect that the
terms in

∑
|I|=2 Op(m0,I)[uI ] will be, among all u±-dependent terms in the

right hand side of (2.1.11), those having the worst time decay. In next section,
we shall get rid of these terms by normal form.

2.2. First quadratic normal form

Proposition 2.2.1. — Define from the symbols m0,I , |I| = 2 of Proposi-
tion 2.1.3 new functions

(2.2.1) m̃0,I(y, ξ1, ξ2) = m0,I(y, ξ1, ξ2)
[
−p(ξ1 + ξ2) + i1p(ξ1) + i2p(ξ2)

]−1

if I = (i1, i2). Then m̃0,I belongs to S̃1,0
(∏2

j=1 〈ξj〉
−1M0(ξ1, ξ2), 2

)
. Moreover,

there are new symbols (m′0,I)|I|=2, belonging to S̃′1,0

(∏2
j=1 〈ξj〉

−1M0(ξ), 2
)

,

(m′j,I)1≤|I|≤4−j, 1 ≤ j ≤ 3, in S̃′1,0

(∏|I|
j=1 〈ξj〉

−1M0(ξ)ν , |I|
)

for some ν and

new symbols (m0,I)3≤|I|≤4 belonging to S̃1,0

(∏|I|
j=1 〈ξj〉

−1M0(ξ), |I|
)

such that

(
Dt − p(Dx)

)[
u+ −

∑
|I|=2

Op(m̃0,I)[uI ]
]

= F 2
0 [a] + F 3

0 [a]

+
∑

3≤|I|≤4
Op(m0,I)[uI ]

+
∑
|I|=2

Op(m′0,I)[uI ]

+
3∑
j=1

a(t)j
∑

1≤|I|≤4−j
Op(m′j,I)[uI ].

(2.2.2)
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Finally, all above symbols satisfy (2.1.7).

Proof. — We notice first that

(2.2.3) 〈ξ1〉+ 〈ξ2〉 − 〈ξ1 + ξ2〉 = 1 + 2(〈ξ1〉〈ξ2〉 − ξ1ξ2)
〈ξ1〉+ 〈ξ2〉+ 〈ξ1 + ξ2〉
≥ c
(
1 + max2(|ξ1|, |ξ2|)

)−1 ≥ cM0(ξ1, ξ2)−1.

This implies that

〈ξ1 + ξ2〉+ 〈ξ2〉 − 〈ξ1〉 ≥ c
(
1 + max2(|ξ1 + ξ2|, |ξ2|)

)−1

which is larger than the right hand side of (2.2.3), except when |ξ2| � |ξ1|.
But then the left hand side is larger than one. Consequently, we deduce from
these inequalities that, for any sign i1, i2, we have for any α in N2

(2.2.4)
∣∣∣∂αξ [〈ξ1 + ξ2〉+ i1〈ξ1〉+ i2〈ξ2〉

]−1
∣∣∣ ≤ CαM0(ξ1, ξ2)1+|α|.

This implies that m̃0,I belongs to the wanted class of symbols. It obeys trivially
(2.1.7) since m0,I does.

Denoting for |I| = 2, uI = (ui1 , ui2) as in (1.2.11), we compute

(2.2.5)
(
Dt − p(Dx)

)[
Op(m̃0,I)[uI ]

]
= −Op(p(ξ)) ◦Op(m̃0,I)[uI ]

+ Op(m̃0,I)[i1Op(p(ξ))ui1 , ui2 ] + Op(m̃0,I)[ui1 , i2Op(p(ξ))ui2 ]
+ Op(m̃0,I)[(Dt − i1p(Dx))ui1 , ui2 ]

+ Op(m̃0,I)[ui1 , (Dt − i2p(Dx))ui2 ].
By Corollary A9.2.7, the sum of the first three terms in the right and side
may be written as a contribution to

∑
|I|=2 Op(m′0,I)[uI ] in (2.2.2) plus the

expression
(2.2.6) Op

(
(−p(ξ1 + ξ2) + i1p(ξ1) + i2p(ξ2))m̃0,I

)
[uI ].

By (2.2.1), (2.2.6) will cancel the term
∑
|I|=2 Op(m0,I)[uI ] in (2.1.11). Since

the other terms in the right hand side of (2.1.11) are still present in (2.2.2), we
see that to conclude the proof, we just need to show that the last two terms in
(2.2.5) provide as well contributions to the three sums in the right hand side
of (2.2.2). We express (Dt∓ p(Dx))u± from (2.1.11) (or its conjugate). To fix
ideas, consider for instance
(2.2.7) Op(m̃0,(+,i2))[(Dt − p(Dx))u+, ui2 ].

If we replace (Dt − p(Dx))u+ by the contribution F 2
0 [a] + F 3

0 [a], which by
(1.2.14) may be written a(t)2Y2 + a(t)3Y3, with odd functions Y2, Y3 in S(R),
we see applying Corollary A9.2.8 of Appendix A9 that (2.2.7) will provide
contributions to the

∑3
j=2 a(t)j

∑
|I|=1 Op(m′j,I)[uI ] term in (2.2.2).
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We replace next (Dt − p(Dx))u+ in (2.2.7) by the a(t) or a(t)2 terms in
(2.1.11). We use (i) of Proposition 2.1.2, noticing that if in (2.1.9), either a is
in S̃′κ,0(M ′, n′) or b is in S̃′κ,0(M ′′, n′′), then c is in S̃′κ,0(M,n). Consequently, we
get contributions to a(t)

∑
2≤|I|≤3 Op(m′1,I)[uI ] and a(t)2∑

|I|=2 Op(m′1,I)[uI ]
in (2.2.2). Finally, if we replace in (2.2.7) (Dt−p(Dx))u+ by the first sum in the
right hand side of (2.1.11), we obtain contributions to

∑
3≤|I|≤4 Op(m0,I [uI ])

in (2.2.2) using again (i) of Proposition 2.1.2. This concludes the proof as
property (2.1.7) of the symbols is preserved under composition.



CHAPTER 3

CONSTRUCTION OF APPROXIMATE
SOLUTIONS

In the preceding chapter, we have performed a quadratic normal form in
order to reduce ourselves to an equation of the form (2.2.2). The right hand
side of this equation contains a source term and in section 3.1 below, we
construct an approximate solution solving the linear equation whose right
hand side is essentially this source term. We explained this part of the proof in
section 1.5, see equations (1.5.4), (1.5.5). The construction of the approximate
solution relies on Appendix A10 below.

On the other hand, because of the coupling between a dispersive equation
and the evolution equation for the bound state, we have seen in section 1.2
that we have also to study an ordinary differential equation (1.2.20), which
is equivalent to the first equation in (1.1.9). We have explained at the end
of section 1.5 what is the form of that ODE, and how we can show that its
solutions are global and decaying using the Fermi Golden Rule. Section 3.2
below is devoted to the asymptotic analysis of this ODE. Of course, the study
is more technical than in the presentation in Chapter 1 since we have to
fully take into account those terms in the right hand side that come from the
interaction between the bound state and the dispersive part of our problem.

3.1. Approximate solution to the dispersive equation

The proof of our main theorem being done by bootstrap, we shall assume
that we know, on some interval [1, T ], an approximation of the function t →
a(t) that is present in the right hand side of (2.2.2).

Let ε0 ∈]0, 1], A,A′ > 1, θ′ ∈]0, 1
2 [ (close to 1

2) be given. Let T ∈ [1, ε−4].
We shall denote for t ≥ 1, ε ∈]0, ε0[

(3.1.1) tε = ε−2〈tε2〉
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and assume given functions
g : [1, T ]→ C, ũ± : [1, T ]× R→ C(3.1.2)

t→ g(t) (t, x)→ ũ±(t, x)
and x→ Z(x) in S(R), real valued, satisfying the following conditions:

(3.1.3) |g(t)| ≤ At−
1
2

ε , |∂tg(t)| ≤ A′
[
t
− 3

2
ε + (ε2

√
t)

3
2 θ
′
t−

3
2
]
, t ∈ [1, T ]

(3.1.4) |〈Z, ũ±(t, ·)〉| ≤ (ε2
√
t)θ
′
t−

3
4 , t ∈ [1, T ].

Moreover, we assume given W̃ a neighborhood of {−1, 1} in R and for any λ
in R−W, two functions
(3.1.5) t→ ϕ±(λ, t), t→ ψ±(λ, t)

satisfying for any t ∈ [1, T ], any λ in R− W̃

(3.1.6) |ϕ±(λ, t)| ≤ (ε2
√
t)θ
′
t−

1
2 , |ψ±(λ, t)| ≤ (ε2

√
t)θ
′
t−1

and solving the equation
(3.1.7) (Dt − λ)ϕ±(λ, t) = 〈Z, ũ±〉+ ψ±(λ, t).
We define from the above data

aapp
+ (t) = eit

√
3

2 g(t)

+ ω2g(t)2eit
√

3 + ω0|g(t)|2 + ω−2g(t)2
e−it

√
3

+ eit
√

3
2
[
g(t)ϕ+(0, t)− g(t)ϕ−(0, t)

]
+ e−it

√
3

2
[
g(t)ϕ+(

√
3, t)− g(t)ϕ−(

√
3, t)

]
,

(3.1.8)

where ω0, ω2, ω−2 are given complex constants. We set

(3.1.9) aapp
− = −aapp

+ , aapp(t) =
√

3
3
(
aapp

+ (t)− aapp
− (t)

)
.

We assume given, as in the statement of Proposition 2.2.1, symbols m′1,I for
|I| = 1 (i.e. I = + or −) belonging to the class S̃′1,0(〈ξ〉−1, 1) satisfying (2.1.7).
We want to construct an approximate solution uapp

+ to the equation

(3.1.10)
(
Dt − p(Dx)

)
uapp

+ = F 2
0 [aapp] + F 3

0 [aapp]

+ aapp(t)
∑
|I|=1

Op(m′1,I)[u
app
I ]

that is deduced from (2.2.2) computing the source terms F 2
0 , F

3
0 at aapp, and

retaining from the other terms in the right hand side only those that are linear
both in a and u±.
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Before stating the main proposition, let us re-express the source term in
(3.1.10).

Lemma 3.1.1. — Under the preceding assumptions on aapp, one may rewrite
(3.1.11) F 2

0 [aapp] + F 3
0 [aapp] = I1 + I2 + I3 +R(t, x)

where

(3.1.12) I1(t, x) =
∑

j∈{−2,0,2}
eijt

√
3

2 Mj(t, x)

for smooth odd functions of x, Mj(t, x), satisfying for any α,N in N

|∂αξ M̂j(t, ξ)| ≤ Cα,N t−1
ε 〈ξ〉

−N ,

|∂αξ ∂tM̂j(t, ξ)| ≤ Cα,N 〈ξ〉−N t
− 1

2
ε

[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′](3.1.13)

with constants Cα,N depending on A,A′ in (3.1.3), (3.1.4),
where

(3.1.14) I2(t, x) =
∑

j∈{−3,−1,1,3}
eijt

√
3

2 Mj(t, x)

for smooth odd functions of x satisfying

|∂αξ M̂j(t, ξ)| ≤ Cα,N t
− 3

2
ε 〈ξ〉−N

|∂αξ ∂tM̂j(t, ξ)| ≤ Cα,N 〈ξ〉−N t−1
ε

[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′]
,

(3.1.15)

and where I3 is a sum of terms

(3.1.16) I3(t, x) =
1∑

j=−1
eijt
√

3M3
j (t, x)

where M3
j are odd and satisfy the following conditions: First, for any j with

|j| ≤ 1, any α,N

|∂αξ M̂3
j (t, ξ)| ≤ Cα,N t−1

ε t−
1
2 〈ξ〉−N

|∂αξ ∂tM̂3
j (t, ξ)| ≤ Cα,N t−1

ε t−
3
4 〈ξ〉−N .

(3.1.17)

Moreover, for j = 1, and when ξ is in a small neighborhood W of the set
{ξ;
√

1 + ξ2 =
√

3}, one may find functions Φ̃1(t, ξ), Ψ̃1(t, ξ), satisfying

|Φ̃1(t, ξ)| ≤ Ct−1
ε t−

1
2

|Ψ̃1(t, ξ)| ≤ Ct−1
ε t−1

(3.1.18)

such that for ξ in W

(3.1.19) DtM̂
3
1 (t, ξ) =

(
Dt + (

√
3−

√
1 + ξ2)

)
Φ̃1(t, ξ) + Ψ̃1(t, ξ).
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A similar decomposition holds for xM3
1 instead of M3

1 .
Finally, the remainder R in (3.1.11) satisfies for any α,N in N

(3.1.20) |∂αxR(t, x)| ≤ Cα,N t−1t−1
ε 〈x〉

−N

and we have for Mj(t, x) in (3.1.12) the following explicit expressions:
(3.1.21)
M2(t, x) = 1

3g(t)2Y2(x), M0(t, x) = 2
3 |g(t)|2Y2(x), M−2(t, x) = 1

3g(t)2
Y2(x)

where Y2 is given by

(3.1.22) Y2(x) = b(x,Dx)∗[κ(x)Y (x)2] ∈ S(R).

Moreover, the constants in all above inequalities depend only on A,A′ in
(3.1.3), (3.1.4).

Proof. — Consider first the contribution F 2
0 [aapp] that is given according to

(1.2.14), (3.1.9) and (3.1.22) by
1
3
[
aapp

+ + aapp
+
]2
Y2(x).

We replace aapp
+ by its expansion (3.1.8). We get terms of the following form

(up to irrelevant multiplicative constants):

(3.1.23) eit
√

3g(t)2Y2, |g(t)|2Y2, e
−it
√

3g(t)2
Y2,

(3.1.24) ei(2`−3)t
√

3
2 g(t)`g(t)3−`

Y2, 0 ≤ ` ≤ 3,

and

eit
√

3g2(t)
[
ϕ+(0, t)− ϕ−(0, t) + ϕ+(

√
3, t)− ϕ−(

√
3, t)

]
Y2

g0(t)Re
[
ϕ+(0, t)− ϕ−(0, t) + ϕ+(

√
3, t)− ϕ−(

√
3, t)

]
Y2

e−it
√

3g−2(t)
[
ϕ+(0, t)− ϕ−(0, t) + ϕ+(

√
3, t)− ϕ−(

√
3, t)

]
Y2

(3.1.25)

with g2j , j = −1, 0, 1 satisfying, according to (3.1.3), the bounds

(3.1.26) |g2j(t)| ≤ C(A)t−1
ε , |∂tg2j(t)| ≤ C(A,A′)t−

1
2

ε

[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′]
,

and expressions that are, according to (3.1.3), (3.1.6), O(t−
3
2

ε t−
1
2 〈x〉−N ) or

O(t−1
ε t−1〈x〉−N ) for any N , as well as their ∂x derivatives, so that they will

satisfy (3.1.20). Terms (3.1.23) give I1 with actually the explicit expres-
sion (3.1.21) for M2,M0,M−2. Terms (3.1.24) provide contributions to I2
in (3.1.14).

To study terms in (3.1.25) that will provide I3, let us define

(3.1.27) ϕ̃±(λ, t) = e−iλtϕ±(λ, t).
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By (3.1.7), we have

(3.1.28) Dtϕ̃±(λ, t) = 〈Z, ũ±〉e−iλt + ψ±(λ, t)e−iλt

Then all contributions in (3.1.25) may be written under the form eijt
√

3M±j (t, x),
j = −1, 0, 1, with M±j given by linear combinations of expressions

eit
√

3g2`(t)ϕ̃±(δ
√

3, t)Y2, `+ δ = 1, 0 ≤ δ, ` ≤ 1, if j = 1

g−2`(t)ϕ̃±(`
√

3, t)Y2, g2`(t)ϕ̃±(`
√

3, t)Y2, ` = 0, 1, if j = 0

e−it
√

3g−2`(t)ϕ̃±(δ
√

3, t)Y2, `+ δ = 1, 0 ≤ δ, ` ≤ 1, if j = −1.

(3.1.29)

Since by (3.1.28), (3.1.6), (3.1.7), (3.1.4)

|Dtϕ̃±(δ
√

3, t)| ≤ Ct−
3
4 (ε2
√
t)θ
′

we deduce from (3.1.3), (3.1.6) that (3.1.17) holds for M3
j which is a combi-

nation of M+
j and M−j , −1 ≤ j ≤ 1. In the case j = 1, we have to obtain

(3.1.19) i.e. to find functions Φ̃±1,`, Ψ̃±1,`, ` = 0, 1 satisfying (3.1.18), such that
if we define according to the first line in (3.1.29)

(3.1.30) M±1,`(t, x) = g2`(t)ϕ̃±
(
(1− `)

√
3, t
)
Y2(x),

for ξ in the neighborhood W of {−
√

2,
√

2}, we have

(3.1.31) DtM̂
±
1,`(t, ξ) =

(
Dt +

(√
3−

√
1 + ξ2

))
Φ̃±1,`(t, ξ) + Ψ̃±1,`(t, ξ).

Let us apply (3.1.7) with λ replaced by λ(ξ) =
√

1 + ξ2 − `
√

3 and ξ ∈ W, so
that λ(ξ) remains close to Z

√
3, and thus outside a neighborhood of {−1, 1}.

We may then find functions ϕ±(λ(ξ), t), ψ±(λ(ξ), t) such that

(3.1.32)
(
Dt −

√
1 + ξ2 + `

√
3
)
ϕ±(λ(ξ), t) = 〈Z, ũ±〉+ ψ±(λ(ξ), t)

with estimates of the form

(3.1.33) |ϕ±(λ(ξ), t)| ≤ (ε2
√
t)θ
′
t−

1
2 , |ψ±(λ(ξ), t)| ≤ (ε2

√
t)θ
′
t−1

uniformly for ξ in W. Define

Φ̃±1,`(t, ξ) = ϕ±(λ(ξ), t)e−it(1−`)
√

3g2`(t)Ŷ2(ξ).

Then (3.1.33) implies that(
Dt −

(√
1 + ξ2 −

√
3
))

Φ̃±1,`(t, ξ) = 〈Z, ũ±〉e−it(1−`)
√

3g2`(t)Ŷ2(ξ)

+ψ±(λ(ξ), t)e−it(1−`)
√

3g2`(t)Ŷ2(ξ)

+ϕ±(λ(ξ), t)e−it(1−`)
√

3Dtg2`(t)Ŷ2(ξ).

(3.1.34)
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On the other hand, (3.1.30), (3.1.28), (3.1.6) and (3.1.26) imply that

(3.1.35) DtM̂
±
1,`(t, ξ) = 〈Z, ũ±〉e−it(1−`)

√
3g2`(t)Ŷ2(ξ) +R±1,`(t, ξ)

with

(3.1.36) |∂αξ R±1,`(t, ξ)| ≤ Ct
−1t−1

ε (ε2
√
t)θ
′
〈ξ〉−N

for any N . Making the difference between (3.1.34) and (3.1.35), and using
(3.1.3), (3.1.6), we obtain that (3.1.31) holds, with functions Φ±1,`, Ψ±1,` satis-
fying (3.1.18) since the last two terms in (3.1.34) and (3.1.36) are

O(t−1t−1
ε + t

− 1
2

ε t−1(ε2
√
t)

3
2 θ
′
) = O(t−1

ε t−1)
for t ≤ ε−4.

As xM±1,`(t, x) is also of the form (3.1.30), with Y2 replaced by xY2, the
same reasoning applies to that function and shows that (3.1.19) holds as well
for xM3

1 (with different functions Φ̃1, Ψ̃1 in the right hand side).
We have thus obtained that the first term F 2

0 [aapp] in (3.1.11) has the wanted
structure.

To study F 3
0 [aapp], we notice that by (1.2.14), (3.1.9), (3.1.8), it may be

written as a linear combination of expressions of the form (3.1.24) (with Y2
replaced by another function in S(R)), that have been already treated, and
of products of a S(R) function by expressions that are, by (3.1.3), (3.1.6),
O(t−1

ε t−1), so that form part of the remainder term (3.1.20).

We may now state the main proposition of this section.

Proposition 3.1.2. — Assume that properties (3.1.3)-(3.1.7) hold. One may
construct a function uapp

+ : [1, T ]×R→ C (where T < ε−4 is the length of the
interval on which aapp

+ is defined by (3.1.8)), solving the equation(
Dt − p(Dx)

)
uapp

+ = F 2
0 (aapp) + F 3

0 (aapp)

+ aapp ∑
|I|=1

Op(m′1,I)(u
app
I ) +R(t, x)

uapp
+ |t=1 = 0

(3.1.37)

where m′1,I is the symbol in the last sum of (2.2.2), where the remainder R
satisfies bounds

(3.1.38) |∂αxR(t, x)| ≤ Cα,N t−1
ε t−1 log(1 + t)〈x〉−N

for any α,N in N, with constants Cα,N (A,A′) depending on the constants A,A′
in (3.1.3), and where uapp

+ has the following structure: One may decompose
uapp

+ = u′app
+ + u′′app

+ , where u′app
+ satisfies for any r in N

(3.1.39) ‖u′app
+ (t, ·)‖Hr ≤ C(A,A′)ε2t

1
4
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(3.1.40) ‖u′app
+ (t, ·)‖W r,∞ ≤ C(A,A′)ε2

(3.1.41) ‖L+u
′app
+ (t, ·)‖Hr ≤ C(A,A′)t

1
4
[
(ε2
√
t) + (ε2

√
t)

7
8 ε

1
8
]

where

(3.1.42) L+ = x+ tp′(Dx),

and where u′′app
+ satisfies for any r

(3.1.43) ‖u′′app
+ (t, ·)‖Hr ≤ C(A,A′)ε

Å
tε2

〈tε2〉

ã 1
2

(3.1.44) ‖u′′app
+ (t, ·)‖W r,∞ ≤ C(A,A′)ε2 log(1 + t)2

(3.1.45) ‖L+u
′′app

+ (t, ·)‖W r,∞ ≤ C(A,A′) log(1 + t) log(1 + ε2t).

For the action of the half-Klein-Gordon operator on u′app
+ , we have estimates

(3.1.46) ‖(Dt − p(Dx))u′app
+ (t, ·)‖Hr ≤ C(A,A′)ε2t−

3
4

(3.1.47) ‖L+(Dt − p(Dx))u′app
+ (t, ·)‖Hr ≤ C(A,A′)t−

3
4
[
(ε2
√
t) + (ε2

√
t)

7
8 ε

1
8
]
.

Moreover, we may write also another decomposition of uapp
+ , of the form

(3.1.48) uapp
+ (t, x) = uapp,1

+ (t, x) + Σ+(t, x)

where uapp,1
+ is a sum

(3.1.49) uapp,1
+ (t, x) =

∑
j∈{−2,0,2}

Uj,+(t, x)

where Uj,+ solves the equation(
Dt − p(Dx)

)
Uj,+ = eitj

√
3

2 Mj(t, x)
Uj,+|t=1 = 0,

(3.1.50)

with source term Mj given by (3.1.21). The second contribution Σ+ in the
right hand side of (3.1.48) may be also written as a sum

∑3
j=−3 U j(t, x), with

U solving an equation of the form (3.1.50), with source terms eijt
√

3
2 M j(t, x),

where M j satisfies for any α,N

(3.1.51) |∂αξ M̂ j(t, ξ)| ≤ Cα,N (A,A′)t−1
ε t−

1
2 〈ξ〉−N
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and for any symbol m′ in the class S̃′0,0(〈ξ〉−1, 1) of Definition 2.1.1, one has
for any α, N in N estimates

(3.1.52) |xN∂αxOp(m′)(Σ+(t, x))|

≤ C(A,A′)
[
t
− 3

2
ε + t−1t

− 1
2

ε + t−1ε2
]

log(1 + t).

In addition, all constants C(A,A′) in the above inequality depend only on A,A′
in (3.1.3), (3.1.4).

Moreover, uapp,1
+ may be decomposed as uapp,1

+ = u′app,1
+ + u′′app,1

+ , with
u′app,1

+ (resp. u′′app,1
+ ) satisfying (3.1.39)-(3.1.41) and (3.1.46), (3.1.47) (resp.

(3.1.43)-(3.1.45)).
Finally, all functions above are odd.

Proof. — The proof of the proposition will be divided in several steps, and
use the results of Appendix A10 below.
• First step
We have decomposed in (3.1.11) the source term of (3.1.37) F 2

0 [aapp] +
F 3

0 [aapp]. In this first step, we construct a first contribution uapp,1
+ to the

solution of (3.1.37) taking as forcing term the contribution I1 given by (3.1.12)
to (3.1.11), i.e. we solve, with the notation (3.1.12)(

Dt − p(Dx)
)
uapp,1

+ =
∑

j∈{−2,0,2}
eitj

√
3

2 Mj(t, x)

uapp,1
+ |t=1 = 0.

(3.1.53)

The functions Mj in the right hand side are given by (3.1.21), satisfy (3.1.13),
and one may thus write uapp,1

+ under the form (3.1.49), with Uj,+ given as the
solution of (3.1.50). We apply Appendix A10. The solution of (3.1.50) is given
by (A10.1.2) with λ = j

√
3

2 and may be decomposed according to (A10.1.3) in
U ′j,+ + U ′′j,+. We define

(3.1.54) u′app,1
+ =

∑
j∈{−2,0,2}

U ′j,+, u
′′app,1

+ =
∑

j∈{−2,0,2}
U ′′j,+

and check that they give contributions to u′app
+ , u′′app

+ that satisfy (3.1.39)-
(3.1.41) and (3.1.43)-(3.1.45). By (3.1.13), the Mj ’s in the right hand side
of (3.1.53) satisfy (A10.1.6) with ω = 1 i.e. Assumption (H1)1 holds. By (i)
of Proposition A10.1.1, we thus get bounds of the form (3.1.39)-(3.1.41), and
by (i) of Proposition A10.1.2, we have (3.1.43)-(3.1.45). We shall define the
contribution uapp,1

+ in (3.1.48) by

(3.1.55) uapp,1
+ = u′app,1

+ + u′′app,1
+
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i.e. by the right hand side of (3.1.49). Moreover, as Mj is odd in x, so are
Uj,+, U

′
j,+, U

′′
j,+.

• Second step
We consider now the term involving Op(m′1,I) in the right hand side of

(3.1.37), where we replace uapp
± by uapp,1

± given by (3.1.49) (with uapp,1
− =

−uapp,1
+ ) i.e.

(3.1.56) aapp(t)
∑
|I|=1

∑
j∈{−2,0,2}

Op(m′I,I)(Uj,I)

with Uj,− = −U j,+. Recall that we decomposed Uj,+ = U ′j,+ + U ′′j,+ according
to (A10.1.3). Let us examine first the contribution coming from Op(m′1,I)(U ′′j,I)
to (3.1.56). The symbol m′1,I lies in S̃′1,0(〈ξ〉−1Mν

0 , 1), which is contained in
S̃′0,0(1, 1) (recall that M0 ≡ 1 when there is only one ξ variable), and it satisfies
(2.1.7). Since U ′′j,+ is defined by (A10.1.3) with λ = j

√
3

2 from some odd Mj ,
we may apply Proposition A10.2.1, with Mj satisfying Assumption (H1)1 i.e.
(A10.1.6) with ω = 1 according to (3.1.13). We shall thus get from (A10.2.2)

(3.1.57) Op(m′1,+)(U ′′j,+) = eijt
√

3
2 M

(1)
j,+(t, x) + r+(t, x)

with for any α,N , by (A10.2.4),

(3.1.58) |∂αx r(t, x)| ≤ Cα,N ε2t−1 log(1 + t)〈x〉−N

and where M (1)
j,+ satisfies by (A10.2.3)

|∂αxM
(1)
j,+(t, x)| ≤ Cα,N t−1

ε 〈x〉
−N

|∂αx ∂tM
(1)
j,+(t, x)| ≤ Cα,N t

− 1
2

ε

[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′]
〈x〉−N .

(3.1.59)

By conjugation, we shall have also

(3.1.60) Op(m′1,+)(U ′′j,−) = e−ijt
√

3
2 M

(1)
j,−(t, x) + r−(t, x)

with M (1)
j,− (resp. r−) satisfying also (3.1.59) (resp. (3.1.58)). We plug (3.1.57),

(3.1.60) in (3.1.56) and use the expression (3.1.9), (3.1.8) of aapp. We get that
(3.1.56) is a sum of quantities of the following form:

– Terms of the form

(3.1.61) eij
′t
√

3
2 M

(1)
j′ (t, x), j′ = −3,−1, 1, 3

coming from the product of the first term in (3.1.8) (or its conjugate) and of
the M (1)

j,± terms in (3.1.57), (3.1.60). One gets thus smooth odd functions of
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x, that satisfy by (3.1.59), (3.1.3) estimates

|∂αxM
(1)
j′ (t, x)| ≤ Cα,N t

− 3
2

ε 〈x〉−N

|∂αx ∂tM
(1)
j′ (t, x)| ≤ Cα,N t−1

ε

[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′]
〈x〉−N .

(3.1.62)

– Terms satisfying (3.1.38) and thus contributing to R in (3.1.37). These
terms come from the product of (3.1.57) or (3.1.60) with all terms in the right
hand side of (3.1.8), except eit

√
3

2 g(t) (and its conjugate), and from the product
of aapp with r± in (3.1.57), (3.1.60). As ε2t−1t

− 1
2

ε ≤ Ct−1t−1
ε if t ≤ ε−4, we do

get that these terms satisfy (3.1.38).
– Terms of the form

(3.1.63) aapp(t)
∑
|I|=1

∑
j∈{−2,0,2}

Op(m′1,I)(U ′j,I)

where U ′j,I is given by (A10.1.3) in terms of Mj satisfying Assumption (H1)ω
with ω = 1. We shall see in fifth step below that (3.1.63) satisfies also (3.1.38)
and thus contributes to R.
It follows thus from (3.1.53) and the fact that (3.1.56) is given by (3.1.61) up
to remainders, that(

Dt − p(Dx)
)
uapp,1

+ − aapp(t)
∑
|I|=1

Op(m′1,I)(u
app,1
I )

= I1 − I(1)
2 +R(t, x)

(3.1.64)

where I1 is given by (3.1.12), I(1)
2 is the sum of terms (3.1.61) and R satisfies

(3.1.38). Making the difference between (3.1.37) and (3.1.64), we get, taking
(3.1.11) into account

(3.1.65)
(
Dt − p(Dx)

)
[uapp

+ − uapp,1
+ ]

= I2 + I3 + I
(1)
2 + aapp(t)

∑
|I|=1

Op(m′1,I)(u
app
I − uapp,1

I ) +R(t, x),

with R satisfying (3.1.38). Notice that by (3.1.62), I(1)
2 has the same form

as I2 given by (3.1.14), (3.1.15) so that we shall be able to treat both terms
altogether.
• Third step
We now construct an approximate solution in order to eliminate I2 + I

(1)
2

in the right hand side of (3.1.65). Define uapp,2
+ as the solution to the linear
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equation (
Dt − p(Dx)

)
uapp,2

+ = I2 + I
(1)
2

uapp,2
+ |t=1 = 0.

(3.1.66)

As the right hand side has structure (3.1.14) with Mj satisfying (3.1.15), we
may express the solution as a sum

∑
j∈{−3,−1,1,3} Uj,+(t, x), where Uj,+ is ob-

tained from the j-th term in (3.1.14) and expressed under form (A10.1.2)
with λ = j

√
3

2 . By (A10.1.3), Uj,+ = U ′j,+ + U ′′j,+ and since (3.1.15) shows
that (A10.1.6) holds with ω = 3

2 , Assumption (H1) 3
2

holds. By Proposi-
tion A10.1.1, bounds (A10.1.17)-(A10.1.19) with ω = 3

2 hold for U ′j,+, and by
Proposition A10.1.2, (A10.1.23), (A10.1.24) and (A10.1.26) are true. If we set

(3.1.67) u′+
app,2 =

∑
j∈{−3,−1,1,3}

U ′j,+, u
′′
+

app,2 =
∑

j∈{−3,−1,1,3}
U ′′j,+

this shows that these functions provide to u′app
+ , u′′app

+ contributions satisfying
estimates (3.1.39)-(3.1.41) and (3.1.43)-(3.1.45).

Let us study

(3.1.68) aapp(t)
∑
|I|=1

Op(m′1,I)(u
app,2
I ).

If we apply Proposition A10.2.1, using that Assumption (H1) 3
2

holds, we get

from (A10.2.2), (A10.2.3), (A10.2.4) and the fact that aapp(t) is O(t−
1
2

ε ), that
the contribution of u′′+app,2 to (3.1.68) is O(t−1

ε t−1〈x〉−N ) i.e. may be included
in R satisfying (3.1.38). On the other hand, if we replace in (3.1.68) uapp,2

+ by
u′+

app,2, we shall get terms of the form (3.1.63), with U ′j,I given by (A10.1.3) in
terms of Mj satisfying Assumption (H1)ω with ω = 3

2 . These terms are thus
better than those in (3.1.63) and the fact that they fulfill remainder estimates
(3.1.38) will be seen in Step 5 below.

Consequently, we have shown that(
Dt − p(Dx)

)
uapp,2

+ − aapp(t)
∑
|I|=1

Op(m′1,I)(u
app,2
I )

= I2 + I
(1)
2 +R(t, x)

(3.1.69)

withR satisfying (3.1.38). Making the difference between (3.1.65) and (3.1.69),
we get

(3.1.70)
(
Dt − p(Dx)

)[
uapp

+ − uapp,1
+ − uapp,2

+
]

= I3 + aapp(t)
(∑
|I|=1

Op(m′1,I)(u
app
I − uapp,1

I − uapp,2
I )

)
+R(t, x).
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• Fourth step
We construct an approximate solution in order to eliminate I3 in (3.1.70)

i.e. we solve (
Dt − p(Dx)

)
uapp,3

+ = I3

uapp,3
+ |t=1 = 0

(3.1.71)

with I3 given by (3.1.16). For each contribution eijt
√

3M3
j (t, x) to (3.1.16),

with −1 ≤ j ≤ 1, we get an equation of the form (A10.1.1) with λ = j
√

3.
Moreover, by (3.1.17), (3.1.18), (3.1.19) assumptions (A10.1.7), (A10.1.8),
(A10.1.9) hold (the last two ones being empty if λ = j

√
3 with j = 0 or

−1), i.e. Assumption (H2) of section (A10.1.1) holds. We may thus apply (ii)
of Proposition A10.1.1 and Proposition A10.1.2 that allow to write uapp,3

+ as
a sum

(3.1.72) uapp,3
+ =

1∑
j=−1

Uj,+(t, x), Uj,+ = U ′j,+ + U ′′j,+

with U ′j,+ satisfying (A10.1.20)-(A10.1.22) and U ′′j,+ satisfying (A10.1.27)-
(A10.1.29). If we set uapp,3

+ = u′+
app,3 + u′′+

app,3 with

(3.1.73) u′+
app,3 =

1∑
j=−1

U ′j,+(t, x), u′′+app,3 =
1∑

j=−1
U ′′j,+(t, x),

it follows that (3.1.39)-(3.1.41) and (3.1.43)-(3.1.45) hold true. Let us check
that

(3.1.74) aapp(t)
∑
|I|=1

Op(m′1,I)(u
app,3
+ )

is a remainder satisfying (3.1.38). Since we are here under Assumption (H2),
we shall apply Proposition A10.2.4 splitting each Uj,+ in (3.1.72) as

(3.1.75) Uj,+ = U ′j,+,1 + U ′′j,+,1

according to (A10.2.23). Then by (A10.2.24), and the fact that aapp = O(t−
1
2

ε ),
the contribution coming from U ′′j,+,1 obeys remainder estimates (3.1.38), so
that (3.1.74) may be written as a contribution to R in (3.1.37) and as

(3.1.76) aapp(t)
∑
|I|=1

Op(m′1,I)(u′
app,3
+,1 )

with

(3.1.77) u′app,3
+,1 =

1∑
j=−1

U ′j,+,1(t, x).
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We shall see in step 5 below that (3.1.76) provides also a contribution to R.
Consequently, we have obtained that(

Dt − p(Dx)
)
uapp,3

+ − aapp(t)
∑
|I|=1

Op(m′1,I)(u
app,3
I ) = I3 +R(t, x).

Making the difference with (3.1.70), we conclude that uapp
+ will solve (3.1.37)

if and only if

(
Dt − p(Dx)

)[
uapp

+ −
3∑
`=1

uapp,`
+

]
− aapp(t)

∑
|I|=1

Op(m′1,I)
(
uapp
I −

3∑
`=1

uapp,`
I

)
= R(t, x).

Consequently, we just have to take uapp
+ = uapp,1

+ + uapp,2
+ + uapp,3

+ . We have
checked that then estimates (3.1.39)-(3.1.41) and (3.1.43)-(3.1.45) hold. It
remains to check that terms of the form (3.1.63), (3.1.76) provide remainders,
and that estimates (3.1.46), (3.1.47) hold true, as well as the properties of the
decomposition (3.1.48). This will be done in the following steps.
• Fifth step
Let us show that (3.1.63), (3.1.76) are remainders. Let us use the same

notation U ′j,+ for either U ′j,+ in (3.1.63) or U ′j,+,1 in (3.1.77). Notice that since
the Mj ’s in (3.1.12), (3.1.14), (3.1.16) are odd in x, so are the U ′j,+ defined
from them. Moreover, as m′1,I is in S̃′1,0(〈ξ〉−1, 1), we may write

(3.1.78) Op(m′1,±)(U ′j,±) = Op(m̃1,±)[〈Dx〉−1U ′j,±]

with m̃′1,I in S̃′1,0(1, 1). By oddness of U ′j,+

〈Dx〉−1U ′j,+ = ix

2

∫ 1

−1

( Dx

〈Dx〉
U ′j,+

)
(t, µx) dµ

= ix

2t

∫ 1

−1

[
(L+U

′
j,+)(t, µx)− µxU ′j,+(t, µx)

]
dµ.

(3.1.79)

As m̃1,I has rapidly decaying coefficients in x, we rewrite (3.1.78) as a linear
combination of expressions

(3.1.80) 1
t
Op(m̂′1,I)

ï∫ 1

−1
(Lk±U ′j,±)(t, µx)µ1−k dµ

ò
, k = 0, 1

for new symbols m̂′1,I in S̃′1,0(1, 1). Using (A10.2.5) with ω = 1 or (A10.2.25),
we bound any L∞ norm of xβ∂αx acting on (3.1.80) by Cε2t−1. Taking into
account that aapp(t) is O(t−

1
2

ε ), we see that (3.1.63), (3.1.76) satisfy (3.1.38)
(using again t ≤ ε−4).
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• Sixth step
We shall prove estimates (3.1.46), (3.1.47). Recall that by definition u′app

+ =
u′+

app,1 + u′+
app,2 + u′+

app,3 with u′+
app,1 given by (3.1.54), u′+app,2 given by

(3.1.67) and u′+
app,3 given by (3.1.73). Consequently, (Dt − p(Dx))u′app

+ is a
sum of expressions (Dt − p(Dx))U ′j,+ where U ′j,+ is given by an integral of
the form (A10.1.3) (resp. (A10.2.23)) with M replaced by an Mj satisfying
either (3.1.13) (for those coming from (3.1.54)) or (3.1.15) (for those com-
ing from (3.1.67)) (resp. satisfying (3.1.17) for those coming from (3.1.73)).
Consequently, for contributions of the form (A10.1.3),

(3.1.81)
(
Dt − p(Dx)

)
U ′j,+ = − 1

2t

∫ +∞

1
ei(t−τ)p(Dx)+iλjτ χ̃

( τ√
t

)
Mj(τ, ·) dτ

where χ̃(τ) = τχ′(τ) and λj is some integer multiple of
√

3
2 . In other words, we

obtain still an expression of the form of the first line in (A10.1.3), but with a
gain of a factor t−1. The estimates (3.1.39) and (3.1.41) that we have already
obtained for u′app

+ furnish thus (3.1.46), (3.1.47) multiplying them by t−1 (the
change of cut-off χ̃ does not matter, as it has support contained in the one of
χ). This shows also that (3.1.46), (3.1.47) hold for u′app,1 + u′app,2. The case
of u′app,3 is similar, using (A10.2.23) to get an expression of the form (3.1.81),
but with χ̃

(
τ√
t

)
replaced by χ̃

(
τ
t

)
, i.e. again an integral of form (A10.2.23)

with the gain of a pre-factor t−1.
• Seventh step
We have to establish still (3.1.48). The contribution uapp,1

+ in the right hand
side is the one that has been defined in the first step by (3.1.53), with right
hand side given in terms of Mj defined in (3.1.21). The term Σ+ in (3.1.48) is
thus given by uapp,2

+ + uapp,3
+ introduced in (3.1.67), (3.1.72). These functions

are constructed as sums of contributions U j that satisfy equations of the form
(3.1.50), where the source term satisfies (3.1.15) or (3.1.17) and thus (3.1.51).
It remains to show (3.1.52). As m′ has rapidly decaying coefficients in x, we
may forget the xN factor in (3.1.52), and are thus reduced to the study of
∂αxOp(m′)(uapp,2

+ ) and ∂αxOp(m′)(uapp,3
+ ).

Consider first ∂αxOp(m′)(uapp,2
+ ). By (3.1.67), we express that from

(3.1.82) ∂αxOp(m′)(U ′j,+), ∂αxOp(m′)(U ′′j,+).

As Assumption (H1)ω holds with ω = 3
2 , according to (3.1.15), the second term

above is given by (A10.2.2) of Proposition A10.2.1. It follows from (A10.2.3),
(A10.2.4) that its modulus is smaller than

t
− 3

2
ε + ε3t−1 log(1 + t),
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so than the right hand side of (3.1.52). On the other hand, Op(m′)(U ′j,+) has
been expressed in fifth step under the form (3.1.80). If we plug there estimates
(A10.2.5), we see that the modulus of the first term in (3.1.82) is O(ε3t−1), so
better than the right hand side of (3.1.52).

Consider next ∂αxOp(m′)(uapp,3
+ ). Solving (3.1.71), we have written uapp,3

+
under the form

∑1
j=−1(U ′j,+,1 + U ′′j,+,1) according to (3.1.75). If we plug this

decomposition in ∂αxOp(m′)(·), we get on the one hand expressions of the
form (A10.2.24), that are bounded by the right hand side of (3.1.52). For the
contribution ∂αxOp(m′)(U ′j,+,1), we use again that we can write an expression of
the form (3.1.80) and bounds (A10.2.25). We get an estimate in O(ε2t−1) that
is better than the right hand side of (3.1.52). This concludes the proof.

To conclude this section, let us compute some integrals that will be useful
in the sequel.

Proposition 3.1.3. — Let Y2 be the function defined in (3.1.22). The func-
tions Uj,+, j = −2, 0, 2 in the right hand side of (3.1.49) satisfy the following:

(3.1.83)
∫
U2,+(t, x)p(Dx)−1Y2 dx = (α2 + iβ2)eit

√
3g(t)2 + r(t)

where α2 is real,

(3.1.84) β2 = −
√

2
6 Ŷ2(

√
2)2

for the function Y2 defined in (1.1.6), and where r(t) satisfies

(3.1.85) |r(t)| ≤ C(A,A′)
(
ε2t−

3
2 + t−2

ε + εt−
3
2 (ε2
√
t)

3
2 θ
′)
≤ C(A,A′)t−1

ε .

Moreover,

(3.1.86)
∫
U0,+(t, x)p(Dx)−1Y2 dx = α0|g(t)|2 + r(t)

(3.1.87)
∫
U2,−(t, x)p(Dx)−1Y2 dx = α−2g(t)2

e−it
√

3 + r(t)

where α0, α−2 are real constants, and where r satisfies (3.1.85). Finally, the
function Σ+ in (3.1.48) satisfies
(3.1.88)∣∣∣∣ ∫ Σ+(t, x)p(Dx)−1Y2 dx

∣∣∣∣ ≤ C(A,A′)
[
t
− 3

2
ε + ε2t−1

ε + t−1t
− 1

2
ε

]
log(1 + t).

Proof. — Let us establish (3.1.83). The function U2,+ is defined as the solution
of (3.1.50) with j = 2 and M2 in the right hand side given by (3.1.21). We
write (3.1.83) as

1
2π

∫
Û2,+(t, ξ)p(ξ)−1Ŷ2(−ξ) dξ.
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Since Y2 is odd, we get from (A10.3.2) applied with Ẑ(ξ) = −p(ξ)−1Ŷ2(ξ),
M̂(t, ξ) = M̂2(t, ξ), λ =

√
3, a contribution to r and two integral terms. By

(3.1.21), the second one is

(3.1.89) − eit
√

3

6π

∫ (1− χ√3)(ξ)
√

3−
√

1 + ξ2
Ŷ2(ξ)2√
1 + ξ2

dξg(t)2

which may be written since Y2 is real and odd, under the form α′2e
it
√

3g(t)2

for some real α′2.
Using the definition (A10.3.1) of χλ, and the fact that Ŷ2(ξ)2 is even, the

first term in the right hand side of (A10.3.2) brings the contribution

− i

3πe
it
√

3g(t)2 lim
σ→0+

∫ +∞

0

∫
eiτ
(√

1+ξ2−
√

3
)
−στχ(ξ −

√
2)

× Ŷ2(ξ)2√
1 + ξ2

dξdτ.

(3.1.90)

Denote by ξ(ζ) the reciprocal of the change of variables ξ → ζ =
√

3−
√

1 + ξ2

defined from a neighborhood of ξ =
√

2 to a neighborhood of ζ = 0. We rewrite
(3.1.90) as

− i

3πe
it
√

3g(t)2

× lim
σ→0+

∫ +∞

0

∫
e−iτζ−στχ(ξ(ζ)−

√
2)Ŷ2(ξ(ζ))2 dζ

|ξ(ζ)|dτ.
(3.1.91)

Notice that

lim
σ→0+

∫ +∞

0
e−iτζ−στ dτ = −i(ζ − i0)−1 = πδ0 − ip.v.

1
ζ
.

Plugging in (3.1.91), we obtain an expression α′2 + iβ2 with α′2 real and β2
given by (3.1.84).

To obtain (3.1.86), (3.1.87), we apply again Proposition A10.3.1 but with
λ = 0 or λ = −

√
3 so that χλ = 0 and in (A10.3.2) the first term in the right

hand side disappears. Only the second one and r remain, so that one gets no
imaginary contribution to (3.1.86), (3.1.87).

Finally, let us prove (3.1.88). As Y2 is in S(R), the integral may be expressed
as an integral of Op(m′)(Σ+) for the symbol m′ = Y2(x)p(ξ)−1, so that (3.1.52)
brings the conclusion.
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3.2. Asymptotic analysis of the ODE

In this section, we shall prove that solutions of the ordinary differential
equation (1.2.20) have a certain asymptotic expansion by a bootstrap argu-
ment.

We make some a priori assumptions on the functions Φj ,Γj in the right
hand side of (1.2.20).

Assumption (H ′1): Assume that u+ is a solution to equation (1.2.13)
defined on [1, T ]×R for some T ≤ ε−4 such that the functions Φ2, Γj , j = 1, 2, 3
defined on (1.2.22) satisfy the inequality

|Φ2(u+(t, ·), u−(t, ·))|+
3∑
j=1

t
− 3

2 + j
2

ε |Γj(u+(t, ·), u−(t, ·))|

≤ B′t−
3
2 (ε2
√
t)2θ′

(3.2.1)

for some constant B′, some θ′ ∈]0, 1
2 [ (close to 1

2), all t in [1, T ], and assume
that the function Φ1 given by (1.2.22) satisfies for any t ∈ [1, T ]∣∣∣Φ1(u+(t, ·), u−(t, ·))−

√
3

3 〈Y, Y κ(x)b(x,Dx)p(Dx)−1(uapp
+ − uapp

−
)
〉

−
(
〈Z, ũ+〉 − 〈Z, ũ−〉

)∣∣∣ ≤ B′t− 3
2 (ε2
√
t)2θ′

,

(3.2.2)

where uapp
+ is the approximate solution constructed in section 3.1, Z is a

function in S(R), ũ± are functions verifying inequality (3.1.4) such that for
any λ in R − {−1, 1}, one may find functions ϕ±(λ, t), ψ±(λ, t) as in (3.1.5),
solving equation (3.1.7) and such that estimates (3.1.6) hold true, for λ outside
a given neighborhood W̃ of {−1, 1} in R.

We consider on interval [1, T ] the solution a+ of equation (1.2.20), namely(
Dt −

√
3

2

)
a+ =

2∑
j=0

(a+ − a−)2−jΦj [u+, u−]

+
3∑
j=0

(a+ − a−)3−jΓj [u+, u−]
(3.2.3)

with an initial condition at t = 1 satisfying

(3.2.4) |a+(1)| ≤ A0ε

for some constant A0. We introduce as a second assumption an estimate on
a+, that we give in terms of upper bounds (3.2.8) below:

Assumption (H ′2): The solution of equation (3.2.3) with initial condition
(3.2.4) exists on some interval [1, T ] with T ≤ ε−4 and satisfies on that interval
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the following requirements: One may write

(3.2.5) a+(t) = aapp
+ (t) + S(t)

where aapp
+ (t) has the structure

aapp
+ (t) = eit

√
3

2 g(t) + ω2g(t)2eit
√

3 + ω0|g(t)|2 + ω−2g(t)2
e−it

√
3

+ eit
√

3
2 g(t)

(
ϕ+(0, t)− ϕ−(0, t))

+ e−it
√

3
2 g(t)

(
ϕ+(
√

3, t)− ϕ−(
√

3, t))

(3.2.6)

and where

(3.2.7) S(t) = ω3g(t)3e3it
√

3
2 + ω−1|g(t)|2g(t)e−it

√
3

2 + ω−3g(t)3
e−3it

√
3

2

with the following notation:
• The coefficients ωj in (3.2.6) (resp. (3.2.7)) are real (resp. complex) con-

stants that will be chosen below.
• The function g satisfies, for some constants A,A′ and t ∈ [1, T ]

(3.2.8) |g(t)| ≤ At−
1
2

ε , |∂tg(t)| ≤ A′[t−
3
2

ε + t−
3
2 (ε2
√
t)

3
2 θ
′
]

where θ′ ∈]0, 1
2 [ is close to 1

2 and has been introduced in (H ′1).
• The functions ϕ±(0, t), ϕ±(

√
3, t) satisfy conditions (3.1.5)-(3.1.7) with Z

and ũ± introduced in (3.2.2), i.e. one has estimates

|ϕ±(λ, t)| ≤ (ε2
√
t)θ
′
t−

1
2 , |ψ±(λ, t)| ≤ (ε2

√
t)θ
′
t−1

|〈Z, ũ±(t, ·)〉| ≤ (ε2
√
t)θ
′
t−

3
4

(3.2.9)

(when ε is small enough) and one has the equation

(3.2.10) (Dt − λ)ϕ±(λ, t) = 〈Z, ũ±(t, ·)〉+ ψ±(λ, t)

for λ = 0 or
√

3.
We shall bootstrap Assumption (H ′2) i.e. estimates (3.2.8) assuming that

(H ′1) holds:

Proposition 3.2.1. — Let c ∈]0, 1[, θ′ ∈]0, 1
2 [, θ′ close to 1

2 . There are
constants A,A′, ε0 > 0 such that if Assumption (H ′1) holds and if the solution
a+ of (3.2.3) exists on [1, T ] and has structure (3.2.5) with g satisfying (3.2.8)
on [1, T ], then if ε ∈]0, ε0[, T ≤ ε−4+c, one has actually, for any t in [1, T ]

(3.2.11) |g(t)| ≤ 1
2At

− 1
2

ε , |∂tg(t)| ≤ 1
2A
′[t−

3
2

ε + t−
3
2 (ε2
√
t)

3
2 θ
′
].

As a first step towards the proof of the proposition, let us rewrite equation
(3.2.3)
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Lemma 3.2.2. — There are a real constant γ1, complex constants
γ3, γ−1, γ−3 such that, under the assumptions of the proposition,[

Dt −
√

3
2

]
a+ = eit

√
3

2 |g(t)|2g(t)
[
γ1 − i

√
6

18 Ŷ2(
√

2)2
]

+ e3it
√

3
2 g(t)3γ3 + e−it

√
3

2 |g(t)|2g(t)γ−1

+ e−3it
√

3
2 g(t)3

γ−3

+ (a+ − a−)2Φ0 + (a+ − a−)3Γ0

+ (a+ − a−)[〈Z, ũ+〉 − 〈Z, ũ−〉] + r(t)

(3.2.12)

where r(t) satisfies

(3.2.13) |r(t)| ≤ C(A,A′, B′)t−
3
2 (ε2
√
t)2θ′

for a constant depending only on the constants A,A′, B′ of (3.2.8), (3.2.1),
(3.2.2).

Proof. — Consider the right hand side of (3.2.3). By (3.2.1), the Φ2 contri-
bution is bounded by B′t−

3
2 (ε2
√
t)2θ′ , so satisfies (3.2.13). By (3.2.5), (3.2.6),

(3.2.8), (3.2.9)

(3.2.14) |a+(t)|+ |a−(t)| ≤ C(A)t−
1
2

ε

so that (3.2.1) implies that the contributions (a+ − a−)3−jΓj , j = 1, 2, 3 to
(3.2.3) satisfy (3.2.13). We are thus left with studying
(3.2.15) Φ0(a+ − a−)2 + Φ1[u+, u−](a+ − a−) + Γ0(a+ − a−)3.

The first and last terms in (3.2.15) are present in the right hand side of (3.2.12).
Consider (a+ − a−)Φ1. By (3.2.2), up to another contribution to r, we get on
the one hand the last but one term in the right hand side of (3.2.12) and the
quantity

√
3

3 (a+ − a−)〈Y, Y κ(x)b(x,Dx)p(Dx)−1(uapp
+ − uapp

− )〉

that, according to the definition (3.1.22) of Y2, may be written

(3.2.16)
√

3
3 (a+ − a−)〈Y2, p(Dx)−1(uapp

+ − uapp
− )〉.

We replace above uapp
+ by expansion (3.1.48). According to (3.1.88)

|〈Y2, p(Dx)−1Σ+〉| ≤ C(A,A′)
[
t
− 3

2
ε + t−1ε2 + t−1t

− 1
2

ε

]
log(1 + t).

If we use also (3.2.14), (3.1.1), we conclude, since t−2
ε ≤ Ct−

3
2 (ε2
√
t) and

t
− 1

2
ε t−1ε2 ≤ Ct−

3
2 (ε2
√
t), t−1t−1

ε ≤ Ct−
3
2 (ε2
√
t), that (3.2.16) satisfies (3.2.13)
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(if we absorb the logarithm using that we assume ε2
√
t ≤ ε

c
2 , θ′ < 1

2 , and that
we take ε small). We are thus left with the contribution to (3.2.16) of

(3.2.17)
√

3
3 (a+ − a−)〈Y2, p(Dx)−1(uapp,1

+ − uapp,1
− )〉.

with uapp,1
+ given by (3.1.49). The bracket above has been computed in

(3.1.83), (3.1.86), (3.1.87). It is in particular O(C(A,A′)t−1
ε ). By (3.2.5),

(3.2.6), (3.2.7), (3.2.8), (3.2.9) the difference a+ − eit
√

3
2 g is bounded by

C(A)[t−1
ε + t

− 1
2

ε t−
1
2 (ε2
√
t)θ
′
], so that if we replace in (3.2.17) a+ by eit

√
3

2 g, we
get an error bounded by

(3.2.18) C(A,A′)
[
t−2
ε + t

− 3
2

ε t−
1
2 (ε2
√
t)θ
′]
≤ C(A,A′)t−

3
2 (ε2
√
t)2θ′

,

so that we get a remainder. Consequently, using again (3.1.49), we have
reduced (3.2.17) to

(3.2.19)
√

3
3

(
g(t)eit

√
3

2 + g(t)e−it
√

3
2

)[ ∑
j∈{−2,0,2}

〈Y2, p(Dx)−1(Uj,+ + U j,+)〉
]

up to remainders. We have computed the bracket above in (3.1.83), (3.1.86),
(3.1.87). Up to terms bounded by the product of (3.1.85) with t−

1
2

ε , which still
provides remainders satisfying (3.2.13), we get that (3.2.19) is given by

e3it
√

3
2 γ3g(t)3 + eit

√
3

2 γ̃1|g(t)|2g(t) + e−it
√

3
2 γ−1|g(t)|2g(t) + e−3it

√
3

2 γ−3g(t)3

where γj are complex constants, with γ̃1 =
√

3
3 (2α0 + α2 + α−2 + iβ2), where

α0, α2, α−2 are real and β2 is given by (3.1.84). We obtain thus the first four
terms in the right hand side of (3.2.12). This concludes the proof.

We shall next compute from expression (3.2.5) of a+ and from (3.2.12) an
equation satisfied by g.

Lemma 3.2.3. — One may choose the coefficients ωj, −3 ≤ j ≤ 3, j 6= 1 in
(3.2.6), (3.2.7) such that if a+ is given by (3.2.5) and satisfies (3.2.12), then
g solves

(3.2.20) Dtg(t) =
(
α− i

√
6

18 Ŷ2(
√

2)2
)
|g(t)|2g(t) + r1(t)

where α is real, Ŷ2(
√

2)2 is negative and r1(t) satisfies

(3.2.21) |r1(t)| ≤ C(A)t−
1
2

ε t−1(ε2
√
t)θ
′

+ C(A,A′, B′)
[
t−2
ε + t−1

ε t−1(ε2
√
t)θ
′
+ t−

3
2 (ε2
√
t)2θ′

+ t
− 1

2
ε t−

3
2 (ε2
√
t)

3
2 θ
′
+ t−2(ε2

√
t)

5
2 θ
′]
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where C(·) are constants depending only on the indicated quantities.

Proof. — Let us express in a more explicit way the right hand side of (3.2.12).
By (3.2.5), (3.2.6), (3.2.7), (3.2.8), (3.2.9)∣∣∣∣a+(t)−

(
eit
√

3
2 g(t) + ω2g(t)2eit

√
3 + ω0|g(t)|2 + ω−2g(t)2

e−it
√

3
)∣∣∣∣

≤ C(A)t−
1
2

ε t−
1
2 (ε2
√
t)θ
′
+ C(A)t−

3
2

ε

(3.2.22)

for constants C(A) depending only on A.
It follows that

(a+(t)− a−(t))2 = eit
√

3g(t)2 + 2|g(t)|2 + e−it
√

3g(t)2

+ 2e3it
√

3
2 g(t)3(ω2 + ω−2)

+ 2eit
√

3
2 |g(t)|2g(t)(2ω0 + ω2 + ω−2)

+ 2e−it
√

3
2 |g(t)|2g(t)(2ω0 + ω2 + ω−2)

+ 2e−3it
√

3
2 g(t)3(ω2 + ω−2) + r(t)

(3.2.23)

where r satisfies (3.2.21).
In the same way

(a+(t)− a−(t))3 = e3it
√

3
2 g(t)3 + 3eit

√
3

2 |g(t)|2g(t)

+ 3e−it
√

3
2 |g(t)|2g(t) + e−3it

√
3

2 g(t)3 + r(t)
(3.2.24)

where r satisfies (3.2.21). We plug (3.2.23), (3.2.24) in the right hand side of
(3.2.12). We get, as Φ0, Γ0 given by (1.2.21) are real constants, the expression

eit
√

3Φ0g(t)2 + 2|g(t)|2Φ0 + e−it
√

3Φ0g(t)2

+ eit
√

3
2 |g(t)|2g(t)(γ1 − i

√
6

18 Ŷ2(
√

2)2)

+ e3it
√

3
2 g(t)3γ3 + e−it

√
3

2 |g(t)|2g(t)γ−1 + e−3it
√

3
2 g(t)3

γ−3

+ eit
√

3
2 g(t)[〈Z, ũ+〉 − 〈Z, ũ−〉]

+ e−it
√

3
2 g(t)[〈Z, ũ+〉 − 〈Z, ũ−〉] + r(t)

(3.2.25)

where γ
j
, j = −3,−1, 1, 3 are new constants with γ1 real, γ−3, γ−1, γ3 depend-

ing on ω−2, ω0, ω2 but not on ω−3, ω−1, ω3, and where r(t) satisfies (3.2.21),
and contains in particular the product of 〈Z, ũ±〉 with a+(t) − eit

√
3

2 g(t),
a−(t) + eit

√
3

2 g(t), according to estimates (3.2.22) and (3.2.9).
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On the other hand, we may compute the left hand side of (3.2.12) replacing
a+ by its expression (3.2.5). We get, using (3.2.10) with λ = 0 or

√
3,(

Dt −
√

3
2

)
a+ = eit

√
3

2 Dtg +
√

3
2 eit

√
3ω2g(t)2 −

√
3

2 ω0|g(t)|2

− 3
√

3
2 ω−2e

−it
√

3g(t)2 +
√

3ω3e
3it
√

3
2 g(t)3

−
√

3ω−1e
−it
√

3
2 |g(t)|2g(t)

− 2
√

3ω−3e
−3it

√
3

2 g(t)3

+ eit
√

3
2 g(t)[〈Z, ũ+〉 − 〈Z, ũ−〉]

+ e−it
√

3
2 g(t)[〈Z, ũ+〉 − 〈Z, ũ−〉] + r1(t)

(3.2.26)

where r1(t) is made of terms of the form

O(|gDtg|), O(|Dtgϕ±(0, t)|), O(|Dtgϕ±(
√

3, t)|)

O(|gψ±(0, t)|), O(|gψ±(
√

3, t)|), O(|g2Dtg|).
(3.2.27)

By a priori estimate (3.2.8) and (3.2.9), these terms are bounded by

C(A,A′)
[
t−2
ε + t

− 1
2

ε t−
3
2 (ε2
√
t)

3
2 θ
′
+ t−

1
2 t
− 3

2
ε (ε2

√
t)θ
′
+ t−2(ε2

√
t)

5
2 θ
′]

+C(A)t−
1
2

ε t−1(ε2
√
t)θ
′
,

(3.2.28)

the last contribution coming from the first two terms in the second line of
(3.2.27). We choose now the free parameters ωj , j ∈ {−3, . . . , 3}−{1} setting

ω3 =
√

3
3 γ3, ω2 = 2

√
3

3 Φ0, ω0 = −4
√

3
3 Φ0, ω−1 = −

√
3

3 γ−1

ω−2 = −2
√

3
9 Φ0, ω−3 = −

√
3

6 γ−3

(which is possible as γ−3, γ−1, γ3 do not depend on ω−3, ω−1, ω3). In that way,
when we make the difference between the two expressions (3.2.25), (3.2.26) of(
Dt −

√
3

2

)
we obtain equation (3.2.20) with a remainder satisfying (3.2.28).

This concludes the proof, as Ŷ2(
√

2) being purely imaginary (since Y2 is real
and odd), Ŷ2(

√
2)2 ≤ 0 and moreover, by Proposition A14.1.2, Ŷ2(

√
2) 6= 0.

Proof of Proposition 3.2.1: Let us show first that under the assumptions of
the proposition, the first inequality (3.2.11) holds if A has been chosen large
enough, ε small enough and t ≤ ε−4+c. In a first step, consider the case when
ε2t is small, i.e. let us show that there is τ0 ∈]0, 1] such that if 1 ≤ t ≤ τ0

ε2 , and
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ε is small enough,

(3.2.29) |g(t)| ≤ A

4 t
− 1

2
ε .

Since for these t one has ε2

2 ≤ t−1
ε ≤ ε2, the a priori bound (3.2.8), equation

(3.2.20) and estimates (3.2.21) imply that, for any such t,

|g(t)| ≤ |g(1)|+KA3ε3t+ C(A,A′, B′)[ε1+θ′ + ε4θ
′ ],

where K =
∣∣∣α− i√6

18 Ŷ2(
√

2)2
∣∣∣ and C(·) is a new constant depending on

A,A′, B′ (and τ0). If A is taken such that |g(1)| ≤ A
8

ε√
2 , and τ0 small enough

so that KA2τ0 <
1

16
√

2 , and if we take ε small enough, we get, using that θ′ is

close to 1
2 , that |g(t)| ≤ A

4
√

2ε ≤
A
4 t
− 1

2
ε i.e. (3.2.29).

We shall thus study from now on equation (3.2.20) for t ≥ τ0
ε2 and initial

condition at τ0
ε2 bounded by A

4
√

2ε. In this regime, for some new constant
C(A,A′, B′), (3.2.21) implies

(3.2.30) |r1(t)| ≤ C(A,A′, B′)
[
t−

3
2 (ε2
√
t)θ
′
+ t−2],

remembering that t stays in [τ0ε
−2, ε−4+c]. For t in [τ0, ε

−2+c], set

(3.2.31) e(t) = ε−1(1 + t)
1
2 g
( t
ε2

)
.

We deduce from (3.2.20), (3.2.30) that if β = −
√

6
18 Ŷ2(

√
2)2 > 0

(3.2.32) ∂te(t) = 1
2
e(t)
1 + t

+ −β + iα

1 + t
|e(t)|2e(t) +R(t)

where

|R(t)| ≤ C(A,A′, B′)
[(1 + t)

1
2

t
3
2

(ε
√
t)θ′ + ε

(1 + t)
1
2

t2

]
≤ C(A,A′, B′)

1 + t
(1 + τ−1

0 )
3
2
[
ε
θ′
2 c + ετ

− 1
2

0
]
.

(3.2.33)

Denote w(t) = |e(t)|2. Then

(3.2.34) ∂tw(t) = 1
1 + t

[
w(t)− 2βw(t)2 +Q(t)

]
where according to (3.2.33), for t ∈ [τ0, ε

−2+c]

(3.2.35) |Q(t)| ≤ C
[
ε
θ′
2 c + ετ

− 1
2

0
]
|w(t)|

1
2

for some constant depending on A,A′, B′, τ0. Moreover, we have

(3.2.36) w(τ0) ≤
(A

4

)2
.
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We fix A large enough so that
(
A
2

)2
− 2β

(
A
2

)4
≤ −A

2 and then take ε < ε0

small enough (in function of A,A′, B′, τ0) such that (3.2.35) implies |Q(t)| ≤
1
2 |w(t)|

1
2 . Then it follows that if, at some time t∗, w(t∗) reaches

(
A
2

)2
, the

right hand side of (3.2.34) is strictly negative. Consequently, taking (3.2.36)
into account, we get w(t) ≤

(
A
2

)2
for any t in [τ0, ε

−2+c]. Using (3.2.31), we

conclude that |g(t)| ≤ A
2 t
− 1

2
ε for t in

[
τ0
ε2 , ε

−4+c]. This gives the first inequality
(3.2.11).

To get the second one, we notice that we may bound the right hand side of
(3.2.21) by

C(A)
[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′]

+ C(A,A′, B′)
(
ε+ (ε2

√
t)
θ′
2
)[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′]

for new constants C(A), C(A,A′, B′), depending only on the indicated argu-
ments. Plugging this in (3.2.20), we get

|∂tg(t)| ≤ K|g(t)|3 + [C(A) + C(A,A′, B′)e(t, ε)]
[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′]

with limε→0+ supt∈[1,ε−4+c] e(t, ε) = 0. If we plug there the first inequality
(3.2.11), choose A′ large enough relatively to A, so that

K
(A

2

)3
+ C(A) ≤ A′

4
and then take ε small enough relatively to A,A′, B′, we get the second inequal-
ity (3.2.11). This concludes the proof. 2



CHAPTER 4

REDUCED FORM OF DISPERSIVE EQUATION

In section 2.2, we performed a quadratic normal form on equation (2.1.11)
satisfied by u+ in order to get equation (2.2.2). On the other hand, in sec-
tion 3.1, we constructed some approximate solution solving equation (3.1.37).
Making the difference between (2.2.2) and (3.1.37), we shall get an equation
for the action of Dt − p(Dx) on

ũ+ = u+ −
∑
|I|=2

Op(m̃0,I)(uI)− uapp
+ .

The goal of this chapter is to invert in convenient spaces the map u+ → ũ+,
to obtain an expression for u+ in terms of ũ+ and to write down the equation
satisfied by ũ+ in closed form.

4.1. A fixed point theorem

We establish first some abstract theorem. We consider E,F two Banach
spaces with norms ‖·‖E , ‖·‖F . We consider also two other normed spaces Ẽ, F̃
such that E∩ Ẽ (resp. F ∩ F̃ ) is also a Banach space. We set BF (r), BE(r) for
the closed ball of center zero, radius r in F,E. We assume given a function

Φ : (E ∩ F )× (E ∩ F )→ E ∩ F
(u′′, f) −→ Φ(u′′, f)

(4.1.1)

satisfying the following estimates: There are C > 0, σ > 0 such that for any
parameter λ ≥ 1, any u′′, f, f1, f2 in E ∩ F , one has

(4.1.2) ‖Φ(u′′, f)‖E ≤ C
(
‖u′′‖F + ‖f‖F

)(
‖u′′‖E + ‖f‖E

)
(4.1.3)
‖Φ(u′′, f)‖F ≤ Cλσ

(
‖u′′‖F + ‖f‖F

)2 + Cλ−1(‖u′′‖F + ‖f‖F
)(
‖u′′‖E + ‖f‖E

)



96 CHAPTER 4. REDUCED FORM OF DISPERSIVE EQUATION

‖Φ(u′′, f1)− Φ(u′′, f2)‖E ≤ C
(
‖u′′‖F + ‖f1‖F + ‖f2‖F

)
‖f1 − f2‖E

+C
(
‖u′′‖E + ‖f1‖E + ‖f2‖E

)
‖f1 − f2‖F

(4.1.4)

(4.1.5) ‖Φ(u′′, f1)− Φ(u′′, f2)‖F
≤ C

[
λσ
(
‖u′′‖F + ‖f1‖F + ‖f2‖F

)
+ λ−1(‖u′′‖E + ‖f1‖E + ‖f2‖E

)]
× ‖f1 − f2‖F

+ Cλ−1(‖u′′‖F + ‖f1‖F + ‖f2‖F
)]
‖f1 − f2‖E .

We assume also that if, in addition to preceding assumptions, u′′ is in F̃ and
f is in Ẽ, then Φ(u′′, f) is in Ẽ, with estimate

(4.1.6) ‖Φ(u′′, f)‖Ẽ ≤ C
[
‖u′′‖F̃ ‖u

′′‖E +
(
‖u′′‖F + ‖f‖F

)
‖f‖Ẽ

]
and if f1, f2 are in Ẽ,

(4.1.7) ‖Φ(u′′, f1)− Φ(u′′, f2)‖Ẽ ≤ C
(
‖u′′‖F + ‖f1‖F + ‖f2‖F

)
‖f1 − f2‖Ẽ .

Lemma 4.1.1. — There is r0 > 0 such that for any r in ]0, r0[, any λ ≥ 1,
any u′, u′′, ũ in BE(rλ) ∩BF (rλ−σ), the fixed point problem

(4.1.8) f = u′ + ũ+ Φ(u′′, f)

has a unique solution f in BE(3rλ) ∩ BF (3rλ−σ). Moreover, if one defines
inductively

Φ1(u′′, a, g) = a+ Φ(u′′, g)
Φn+1(u′′, a, g) = Φn(u′′, a,Φ1(u′′, a, g)) = Φ1(u′′, a,Φn(u′′, a, g)),

(4.1.9)

and if one sets

Eλ = λσ
(
‖u′′‖F + ‖u′‖F + ‖ũ‖F

)
+ λ−1(‖u′′‖E + ‖u′‖E + ‖ũ‖E

)
one has for any N ≥ 1 and a new constant C > 0

‖f − ΦN (u′′, u′ + ũ, u′)‖E ≤ CN+1ENλ ‖f − u′‖E
+ CN+1EN−1

λ

(
‖u′′‖E + ‖u′‖E + ‖ũ‖E

)
‖f − u′‖F

‖f − ΦN (u′′, u′ + ũ, u′)‖F ≤ CN+1ENλ ‖f − u′‖F + CN+1ENλ λ−1‖f − u′‖E

(4.1.10)

Furthermore, if one assumes that u′, ũ are also in Ẽ and u′′ is also in F̃ , then
f is in Ẽ and one has for any N ≥ 1

(4.1.11)
‖f − ΦN (u′′, u′ + ũ, u′)‖Ẽ ≤ CN

(
‖u′‖F + ‖ũ‖F + ‖u′′‖F

)N‖f − u′‖Ẽ .
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Proof. — We define the usual sequence of approximations

fN+1 = ΦN+1(u′′, u′ + ũ, u′) = u′ + ũ+ Φ(u′′, fN )
f0 = 0

using notation (4.1.9). By (4.1.2), (4.1.3), we have

‖fN+1‖E ≤ ‖u′‖E + ‖ũ‖E + C
(
‖u′′‖F + ‖fN‖F

)(
‖u′′‖E + ‖fN‖E

)
‖fN+1‖F ≤ ‖u′‖F + ‖ũ‖F +C

[
λσ
(
‖u′′‖F + ‖fN‖F

)
+ λ−1(‖u′′‖E + ‖fN‖E

)]
×
(
‖u′′‖F + ‖fN‖F

)
.

It follows that if u′, u′′, ũ are in BF (rλ−σ) ∩BE(λr) with r small enough, one
has for any N

‖fN+1‖E ≤
4
3
(
‖u′‖E + ‖ũ‖E

)
+ 1

3‖u
′′‖E

‖fN+1‖F ≤
4
3
(
‖u′‖F + ‖ũ‖F

)
+ 1

3‖u
′′‖F .

In particular, (fN )N remains bounded in BF (3rλ−σ) ∩ BE(3λr). Moreover,
by (4.1.4), (4.1.5) and the above bounds, for r small enough, (fN )N converges
in E ∩ F to a limit f satisfying

f = u′ + ũ+ Φ(u′′, f) = Φ1(u′′, u′ + ũ, f).

Then (4.1.10) with N = 1 follows from (4.1.4), (4.1.5). One obtains the general
case by induction, using (4.1.4), (4.1.5). In the same way, (4.1.11) follows from
(4.1.7).

We shall apply the preceding lemma with E = Hs(R), F = W ρ,∞(R), s > 0,
λ = t ≥ 1, ρ ∈ N. We define the spaces Ẽ, F̃ by
(4.1.12)

Ẽ = {f ∈ L2(R);xf ∈ L2(R)}, F̃ = {f ∈W ρ,∞(R);xf ∈W ρ,∞(R)}

and we endow them with norms depending on the parameter t:

‖f‖Ẽ = t‖f‖L2 + ‖xf‖L2 , ‖f‖F̃ = t‖f‖W ρ,∞ + ‖xf‖W ρ,∞ .

The functions u′, u′′ of (4.1.8) will be the functions u′app
+ , u′′app

+ of Propo-
sition 3.1.2. By (3.1.39)-(3.1.41) applied with a large enough r, and using
(3.1.42), we get

‖u′app
+ (t, ·)‖E ≤ C(A,A′)ε2t

1
4

‖u′app
+ (t, ·)‖F ≤ C(A,A′)ε2

‖u′app
+ (t, ·)‖Ẽ ≤ C(A,A′)

[
ε2t

5
4 + t

1
4 (ε2
√
t)

7
8 ε

1
8
]
.

(4.1.13)
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In particular, for ε small, tσ‖u′app
+ (t, ·)‖F + t−1‖u′app

+ (t, ·)‖E may be made as
small as we want (uniformly in t ≤ ε−4) if ε > 0 is small enough. In the same
way, by (3.1.43)-(3.1.45)

‖u′′app
+ (t, ·)‖E ≤ C(A,A′)ε

‖u′′app
+ (t, ·)‖F ≤ C(A,A′)ε2(log(1 + t))2

‖u′′app
+ (t, ·)‖F̃ ≤ C(A,A′)tε2(log(1 + t))2.

(4.1.14)

Again, for t ≤ ε−4, we see that tσ‖u′′app
+ (t, ·)‖F + t−1‖u′′app

+ (t, ·)‖E may be
made as small as we want for ε > 0 small.

We shall take some function ũ+ in BE(λr)∩BF (λ−σr)∩ Ẽ, and shall solve
in u+ the equation

(4.1.15) ũ+ = u+ −
∑
|I|=2

Op(m̃0,I)(uI)− u′app
+ − u′′app

+

where m̃0,I are symbols in S̃1,0

(∏2
j=1 〈ξj〉

−1M0, 2
)

defined in Proposition 2.2.1.
Setting f+ = u+ − u′′app

+ , we rewrite (4.1.15) as

(4.1.16) f+ = u′app
+ + ũ+ + Φ(u′′app

+ , f+)

where

(4.1.17) Φ(u′′app
+ , f+) =

∑
|I|=2

Op(m̃0,I)
(
(u′′app + f)I

)
.

Let us check that the assumptions of Lemma 4.1.1 are satisfied by the preced-
ing map.

Lemma 4.1.2. — If we take E = Hs(R), F = W ρ,∞(R), with s, ρ large
enough and Ẽ, F̃ defined by (4.1.12), then inequalities (4.1.2) to (4.1.7) are
satisfied by the function Φ defined by (4.1.17).

Proof. — To prove (4.1.2) we have to check that, for any I with |I| = 2,

‖Op(m̃0,I)
(
(u′′ + f)I

)
‖Hs ≤ C

(
‖u′′‖W ρ,∞ + ‖f‖W ρ,∞

)(
‖u′′‖Hs + ‖f‖Hs

)
which follows from (A11.1.30) if ρ is large enough, since Proposition A11.1.6
applies in particular to symbols that are independent of x, which is the case of
elements of S̃1,0

(∏2
j=1 〈ξj〉

−1M0, 2
)

according to Definition 2.1.1. In the same
way, (4.1.3) may be written

‖Op(m̃0,I)
(
(u′′ + f)I

)
‖W ρ,∞ ≤ C

[
tσ
(
‖u′′‖W ρ,∞ + ‖f‖W ρ,∞

)
+ t−1(‖u′′‖Hs + ‖f‖Hs

)][
‖u′′‖W ρ,∞ + ‖f‖W ρ,∞

]
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which follows from (A11.1.37) with r = 1 if (s− ρ)σ is large enough. Inequal-
ities (4.1.4) and (4.1.5) are proved in the same way using the bilinearity of
Op(m̃0,I).

Let us prove (4.1.6) and (4.1.7). To simplify notation, consider for instance
the case I = (2, 0). It is enough to prove the estimates
(4.1.18) ‖Op(m̃0,I)(f1, f2)‖L2 ≤ C‖f1‖W ρ,∞‖f2‖L2

(4.1.19) ‖xOp(m̃0,I)(f1, f2)‖L2 ≤ C
[
t‖f1‖W ρ,∞ + ‖xf1‖W ρ,∞

]
‖f2‖L2

(4.1.20) ‖xOp(m̃0,I)(f1, f2)‖L2 ≤ C‖f1‖W ρ,∞

[
t‖f2‖L2 + ‖xf2‖L2

]
(and the symmetric ones) in order to get (4.1.6) and (4.1.7). But (4.1.18)
(resp. (4.1.19)) follows from (A11.1.31) (resp. (A11.1.35)) if in the right hand
side of the latter inequality we estimate

‖L±vj‖W ρ0,∞ ≤ C
[
‖xvj‖W ρ0,∞ + t‖vj‖W ρ0+1,∞ .

]
To get (4.1.20), one applies instead (A11.1.31) after commuting x to Op(m̃0,I)
in order to put it against the f2 argument.

This concludes the proof of the lemma.

We may now state the main result of this section, that will show that the
implicit equation (4.1.16) may be solved in f+, and that we get an expansion
for f+ in terms of u′app

+ , u′′app
+ and ũ+.

Proposition 4.1.3. — Let u′app
+ , u′′app

+ be function satisfying (4.1.13),
(4.1.14). Let also ũ+ be a function of (t, x) ∈ [1, T ] × R, with T ≤ ε−4+c

satisfying for some 0 < θ′ < θ < 1
2 (θ′ and θ being close to 1

2), some δ > 0,
some constant D the following estimates

‖ũ+(t, ·)‖E ≤ Dεtδ

‖ũ+(t, ·)‖F ≤ D
(ε2
√
t)θ
′

√
t

‖ũ+(t, ·)‖Ẽ ≤ Dt
5
4 (ε2
√
t)θ.

(4.1.21)

Then, if ε is small enough, there is a unique function f+ in E ∩ F with

‖f+‖F ≤ 3 max(C(A,A′), D) max
(
ε2(log(1 + t))2,

(ε2
√
t)θ
′

√
t

)
‖f+‖E ≤ 3 max(C(A,A′), D)εtδ

(4.1.22)

such that, setting f− = −f̄+

(4.1.23) f+ = u′app
+ + ũ+ +

∑
|I|=2

Op(m̃0,I)
(
(u′′app + f)I

)
.
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Moreover, one may find symbols (mI)2≤|I|≤4 in the class S̃1,0
(∏|I|

j=1 〈ξj〉
−1Mν

0 , |I|
)

for some ν, such that one may write the solution f+ to (4.1.23) under the
form

(4.1.24) f+ = u′app
+ + ũ+ +

∑
2≤|I|≤4,I=(I′,I′′)

Op(mI)
(
ũI′ , u

app
I′′
)

+R

where R satisfies

(4.1.25) ‖R(t, ·)‖Hs ≤ C ′(A,A′, D)
((ε2
√
t)θ
′
tσ√

t

)4
εtδ

(4.1.26) ‖xR(t, ·)‖L2 ≤ C ′(A,A′, D)
((ε2
√
t)θ
′
tσ√

t

)4
t

5
4 (ε2
√
t)θ

for some new constants C ′(A,A′, D), σ > 0 as small as we want.

Proof. — Equation (4.1.23) may be written under the form (4.1.16) with Φ
given by (4.1.17). We have seen in Lemma 4.1.2 that inequalities (4.1.2)
to (4.1.7) hold true, with the spaces E,F, Ẽ, F̃ defined in that lemma. By
(4.1.13), (4.1.14) and (4.1.21), if t ≤ ε−4 and ε is small enough, we can
make tσ‖u′app

+ (t, ·)‖F , tσ‖u′′app
+ (t, ·)‖F , tσ‖ũ′+(t, ·)‖F and t−1‖u′app

+ (t, ·)‖E ,
t−1‖u′′app

+ (t, ·)‖E , t−1‖ũ′+(t, ·)‖E as small as we want. We may thus apply
Lemma 4.1.1, that gives the solution f+ to (4.1.23) and its uniqueness. This
lemma gives as well the first inequality (4.1.22). To get the second one, we
deduce from (4.1.8), (4.1.2) that

(4.1.27) ‖f+‖E ≤ ‖u′app
+ ‖E + ‖ũ+‖E + σ(ε)

[
‖f+‖E + ‖u′′app

+ ‖E
]

where σ(ε) is controlled by ‖f+‖F and ‖u′′app
+ ‖F , so goes to zero if ε goes

to zero by the first inequality (4.1.22) and (4.1.14). Using (4.1.13), (4.1.14),
(4.1.21), it follows that, for ε small enough,

(4.1.28) ‖f+‖E ≤ 3 max(C(A,A′), D)εtδ.

In the same way, we get from (4.1.8), (4.1.6)

‖f+‖Ẽ ≤ ‖u
′app
+ ‖Ẽ + ‖ũ+‖Ẽ + C‖u′′app

+ ‖F̃ ‖u
′′app

+ ‖E + σ(ε)‖f+‖Ẽ
where σ(ε) is controlled by ‖u′′app

+ ‖F +‖f+‖F , so goes to zero with ε. Plugging
(4.1.13), (4.1.14), (4.1.21) in this inequality, we get for ε small enough, and
some new constant C̃(A,A′, D)

(4.1.29) ‖f+‖Ẽ ≤ C̃(A,A′, D)t
5
4 (ε2
√
t)θ.
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We apply next (4.1.10) with N = 4. We obtain, using (4.1.13), (4.1.14),
(4.1.21), (4.1.22) that

(4.1.30)
∥∥f+−Φ4(u′′app

+ , u′app
+ + ũ+, u

′app
+ )

∥∥
E
≤ C ′(A,A′, D)

[(ε2
√
t)θ
′
tσ√

t

]4
εtδ

since we assume t ≤ ε−4+c with some c > 0. In the same way, by (4.1.11)
(4.1.31)∥∥f+ − Φ4(u′′app

+ , u′app
+ + ũ+, u

′app
+ )

∥∥
Ẽ
≤ C ′(A,A′, D)

[(ε2
√
t)θ
′
tσ√

t

]4
t

5
4 (ε2
√
t)θ.

The right hand side of (4.1.30) (resp. (4.1.31)) is controlled by (4.1.25) (resp.
(4.1.26)).

To finish the proof, we have to rewrite Φ4(u′′app
+ , u′app

+ + ũ+, u
′app
+ ) as the

main term in the right hand side of (4.1.24), up to remainders. Let us show
by induction that one may write

(4.1.32) ΦN (u′′app
+ , u′app

+ + ũ+, u
′app
+ )

= u′app
+ + ũ+ +

∑
2≤|I|≤N+1
I=(I′,I′′)

Op(mN
I )(ũI′ , uapp

I′′ )

for some new symbols mN
I in S̃1,0

(∏|I|
j=1 〈ξj〉

−1Mν
0 , |I|

)
for some ν. For N = 1

this follows from the definition (4.1.9) of Φ1 and of (4.1.17). The general case
follows using (4.1.9) and Corollary A9.2.6 i.e. the stability of operators of the
form Op(mN

I ) by composition.
We apply (4.1.32) with N = 4, and according to (4.1.30), (4.1.31), equality

(4.1.24) will be proved if we show that the contribution to the right hand
side of (4.1.32) given by I with |I| = 5 forms part of R in (4.1.24). Using
(A11.1.31), we estimate the Hs norm of such a term by

C
[
‖ũ+‖W ρ0,∞ + ‖u′app

+ ‖W ρ0,∞ + ‖u′′app
+ ‖W ρ0,∞

]4
×
[
‖ũ+‖Hs + ‖u′app

+ ‖Hs + ‖u′′app
+ ‖Hs

]
so by the right hand side of (4.1.25), using (4.1.13), (4.1.14), (4.1.21).

To study the L2 norm of the product of x and of the terms in the sum
(4.1.32) with |I| = 5, we rewrite the latter, decomposing uapp = u′app + u′′app

under the form

(4.1.33)
∑

|I|=5,I=(I′,I′′,I′′′)
Op(m̃5

I)(ũI′ , u′
app
I′′ , u

′′app
I′′′ )

with symbols m̃5
I in S̃1,0

(∏5
j=1 〈ξj〉

−1Mν
0 , 5
)
.
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In (4.1.33), we distinguish the cases |I ′′′| < 5 and |I ′′′| = 5. In the first one,
we use (A11.1.34), making play the special role to one argument different from
u′′app
± . We obtain a bound in[
‖ũ+‖W ρ0,∞ + ‖u′app

+ ‖W ρ0,∞ + ‖u′′app
+ ‖W ρ0,∞

]4[‖u′app
+ ‖Ẽ + ‖ũ+‖Ẽ

]
which is controlled by the right hand side of (4.1.26). When |I ′′′| = 5, we use
(A11.1.35), to obtain a bound in

‖u′′app
+ ‖3W ρ0,∞‖u′′app

+ ‖L2‖u′′app
+ ‖F̃ ≤ C(A,A′)t

(
log(1 + t)

)8
ε9

by (4.1.14). Since t ≤ ε−4+c, the last bound is smaller, for ε small enough,

than C ′(A,A′, D)
(

(ε2
√
t)θ
′

√
t

)4
t

5
4 (ε2
√
t)θ, so than the right hand side of (4.1.26).

This concludes the proof.

4.2. Reduction of the dispersive equation

The goal of this section is to deduce from equation (2.2.2) satisfied by u+
an equation satisfied by the function ũ+ defined in (4.1.15). More precisely,
we shall prove:

Proposition 4.2.1. — We fix c > 0, 0 < θ′ < θ < 1
2 , with θ′ close to 1

2 and
δ > 0 small. We take numbers satisfying s� ρ� 1 (that may depend on the
preceding parameters c, θ, θ′). Let ε ∈]0, 1] and T ∈ [1, ε−4+c]. Assume we are
given on interval [1, T ] a solution uapp

+ = u′app
+ + u′′app

+ of (3.1.37) satisfying
bounds (3.1.39)-(3.1.41) and (3.1.43)-(3.1.45). Assume also given a function
u+ in C([1, T ], Hs(R)), odd, solution of (2.2.2) and such that, if we define ũ+
by (4.1.15) i.e.

(4.2.1) ũ+ = u+ −
∑
|I|=2

Op(m̃0,I)(uI)− u′app
+ − u′′app

+ ,

then ũ+ satisfies for t ∈ [1, T ], bounds

‖ũ+(t, ·)‖Hs ≤ Dεtδ

‖ũ+(t, ·)‖W ρ,∞ ≤ D (ε2
√
t)θ
′

√
t

‖L+ũ+(t, ·)‖L2 ≤ Dt
1
4 (ε2
√
t)θ

(4.2.2)

for some constant D.
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Then ũ+ solves the equation(
Dt − p(Dx)

)
ũ+ =

∑
3≤|I|≤4,I=(I′,I′′)

Op(m̃I)(ũI′ , uapp
I′′ )

+
∑

|I|=2,I=(I′,I′′)
Op(m′0,I)(ũI′ , u

app
I′′ )

+ aapp(t)
∑
|I|=1

Op(m′1,I)(ũI)

+ 1
3

(
eit
√

3
2 g(t) + e−it

√
3

2 g(t)
)2 ∑
|I|=1

Op(m′0,I)(ũI)

+R(t, x)

(4.2.3)

where for some ν in N, m̃I are symbols in S̃1,0

(∏|I|
j=1 〈ξj〉

−1M0(ξ)ν , |I|
)

, 3 ≤

|I| ≤ 4, where m′0,I and m̃′1,I are in S̃′1,0
(∏|I|

j=1 〈ξj〉
−1M0(ξ)ν , |I|

)
, all these

symbols satisfying (2.1.7), and where

(4.2.4) aapp(t) =
√

3
3
(
aapp

+ (t)− aapp
− (t)

)
with aapp

+ (t) being given by the first four terms in the right hand side of (3.1.8),
namely

(4.2.5) aapp
+ (t) = eit

√
3

2 g(t) + ω2g(t)2eit
√

3 + ω0|g(t)|2 + ω−2g(t)2
e−it

√
3

and aapp
− (t) = −aapp

+ (t), and where R(t, x) satisfies the bounds for t in [1, T ]

(4.2.6) ‖R(t, ·)‖Hs ≤ εtδ−1e(t, ε)

(4.2.7) ‖L±R(t, ·)‖L2 ≤ t−
3
4 (ε2
√
t)θe(t, ε)

where

(4.2.8) lim
ε→0+

sup
1≤t≤ε−4+c

e(t, ε) = 0.

As a preparation for the proof, let us rewrite equation (2.2.2) replacing in its
left hand side u+ by the expression of that function that follows from (4.2.1),
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namely

(
Dt − p(Dx)

)[
ũ+ + u′app

+ + u′′app
+
]

=F 2
0 [a] + F 3

0 [a]

+
∑

3≤|I|≤4
Op(m0,I)[uI ]

+
∑
|I|=2

Op(m′0,I)[uI ]

+
3∑
j=1

a(t)j
∑

1≤|I|≤4−j
Op(m′1,I)[uI ].

(4.2.9)

Recall that we have written in (3.1.37) an expression for
(
Dt − p(Dx)

)
uapp

+ .
Making the difference between (4.2.9) and (3.1.37), we get that

(
Dt−p(Dx)

)
ũ+

is equal to the sum of the following expressions:

(4.2.10) F 2
0 [a]− F 2

0 [aapp] + F 3
0 [a]− F 3

0 [aapp]

(4.2.11)
∑

3≤|I|≤4
Op(m0,I)[uI ]

(4.2.12)
∑
|I|=2

Op(m′0,I)[uI ]

(4.2.13) a(t)
∑
|I|=1

Op(m′1,I)[uI ]− aapp(t)
∑
|I|=1

Op(m′1,I)[u
app
I ]

(4.2.14) a(t)
∑

2≤|I|≤3
Op(m′0,I)[uI ]

(4.2.15) a(t)j
∑

1≤|I|≤4−j
Op(m′0,I)[uI ], j = 2, 3

(4.2.16) −R(t, x)

where R satisfies (3.1.38).
We shall analyze successively the expressions (4.2.10) to (4.2.16), using

equation (4.2.1), in order to rewrite their sum as the right hand side of (4.2.3)
with a new remainder R.

We first write in a lemma some elementary inequalities that we shall refer
to in the sequel.
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Lemma 4.2.2. — We denote by e(t, x) any real valued function defined on
the interval [1, ε−4+c], satisfying (4.2.8). We have then the following inequal-
ities:

(4.2.17) t−1
ε t−γ = O(εt−1e(t, ε)) if γ > 1

2

(4.2.18) |log ε|t−γε t−
1
2 = O

(
t−

3
4 (ε2
√
t)θe(t, ε)

)
if γ ≥ 1

2 , θ <
1
2

(4.2.19)
[
εγ + (ε2

√
t)γ
′
t−1]εtδ = O

(
εtδ−1e(t, ε)

)
if δ > 0, γ ≥ 4, γ′ > 0

(ε2
√
t)γ |log ε|4t−

3
4 (ε2
√
t)θ = O

(
t−

3
4 (ε2
√
t)θe(t, ε)

)
if γ > 0, 0 < θ <

1
2

(4.2.20)

(ε2
√
t)γ |log ε|t−

3
2−α

[
t

1
4 (ε2
√
t)θ
]

= O
(
εtδ−1e(t, ε)

)
if 1

2 − θ < γ ≤ 1
2 − θ + 2δ, α ≥ 0

(4.2.21)

(4.2.22) |log ε|2εt−
1
2 = O

(
t−

3
4 (ε2
√
t)θe(t, ε)

)
if 0 < θ <

1
2

(4.2.23) |log ε|2εt−
1
2

ε t−γ = O(εt−1e(t, ε)) if 1
2 < γ < 1

(4.2.24) ε2t−1
ε t

1
4 = O(εt−1e(t, ε)).

Proof of Proposition 4.2.1: Since
(
Dt − p(Dx))ũ+ is given by (4.2.10) to

(4.2.16), we have to write each of these terms as contributions to the right
hand side of (4.2.3). We study them successively.
• Terms of the form (4.2.10)
Recall that a =

√
3

3 (a+ − a−) with a− = −ā+ (see (1.2.19)) and that a+(t)
is given by (3.2.5). Since by (3.2.8), g(t) is O(t−

1
2

ε ), it follows from (3.2.5),
(3.2.7) that a+(t) − aapp

+ (t) = O(t−
3
2

ε ). The definition (1.2.14) of F 2
0 [a], F 3

0 [a]
implies that for any α,N integers

(4.2.25)
∣∣∣∂αx (F j0 [a]− F j0 [aapp]

)
(t, x)

∣∣∣ ≤ Cα,N t−2
ε 〈x〉

−N , j = 2, 3.

Thus (4.2.17) implies that (4.2.6) holds (even with δ = 0) and (4.2.18) implies
that (4.2.7) is true for any θ < 1

2 . So these terms contribute to R in (4.2.3).
• Terms of the form (4.2.11)
Notice that if ũ+ satisfies estimates (4.2.2), then it satisfies bounds (4.1.21)

(with a new constant D) in view of the definition of E = Hs, F = W ρ,∞

and (4.1.12) of Ẽ. Moreover, if we set f+ = u+ − u′′app
+ , equation (4.2.1)
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may be written as (4.1.23). Then Proposition 4.1.3 implies that for ε small
enough, there is a unique solution f+ solving equation (4.1.23), and we have
an expansion (4.1.24) for f+ in terms of ũ, uapp. We may rewrite this as

(4.2.26) u+ = uapp
+ + ũ+ +

∑
2≤|I|≤4,I=(I′,I′′)

Op(mI)(ũI′ , uapp
I′′ ) +R

with symbols mI in S̃1,0
(∏|I|

j=1 〈ξj〉
−1Mν

0 , |I|
)

and R satisfying (4.1.25),
(4.1.26). We plug expansion (4.2.26) inside (4.2.11). Recall that by Propo-
sition 2.2.1, the symbols m0,I in (4.2.11) belong to S̃1,0

(∏|I|
j=1 〈ξj〉

−1M0, |I|
)
.

By Corollary A9.2.6, we shall get terms of the following form:

(4.2.27) Op(m̃I)(ũI′ , uapp
I′′ ), 3 ≤ |I| ≤ 4, I = (I ′, I ′′)

where m̃I is some new symbol in S̃1,0
(∏|I|

j=1 〈ξj〉
−1Mν

0 , |I|
)

for some new ν;

(4.2.28) Op(m̃I)(U1, U2, . . . , Uk), k = |I|

with m̃I as above and either

(4.2.29) k ≥ 5, U` ∈ {ũ±, u′app
± , u′′app

± }

or

(4.2.30) k ≥ 3, U` ∈ {ũ±, u′app
± , u′′app

± , R}

with R satisfying (4.1.25), (4.1.26), one of the U` at least being equal to R.
Terms of the form (4.2.27) are present in the right hand side of (4.2.3). We

have to show that (4.2.28) contributes to the remainder in that formula. By
(A11.1.30), under (4.2.29), the Hs norm of (4.2.28) is bounded from above by

C
(
‖ũ+‖W ρ,∞ + ‖u′app

+ ‖W ρ,∞ + ‖u′′app
+ ‖W ρ,∞

)k−1

×
(
‖ũ+‖Hs + ‖u′app

+ ‖Hs + ‖u′′app
+ ‖Hs

)
By (4.2.2), (4.1.13), (4.1.14), and since k ≥ 5, we obtain a bound in

(4.2.31) C
(
ε2|log ε|2 + (ε2

√
t)θ
′

√
t

)4
εtδ

so that (4.2.19) implies that (4.2.6) holds. On the other hand, consider the
action of L± on (4.2.28) and let us estimate the L2 norm of the resulting
expression by the right hand side of (4.2.7). If we multiply (4.2.28) by x, we
have to study

(4.2.32) xOp(m̃I)(U1, . . . , Uk−1, Uk).
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Consider first the case when among the U`’s in (4.2.28), at least one of them
is equal to ũ± or u′app

± , say Uk. We apply (A11.1.34) (with j = k) and obtain
thus for the L2 norm of the relevant quantity at time τ a bound in

(4.2.33) C
(
‖ũ+‖W ρ,∞ + ‖u′app

+ ‖W ρ,∞ + ‖u′′app
+ ‖W ρ,∞

)k−1

×
(
τ‖ũ+‖L2 + ‖L+ũ+‖L2 + τ‖u′app

+ ‖L2 + ‖L+u
′app
+ ‖L2

)
.

By (4.2.2), (3.1.40), (3.1.44), (3.1.39), (3.1.41), and the fact that k ≥ 5, we
obtain a bound at time τ in

(4.2.34) C
(
ε2|log ε|2 + (ε2

√
τ)θ
′

√
τ

)4
τ

5
4 (ε2
√
τ)θ.

By (4.2.20) we get a bound of the form (4.2.7) for (4.2.33).
Consider next the case when in (4.2.28), all the U` are equal to u′′app

± . In
this case, we use (A11.1.35) (with ρ > ρ0) to estimate the L2 norm of (4.2.32)
at time τ . We get a bound by

(4.2.35) C‖u′′app
+ ‖k−2

W ρ,∞
(
τ‖u′′app

+ ‖W ρ,∞ + ‖L+u
′′app

+ ‖W ρ,∞
)
‖u′′app

+ ‖L2 .

By (3.1.43)-(3.1.45) we get an estimate by

Cε(ε2
√
τ)4|log ε|8τ−1 + ε(ε2

√
τ)3|log ε|8τ−

3
2

to which (4.2.20) largely applies.
On the other hand, the L2 norm of the product of (4.2.28) by τ is estimated

using (A11.1.31) by (4.2.33) or (4.2.35) as well. We thus have obtained that,
under condition (4.2.29), (4.2.28) forms part of the remainder in (4.2.3).

Let us study now case (4.2.30). If we compute the Hs norm of (4.2.28)
applying (A11.1.30), we obtain a bound in

C
[
‖ũ+‖W ρ,∞ + ‖u′app

+ ‖W ρ,∞ + ‖u′′app
+ ‖W ρ,∞ + ‖R‖W ρ,∞

]k−1
‖R‖Hs

+C
[
‖ũ+‖W ρ,∞ + ‖u′app

+ ‖W ρ,∞ + ‖u′′app
+ ‖W ρ,∞ + ‖R‖W ρ,∞

]k−2

×
[
‖ũ+‖Hs + ‖u′app

+ ‖Hs + ‖u′′app
+ ‖Hs

]
‖R‖W ρ,∞ .

(4.2.36)

By (4.1.25), that allows to bound ‖R‖W ρ,∞ by Sobolev injection, (3.1.40),
(3.1.44), (4.2.2), the first line is bounded by (4.1.25), so it satisfies (4.2.6).
The second line of (4.2.36) is also estimated in that way. Notice that the
assumption k ≥ 3 is not used here, and that k ≥ 2 suffices.

If we compute instead the L2 norm of the product of (4.2.28) by x from an
expression of the form (4.2.32) with Uk replaced by R and apply (A11.1.34),
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we obtain an estimate at time τ in

C
[
‖ũ+‖W ρ,∞ + ‖u′app

+ ‖W ρ,∞ + ‖u′′app
+ ‖W ρ,∞ + ‖R‖W ρ,∞

]k−1

×
[
τ‖R‖L2 + ‖xR‖L2

]
.

(4.2.37)

The first factor is O(ε2θ′) by (3.1.40), (3.1.44), (4.2.2) and (4.1.25) (coupled
with Sobolev injection). The last one is bounded from above using (4.1.25),
(4.1.26), so that it satisfies (4.2.7) using (4.2.20). The L2 norm of the product
of (4.2.28) by τ is also estimated by (4.2.37). Again, only k ≥ 2 is used.
• Terms of the form (4.2.12)
We plug in (4.2.12) expansion (4.2.26). By Corollary A9.2.6, we get terms

of the form
(4.2.38) Op(m′0,I)(ũI′ , u

app
I′′ ), |I| = 2, I = (I ′, I ′′)

and terms of higher degree of homogeneity. We may thus write these terms as
(4.2.39) Op(m̃′I)(U1, . . . , Uk), |I| = k

where m̃′I is in S̃′1,0
(∏|I|

j=1 〈ξj〉
−1Mν

0 , |I|
)

for some ν and where either

(4.2.40) k ≥ 3, U` ∈ {ũ±, u′app
± , u′′app

± }
or
(4.2.41) k ≥ 2, U` ∈ {ũ±, u′app

± , u′′app
± , R}

with at least one factor equal to R. Terms (4.2.39) under condition (4.2.41)
provide remainders satisfying (4.2.6), (4.2.7), as it has been seen in (4.2.36),
(4.2.37). (The fact that k ≥ 3 there has not been used).

Terms (4.2.38) are present in the right hand side of (4.2.3). Let us show
that terms (4.2.39) under condition (4.2.40), provide contributions to R in
(4.2.3). To estimate the Hs norm of (4.2.39), we may first split the symbols
in new ones satisfying the support condition of Corollary A11.2.12, i.e. for
instance |ξ1|+ · · ·+ |ξk−1| ≤ K(1 + |ξk|). We shall apply estimate (A11.2.39)
with n = k, ` = k − 1. Let `′ be the number of indices j between 1 and k − 1
such that in (4.2.39), Uj is equal to ũ± or u′app

± . Then by (A11.2.39)

(4.2.42) ‖Op(m̃′I)(U1, . . . , Uk)‖Hs

≤ Ct−(k−1)+σ(‖L+ũ+‖L2 + ‖L+u
′app
+ ‖L2 + ‖ũ+‖Hs + ‖u′app

+ ‖Hs

)`′
×
(
‖L+u

′′app
+ ‖W ρ0,∞ + ‖u′′app

+ ‖W ρ0,∞ + t−
1
2 ‖u′′app

+ ‖Hs

)k−1−`′

×
(
‖ũ+‖Hs + ‖u′app

+ ‖Hs + ‖u′′app
+ ‖Hs

)
.

Since k ≥ 3, we obtain from (3.1.39)-(3.1.41), (3.1.43)-(3.1.45) and (4.2.2) a
bound in

Ctσ−2[t 1
4 (ε2
√
t)θ|log ε|2

]2
εtδ ≤ Ct−1e(t, ε)εtδ
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if σ is taken small enough, so that (4.2.6) holds.
We consider next the L2 norm of (4.2.39) multiplied by x or t. The rapid

decay of symbols in the S′κ,0 class relatively to M0(ξ)−κ|y| given by (A9.1.5)
implies that the product of m̃′I by x is still a symbol of the form m̃′I (with a
new value of ν). We thus have to estimate just
(4.2.43) t‖Op(m̃′I)(U1, . . . , Uk)‖L2

with U` satisfying (4.2.40). If at least one Uj is equal to ũ± or u′app
± , we use

(A11.2.32) with that value of j. We get a bound of (4.2.43) in

(4.2.44) C
(
‖ũ+‖W ρ0,∞ + ‖u′app

+ ‖W ρ0,∞ + ‖u′′app
+ ‖W ρ0,∞

)k−1

×
[
‖L+ũ+‖L2 + ‖L+u

′app
+ ‖L2 + ‖ũ+‖L2 + ‖u′app

+ ‖L2
]
.

If all Uj are equal to u′′app
± , we use (A11.2.33) in order to obtain a bound in

(4.2.45) C‖u′′app
+ ‖k−2

W ρ0,∞
(
‖L+u

′′app
+ ‖W ρ0,∞ + ‖u′′app

+ ‖W ρ0,∞
)
‖u′′app

+ ‖L2 .

By (3.1.39)-(3.1.41), (3.1.43)-(3.1.45) and (4.2.2), the sum of (4.2.44) and
(4.2.45) is estimated at time τ (since k ≥ 3) by

(4.2.46) C
[(ε2
√
τ)θ
′

√
τ

+ ε2|log ε|2
]2
τ

1
4 (ε2
√
τ)θ + ε3|log ε|4.

By (4.2.20), the first term is smaller than the right hand side of (4.2.7). The
same holds true trivially for the last term in (4.2.46). This finishes the proof
that terms (4.2.12) contributes to the remainder in (4.2.3).
• Terms of the form (4.2.13)
We need to prove that (4.2.13) contributes to the remainder and to the

aapp∑
|I|=1 Op(m̃′0,I)(uI) terms in the right hand side of (4.2.3). Substitute

(4.2.26) in (4.2.13). We get the following terms
(4.2.47)(

a(t)− aapp(t)
) ∑
|I|=1

Op(m′1,I)(u
app
I ) +

(
a(t)− aapp(t)

) ∑
|I|=1

Op(m′1,I)(ũI)

(4.2.48) aapp(t)
∑
|I|=1

Op(m′1,I)(ũI)

(4.2.49) a(t)
∑
|I|=1

∑
2≤|Ĩ|≤4,Ĩ=(Ĩ′,Ĩ′′)

Op(m′1,I)Op(mĨ)(ũĨ′ , u
app
,Ĩ′′

)

(4.2.50) a(t)
∑
|I|=1

Op(m′1,I)(R)

where R satisfies (4.1.25), (4.1.26).
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By (4.2.5), (3.1.8), (3.1.6), (3.1.3) and (3.2.5), (3.2.7), aapp(t) − aapp(t) =
O(t−

1
2

ε t−
1
2 (ε2
√
t)θ
′
), a(t) − aapp(t) = O(t−

3
2

ε ) = O(t−
1
2

ε t−
1
2 (ε2
√
t)θ
′
). By

(A11.1.29), the Hs norm of (4.2.47) is thus bounded from above at time τ by

Cτε
− 1

2 τ−
1
2 (ε2
√
τ)θ
′[
‖u′app

+ ‖Hs + ‖u′′app
+ ‖Hs + ‖ũ+‖Hs

]
≤ Cτ−1(ε2

√
τ)θ
′
ετ δ

using (3.1.39), (3.1.43), (4.2.2). This quantity satisfies (4.2.6). If we make
act L± on (4.2.47) and use (A11.2.32) to estimate the L2 norm, we obtain a
bound in

Cτε
− 1

2 τ−
1
2 (ε2
√
τ)θ
′[
‖L+u

′app
+ ‖L2 + ‖L+ũ+‖L2 + ‖u′app

+ ‖L2 + ‖ũ+‖L2
]

for the contribution of u′app
± and ũ± to (4.2.47). Using (4.2.2) and (3.1.39),

(3.1.41), we get by (4.2.20) the wanted estimate of the form (4.2.7). On the
other hand, if we consider the contribution (a(t) − aapp(t))Op(m′I,1)u′′app

± to
(4.2.47) on which acts L±, we may estimate the L2 norm from the L∞ one, as
m′1,I(x, ξ) is rapidly decaying in x. Then, by (A11.2.38) with ` = n = 1, we
obtain a bound in

(4.2.51) Ct|a− aapp|
[
t−r
(
‖u′′app

+ ‖W ρ0,∞ + t−
1
2 ‖u′′app

+ ‖Hs

)
+ t−1+σ(‖u′′app

+ ‖W ρ0,∞ + ‖L+u
′′app

+ ‖W ρ0,∞
)]
.

As a−aapp = O(t−
3
2

ε ), it follows, taking for instance r = 1, and using (3.1.43),
(3.1.44), (3.1.45) that (4.2.51) at time τ may be estimated, if σ is small enough,
from

Cτε
− 3

2 τσ|log ε|2 ≤ Cτε−
1
2 τ−

1
2 ε1−2σ|log ε|2.

By (4.2.18), (4.2.7) will hold largely. We have thus obtained that (4.2.47) is a
remainder.

Term (4.2.48) is present in the right hand side of (4.2.3).
Consider next (4.2.49). By Corollary A9.2.6, the composition Op(m′1,I) ◦

Op(mĨ) may be written under the form Op(m′1,Ĩ) for new symbols m′1,Ĩ in

S̃′1,0
(∏|Ĩ|

j=1 〈ξj〉
−1Mν

0 , |Ĩ|
)

for some ν and 2 ≤ |Ĩ| ≤ 4. Consequently, we write
(4.2.49) under the form

(4.2.52) a(t)
∑

2≤|Ĩ|≤4,Ĩ=(Ĩ′,Ĩ′′)

Op(m′1,Ĩ)(ũĨ′ , u
app
Ĩ′′

).

Since such expressions will appear also in the study of terms of the form
(4.2.14), we postpone their study.

Finally, let us study (4.2.50). As Op(m′1,I) is bounded on Hs, the Sobolev

norm of (4.2.50) is O(t−
1
2

ε ‖R(t, ·)‖Hs). Using (4.1.25), it satisfies (4.2.6). If we
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make act L± on (4.2.50), the rapid decay of m′1,I and (4.1.25), show that we
obtain at time τ an expression whose L2 norm is bounded from above by

Cτε
− 1

2 (ε2
√
τ)4θ′

τ−1+4σ(ετ δ)

that trivially satisfies (4.2.7).
This concludes the study of terms of the form (4.2.13).
• Terms of the form (4.2.14) (and (4.2.52))
We study now expressions of the form (4.2.14) and the related ones intro-

duced in (4.2.52).
We plug expansion (4.2.26) in (4.2.14). By Corollary A9.2.6, we get again

terms of the form (4.2.52), with 2 ≤ |Ĩ| ≤ 6 instead of 2 ≤ |Ĩ| ≤ 4, and terms
of the form

(4.2.53) a(t)Op(m̃′1,I)(U1, . . . , Uk), |I| = k ≥ 2

with again m̃′1,I in S̃′1,0
(∏|I|

j=1 〈ξj〉
−1Mν

0 , |I|
)
, U` belonging to

{ũ±, u′app
± , u′′app

± , R},

one of the arguments at least being equal to R satisfying (4.1.25), (4.1.26).
We have already checked that terms of this last form provide remainders (even
without the pre-factor a(t)) (see (4.2.36), (4.2.37), where the assumption k ≥ 3
was not used). We are thus reduced to the study of terms of the form (4.2.52),
with |Ĩ| ≥ 2 in the sum. If |Ĩ| ≥ 3, we get terms of the form (4.2.39) with
conditions (4.2.40), that have been seen to be remainders. We must thus just
study

(4.2.54) a(t)Op(m̃′1,I)(U1, U2)

with |I| = 2, U1, U2 ∈ {ũ±, u′app
± , u′′app

± }. Moreover, we may assume, in order
to bound the Sobolev norm, that m̃′1,I is supported for |ξ1| ≤ K(1 + |ξ2|)
for instance. Applying (A11.2.39) with `′ = ` = 1 if U1 = ũ± or u′app

± and
` = 1, `′ = 0 if U1 = u′′app

± , we bound the Hs norm of (4.2.54) by

|a(t)|t−1+σ[‖L+ũ+‖L2 + ‖ũ+‖Hs + ‖L+u
′app
+ ‖L2 + ‖u′app

+ ‖Hs

+ ‖L+u
′′app

+ ‖W ρ0,∞ + ‖u′′app
+ ‖W ρ0,∞ + t−

1
2 ‖u′′app

+ ‖Hs

]
×
[
‖ũ+‖Hs + ‖u′app

+ ‖Hs + ‖u′′app
+ ‖Hs

]
.

As a(t) = O(t−
1
2

ε ), one gets at time τ a bound in ετ δ−1e(t, ε) using (3.1.39)-
(3.1.41), (3.1.43)-(3.1.45) and (4.2.2). It follows that (4.2.6) will hold. On the
other hand, if we make act L± on (4.2.54) and compute the L2 norm, we get a
bound given by |a(t)| = O(t−

1
2

ε ) multiplied by (4.2.44) or (4.2.45) with k = 2.
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Using again (3.1.39)-(3.1.41), (3.1.43)-(3.1.45) and (4.2.2), we obtain at time
τ an upper bound in

Cτε
− 1

2

[((ε2
√
τ)θ
′

√
τ

+ ε2|log ε|2
)
τ

1
4 (ε2
√
τ)θ + log(1 + τ) log(1 + τε2)ε

( τε2

〈τε2〉

) 1
2
]
.

By (4.2.20), (4.2.22), (4.2.7) will hold true. This concludes the estimate of
these terms.
• Terms of the form (4.2.15)
Terms (4.2.15) with |I| ≥ 2 are of the same form as (4.2.14), with a smaller

pre-factor a(t)j , so they are remainders. We have thus to study

(4.2.55) a(t)j
∑
|I|=1

Op(m′0,I)(uI), j = 2, 3.

By (3.2.5), (3.2.6), (3.2.7), (3.2.9) and the definition of a(t) =
√

3
3 (a+ − a−),

one may write (4.2.55) from the term

(4.2.56) 1
3
∑
|I|=1

(
eit
√

3
2 g(t) + e−it

√
3

2 g(t)
)2

Op(m′0,I)(uI)

and from terms like
(4.2.57) ã(t)

∑
|I|=1

Op(m′0,I)(uI)

where

(4.2.58) |ã(t)| ≤ Ct−1
ε [t−

1
2 (ε2
√
t)θ
′
+ t
− 1

2
ε ].

Terms (4.2.56) are present in the right hand side of (4.2.3). We have to show
that (4.2.57) provides remainders. The Hs norm of these terms in bounded
from above, using the Sobolev boundedness of Op(m′0,I) and estimates (3.1.39),
(3.1.43) and (4.2.2) by Cεtδ−1ε2θ

′ so that (4.2.6) will hold.
On the other hand, if we make act L± on (4.2.57) and compute the L2

norm, we have to estimate by (4.2.58) expressions of the form

(4.2.59) tt−1
ε

[
t−

1
2 (ε2
√
t)θ
′
+ t
− 1

2
ε

]
‖Op(m̃′0,I)U‖L2

where m̃′0,I is of the same form as m′0,I and U = ũ± or u′app
± or u′′app

± .
When U = ũ± or u′app

± we use (A11.2.32) to bound (4.2.59) by

Ct−1
ε

[
t−

1
2 (ε2
√
t)θ
′
+ t
− 1

2
ε

][
‖L+ũ+‖L2 + ‖L+u

′app
+ ‖L2

+ ‖ũ+‖L2 + ‖u′app
+ ‖L2

]
.

Using (3.1.39), (3.1.41) and (4.2.2), we see from (4.2.20) that (4.2.7) will hold.
On the other hand, if U = u′′app

+ , we estimate the L2 norm in (4.2.59) from an
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L∞ one, using the rapid decay of m̃′0,I , and we use (A11.2.38) with ` = n = 1,
r = 1, in order to obtain a bound in

tσt−1
ε

[
t−

1
2 (ε2
√
t)θ
′
+ t
− 1

2
ε

][
‖u′′app

+ ‖W ρ0,∞ + ‖L+u
′′app

+ ‖W ρ0,∞

+ t−
1
2 ‖u′′app

+ ‖Hs

]
.

By (3.1.43)-(3.1.45), we bound this by

C|log ε|2εt−
1
2 (tσε)

so that, since t ≤ ε−4 and σ may be taken as small as we want, (4.2.22) implies
that (4.2.7) holds. This concludes the study of terms (4.2.15).
• Terms of the form (4.2.16)
These terms satisfy (3.1.38). It follows immediately from (4.2.17) that

(4.2.6) holds. Using (4.2.18), we get as well (4.2.7).
This concludes the proof of Proposition 4.2.1. 2

The reduced equation (4.2.3) obtained in Proposition 4.2.1 still needs one
more reduction before we are able to deal with it. Recall that in Proposi-
tion 3.1.2, we have decomposed uapp

+ under the form (3.1.48) uapp
+ = uapp,1

+ +
Σ+, where uapp,1

+ was given by (3.1.49). We refined this decomposition in
(3.1.54) as

uapp,1
+ = u′app,1

+ + u′′app,1
+

u′app,1
+ =

∑
j∈{−2,0,2}

U ′j,+(t, x)

u′′app,1
+ =

∑
j∈{−2,0,2}

U ′′j,+(t, x)

(4.2.60)

where U ′j,+, U ′′j,+ are defined in (A10.1.3) from the right hand side of (3.1.50),
namely

U ′j,+(t, x) = i

∫ +∞

1
ei(t−τ)p(Dx)+ij

√
3

2 χ
( τ√

t

)
Mj(t, ·) dτ

U ′′j,+(t, x) = i

∫ t

−∞
ei(t−τ)p(Dx)+ij

√
3

2 (1− χ)
( τ√

t

)
Mj(t, ·) dτ

(4.2.61)

with Mj given by (3.1.21). Let us prove the following corollary of Proposi-
tion 4.2.1.
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Corollary 4.2.3. — Under the assumptions of Proposition 4.2.1, ũ+ solves
an equation of the form

(4.2.62)
(
Dt − p(Dx)

)
ũ+ −

2∑
j=−2

eitj
√

3
2 Op(b′j,+)ũ+ −

2∑
j=−2

eitj
√

3
2 Op(b′j,−)ũ−

=
∑

3≤|I|≤4,I=(I′,I′′)
Op(m̃I)(ũI′ , uapp

I′′ )

+
∑
|I|=2

Op(m′0,I)(ũI) +
∑

I=(I′,I′′),|I′|=|I′′|=1
Op(m′0,I)(ũI′ , u′

app,1
I′′ )

+
∑
|I|=2

Op(m′0,I)(u′
app,1
I ) +R+(t, x)

where (m̃I)3≤|I|≤4 is as in the statement of Proposition 4.2.1, where (m′0,I)|I|=2
are in S̃′1,0

(∏2
j=1 〈ξj〉

−1M0(ξ), 2), where R+ satisfies (4.2.6), (4.2.7), and
where the symbols b′j,± satisfy (2.1.7) and the following estimates for α, β,N
in N:

If j = −1 or j = 1,

|∂αx ∂
β
ξ b
′
j,±(t, x, ξ)| ≤ Cα,β,N t

− 1
2

ε 〈x〉−N 〈ξ〉−1

|∂t∂αx ∂
β
ξ b
′
j,±(t, x, ξ)| ≤ Cα,β,N

[
t
− 3

2
ε + (ε2

√
t)

3
2 θ
′
t−

3
2
]
〈x〉−N 〈ξ〉−1

(4.2.63)

and if j = −2, 0, 2

|∂αx ∂
β
ξ b
′
j,±(t, x, ξ)| ≤ Cα,β,N t−1

ε 〈x〉
−N 〈ξ〉−1

|∂t∂αx ∂
β
ξ b
′
j,±(t, x, ξ)| ≤ Cα,β,N t

− 1
2

ε

[
t
− 3

2
ε + (ε2

√
t)

3
2 θ
′
t−

3
2
]
〈x〉−N 〈ξ〉−1.

(4.2.64)

Proof. — Let us analyse the different terms in the right hand side of (4.2.3).
The first sum appears unchanged in (4.2.62).

By the definition (4.2.5) of aapp
+ , the fact that aapp =

√
3

3 (aapp
+ + aapp

+ )
and (3.1.3), the aapp(t)

∑
|I|=1 Op(m′1,I)(ũI) term in (4.2.3) contributes to the

terms involving b′j,± in the left hand side of (4.2.62). The same holds true for
the last but one term in (4.2.3). We are thus left with studying

(4.2.65)
∑

|I|=2,I=(I′,I′′)
Op(m′0,I)(ũI′ , u

app
I′′ ).

• If |I ′′| = 0, we get the
∑
|I|=2 Op(m′0,I)(ũI) contribution in (4.2.62).

• We consider next the contributions to (4.2.65) with |I ′| = 1, |I ′′| = 1.
As one may decompose uapp

+ = u′app,1
+ + u′′app,1

+ + Σ+ by (3.1.48), (3.1.55), we
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shall get three type of terms:

(4.2.66)
∑

I=(I′,I′′),|I′|=|I′′|=1
Op(m′0,I)(ũI′ , u′

app,1
I′′ )

(4.2.67)
∑

I=(I′,I′′),|I′|=|I′′|=1
Op(m′0,I)(ũI′ , u′′

app,1
I′′ )

(4.2.68)
∑

I=(I′,I′′),|I′|=|I′′|=1
Op(m′0,I)(ũI′ ,ΣI′′).

Term (4.2.66) appears in the right hand side of (4.2.62). From (4.2.60), we
may rewrite (4.2.67) as a sum of expressions

(4.2.69) Op(m′0,I)(ũI′ , U ′′j,I′′), j = −2, 0, 2.

We shall apply Proposition A10.2.2 with κ = 1, ω = 1. Since U ′′j,+ is defined
by (4.2.61) from a Mj given by (3.1.21), thus satisfying by (3.1.3) inequalities
(A10.1.6) with ω = 1, Assumption (H1)1 of Proposition A10.2.1 is satisfied,
and so Proposition A10.2.2 applies. It follows from (A10.2.19), applied with
λ = j

√
3

2 , j = −2, 0, 2, that (4.2.69) may be written as

(4.2.70) eijt
√

3
2 Op(bj1)ũI′ + Op(bj2)ũI′

where bj1 (resp. bj2) satisfies (2.1.7) and the first two lines (resp. the last line)
in (A10.2.20) with ω = 1. The first term in (4.2.70) brings thus contributions
to the last two sums in the left hand side of (4.2.62), for j = −2, 0, 2, with
symbols satisfying (4.2.64) and (2.1.7).

We have to check next that the last term in (4.2.70) contributes to the
remainders.

By the last line in (A10.2.20) and (A11.1.30), (4.2.2)

‖Op(bj2)ũI′‖Hs ≤ Cε2t−1 log(1 + t)εtδ

from which a remainder estimate of the form (4.2.6) follows. If we make act
L± on Op(bj2)ũI′ and use (A11.2.32) with n = 1 and the bounds (A10.2.20)
for the semi-norms of bj2 (with ω = 1), we obtain from (4.2.2)

(4.2.71) ‖L±Op(bj2)ũI′‖L2 ≤ Cε2t−1 log(1 + t)t
1
4 (ε2
√
t)θ

so that a bound of form (4.2.7) holds.
It remains to study (4.2.68). Recall the definition of Σ+ given after (3.1.50):

this function is a sum
∑3
j=−3 U j(t, x) where U j solves (3.1.50) with source term

eijt
√

3
2 M j , where M j satisfies (3.1.51) i.e. the first inequality (A10.1.7). We
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may then decompose each U j as U ′j,1 + U ′′j,1, according to (A10.2.23) with
λ = j

√
3

2 and rewrite the terms in (4.2.68) from

(4.2.72) Op(m′0,I)(ũI′ , U ′j,1,I′′), Op(m′0,I)(ũI′ , U ′′j,1,I′′)
to which Proposition A10.2.5 applies. This allows us to rewrite these terms
as Op(b)(ũ±) where b satisfies estimates (A10.2.30), namely

(4.2.73) |∂α
′
0

y ∂ξb(t, y, ξ)| ≤ Ct
− 1

2
ε t−1 log(1 + t)〈y〉−N 〈ξ〉−1.

By (A11.1.30) and (4.2.2), we thus get

‖Op(b)(ũ±)‖Hs ≤ Ct−
1
2

ε t−1 log(1 + t)‖ũ+‖Hs

≤ Ct−
1
2

ε t−1 log(1 + t)εtδ.

An estimate of the form (4.2.6) follows at once. If we make act L± on
Op(b)(ũ±), use the rapid decay in y of (4.2.73) and (A11.2.32), we obtain
an estimate of the L2 norm by the right hand side of (4.2.71), with ε2 replaced
by t

− 1
2

ε ≤ ε. This suffices to imply that (4.2.7) holds, and thus shows that
(4.2.68) is a remainder.
• We study finally contributions to (4.2.65) where |I ′| = 0. Again, we use

(3.1.48), (3.1.55) to write

uapp
+ = u′app,1

+ + u′′app,1
+ + Σ+.

Plugging this expression inside the terms (4.2.65) with |I ′| = 0, we shall get
expressions given by

(4.2.74) Op(m′0,I)
(
u′app,1
I

)
, |I| = 2

(4.2.75) Op(m′0,I)
(
ΣI′ , u

′app,1
I′′

)
, |I ′| = |I ′′| = 1, I = (I ′, I ′′)

(4.2.76) Op(m′0,I)(ΣI), |I| = 2

(4.2.77) Op(m′0,I)
(
u′′app,1

I

)
, |I| = 2

(4.2.78) Op(m′0,I)
(
ΣI′ , u

′′app,1
I′′

)
, |I ′| = |I ′′| = 1, I = (I ′, I ′′)

(4.2.79) Op(m′0,I)
(
u′app,1
I′ , u′′app,1

I′′
)
, |I ′| = |I ′′| = 1, I = (I ′, I ′′)

where m′0,I are still elements of S̃′1,0
(∏|I|

j=1 〈ξj〉
−1Mν

0 , |I|
)
.

Term (4.2.74) appears in the right hand side of (4.2.62)
Term (4.2.75) is treated as (4.2.68): actually, u′app,1

+ satisfies (3.1.39)-
(3.1.41) as has been established after (3.1.54), and these bounds are better
than inequalities (4.2.2) for ũ+
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Term (4.2.76) may be treated in the same way: we have seen in the study
of (4.2.68) that Op(m′0,I)(·,ΣI′′) may be written as Op(b)· for b satisfying
(4.2.73) (see (4.2.72)). By (3.1.52), we shall get for any N

‖xNOp(m′0,I)(ΣI)‖Hs ≤ C‖xNOp(b)(Σ±)‖Hs

≤ Ct−
1
2

ε t−1(log(1 + t))2[t− 3
2

ε + t−1t
− 1

2
ε + t−1ε2

]
.

(4.2.80)

By (4.2.23), we see that (4.2.6) will hold. Estimating the action of L± on
Op(m′0,I)(ΣI) in L2, we get an upper bound by the right hand side of (4.2.80)
multiplied by t. Then (4.2.22) shows that (4.2.7) holds.

To study (4.2.77), we recall that u′′app,1
+ is given by (3.1.54) where U ′′j,+ is

given by the second formula (A10.1.3) in terms of an M that satisfies (3.1.13),
i.e. such that (A10.1.6) with ω = 1 (Assumption (H1)1) holds. We may thus
apply Corollary A10.2.3 with ω = 1. It follows that the Hs norm of (4.2.77)
is bounded from above by

C
[
t−2
ε + ε4t−2(log(1 + t))2].

This largely implies (4.2.6). On the other hand, the L2 norm of the action of
L± on (4.2.77) is bounded by

C
[
tt−2
ε + ε4t−1(log(1 + t))2].

Then (4.2.22) implies that (4.2.7) largely holds.
Terms (4.2.78) may be treated in a similar way as (4.2.76): we have seen

that Op(m̃′I)(ΣI′ , u
′′app,1
I′′ ) may be written as Op(b)u′′app,1

± with b satisfying
(4.2.73). By the expression (3.1.54) of u′′app,1

+ =
∑
j∈{−2,0,2} U

′′
j,+, where U ′′j,+

is defined by the second formula (A10.1.3) with λ = j
√

3
2 and M = Mj given

by (3.1.21), we see that we may apply Proposition A10.2.1 with ω = 1. Taking
into account the time decaying factor in the righty hand side of (4.2.73), it
follows from (A10.2.2), (A10.2.3), (A10.2.4) that

(4.2.81) |∂αxOp(m′0,I)(ΣI′ , u
′′app,1
I′′ )| ≤ Ct−

1
2

ε t−1(log(1 + t))

×
[
t−1
ε + ε2t−1 log(1 + t)

]
〈x〉−N .

Thus the Hs norm of (4.2.78) is bounded from above by the t-depending factor
in (4.2.81). By (4.2.23), we get that (4.2.6) largely holds. If we make act L±
on (4.2.78) and estimate the L2 norm, we get a bound in

Ct
− 1

2
ε log(1 + t)

[
t−1
ε + ε2t−1 log(1 + t)

]
.

Thus (4.2.22) implies (4.2.7).
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It just remains to treat (4.2.79). Notice that (4.2.79) is of the same form as
(4.2.67) with ũI′ replaced by u′app,1

I′ , so that may be written under a similar
form as (4.2.70), namely

(4.2.82) eijt
√

3
2 Op(bj1)u′app,1

I′ + Op(bj2)u′app,1
I′

where bj1 (resp. bj2) satisfies the first two lines (resp. the last line) in (A10.2.20)
with ω = 1. We have checked after (4.2.70) that the second term in that
formula is a remainder. Since as seen above, u′app,1

+ satisfies (3.1.39)-(3.1.41),
which are better estimates than those verified by ũ+, it follows that the last
term in (4.2.82) is also a remainder. Let us prove that, because of the better
bounds satisfied by u′app,1

+ versus ũ+, the first term in (4.2.82) is a remainder
as well. By the estimates of b1 in (A10.2.20) and (A11.1.30)

‖Op(bj1)u′app,1
+ ‖Hs ≤ Ct−1

ε ‖u′
app,1
+ ‖Hs ≤ Ct−1

ε ε2t
1
4

according to (3.1.39) written for u′app,1
+ . By (4.2.24), we conclude that (4.2.6)

holds. To estimate ‖L±Op(bj1)u′app,1
+ ‖L2 , we are reduced, by the fact that

bj1 is rapidly decaying in x, to bounding t‖Op(bj1)u′app,1
+ ‖L2 . According to

(A11.2.32) and the bounds (A10.2.20) of bj1, we thus get an estimate in

t−1
ε

(
‖u′app,1

+ ‖L2 + ‖L+u
′app,1
+ ‖L2

)
≤ Ct−1

ε t
1
4
[
(ε2
√
t) + (ε2

√
t)

7
8 ε

1
8
]

by (3.1.41). As in (4.2.7) θ < 1
2 , (4.2.20) shows that (4.2.7) holds.

This ends the study of term (4.2.79) and thus the proof of Corollary 4.2.3.



CHAPTER 5

NORMAL FORMS

This chapter is devoted to the completion of step 5 of the proof of our
main theorem, that is described in section 1.7 of Chapter 1. We recall here
some elements of the strategy. The preceding steps of the proof allowed us
to reduce ourselves to an equation (4.2.62) for a new unknown ũ+. In this
chapter, we first write a system made of that equation and of the one obtained

by conjugation. In that way, if we set ũ− = −ũ+ and ũ =
ï
ũ+
ũ−

ò
, the system

we get on ũ may be written (see equation (5.1.13) below)(
Dt − P0 − V

)
ũ =M3(ũ, uapp) +M4(ũ, uapp)

+M′2(ũ, u′app,1) +R
(5.0.1)

where R is a remainder and the other terms in the equation have the following
structure:
• Operator P0 is just P0 =

[
p(Dx) 0

0 −p(Dx)

]
.

• Operator V is a 2 × 2 matrix of linear operators acting on ũ. Each of
these operators is a pseudo-differential operator of order −1, whose coefficients
depend on the approximate solution uapp constructed in Chapter 3. The main
contribution to V has thus entries of the following simplified form

(5.0.2) e±it
√

3
2 t
− 1

2
ε c(x)〈Dx〉−1,

where c(x) is in S(R) and again tε = ε

(1+tε2)
1
2

. The left hand side of (5.0.1) is
thus a vectorial version of the scalar operator

(5.0.3) Dt − p(Dx)− t−
1
2

ε Re
[
c(x)〈Dx〉−1eit

√
3

2 ].

We get thus a perturbation of the constant coefficients operator p(Dx) =√
1 +D2

x by a potential term, rapidly decaying in x. We already encoun-
tered such a perturbation in Chapter 1, except that there the potential was
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autonomous. Here, it is time dependent and has some decay when t goes to
infinity. Because of that, we cannot apply the results of Chapter 1 or of Ap-
pendix A8 to eliminate term V in (5.0.1) through conjugation. Nevertheless,
one may construct by hand some wave operators for a time depending per-
turbation of Dt − p(Dx) like the one in (5.0.3). That construction is made
on the Fourier transform side: we introduce in Lemma 5.1.1 below a class of
operators, obtained composing at the left and the right the last term in (5.0.3)
by (inverse) Fourier transform. In appendix A12 below we design “by hand”
wave operators for such perturbations of p(Dx), so that, conjugating (5.0.1)
through them, we may eliminate V from that equation, exactly as we got rid
of potential 2V in the second equation (1.1.9) in section 1.1 of Chapter 1 (see
equation (1.2.3)).

The second part of this chapter is devoted to a normal form procedure
allowing one to eliminate non characteristic contributions to the quadratic,
cubic and quartic terms M′2,M3,M4 in (5.0.1). Characteristic contributions
are terms like |ũ+|2ũ+ that obey a Leibniz type rule of the form

‖L+[|ũ+|2ũ+]‖L2 ≤ C‖ũ+‖2W ρ0,∞‖L+ũ+‖L2

up to remainders. These contributions may be safely kept in the right hand
side of (5.0.1). The non characteristic terms are those that do not satisfy such
a Leibniz rule, and that have to be eliminated by normal form. We explained
this idea on a simple model in section 0.6 of the introduction, and gave more
details in section 1.7. In the present chapter, we apply this method toM3,M4
that have essentially the same structure as the models discussed there.

We have also to eliminate the quadratic term M′2(ũ, u′app,1) in the right
hand side of (5.0.1). Since the arguments ũ, u′app,1 are odd, andM′2 is morally
of the form a(x)ũ±ũ±, with a(x) rapidly decaying, one may express each fac-
tor ũ± using (1.7.5) in terms of L±ũ± gaining a t−1 decay for each factor.
Nevertheless, this gain is not sufficient to be able to considerM′2 as a remain-
der. One get operators of the form (1.7.8), (1.7.9), and we explained at the
end of section 1.7 how to eliminate these expressions performing again some
elementary normal form.

5.1. Expression of the equation as a system

Let us fix some notation. From ũ+, ũ− = −ũ+, uapp
+ , uapp

− = −uapp
+ , u′app

+ ,
u′app
− = −u′app

+ , we introduce the vector valued functions

(5.1.1) ũ =
ï
ũ+
ũ−

ò
, uapp =

ï
uapp

+
uapp
−

ò
, u′app =

ï
u′app

+
u′app
−

ò
.



5.1. EXPRESSION OF THE EQUATION AS A SYSTEM 121

In order to write (4.2.62) as a system on ũ, let us define, when I = ±

(5.1.2) b′I(t, x, ξ) =
2∑

j=−2
eitj

√
3

2 b′j,I(t, x, ξ)

where b′j,± satisfies (4.2.63), (4.2.64). Denoting b̄′∨±(t, x, ξ) = b′±(t, x,−ξ), we
define the matrix of symbols

(5.1.3) M ′(t, x, ξ) =
ï
b′+(t, x, ξ) b′−(t, x, ξ)
−b̄′∨−(t, x, ξ) −b̄′∨+(t, x, ξ)

ò
.

Since Op(b′±)w = Op(b̄′∨±)w̄, if we denote by Op(M ′) the quantization of M ′

defined entry by entry, and define Op(M ′) by Op(M ′)ũ = Op(M ′)ũ, the form
of M ′ shows that

(5.1.4) Op(M ′) =
ï

Op(b′+) Op(b′−)
−Op(b′−) −Op(b′+)

ò
or equivalently, if N0 =

[
0 1
1 0

]
,

(5.1.5) Op(M ′)N0 +N0Op(M ′) = 0.
If we define for j = −2, . . . , 2

M ′j(t, x, ξ) =
ï

b′j,+(t, x, ξ) b′j,−(t, x, ξ)
−b̄′∨−j,−(t, x, ξ) −b̄′∨−j,+(t, x, ξ)

ò
we have

M ′(t, x, ξ) =
2∑

j=−2
eijt

√
3

2 M ′j(t, x, ξ)

Op(M ′j)N0 +N0Op(M ′−j) = 0.

(5.1.6)

We shall set also, if m(x, ξ1, . . . , ξn) is a multilinear symbol

(5.1.7) m∨(x, ξ1, . . . , ξn) = m(x,−ξ1, . . . ,−ξn)

so that Op(m) = Op(m∨), if we set again

Op(m)(w1, . . . , wn) = Op(m)(w1, . . . , wn).
If I = (i1, . . . , in) ∈ {−,+}n and uI = (ui1 , . . . , uin), we denote Ī =
(−i1, . . . ,−in)
(5.1.8) uĪ = (u−i1 , . . . , u−in) = −(ūi1 , . . . , ūin) = −uI
according to our definition u− = −ū+. Then if mI is in Sκ,0(M, |I|), we shall
get that
(5.1.9)

Op(mI)(uI) = Op(mI)(uI) = (−1)|I|Op(mI)(uĪ) = (−1)|I|Op(m̄∨I )(uĪ).
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Let us use this notation to express nonlinear quantities constructed from
(4.2.62). We define first the quadratic terms, that will come from the right
hand side of (4.2.62), namely

(5.1.10) M′2(ũ, u′app,1) =
∑

I=(I′,I′′)
|I′|=0,|I′′|=2

ñ
Op(m′0,I)(u′

app,1
I′′ )

Op(m̄′∨0,I)(u′
app,1
Ī′′

)

ô
+

∑
I=(I′,I′′)
|I′|=|I′′|=1

ñ
Op(m′0,I)(ũI′ , u′

app,1
I′′ )

Op(m̄′∨0,I)(ũĪ′ , u′
app,1
Ī′′

)

ô
+

∑
I=(I′,I′′)
|I′|=2,|I′′|=0

ïOp(m′0,I)(ũI′)
Op(m̄′∨0,I)(ũĪ′)

ò
and the cubic and quartic expressions, given for j = 3, 4 by

(5.1.11) Mj(ũ, uapp) =


∑
I=(I′,I′′)
|I|=j

Op(m̃I)(ũI′ , uapp
I′′ )

(−1)j
∑
I=(I′,I′′)
|I|=j

Op(m̃∨I )(ũĪ′ , u
app
Ī′′

)

 .
We also set

(5.1.12) R(t, x) =
ï
R+(t, x)
R+(t, x)

ò
where R+ is the last term in (4.2.62).

The system obtained taking equation (4.2.62) and the conjugated equation
may be written as follows, denoting V the operator Op(M ′) given by (5.1.4)
and P0 =

[
p(Dx) 0

0 −p(Dx)

]
:(

Dt − P0 − V
)
ũ =M3(ũ, uapp) +M4(ũ, uapp)

+M′2(ũ, u′app,1) +R.
(5.1.13)

In order to apply the results of Appendix A12 below, we need to re-express
operator V on the Fourier transform side.

Lemma 5.1.1. — For j = −2, . . . , 2, there are two by two matrices

Qj(t, ξ, η) =
[ ξ
〈ξ〉

η

〈η〉
qj,(k,`)(t, ξ, η)

]
1≤k,`≤2

whose entries satisfy estimates

|∂αξ ∂βη qj,(k,`)| ≤ CN t
− 1

2
ε 〈|ξ| − |η|〉−N 〈η〉−1

|∂αξ ∂βη ∂tqj,(k,`)| ≤ CN
[
t
− 3

2
ε + (ε2

√
t)

3
2 θ
′
t−

3
2
]
〈|ξ| − |η|〉−N 〈η〉−1

(5.1.14)
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for any α, β,N if j = −1, 1, and

|∂αξ ∂βη qj,(k,`)| ≤ CN t−1
ε 〈|ξ| − |η|〉

−N 〈η〉−1

|∂αξ ∂βη ∂tqj,(k,`)| ≤ CN t
− 1

2
ε

[
t
− 3

2
ε + (ε2

√
t)

3
2 θ
′
t−

3
2
]
〈|ξ| − |η|〉−N 〈η〉−1

(5.1.15)

for any α, β,N if j = −2, 0, 2, such that, if we define the operator KQj by

(5.1.16) ’KQjf(ξ) =
∫
Qj(t, ξ, η)f̂(η) dη

for f a C2 valued function, the operator V acting on odd functions may be
written as

(5.1.17) V =
2∑

j=−2
eitj

√
3

2 KQj .

Moreover, one has VN0 = −N0V.

Proof. — If f =
[
f+
f−

]
, we have according to the definition (5.1.4) of V =

Op(M ′) and (5.1.6)

(5.1.18) Op(M ′)f =
2∑

j=−2
eitj

√
3

2 Op(M ′j)f

(5.1.19) Op(M ′j)f =
ï Op(b′j,+)f+ + Op(b′j,−)f−
−Op(b̄′∨−j,−)f+ −Op(b̄′∨−j,+)f−

ò
.

The Fourier transform of the first line of (5.1.19) may be written

(5.1.20)
∫
b̂′j,+(t, ξ − η, η)f̂+(η) dη +

∫
b̂′j,−(t, ξ − η, η)f̂−(η) dη

where b̂′j,± is the Fourier transform relatively to the first variable. Since b′j,±
satisfies (2.1.7), if we set

q̃j,(1,1)(t, ξ, η) = b̂′j,+(t, ξ − η, η), q̃j,(1,2)(t, ξ, η) = b̂′j,−(t, ξ − η, η)

we see that q̃j,(k,`)(t,−ξ,−η) = q̃j,(k,`)(t, ξ, η). If we make act (5.1.20) on odd
functions f+, f−, we may rewrite this expression as the sum for (k, `) = (1, 1)
or (1, 2) of

1
2

∫ [
q̃j,(k,`)(t, ξ, η)− q̃j,(k,`)(t, ξ,−η)

]
f̂±(η) dη

(with f+ if (k, `) = (1, 1) and f− if (k, `) = (1, 2)). In other words, we may
assume that q̃j,(1,1)(t, ξ, η) is odd in η. Since that function is even in (ξ, η), it
has also to be odd in ξ. By (4.2.63), (4.2.64), x → b′j(t, x, η) is in S(R), and
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the function is C∞ in η. It follows that the Fourier transform in x of these
functions satisfies

|∂αξ ∂βη ∂`−1
t b̂′j,I(t, ξ − η, η)| ≤ Cα,β,NT `j (t, ε)〈|ξ| − |η|〉−N 〈η〉−1

for any α, β,N , ` = 1, 2, where T `j (t, ε) is the time dependent pre-factor in
the `-th equation in (4.2.63) (resp. (4.2.64)). After the preceding reductions,
it follows that q̃j,(k,`) satisfies for all α, β,N ∈ N, ` = 1, 2

|∂αξ ∂βη ∂`−1
t q̃j,(k,`)(t, ξ, η)| ≤ Cα,β,NT `j (t, ε)〈|ξ| − |η|〉−N 〈η〉−1.

Since we have seen that this function is odd in ξ and odd in η, we may write it
as ξ
〈ξ〉

η
〈η〉qj,(k,`)(t, ξ, η), where qj,(k,`) satisfies (5.1.14), (5.1.15). It follows that

we have written the first component of the Fourier transform ”Vf of (5.1.18) as
the first component of

∑2
j=−2 e

itj
√

3
2 ’KQjf(ξ). Since the reasoning is the same

for the second component, we get (5.1.17).
The last statement of the lemma follows from (5.1.5).

We may now eliminate the operator V in the left hand side of (5.1.13), using
the results of Appendix A12.

Proposition 5.1.2. — Fix m in ]0, 1
2 [ close to 1

2 , and set as in the example
following Definition A12.1.1, ι = min(1− 2m, 3

4cθ
′) > 0. There is ε0 > 0 such

that, for any V of the form (5.1.17), defined in terms of matrices Qj whose
coefficients satisfy (5.1.14), (5.1.15), with ε ∈]0, ε0[, there are operators B(t),
C(t), defined for t ∈ [1, T ] (T ≤ ε−4+c), bounded on Hs(R), satisfying the
properties of Propositions A12.1.1 and A12.1.3 of Appendix A12, such that, if
ũ solves (5.1.13) and satisfies estimates (4.2.2), then C(t)ũ solves

(Dt − P0)C(t)ũ = C(t)M3(ũ, uapp) + C(t)M4(ũ, uapp)
+C(t)M′2(ũ, u′app,1) + C(t)R

(5.1.21)

with R satisfying for any t in [1, T ]

(5.1.22) ‖R(t, ·)‖Hs ≤ εtδ−1e(t, ε)

(5.1.23) ‖LR(t, ·)‖Hs ≤ t−
3
4 (ε2
√
t)θe(t, ε)

where e satisfies (4.2.8). Moreover, C(t)ũ is odd if ũ is odd and N0C(t)ũ =
−C(t)ũ.

Proof. — By (A12.1.7), (Dt−P0−V)B(t) = B(t)(Dt−P0) and by (A12.1.12),
ũ = B(t)C(t)ũ. Replacing ũ by this value in the left hand side of (5.1.13),
composing at the left with C(t) and using again (A12.1.12), we obtain (5.1.21).
Since V(t) preserves odd functions and satisfies V(t)N0 = −N0V(t), the last
statement of the proposition follows from (A12.1.21) and the fact that N0ũ =
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−ũ. This concludes the proof, as estimates (5.1.22), (5.1.23) are just rewriting
of (4.2.6), (4.2.7).

5.2. Normal forms

Our next objective will be to eliminate by normal forms most of the contri-
butions in the right hand side of (5.1.21). We shall construct first the relevant
operators in order to do so.

Let us fix some notation. Let n be in N∗. Consider C2 valued test functions
vj , defined on [1, T ]× R for some T , of the form

(5.2.1) (t, x)→ vj(t, x) =
ï
vj,+(t, x)
vj,−(t, x)

ò
with vj,± odd in x and satisfying vj,− = −vj,+. If n ≥ 3, we shall consider
n-linear maps
(5.2.2) (v1, . . . , vn)→ M̃j(v1, . . . , vn)
sending C2-valued functions to C2-valued and having the following structure
(using notation (A9.1.9))

(5.2.3) M̃n(v1, . . . , vn) =
ñ ∑

|I|=n Opt(m̃I)(v1,i1 , . . . , vn,in)
(−1)n

∑
|I|=n Opt(m̃∨I )(v1,−i1 , . . . , vn,−in)

ô
where I = (i1, . . . , in) ∈ {−,+}n, m̃I is in S1,β(Mν

0
∏n
j=1 〈ξj〉

−1, n) for some
β > 0 small, ν ∈ N, where m̃∨I is defined by (5.1.7), and where the form of
the second line of (5.2.3) respectively to the first one just reflects the fact that
Mn(v1, . . . , vn) will have a structure with respect to conjugation similar to the
one in (5.1.10), (5.1.11) (see (5.1.9)). Moreover, we assume that m̃I satisfies
(5.2.4) m̃(y, x, ξ1, . . . , ξn) = (−1)n−1m̃(−y,−x,−ξ1, . . . ,−ξn)
so that the associated operator preserves odd functions (see (2.1.7)).

Proposition 5.2.1. — Let n ≥ 3. One may find symbols m̂I in
S4,β(Mν

0
∏n
j=1 〈ξj〉

−1〈x〉−∞, n) for any I with |I| = n such that, if one
sets

(5.2.5) ˆ̃Mn(v1, . . . , vn) =
ñ ∑

|I|=n Opt(m̂I)(v1,i1 , . . . , vn,in)
(−1)n

∑
|I|=n Opt

(
m̂
∨
I

)
(v1,−i1 , . . . , vn,−in)

ô
one may write

Rn(v1, . . . , vn) def= (Dt − P0) ˆ̃Mn(v1, . . . , vn)− M̃(v1, . . . , vn)

−
n∑
j=1

ˆ̃Mn(v1, . . . , (Dt − P0)vj , . . . , vn)
(5.2.6)
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under the following form:

(5.2.7) Rn(v1, . . . , vn) =
ï
Rn,+(v1, . . . , vn)
Rn,−(v1, . . . , vn)

ò
with Rn,− = Rn,+, and Rn,+ satisfies the following: One may write
Rn,+(v1, . . . , vn) as a sum

(5.2.8) Rn,+(v1, . . . , vn) =
∑
|I|=n

Opt(rI)(v1,i1 , . . . , vn,in)

with symbols rI in S4,β(Mν
0
∏n
j=1 〈ξj〉

−1, n) for some ν ∈ N. Moreover,
L+Rn,+(v1, . . . , vn) may be written as a sum of terms of the following form:

(5.2.9)
∑
|I|=n

n∑
j=1

Opt(rI,j)(v1,i1 , . . . , Lijvj,ij , . . . , vn,in)

with rI,j in S4,β(Mν
0
∏n
j=1 〈ξj〉

−1, n),

(5.2.10)
∑
|I|=n

Opt(rI)(v1,i1 , . . . , vn,in)

for symbols rI in S4,β(Mν
0
∏n
j=1 〈ξj〉

−1, n), and

(5.2.11) t
∑
|I|=n

Opt(r′I)(v1,i1 , . . . , vn,in)

for symbols r′I in S′4,β(Mν
0
∏n
j=1 〈ξj〉

−1, n). Moreover, m̂I satisfies

(5.2.12) m̂I(−y,−x,−ξ1, . . . ,−ξn) = (−1)n−1m̂I(y, x, ξ1, . . . , ξn)

if m̃I does so in (5.2.3).

We shall prove the proposition expressing (5.2.6) in terms of the semiclassi-
cal quantization of symbols introduced in (A9.1.6) in Appendix A9. If h = 1

t ,
we introduce for any function vj , j = 1, . . . , n, the function vj defined by

(5.2.13) vj(t, x) = 1√
t
vj

(
t,
x

t

)
= Θtvj(t, x)

according to (A9.1.7). By (A9.1.8), each term on the first line of (5.2.3) may
be written

(5.2.14) Opt(m̃I)(v1,i1 , . . . , vn,in)(t, x) = h
n
2 Oph(m̃I)(v1,i1 , . . . , vn,in)

(
t,
x

t

)
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and similarly for the first line of (5.2.5). The first line in the right hand side
of (5.2.6) may be written as the sum in I of

(5.2.15) (Dt − p(Dx))Opt(m̂I)(v1,i1 , . . . , vn,in)−Opt(m̃I)(v1,i1 , . . . , vn,in)

−
n∑
j=1

Opt(m̂I)(v1,i1 , . . . , (Dt − ijp(Dx))vj,ij , . . . , vn,in).

It follows from (5.2.14) that the first term in (5.2.15) may be written as

h
n
2

[
Dt −Oph

(
xξ + p(ξ)− in2h

)](
Oph(m̂I)(v1,i1 , . . . , vn,in)

)(
t,
x

t

)
.

The other terms in (5.2.15) admit analogous expressions, so that (5.2.15) may
be rewritten as h

n
2RIn,+(v1,i1 , . . . , vn,in)

(
t, xt

)
with

(5.2.16) RIn,+(v1,i1 , . . . , vn,in)(t, x)

=
[
Dt −Oph

(
xξ + p(ξ)− in2h

)](
Oph(m̂I)(v1,i1 , . . . , vn,in)

)
−Oph(m̃I)(v1,i1 , . . . , vn,in)

−
n∑
j=1

Oph(m̂I)
[
v1,i1 , . . . ,

[
Dt −Oph

(
xξ + ijp(ξ)− i

h

2
)]
vi,ij , . . . , vn,in

]
.

We shall study (5.2.16) both when I is characteristic and I is non character-
istic, according to the terminology introduced in Definition A13.1.1, that we
recall in the statements of the following two lemmas.

Lemma 5.2.2. — Let I = (i1, . . . , in) be characteristic, i.e. i1 + · · · + in =
1. Take m̂I = 0 in (5.2.16). Then if L± = 1

hOph(x ± p′(ξ)), the term
L±RIn,+(v1,i1 , . . . , vn,in) may be written as a sum of the following expressions:

Oph(rI,j)(v1,i1 , . . . ,Lijvj,ij , · · · , vn,in)
Oph(rI)(v1,i1 , . . . , vn,in)
1
h

Oph(r′I)(v1,i1 , . . . , vn,in)
(5.2.17)

with rI,j , rI in S4,β(Mν
0
∏n
j=1 〈ξj〉

−1, n) and r′I in S′4,β(Mν
0
∏n
j=1 〈ξj〉

−1, n) for
some ν.

Proof. — We just have to apply Proposition A13.2.1 of Appendix A13.

We shall consider next the case of non-characteristic indices.

Lemma 5.2.3. — Let I = (i1, . . . , in) be non-characteristic, i.e. i1+· · ·+in 6=
1. Then one may find a symbol m̂I in S4,β(Mν

0
∏n
j=1 〈ξj〉

−1〈x〉−∞, n), for some
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ν, such that RIn,+(v1,i1 , . . . , vn,in) given by (5.2.16) may be written as a sum
of terms

Oph(r1
I )(v1,i1 , . . . , vn,in)

hOph(rI)(v1,i1 , . . . , vn,in)
Oph(r′I)(v1,i1 , . . . , vn,in)

(5.2.18)

with symbols r1
I in S4,β(Mν

0
∏n
j=1 〈ξj〉

−1, n), rI in S4,β(Mν
0
∏n
j=1 〈ξj〉

−1〈x〉−1, n),
r′I in S′4,β(Mν

0
∏n
j=1 〈ξj〉

−1, n). Moreover, L+R
I
n,+(v1,i1 , . . . , vn,in) may be

written under the form (5.2.17) and m̂I satisfies (5.2.12) if m̃I does so.

Proof. — We apply Proposition A13.3.1 and define m̂I to be the symbol aI
of that statement, that satisfies (A13.1.6). According to (A13.3.1) (with mI

replaced by m̃I in its right hand side), (5.2.16) may be written as the sum of
(A13.3.3) and of the last two lines in (A13.3.2). This gives (5.2.18).

To get the last statement of the lemma, we use that RIn,+ is also given by
(A13.3.2). We have thus to show that the action of L+ = 1

hOph(x+ p′(ξ)) on
the three terms in (A13.3.2) may be rewritten under the form (5.2.17). For
1
hOph(p′(ξ)) this follows from the composition result of Proposition A9.2.1.
For the product of x

h by (A13.3.2), this is a consequence of the fact that in
these formulas mI,j and rI are in classes S4,β(Mν

0
∏n
j=1 〈ξj〉

−1〈x〉−1, n). In the
case of r′I , the fact that the symbol belongs to S′4,β(Mν

0
∏n
j=1 〈ξj〉

−1, n) means
that it is rapidly decaying in M0(ξ)−4|y|, so may be multiplied by x (and even
by x/h), up to a loss on the exponent ν. This concludes the proof since the
definition (A13.1.8) of aI (with mI replaced by m̃I) shows that it satisfies
(5.2.12) if m̃I does (taking the cut-off γ even).

Proof of Proposition 5.2.1: We just have to translate the above two lemmas
going back to functions v1, . . . , vn from v1, . . . , vn through (5.2.13). The first
component Rn,+ of (5.2.6) is then h

n
2RIn,+(v1,i1 , . . . , vn,in) with RIn,+ given by

(5.2.16). In the characteristic case, (5.2.16) with m̂I = 0 and (5.2.14) show
that (5.2.8) holds, and Lemma 5.2.2 implies that L+Rn,+ is of the form (5.2.9).
In the non-characteristic case, these properties follow from Lemma 5.2.3. 2

Proposition 5.2.1 will allow us to treat by normal form the contributions
M3,M4 in the right hand side of (5.1.21). We need also a result that will
allow us to treat M′2.

We consider a bilinear map (v1, v2)→ M̃′2(v1, v2) of the form

(5.2.19) M̃′2(v1, v2) =
ï ∑

|I|=2 Op(m′0,I)(v1,i1 , v2,i2)∑
|I|=2 Op(m̄′∨0,I)(v1,−i1 , v2,−i2)

ò



5.2. NORMAL FORMS 129

where m′0,I is in S̃′1,0
(∏2

j=1 〈ξj〉
−1M0(ξ), 2

)
and satisfies (2.1.7). Our goal is to

prove:

Proposition 5.2.4. — One may find an operator (v1, v2)→ ˆ̃M′2(v1, v2), that
may be written

(5.2.20) ˆ̃M′2(v1, v2) =
ñ∑∑

(i1,i2)∈{−,+}2 Qi1,i2(v1,i1 , v2,i2)∑∑
(i1,i2)∈{−,+}2 Qi1,i2(v1,i1 , v2,i2)

ô
with operators Qi1,i2(v1,i1 , v2,i2) of the form (A13.4.11), preserving the space
of odd functions, such that, if we set

R2(v1, v2) = (Dt − P0) ˆ̃M′2(v1, v2)− M̃′2(v1, v2)− ˆ̃M′2
(
(Dt − P0)v1, v2

)
− ˆ̃M′2

(
v1, (Dt − P0)v2

)
(5.2.21)

and if v1, v2 are odd functions, then R2 =
[
R2,+
R2,−

]
with R2,− = R2,+ and R2,+

being a sum

(5.2.22) R2,+(v1, v2) = t−2 ∑
(i1,i2)∈{−,+}2

1∑
`1=0

1∑
`2=0

K`1,`2
L,i1,i2

(
L`1i1v1,i1 , L

`2
i2
v2,i2

)
with K`1,`2

L,i1,i2
in the class K′1, 1

2
(1, i1, i2) of Definition A13.4.1.

Proof. — We just have to apply Corollary A13.4.4 to the first component of
equality (5.2.21) changing the definition of the notation K`1,`2

L,i1,i2
in the right

hand side of (5.2.22).

We shall use the results established so far in that section in order to rewrite
equation (5.1.21). Recall first that by (A12.1.6), (A12.1.7), (A12.1.12), where
V is the operator (5.1.17), we have

(5.2.23) (Dt − P0)C(t) = C(t)(Dt − P0 − V)

when both sides of these equalities act on odd functions.
Recall the form of operatorsMj in (5.1.11): these operators may be written

as

(5.2.24) Mj(ũ, uapp) =
j∑
`=0
M`

j(ũ, . . . , ũ︸ ︷︷ ︸
`

, uapp, . . . , uapp︸ ︷︷ ︸
j−`

), j = 3, 4
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where
(5.2.25)

M`
j(v1, . . . , vj) =


∑

I′=(i1,...,i`)
I′′=(i`+1,...,ij)

Op(m̃I′,I′′)(v1,i1 , . . . , vj,ij )∑
I′=(i1,...,i`)

I′′=(i`+1,...,ij)
(−1)jOp(m̃∨I′,I′′)(v1,−i1 , . . . , vj,−ij )


and the symbols m̃I′,I′′ are in S̃1,0

(∏|I|
j=1 〈ξj〉

−1M0(ξ)ν , |I|
)
, 3 ≤ |I| = j ≤ 4

according to Proposition 4.2.1. According to Corollary A11.1.7, each of these
symbols may be replaced by a symbol in S1,β

(∏|I|
j=1 〈ξj〉

−1M0(ξ)ν , |I|
)
, for

β > 0 small, up to adding to (5.2.24) some remainder satisfying (A11.1.33)
for an arbitrary r. In other words, we may rewrite (5.2.24) under the form

(5.2.26) Mj(ũ, uapp) =
j∑
`=0
M`

j(ũ, . . . , ũ, uapp, . . . , uapp) + R̃j(ũ, uapp)

where M`
j is of the form (5.2.25) with symbols m̃I′,I′′ in

S1,β

( |I|∏
j=1
〈ξj〉−1M0(ξ)ν , |I|

)
,

with β > 0 and where R̃j satisfies

(5.2.27) ‖R̃j(ũ, uapp)‖Hs ≤ Ct−2[‖ũ‖Hs + ‖uapp‖Hs

]j
and setting L =

[
L+ 0
0 L−

]
,

(5.2.28) ‖LR̃j(ũ, uapp)‖L2 ≤ Ct−2[‖ũ‖Hs + ‖uapp‖Hs

]j−1

×
[
‖ũ‖Hs + ‖uapp‖Hs + ‖Lũ‖L2 + ‖Lu′app‖L2 + ‖Lu′′app‖W ρ0,∞

]
,

where in (5.2.28), we decomposed the factor uapp that eventually replaces vn
in (A11.1.33) as uapp = u′app + u′′app, and used the second (resp. third) of
these estimates if vn is substituted by u′app (resp. u′′app).

In the same way, operators M′2 in (5.1.10) may be written as

(5.2.29) M′2(ũ, u′app,1) =M′02(u′app,1, u′app,1) +M′12(ũ, u′app,1) +M′22(ũ, ũ)

whereM′2` is given by the (`+ 1)-th contribution in (5.1.10). Applying again
Corollary A11.1.7, we may assume that

(5.2.30) M′2`(v1, v2) =


∑

I′=(i1,...,i`)
I′′=(i`+1,...,ij)

Op(m′0,I′,I′′)(v1,i1 , v2,i2)∑
I′=(i1,...,i`)

I′′=(i`+1,...,ij)
Op(m̄′∨0,I′,I′′)(v1,−i1 , v2,−i2)
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up to replacing (5.2.29) by

M′2(ũ, u′app,1) =M′02(u′app,1, u′app,1) +M′12(ũ, u′app,1) +M′22(ũ, ũ)
+R̃2(ũ, u′app,1)

(5.2.31)

where R̃2 satisfies

‖R̃2(ũ, u′app,1)‖Hs ≤ Ct−2[‖ũ‖Hs + ‖u′app,1‖Hs

]2
‖LR̃2(ũ, u′app,1)‖L2 ≤ Ct−2[‖ũ‖Hs + ‖u′app,1‖Hs

]
×
[
‖ũ‖Hs + ‖u′app,1‖Hs + ‖Lũ‖L2 + ‖Lu′app,1‖L2

](5.2.32)

and where the symbolsm′0,I′,I′′ in (5.2.30) are now in S′1,β
(∏2

j=1 〈ξj〉
−1M0(ξ), 2

)
for some β > 0.

Let us apply to eachM`
j in the right hand side of (5.2.26) Proposition 5.2.1

setting M̃j =M`
j in order to define by (5.2.5) an operator ˆ̃Mj that we denote

just by M̂`
j , 0 ≤ ` ≤ j, j = 3, 4. In the same way, apply to eachM′`2, ` = 0, 1, 2

Proposition 5.2.4 in order to define operators M̂′`2, ` = 0, 1, 2. Denote

M̂j(ũ, uapp) =
j∑
`=0
M̂`

j(ũ, . . . , ũ︸ ︷︷ ︸
`

, uapp, . . . , uapp︸ ︷︷ ︸
j−`

), j = 3, 4

M̂′2(ũ, u′app,1) =
2∑
`=0
M̂′`2(ũ, . . . , ũ︸ ︷︷ ︸

`

, u′app,1, . . . , u′app,1︸ ︷︷ ︸
2−`

).

(5.2.33)

Let us prove

Corollary 5.2.5. — Let ũ satisfying the assumptions of Proposition 5.1.2,
so that equation (5.1.21) holds. Then, with the above notation

(5.2.34) (Dt − P0)
[
C(t)

(
ũ−

4∑
j=3
M̂j(ũ, uapp)

)
− M̂′2(ũ, u′app,1)

]
= R̂

where R̂ is the sum of contributions of the following form:

(5.2.35) C(t)V(t)M̂`
j(ũ, . . . , ũ︸ ︷︷ ︸

`

, uapp, . . . , uapp︸ ︷︷ ︸
j−`

), j = 3, 4, 0 ≤ ` ≤ j

(5.2.36)
(
C(t)− Id

)
M′`2(ũ, . . . , ũ︸ ︷︷ ︸

`

, u′app,1, . . . , u′app,1︸ ︷︷ ︸
2−`

), 0 ≤ ` ≤ 2
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− C(t)M̂`
j(ũ, . . . , ũ, (Dt − P0)ũ, . . . , ũ︸ ︷︷ ︸

`

, uapp, . . . , uapp)

− C(t)M̂`
j(ũ, . . . , ũ︸ ︷︷ ︸

`

, uapp, . . . , uapp, (Dt − P0)uapp, . . . , uapp)
(5.2.37)

for j = 3, 4, 0 ≤ ` ≤ j,
− C(t)M̂′`2(ũ, . . . , (Dt − P0)ũ, . . . , ũ︸ ︷︷ ︸

`

, u′app,1, . . . , u′app,1)

− C(t)M̂′`2(ũ, . . . , ũ︸ ︷︷ ︸
`

, u′app,1, . . . , (Dt − P0)u′app,1, . . . , u′app,1)
(5.2.38)

for 0 ≤ ` ≤ 2,
of remainders of type
(5.2.39) C(t)Rj(ũ, . . . , ũ︸ ︷︷ ︸

`

, uapp, . . . , uapp︸ ︷︷ ︸
j−`

), j = 3, 4, 0 ≤ ` ≤ j,

where Rj is of the form (5.2.7) and
(5.2.40) R2(ũ, . . . , ũ︸ ︷︷ ︸

`

, u′app,1, . . . , u′app,1︸ ︷︷ ︸
2−`

), 0 ≤ ` ≤ 2,

where R2 =
[
R2,+
R2,−

]
with R2,− = R2,+, and R2,+ given by (5.2.22), and of

contributions
(5.2.41) C(t)

[
R(t, x) + R̃3 + R̃4

]
+ R̃2

where R is given by (5.1.12) and satisfies (5.1.22), (5.1.23) and with R̃2 (resp.
R̃3, resp. R̃4) satisfying (5.2.32) (resp. (5.2.27), resp. (5.2.28)).

Proof. — We write, using (5.2.23), for j = 3, 4
(Dt − P0)C(t)M̂j(ũ, uapp) = −C(t)V(t)M̂j(ũ, uapp)

+ C(t)(Dt − P0)M̂j(ũ, uapp)
(5.2.42)

We plug in the right hand side of this equality (5.2.6) with M̃ (resp. ˆ̃Mn)
replaced by M`

j (resp. M̂`
j) according to the notation defined before (5.2.33).

In the same way, we express (Dt − P0)M̂′2(ũ, u′app,1) from (5.2.21) with M̃′2
(resp. ˆ̃M′2) replaced by M′2` (resp. ˆ̃M′2`). Making the difference between
(5.1.21) (where we substitute (5.2.26), (5.2.31)) and these expressions, we
obtain the contributions (5.2.35) to (5.2.41). This concludes the proof.



CHAPTER 6

BOOTSTRAP: L2 ESTIMATES

The proof of the main theorem relies on a bootstrap argument of the type
described in sections 0.4, 0.5 of the introduction (see estimates (0.4.8), (0.4.9)
and (0.5.8)). In our setting, the bounds to be bootstrapped will be actually
(1.5.1), (1.5.2), (1.5.3) of section 1.5 in Chapter 1 (see (6.1.3) below). In the
present chapter our objective is to bootstrap the first and last estimates (6.1.3)
(see Proposition 6.3.7 below). We have thus to bound the Sobolev norm of
the solution ũ of (5.2.34), and the L2 norm of Lũ. This is done by energy
inequality, and the main task is to estimate the right hand side of (5.2.34) in
Sobolev spaces or the action of L on that right hand side in L2. We do that
first for cubic and quartic terms, then for quadratic ones, and finally for terms
of higher order.

6.1. Estimates for cubic and quartic terms

We consider C valued functions u′app
+ , u′′app

+ , defined on some interval [1, T ],
with T ≤ ε−4+c for some given c > 0, and that satisfy on that interval, for a
given large r in N and some constant C(A,A′) bounds (3.1.39)-(3.1.41) and
(3.1.43)-(3.1.45) that we recall below:

‖u′app
+ (t, ·)‖Hr ≤ C(A,A′)ε2t

1
4

‖u′app
+ (t, ·)‖W r,∞ ≤ C(A,A′)ε2

‖L+u
′app
+ (t, ·)‖Hr ≤ C(A,A′)t

1
4
[
(ε2
√
t) + (ε2

√
t)

7
8 ε

1
8
](6.1.1)
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and

‖u′′app
+ (t, ·)‖Hr ≤ C(A,A′)ε

Å
tε2

〈tε2〉

ã 1
2

‖u′′app
+ (t, ·)‖W r,∞ ≤ C(A,A′)ε2 log(1 + t)2

‖L+u
′′app

+ (t, ·)‖W r,∞ ≤ C(A,A′) log(1 + t) log(1 + ε2t).

(6.1.2)

Moreover, we shall assume that the solution ũ =
[
ũ+
ũ−

]
(with ũ− = −ũ+) of

(5.2.34) satisfies a priori estimates (4.2.2) i.e. having fixed c > 0, θ′ < θ < 1
2

with θ′ close to 1
2 , and δ > 0 small, for some 1� ρ� s, we have

‖ũ+(t, ·)‖Hs ≤ Dεtδ

‖ũ+(t, ·)‖W ρ,∞ ≤ D (ε2
√
t)θ
′

√
t

‖L+ũ+(t, ·)‖L2 ≤ Dt
1
4 (ε2
√
t)θ.

(6.1.3)

We recall also that we have defined from uapp
+ the function uapp,1

+ in (3.1.48),
that we decomposed in (3.1.55) as u′app,1

+ + u′′app,1
+ and we have seen after

(3.1.54) that u′app,1
+ satisfies the same estimates as u′app

+ , so that we shall have

‖u′app,1
+ (t, ·)‖Hr ≤ C(A,A′)ε2t

1
4

‖u′app,1
+ (t, ·)‖W r,∞ ≤ C(A,A′)ε2

‖L+u
′app,1
+ (t, ·)‖Hr ≤ C(A,A′)t

1
4
[
(ε2
√
t) + (ε2

√
t)

7
8 ε

1
8
]
.

(6.1.4)

We may assume that r in (6.1.1), (6.1.4) is as large as we want since the
smoothness of the approximate solution uapp is independent of s: these func-
tions are actually C∞, since their x dependence comes only from stationary
solution to our initial problem.

Our goal in that section is to deduce from (6.1.1) to (6.1.4) bounds for the
cubic and quartic terms in the left hand side of (5.2.34) and in (5.2.35) and
(5.2.37).

Proposition 6.1.1. — Let M̂j(ũ, uapp), j = 3, 4 be given by the first line
in (5.2.33). There is a function (t, ε) → e(t, ε), depending on the constants
A,A′, D in (6.1.1)-(6.1.3), satisfying limε→0+ sup1≤t≤ε−4+c e(t, ε) = 0, such
that the following bounds hold:

(6.1.5) ‖C(t)M̂j(ũ, uapp)‖Hs ≤ Cεtδ
[
(ε2
√
t)2θ′

t−1 + ε4tσ
]
≤ εtδe(t, ε)

(6.1.6) ‖LC(t)M̂j(ũ, uapp)‖L2 ≤ t
1
4 (ε2
√
t)θe(t, ε)

for any t ∈ [1, ε−4+c], any σ > 0.
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Proof. — We prove first (6.1.5). By (A12.1.17), C(t) is bounded on Hs, uni-
formly in t staying in the wanted interval. By (5.2.33) we have thus to bound

(6.1.7) ‖M̂`
j(ũ, . . . , ũ︸ ︷︷ ︸

`

, uapp, . . . , uapp︸ ︷︷ ︸
j−`

)‖Hs , 0 ≤ ` ≤ j, j = 3, 4

(where each M̂`
j has form (5.2.5)) by the right hand side of (6.1.5). By

(A11.1.30), (6.1.7) is bounded from above by

(6.1.8) C
[
‖ũ‖Hs‖ũ‖`−1

W ρ0,∞‖uapp‖j−`W ρ0,∞ + ‖uapp‖Hs‖uapp‖j−`−1
W ρ0,∞‖ũ‖`W ρ0,∞

]
with the convention that the first (resp. second) term in the bracket should be
replaced by zero if ` = 0 (resp. ` = j). As uapp

± = u′app
± +u′′app

± , uapp =
[
uapp

+
uapp
−

]
,

it follows from (6.1.1), (6.1.2) that

‖uapp‖Hs ≤ C̃(A,A′)ε
Å
tε2

〈tε2〉

ã 1
2

‖uapp‖W ρ0,∞ ≤ C̃(A,A′)ε2(log(1 + t))2
(6.1.9)

for t ≤ ε−4. Using also (6.1.3), we bound (6.1.8) by

(6.1.10) Cεtδ
[(
ε2(log(1 + t))2)j−1 +

((ε2
√
t)θ
′

√
t

)j−1]
.

Since j ≥ 3, we have obtained a bound by the right hand side of (6.1.5).
Let us prove (6.1.6). By (A12.1.18), (A12.1.19), (A12.1.20), it suffices to

bound by the right hand side of (6.1.6) the quantities

‖LM̂j(ũ, uapp)‖L2 , ‖M̂j(ũ, uapp)‖L2t
1
2−mει

where m is close to 1
2 . The estimate of the second term is a consequence

of (6.1.5). To study the first one, we recall that L =
[
L+ 0
0 L−

]
with L± =

x± tp′(Dx), so that we have to estimate

(6.1.11) t‖M̂j(ũ, uapp)‖L2 , ‖xM̂j(ũ, uapp)‖L2 .

By (6.1.10), the first term is estimated by (as j ≥ 3)

(6.1.12) t
1
4 (ε2
√
t)θe(t, ε)

with

e(t, ε) = O
[
ε2tδ(log(1 + t))4(ε2

√
t)

3
2−θ + εt−

1
4 +δ(ε2

√
t)2θ′−θ]

.

If t ≤ ε−4, θ′ < θ < 1
2 is close enough to 1

2 , so that 2θ′−θ ≥ 0, and if δ is small
enough, one gets that e satisfies the condition in the statement. This concludes
the proof of (6.1.6) for the first term in (6.1.11). To study the second one,
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we have to bound by t
1
4 (ε2
√
t)θe the norm ‖xM̂`

j(ũ, . . . , ũ, uapp, . . . , uapp)‖L2 ,
` = 0, . . . , j. Consider first the case ` > 0, so that at least one of the arguments
is equal to ũ. By the form (5.2.5) of M̂`

j , we may apply (A11.1.34), putting
the L2 norm on that argument equal to ũ, i.e. we obtain a bound in

(6.1.13) C
[
‖ũ‖j−1

W ρ0,∞ + ‖uapp‖j−1
W ρ0,∞

][
t‖ũ‖L2 + ‖Lũ‖L2

]
.

The contribution of the first term in the last bracket has already been estimates
by (6.1.12) in the study of the first term (6.1.11). The second term gives rise,
according to (6.1.9), (6.1.3), to a quantity bounded by

Ct
1
4 (ε2
√
t)θ
[(ε2
√
t)θ
′

√
t

+ ε2(log(1 + t))2
]2

which is also of the form (6.1.12). It just remains to study the term
‖xM̂`

j(uapp, . . . , uapp)‖L2 . We decompose one of the arguments uapp, say
the last one, as uapp = u′app + u′′app. We estimate then the L2 norm of
xM̂`

j(uapp, . . . , uapp, u′app) (resp. xM̂`
j(uapp, . . . , uapp, u′′app)) using (A11.1.34)

with n = j (resp. (A11.1.35) with n = j). We obtain a bound in

(6.1.14) C‖uapp‖j−1
W ρ0,∞

[
t‖u′app‖L2 + ‖Lu′app‖L2

]
+ C‖uapp‖j−2

W ρ0,∞‖uapp‖L2

[
t‖u′′app‖W ρ0,∞ + ‖Lu′′app‖W ρ0,∞

]
.

Using (6.1.9), (6.1.1), (6.1.2) we obtain a bound in

(6.1.15) Cε4(log(1 + t))4
[
ε2t

5
4 + t

1
4
(
ε2
√
t+ (ε2

√
t)

7
8 ε

1
8
)]

+ Cε2(log(1 + t))2ε
[
ε2t(log(1 + t))2 + log(1 + t) log(1 + ε2t)

]
which is largely of form (6.1.12). This concludes the proof.

We shall study next term (5.2.35).

Proposition 6.1.2. — With notation (4.2.8) for e(t, ε), one has the follow-
ing bounds for 0 ≤ ` ≤ j, j = 3, 4
(6.1.16) ‖C(t)V(t)M̂`

j(ũ, . . . , ũ︸ ︷︷ ︸
`

, uapp, . . . , uapp)‖Hs ≤ t−1εtδe(t, ε)

(6.1.17)
‖LC(t)V(t)M̂`

j(ũ, . . . , ũ︸ ︷︷ ︸
`

, uapp, . . . , uapp)‖Hs ≤ t−1
(
t

1
4 (ε2
√
t)θ
)
e(t, ε).

Proof. — Recall that M̂j is given by (5.2.33) in terms of operators M̂`
j defined

in (5.2.5). Moreover, recall that V(t) in (5.1.13) is by definition the operator
Op(M ′) given by (5.1.4), in function of symbols b′± satisfying (4.2.63), (4.2.64).
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This means that in particular t
1
2
ε b′± are elements of S̃′κ,β(〈ξ〉−1, 1) (for any κ, β

as these symbols depend only on one frequency variable). Moreover, the sym-
bols m̂I in (5.2.5) belong to S4,β(Mν

0
∏j
`=1 〈ξ`〉

−1, j). It follows from the com-
position result of Corollary A9.2.6 that the components of V(t)M̂`

j(ũ, . . . , uapp)
may be written under the form

(6.1.18) t
− 1

2
ε Opt(m′)(ũ±, . . . , ũ±, uapp

± , . . . , uapp
± )

for some symbol m′ in S′4,β(Mν
0
∏j
`=1 〈ξ`〉

−1, j) (for some new ν), and any
choice of the signs ±. We use (A11.1.30) together with the boundedness of
C(t) on Hs, to estimate the left hand side of (6.1.16) by

(6.1.19) Ct
− 1

2
ε

[
‖uapp‖W ρ,∞ + ‖ũ‖W ρ,∞

]j−1[‖uapp‖Hs + ‖ũ‖Hs

]
.

Using estimates (6.1.9), (6.1.3) and j ≥ 3, we bound this largely by the right
hand side of (6.1.16).

Let us prove (6.1.17). By (A12.1.18), (A12.1.19), (A12.1.20) it is enough to
estimate

ειt
1
2−m‖V(t)M̂`

j(ũ, . . . , uapp)‖L2 , ‖LV(t)M̂`
j(ũ, . . . , uapp)‖L2

by the right hand side of (6.1.17). The first term satisfies the wanted bound
as a consequence of (6.1.19), since the exponent 1

2 − m is close to zero. By
(6.1.18), the study of the second one is reduced to

(6.1.20) t
− 1

2
ε ‖L±Opt(m′)(ũ±, . . . , ũ±, uapp

± , . . . , uapp
± )‖L2

for m′ in S′4,β
(
Mν

0
∏j
`=1 〈ξ`〉

−1, j
)
. As L± = x ± tp′(ξ), and symbol

m′(y, x, ξ1, . . . , ξj) is decaying like 〈M0(ξ)−κy〉−N for any N , we are re-
duced to bounding by the right hand side of (6.1.17) the quantity

(6.1.21) tt
− 1

2
ε ‖Opt(m′)(ũ±, . . . , ũ±, uapp

± , . . . , uapp
± )‖L2

for a new m′. If there is at least one argument equal to ũ± in (6.1.21), we use
estimate (A11.2.32), making play the special role devoted to vj there to such
an ũ± argument. We obtain a bound of (6.1.21) in

(6.1.22) Ct
− 1

2
ε

[
‖ũ‖W ρ,∞ + ‖uapp‖W ρ,∞

]j−1[‖ũ‖L2 + ‖Lũ‖L2
]
.

By (6.1.9), (6.1.3), this is bounded by

(6.1.23) Ct
− 1

2
ε

[(ε2
√
t)θ
′

√
t

+ ε2(log(1 + t))2
]2[

t
1
4 (ε2
√
t)θ
]

since j ≥ 3. Again this is largely bounded by the right hand side of (6.1.17).
Consider next the case when all arguments in (6.1.21) are equal to uapp.

Decompose one of these arguments, say the last one, as uapp = u′app + u′′app.
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By linearity, we get a contribution in Opt(m′)(uapp
± , . . . , uapp

± , u′app
± ) for which

(6.1.21) may be estimated by (6.1.22) with ũ replaced by u′app in the last
factor. As by (6.1.1) the L2 bounds of u′app, Lu′app are better than the corre-
sponding ones for ũ, Lũ in (6.1.3), we get that (6.1.23) holds again. We are
thus left with

tt
− 1

2
ε ‖Opt(m′)(u′′app

± , . . . , u′′app
± )‖L2 .

We use then (A11.2.33) to estimate this by

(6.1.24) Ct
− 1

2
ε ‖u′′app‖j−2

W ρ0,∞‖u′′app‖L2
[
‖u′′app‖W ρ0,∞ + ‖Lu′′app‖W ρ0,∞

]
.

By (6.1.2), we thus get a bound in

t
− 1

2
ε ε2(log(1 + t))2ε

Å
tε2

〈tε2〉

ã 1
2

log(1 + t) log(1 + tε2).

Distinguishing the cases tε2 ≤ 1, tε2 ≥ 1, one checks that this is smaller than
t−

3
4 (ε2
√
t)

1
2 e(t, ε), so than the right hand side of (6.1.17). This concludes the

proof.

6.2. Estimates for quadratic terms

We shall study in this section the quadratic term in (5.2.34) and (5.2.36).

Proposition 6.2.1. — Let M̂′2 be given by the second line in (5.2.33). One
has the following bounds

(6.2.1) ‖M̂′2(ũ, uapp,1)‖Hs ≤ εtδe(t, ε)

(6.2.2) ‖LM̂′2(ũ, uapp,1)‖L2 ≤ t
1
4 (ε2
√
t)θe(t, ε)

for any t ∈ [1, ε−4+c], where e(t, ε) satisfies (4.2.8).

To prove the proposition, we shall study the three terms in the definition
of M̂′2.

Lemma 6.2.2. — One has the following estimates:

(6.2.3) ‖M̂′22(ũ, ũ)‖Hs ≤ Cεtδ
(
t−

1
2 +σ(ε2

√
t)θ
)

(6.2.4) ‖LM̂′22(ũ, ũ)‖L2 ≤ t
1
4 (ε2
√
t)θe(t, ε)

for any t in [1, ε−1+c], any σ > 0, if s is large enough relatively to 1
σ .
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Proof. — By definition, M̂′22 is obtained applying Proposition 5.2.4 to M′22
given by the first term in the right hand side of the second line in (5.2.33). It
has structure (5.2.20). We thus have to study

(6.2.5) ‖Q′i1,i2(ũi1 , ũi2)‖Hs

(6.2.6) ‖L±Q′i1,i2(ũi1 , ũi2)‖L2

to obtain respectively (6.2.3) and (6.2.4), where Q′i1,i2 are operators of the
form (A13.4.11), preserving the space of odd functions. To bound (6.2.5), we
thus have to study

(6.2.7) t−
3
2 ‖K`1,`2

H,i1,i2
(L`1i1 ũi1 , L

`2
i2
ũi2)‖Hs

where 0 ≤ `1, `2 ≤ 1.
If `1 = `2 = 0, we apply inequality (A13.5.9) of Corollary A13.5.2, with

ω = 1
2 . We obtain a bound of (6.2.7) in

(6.2.8) Ct−
7
4 ‖ũ+‖2Hs .

If `1 = 0, `2 = 1 (or the symmetric case), we apply (A13.5.21), which gives for
(6.2.7) an estimate in

(6.2.9) Ct−
3
4 ‖ũ+‖2Hs .

If `1 = `2 = 1, we use (A13.5.20) in order to bound (6.2.7) by

(6.2.10) Ct−
3
4 +σ[‖L+ũ+‖L2 + ‖ũ+‖Hs

]
‖ũ+‖Hs

where σ > 0 is as small as we want (if s is large enough). Plugging in these
estimates (6.1.3), we obtain a bound in

(6.2.11) Cεt−
3
4 +σ+δt

1
4 (ε2
√
t)θ

which gives (6.2.3).
Consider next (6.2.6) and decompose L± = x ± tp′(Dx). The action of

tp′(Dx) on Q′i1,i2(ũi1 , ũi2) has L2 norm bounded from above, according to
(A13.4.11), by

(6.2.12) t−
1
2 ‖K`1,`2

H,i1,i2
(L`1i1 ũi1 , L

`2
i2
ũi2)‖L2 .

When `1 = `2 = 0 (resp. (`1, `2) = (1, 0) or (0, 1)), we apply (A13.5.9) with
s = 0 (resp. (A13.5.13), (A13.5.14)) to bound this by

Ct−
3
4 +σ[‖ũ+‖Hs + ‖L+ũ+‖L2

]
‖ũ+‖Hs

for any σ > 0, so by (6.2.11), which is better that what we want.
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On the other hand, if `1 = `2 = 1 in (6.2.12), we apply (A13.5.13) or
(A13.5.14) with f2 or f1 replaced by L+ũ+. We obtain for (6.2.12) an estimate
in
(6.2.13) Ct−

3
4 +σ[‖L+ũ+‖L2 + ‖ũ+‖Hs

]2
.

Using (6.1.3), we obtain a better bound than (6.2.4). We are left with studying

(6.2.14) t−
3
2 ‖xK`1,`2

H,i1,i2
(L`1i1 ũi1 , L

`2
i2
ũi2)‖L2 .

We noticed at the end of the proof of Proposition A13.5.1 that an operator
xK may be written as an operator K1 of the same type as K, up to the
loss of a factor tω (here t

1
2 ). It follows that (6.2.14) will be bounded by t−

1
2

times (6.2.12), which is better than the estimate already obtained for the other
contribution to (6.2.6). This concludes the proof.

Proof of Proposition 6.2.1: We remark first that the conclusion of
Lemma 6.2.2 holds for the three terms in the right hand side of the sec-
ond formula (5.2.33) that defines M̂′2. We have seen it for the last one. It
holds for the other two terms as, by the end of the statement in Proposi-
tion 3.1.2, u′app,1

+ satisfies the same estimates (6.1.1) as u′app. Since these
bounds are better than the inequalities (6.1.3) satisfied by ũ (for t ≤ ε−4),
the proof of Lemma 6.2.2 thus applies as well to M̂′02,M̂′12 in (5.2.33).
Consequently, (6.2.1), (6.2.2) hold. 2

We want next to study quadratic terms in the right hand side of (5.2.34)
i.e. terms of the form (5.2.36).

Proposition 6.2.3. — Let M′2 be given by (5.1.10) and denote by e(t, ε) a
function satisfying (4.2.8). We have bounds

(6.2.15) ‖(C(t)− Id)M′2(ũ, u′app,1)‖Hs ≤ t−1εtδe(t, ε)

(6.2.16) ‖L(C(t)− Id)M′2(ũ, u′app,1)‖L2 ≤ t−1t
1
4 (ε2
√
t)θe(t, ε).

Proof. — We write the proof for the component ofM′2 that is quadratic in ũ.
This implies the general case, as u′app,1 satisfies better estimates than those
holding true for ũ.

Recall that by (5.1.10), the components ofM′2 are of the form Op(m′0,I)(ũI)
with m′0,I in S̃′1,0

(∏2
j=1 〈ξj〉

−1M0, 2
)
. If we apply estimate (A11.2.39) with

`′ = ` = 1, n = 2, we obtain
‖M′2(ũ, ũ)‖Hs ≤ Ct−1+σ(‖Lũ‖L2 + ‖ũ‖Hs

)
‖ũ‖Hs .

Plugging there (6.1.3), we get a bound in

(6.2.17) C(εtδ)t−
3
4 +σ(ε2

√
t)θ.
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Since ‖C(t)− Id‖L(L2) = O(ειt−m+δ′+ 1
4 ) by (A12.1.17), we obtain an estimate

in
Cεtδ−1[ειt 1

2−m+δ′+σ(ε2
√
t)θ
]
.

Since m may be taken as close to 1
2 as we want (see the example following

Definition A12.1.1 where m is introduced), and since δ′, σ may also be taken
as small as wanted (in function of the fixed parameters c, θ, θ′), for t ≤ ε−4+c,
the factor between brackets is of the form e(t, ε) in (6.2.15).

To prove (6.2.16), we write by (A12.1.18)

(6.2.18) L(C(t)− Id)M′2 = (C̃(t)− Id)LM′2 + C̃1(t)M′2.

Since ‖M′2(ũ, ũ)‖L2 is estimated by (6.2.17), and since ‖C̃1(t)‖L(L2) is bounded
by (A12.1.20) with m close to 1

2 , we see that the L2 norm of the last term in
(6.2.18) is smaller than the right hand side of (6.2.16) (for t ≤ ε−4).

On the other hand, by definition of L, ‖LM′2(ũ, ũ)‖L2 is bounded from above
by t‖Op(m′0,I)(ũI)‖L2 , with m′0,I in S̃′1,0

(∏2
j=1 〈ξj〉

−1, 2
)
. Using (A11.2.37), we

estimate this by

Ct−1+σ[‖L+ũ+‖L2 + ‖ũ+‖Hs

]2 ≤ Ct−1+σ(t 1
4 (ε2
√
t)θ
)2
.

Since ‖C̃(t)− Id‖L(L2) = O(ειt−m+δ′+ 1
4 ) with m close to 1

2 by (A12.1.19), we
see that the L2 norm of the first term in the right hand side of (6.2.18) is
bounded from above by

Ct−1t
1
4 (ε2
√
t)θ
[
(ε2
√
t)θt

1
2−m+δ′+σει

]
and again, if 1

2 −m, δ
′, σ have been taken small enough, the bracket is of the

form e(t, ε), whence a bound by the right hand side of (6.2.16). This concludes
the proof.

6.3. Higher order terms

In this section, we shall bound expressions of the form (5.2.37), (5.2.38)
that appear as contributions of higher order of homogeneity if one replaces
(Dt−P0)ũ by its expression coming from (5.1.13). We study first the first line
in (5.2.37).

Proposition 6.3.1. — Denote
(6.3.1)
F (t) = C(t)M̂`

j

(
ũ, . . . , (Dt − P0)ũ, . . . , ũ, uapp, . . . , uapp) 1 ≤ ` ≤ j, j = 3, 4.

Then under a priori assumptions (6.1.1), (6.1.3), one has the following bounds

(6.3.2) ‖F (t)‖Hs ≤ t−1εtδe(t, ε)
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(6.3.3) ‖LF (t)‖L2 ≤ t−1[t
1
4 (ε2
√
t)θ]e(t, ε)

with e satisfying (4.2.8).

To prove the proposition, we first re-express F (t) replacing in the right hand
side (Dt − P0)ũ by its value.

Lemma 6.3.2. — The components of
M̂`

j

(
ũ, . . . , (Dt − P0)ũ, . . . , ũ, uapp, . . . , uapp)

may be written as sums of terms of the following form:

(6.3.4) t
− 1

2
ε Opt(m′)(ũI′ , uapp

I′′ ), j = |I ′|+ |I ′′| ≥ 3

where m′ is in S′4,β(Mν
0
∏j
`=1 〈ξ`〉

−1, j),

(6.3.5) Opt(m)(ũI′ , uapp
I′′ ), j = |I ′|+ |I ′′| ≥ 5

where m is in S4,β(Mν
0
∏j
`=1 〈ξ`〉

−1, j),

(6.3.6) Opt(m)
(
Rj′(ũ, uapp), ũI′ , uapp

I′′
)
, j = |I ′|+ |I ′′|

where j′ ≥ 3, j ≥ 2, m is in S4,β(Mν
0
∏j+1
`=1 〈ξ`〉

−1, j + 1) and Rj′ satisfies
(5.2.27) and (5.2.28),

(6.3.7) Opt(m′)
(
ũI′ , u

′app,1
I′′ , uapp

I′′′
)
, j = |I ′|+ |I ′′|+ |I ′′′| ≥ 4

where m′ is in S′4,β(Mν
0
∏j
`=1 〈ξ`〉

−1, j),

(6.3.8) Opt(m)
(
R̃2(ũ, u′app,1), ũI′ , uapp

I′′
)
, j = |I ′|+ |I ′′|

with j ≥ 2, m is in S4,β(Mν
0
∏j+1
`=1 〈ξ`〉

−1, j + 1), R̃2 satisfying (5.2.32),

(6.3.9) Opt(m)(R, ũI′ , uapp
I′′ ), j = |I ′|+ |I ′′| ≥ 2

where R satisfies estimates (4.2.6), (4.2.7) and where m is in the class
S4,β(Mν

0
∏j+1
`=1 〈ξ`〉

−1, j + 1).

Proof. — Recall that by (5.1.13)
(Dt − P0)ũ = V(t)ũ+M3(ũ, uapp) +M4(ũ, uapp)

+M′2(ũ, u′app,1) +R.
(6.3.10)

Recall that M̂`
j is an operator of the form (5.2.5), so that its components

computed at (ũ, . . . , ũ, uapp, . . . , uapp) may be written
(6.3.11) Opt(m)(ũi1 , . . . , ũi` , u

app
i`+1

, . . . , uapp
ij

)

with ij = ± and m element of S4,β(Mν
0
∏j
`=1 〈ξ`〉

−1, j) for some β > 0. We
have to compute (6.3.11) when one of its ũ arguments, say the first one, is
replaced by (Dt − P0)ũ, so by the right hand side of (6.3.10). If we replace
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(Dt − P0)ũ by V(t)ũ and use that V(t) is constructed from operators Op(b′±)
in (5.1.4) that satisfy (4.2.63), (4.2.64) i.e. are such that t

1
2
ε b′± = c′± is in

S′κ,β(〈ξ〉−1, 1), (for any κ, β), we get a contribution

t
− 1

2
ε Opt(m)

(
Op(c′i1)ũi1 , ũi2 , . . . , ũi` , u

app
i`+1

, . . . , uapp
ij

)
.

By the composition result of Corollary A9.2.6, we get a term of the form
(6.3.4).

Let us study next (6.3.11) with the first argument replaced byM3(ũ, uapp)+
M4(ũ, uapp) coming from (6.3.10). According to definition (5.1.11) ofMj and
to (5.2.26), we shall get contributions

(6.3.12) Opt(m)
(

Op(m̃I)(ũI′ , uapp
I′′ ), ũi2 , . . . , ũi` , u

app
i`+1

, . . . , uapp
ij

)
with |I| = 3 or 4 and m̃ in S̃1,β(M0(ξ)ν

∏|I|
j=1 〈ξj〉

−1, |I|), with β > 0 and

(6.3.13) Opt(m)
(
R̃j′,±(ũ, uapp), ũi2 , . . . , u

app
ij

)

for R̃j′ =
[ R̃j′,+
R̃j′,−

]
satisfying (5.2.27), (5.2.28) with j′ = 3 or 4. By Corol-

lary (A9.2.2), (6.3.12) may be written as a term homogeneous of degree larger
or equal to 5 that has the structure (6.3.5). Moreover, (6.3.13) provides terms
of the form (6.3.6).

We have to study then (6.3.11) where the first argument is replaced by the
M′2(ũ, u′app,1) term in (6.3.10). By (5.2.31) and (5.2.30), we get contributions
of the form

(6.3.14) Opt(m)
[
Op(m′0,I′,I′′)(ũI′ , u′

app,1
I′′ ), ũi2 , . . . , ũi` , u

app
i`+1

, . . . , uapp
ij

]
with |I ′|+ |I ′′| = 2, j ≥ 3, and

(6.3.15) Opt(m)
[
R̃2,±(ũ, u′app,1), ũi2 , . . . , u

app
ij

]
.

Again by Corollary A9.2.6, (6.3.14) brings a contribution of the form (6.3.7)
and (6.3.15) an expression of type (6.3.8).

Finally, we have to replace one argument of (6.3.11) by the last term R in
(6.3.10). This brings (6.3.9). This concludes the proof of the lemma.

Proof of Proposition 6.3.1: Let us prove (6.3.2), (6.3.3). We have to esti-
mate all contributions from (6.3.4) to (6.3.9). As already seen, (A12.1.17) to
(A12.1.20) allow us to ignore the action of operator C(t) on the definition
(6.3.1) of F (t), so that we need to study only the Sobolev norm of (6.3.4) to
(6.3.9), and the L2 norm of the action of L on these two quantities.
• Term (6.3.4): This term is of the form (6.1.18) and has already been

estimated by the wanted quantities.
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• Term (6.3.5): The Sobolev norm of this term may be bounded from
above, according to (A11.1.30), by

C
[
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

]4[‖ũ‖Hs + ‖uapp‖Hs

]
.

Using (6.1.1), (6.1.3), we bound this by

(6.3.16) Ct−2(ε2
√
t)4θ′

εtδ

which is better than the right hand side of (6.3.2). If we make act L±
on (6.3.5) and compute the L2 norm, we get on the one hand the product
of (6.3.16) by t, which is smaller than the right hand side of (6.3.3) and
‖xOpt(m)(ũI′ , uapp

I′′ )‖L2 . This is a quantity of the same form as the second
term in (6.1.11), except that j ≥ 5. We thus obtain a bound by (6.1.13), when
at least one of the arguments in (6.3.5) is equal to ũ. By (6.1.1)-(6.1.3) and
j ≥ 5, this is controlled by the right hand side of (6.3.3). If all the arguments
are equal to uapp, we get instead a bound by (6.1.14) with j ≥ 5, so by (6.1.15)
multiplied by ‖uapp‖2W ρ0,∞ ≤ Ct−1 when t ≤ ε−4+c by (6.1.1), (6.1.2). Since
(6.1.15) was controlled by (6.1.12), we get again a bound of the form (6.3.3).
• Term (6.3.6): By (A11.1.30), the Hs norm of (6.3.6) is bounded by

(6.3.17) C‖R̃j′(ũ, uapp)‖Hs

[
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

]2
+ ‖R̃j′(ũ, uapp)‖W ρ0,∞

[
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

]
×
[
‖ũ‖Hs + ‖uapp‖Hs

]
since j ≥ 2 in (6.3.6). Using Sobolev injection, we may bound ‖R̃j′‖W ρ0,∞

from ‖R̃j′‖Hs . By (5.2.27) and (6.1.1)-(6.1.3), we largely get an estimate of
the form (6.3.2).

If we make act L± on (6.3.6), and use that
xOpt(m)(v1, . . . , vn)−Opt(m)(xv1, . . . , vn)

is of the form Opt(m1)(v1, . . . , vn) for a new symbol m1 of the same form as
m, we reduce the estimate of the L2 norm of the action of L± on (6.3.6) to
bounding

t‖Opt(m)
(
R̃j′,±(ũ, uapp), ũI′ , uapp

I′′
)
‖L2

‖Opt(m)
(
LR̃j′,±(ũ, uapp), ũI′ , uapp

I′′
)
‖L2 .

By (A11.1.31), we get an estimate in

(6.3.18)
(
t‖R̃j′(ũ, uapp)‖L2 + ‖L±R̃j′(ũ, uapp)‖L2

)
×
[
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

]2
.

By (5.2.27), (5.2.28), (6.1.1)-(6.1.3), this is largely estimated by the right hand
side of (6.3.3).
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• Term (6.3.7): This term is of the form (6.1.18), except that there is no
t
− 1

2
ε factor, that we may have an argument u′app,1 instead of uapp, and that

the number of arguments is larger or equal to 4. By (6.1.19), the Hs norm of
(6.3.7) is bounded from above by

C
[
‖u′app,1‖W ρ0,∞ + ‖uapp‖W ρ0,∞ + ‖ũ‖W ρ0,∞

]3
×
[
‖uapp‖Hs + ‖ũ‖Hs + ‖u′app,1‖Hs

]
.

Using (6.1.1)-(6.1.4) we get a better estimate than (6.3.2). If we make act
L± on (6.3.7) and compute the L2 norm, we obtain a quantity of the form
(6.1.20), without the pre-factor t−

1
2

ε . We obtain thus an upper bound given by
(6.1.22) or (6.1.24) without the t−

1
2

ε factor, but with j ≥ 4 and an argument
u′app,1 replacing eventually an uapp. By (6.1.1)-(6.1.4),[

‖u′app,1‖W ρ0,∞ + ‖uapp‖W ρ0,∞ + ‖ũ‖W ρ0,∞
]3[‖ũ‖L2 + ‖Lũ‖L2

]
is smaller than the right hand side of (6.3.2). On the other hand, the contri-
bution of the form (6.1.24) is bounded from above by

C‖u′′app‖2W ρ0,∞‖u′′app‖L2
[
‖u′′app‖W ρ0,∞ + ‖Lu′′app‖W ρ0,∞

]
≤ Cε5(log(1 + t))6

by (6.1.2). As t ≤ ε−4+c, we estimate this by 1
t εe(t, ε), so by the right hand

side of (6.3.3).
• Term (6.3.8): This is a term of form (6.3.6). The Hs norm may be

bounded by (6.3.17), with R̃j′ replaced by R̃2. It follows from (5.2.32), Sobolev
injection and (6.1.1)-(6.1.4) that we largely get a bound of the form (6.3.2).
If we make act L± and estimate the L2 norm, we get a bound of the form
(6.3.18), with R̃j′ replaced by R̃2. Again, by (5.2.32), (6.1.1)-(6.1.4), we
obtain the conclusion.
• Term (6.3.9): This is a term of the form (6.3.6), with R̃j′ replaced by R.

Again, we may apply (6.3.17) to bound the Hs norm. According to (4.2.6),
we obtain a bound by the right hand side of (6.3.2). To study the L2 norm
of the action of L± on (6.3.9), we use that we have again a bound of the
form (6.3.18) with R̃j′ replaced by R. As the last factor in (6.3.18) is O(t−1)
by (6.1.1)-(6.1.3), we conclude that we get an upper bound by (6.3.3) using
(4.2.6), (4.2.7). This concludes the proof of Proposition 6.3.1 2

Our next task is to study the second line in (5.2.37).

Proposition 6.3.3. — Denote now

(6.3.19) F (t) = C(t)M̂`
j(ũ, . . . , ũ, uapp, . . . , (Dt − P0)uapp, . . . , uapp).
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Then under assumptions (6.1.1)-(6.1.4)

(6.3.20) ‖F (t)‖Hs ≤ t−1εtδe(t, ε)

(6.3.21) ‖LF (t)‖Hs ≤ t−1t
1
4 (ε2
√
t)θe(t, ε).

Proof. — Recall that (Dt − p(Dx))uapp
+ is given by (3.1.37). Together with

the definition (1.2.14) of F 2
0 , F

3
0 , with the fact that by (3.1.3), (3.1.6), (3.1.8),

aapp is O(t−
1
2

ε ), and with estimates (3.1.38), this implies that

(6.3.22) (Dt − p(Dx))uapp
+ = Z(t, x) + aapp(t)

∑
|I|=1

Op(m′1,I)(u
app
I )

where m′1,I is in S̃′1,0
(
〈ξ〉−1, 1) and Z(t, x) satisfies for any α,N

(6.3.23) |∂αxZ(t, x)| ≤ Cα,N t−1
ε 〈x〉

−N .

Notice that we may consider as well m′1,I as an element of S′1,β(〈ξ〉−1, 1) for
β > 0, since for symbols depending only on one frequency variable, this does
not make any difference. We plug (6.3.22) inside (6.3.19). Using the form
(5.2.5) of M̂`

j and the composition result of Corollary A9.2.6, we write (6.3.19),
where we forget factor C(t) that does not affect the estimates, as a sum of
terms (up to permutations of the arguments)

(6.3.24) t
− 1

2
ε Opt(m′)(ũ±, . . . , uapp

± )

(6.3.25) Opt(m)(Z, ũ±, . . . , uapp
± )

where the number of arguments (ũ±, . . . , uapp
± ) in (6.3.24) (resp. (6.3.25)) is

j (resp. j − 1) with j ≥ 3, and m′ belongs to S′4,β(Mν
0
∏j
`=1 〈ξ`〉

−1, j), m to
S4,β(Mν

0
∏j
`=1 〈ξ`〉

−1, j) for some ν. Expression (6.3.24) is of the form (6.3.4),
so satisfies the wanted bounds (6.3.20), (6.3.21) by the first point in the proof
of Proposition 6.3.1. The Hs norm of (6.3.25) is bounded by (A11.1.30) by

C
(
‖ũ‖Hs + ‖uapp‖Hs

)(
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

)
‖Z‖W ρ0,∞

+C
(
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

)2‖Z‖Hs

so by the right hand side of (6.3.20), by (6.1.1)-(6.1.3) and (6.3.23).
Let us bound next the L2 norm of the action of L± on (6.3.25). We decom-

pose each factor uapp
± = u′app

± + u′′app
± . Consider first the case of the resulting

expression where at least one of the last j − 1 arguments in (6.3.25) is equal
to ũ± or u′app

± , say the last one. We have to estimate

t‖Opt(m)(Z, ũ±, . . . , uapp
± , w)‖L2

‖xOpt(m)(Z, ũ±, . . . , uapp
± , w)‖L2

(6.3.26)
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with w = ũ± or u′app
± . Up to commuting x to Opt(m) in order to put it agains

Z, it is enough to bound the first expression. We use (A11.2.34) with the
special index j equal to the last one. Recalling the t−1

ε factor in (6.3.23), we
get a bound in

(6.3.27) Ct−1
ε

(
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

)j−2

×
(
‖ũ‖L2 + ‖Lũ‖L2 + ‖u′app‖L2 + ‖L±u′app‖L2

)
which by (6.1.1)-(6.1.3) is smaller than the right hand side of (6.3.21) (as
j − 2 ≥ 1). On the other hand, if we consider (6.3.26) with all arguments
(ũ±, . . . , uapp

± , w) replaced by u′′app
± , we use (A11.2.35) and get instead of

(6.3.27), by (6.1.2)

Ct−1
ε ‖u′′app‖j−3

W ρ0,∞
(
‖Lu′′app‖W ρ0,∞ + ‖u′′app‖W ρ0,∞

)
‖u′′app‖L2

≤ Ct−1
ε ε log(1 + t) log(1 + tε2).

This is much better than (6.3.21). This concludes the proof.

Let us move now to the study of (5.2.38).

Proposition 6.3.4. — Denote

F (t) = C(t)M̂′02
(
(Dt − P0)u′app,1, u′app,1)+ C(t)M̂′02

(
u′app,1, (Dt − P0)u′app,1)

+ C(t)M̂′12
(
(Dt − P0)ũ, u′app,1)+ C(t)M̂′12

(
ũ, (Dt − P0)u′app,1)

+ C(t)M̂′22
(
(Dt − P0)ũ, ũ

)
+ C(t)M̂′22

(
ũ, (Dt − P0)ũ

)
.

(6.3.28)

Then
(6.3.29) ‖F (t)‖Hs ≤ t−1εtδe(t, ε)

(6.3.30) ‖L±F (t)‖L2 ≤ t−1[t 1
4 (ε2
√
t)θ
]
e(t, ε).

Before starting the proof, we recall some estimates for (Dt − P0)ũ.

Lemma 6.3.5. — Under a priori assumptions (6.3.1)-(6.3.3) we have the
following estimates:

(6.3.31) ‖(Dt − P0)ũ‖Hs ≤ Cεtδ−
1
2

(6.3.32) L(Dt − P0)ũ = f1 + xf2

with
(6.3.33) ‖f1‖L2 ≤ Ct−

1
2
[
t

1
4 (ε2
√
t)θ
]

(6.3.34) ‖f2‖L2 ≤ Ct−1(ε2
√
t)2θ′

εtδ.
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Proof. — Recall that (Dt − P0)ũ is given by (6.3.10) and that V(t) may
be expressed, according to (5.1.4), from operators t

− 1
2

ε Opt(c′±) with c′± in
S′κ,β(〈ξ〉−1, 1). By boundedness of these operators on Hs and (6.1.3), we get
for ‖V(t)ũ‖Hs a bound by the right hand side of (6.3.31).

The action of L on V(t)ũ will have L2 norm bounded from above by

t
− 1

2
ε ‖xOpt(c′±)ũ‖L2 + tt

− 1
2

ε ‖Opt(c′±)ũ‖L2 .

By (A11.2.32) with n = 1 and (6.1.3), we get a bound by the right hand
side of (6.3.33).

Consider next the Mj(ũ, uapp) terms, j = 3, 4, in the right hand side
of (6.3.10). By (5.2.26), these terms are given by the contributions R̃j ,
which by (5.2.27) are largely bounded in Hs by the right hand side of
(6.3.31), and by (5.2.28) contribute to f1 in (6.3.32) if we apply L on
them. On the other hand, the main terms in (5.2.26) are of the form
Opt(m̃I′,I′′)(ũI′ , uapp

I′′ ). By (A11.1.30), (6.1.1)-(6.1.3), they satisfy (6.3.31).
Let us study L±Opt(m̃I′,I′′)(ũI′ , uapp

I′′ ). We apply Proposition A13.2.1 and
Corollary A13.2.2 (translated in the non semiclassical framework). This
allows us to re-express this quantity from
(6.3.35) Opt(m̃)

(
L±v1, v2, . . . , vj

)
(6.3.36) Opt(r̃)(v1, . . . , vj)

(6.3.37) tOpt(r̃′)(v1, . . . , vj)

(6.3.38) xOpt(r̃)(v1, . . . , vj)

where v` = ũ± or v` = u′app +u′′app, where m̃, r̃ are in S4,β(Mν
0
∏j
`=1 〈ξ`〉

−1, j)
and r̃′ is in S′4,β(Mν

0
∏j
`=1 〈ξ`〉

−1, j).
We estimate the L2 norm of (6.3.35) using (A11.1.31) with the special index

equal to the first one, when v1 is replaced either by ũ± or u′app
± . We largely get

a bound by (6.3.33) as j ≥ 3 using (6.1.1)-(6.1.3). If v1 is replaced by u′′app
± ,

we still use (A11.1.31), but make play the special role to the second argument.
We obtain a bound in
(6.3.39) ‖L+u

′′app
+ ‖W ρ0,∞

[
‖uapp

+ ‖W ρ0,∞ + ‖ũ‖W ρ0,∞
][
‖uapp

+ ‖L2 + ‖ũ+‖L2
]

which is largely controlled by (6.3.33) by (6.1.1)-(6.1.3).
The L2 norm of (6.3.36) (or of the coefficient of x in (6.3.38)) is bounded

from above by the right hand side of (6.3.33) (or (6.3.34)) again by (A11.1.31),
(6.1.1)-(6.1.3) and the fact that j ≥ 3.

Consider (6.3.37). If at least one v` is replaced by ũ± or u′app
± , we use

(A11.2.32), with the special index equal to this `. By (6.1.1)-(6.1.3) we largely
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get an estimate (6.3.33). If all v` are equal to u′′app
± , we use instead (A11.2.33),

from which (6.3.33) largely follows.
To finish the proof of the lemma, we still have to study the last two

terms in the right hand side of (6.3.10). Contribution M′(ũ, u′app) has struc-
ture (5.2.31). The remainders R2 largely satisfy bounds (6.3.31), (6.3.33).
The other terms are, by (5.2.30), of the form Opt(m̃′)(v1, v2) with m̃′ in
S′1,β(M0(ξ)

∏2
j=1 〈ξj〉

−1, 2) and v1, v2 equal to ũ± or u′app,1
± . By (A11.1.30) and

(6.1.3), (6.1.4), the Sobolev estimate (6.3.31) holds. On the other hand, by
(A11.2.37) (and the rapid decay in x of symbols in S′1,β(M0(ξ)

∏2
j=1 〈ξj〉

−1, 2)),
we have

‖L±Opt(m̃′)(v1, v2)‖L2 ≤ Ct−1+σ[‖L+ũ±‖L2 + ‖L+u
′app,1
+ ‖L2

+ ‖ũ+‖Hs + ‖u′app,1
+ ‖Hs

]2
if sσ is large enough. Using (6.1.3), (6.1.4) and taking σ < 1

4 , we estimate this
by the right hand side of (6.3.33).

Finally, the last term R in (6.3.10) satisfies (4.2.6), (4.2.7), so also (6.3.31)
and (6.3.33) for the action of L on it. This concludes the proof of the lemma.

Proof of Proposition 6.3.4: We shall prove successively (6.3.29) and (6.3.30).
Step 1: Proof of (6.3.29)
Since C(t) is bounded on Hs, we may ignore it. We thus need to study

‖M̂′2(v1, v2)‖Hs
h

where (up to symmetries)

(6.3.40) v1 = (Dt − P0)ũ or (Dt − P0)u′app,1, v2 = ũ or u′app,1.

Recall that M̂′2 is given by (5.2.20) in term of operators Qi1,i2 of the form
(A13.4.11). We have thus to bound

(6.3.41) t−
3
2 ‖K`1,`2

H,i1,i2
(L`1i1v1,i1 , L

`2
i2
v2,i2)‖Hs

with operators K`1,`2
H,i1,i2

in the class K′1, 1
2
(1, i1, i2) introduced in Defini-

tion A13.4.1.
• Consider first the case v1 = (Dt−P0)u′app,1. We apply Corollary A13.5.4

when `1 or `2 is non zero and (A13.5.9) if `1 = `2 = 0. We obtain for σ > 0
small and sσ large enough a bound of (6.3.41) by

(6.3.42) Ct−
3
4
[
tσ‖L(Dt − P0)u′app,1‖L2

(
‖ũ‖Hs + ‖u′app,1‖Hs

)
+ tσ

(
‖Lũ‖L2 + ‖Lu′app,1‖L2

)
‖(Dt − P0)u′app,1‖Hs

+ ‖(Dt − P0)u′app,1‖Hs

(
‖ũ‖Hs + ‖u′app,1‖Hs

)]
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By end of the statement of Proposition 3.1.2, u′app,1
+ satisfies estimates of

the form (3.1.46), (3.1.47) and also (3.1.39)-(3.1.41). Moreover, ũ satisfies
(6.1.3). Plugging these estimates in (6.3.42), we get a better upper bound
than (6.3.29).
• Consider next the case v1 = (Dt − P0)ũ, `1 = 1 in (6.3.41). Decompose

K`1,`2
H,i1,i2

= K< +K>

where K< (resp. K>) is defined by the same formula (A13.4.1) as K`1,`2
H,i1,i2

, but
with the function k cut-off for |ξ1| ≤ 2〈ξ2〉 (resp. |ξ2| ≤ 2〈ξ1〉). We need to
bound
(6.3.43) t−

3
2 ‖K<(Li1(Dt − i1p(Dx))ũi1 , L

`2
i2
v2,i2)‖Hs

(6.3.44) t−
3
2 ‖K>(Li1(Dt − i1p(Dx))ũi1 , L

`2
i2
v2,i2)‖Hs

where `2 = 0 or 1 and v2 = ũ or u′app,1. Consider first expression (6.3.43).
We decompose the first argument in K< under the form g1 + g2, where, for
χ ∈ C∞0 (R), equal to one close to zero,
(6.3.45) g1 = (1− χ)(t−βDx)

[
Li1(Dt − i1p(Dx))ũi1

]
(6.3.46) g2 = χ(t−βDx)[f1,i1 + xf2,i1 ]
where we used decomposition (6.3.32). Using the definition of Li1 and (6.3.31),
we may rewrite g1 as a sum g1 = tg′1 + xg′′1 with according to (6.3.31), for any
σ0 ≤ s

(6.3.47) ‖g′1‖Hσ0 + ‖g′′1‖Hσ0 ≤ t−β(s−σ0)εtδ−
1
2 .

Applying (A13.5.1)-(A13.5.3) (with the roles of f1, f2 interchanged), we see
that (6.3.43) with the first argument of K< replaced by g1 has Sobolev norm
bounded from above by

Ct
1
4−β(s−σ0)εtδ−

1
2
[
‖ũ‖Hs + ‖u′app,1‖Hs

]
.

If sβ is large enough, we get an estimate by the right hand side of (6.3.29).
On the other hand, if we replace the first argument of K< in (6.3.43) by g2,
we reduce ourselves to
(6.3.48) t−

3
2 ‖K<

(
χ̃(t−βDx)f̃1,i1 , L

`2
i2
v2
)
‖Hs

(6.3.49) t−
3
2 ‖K<

(
xχ̃(t−βDx)f̃2,i1 , L

`2
i2
v2
)
‖Hs

for new functions f̃1, f̃2 satisfying the same estimates (6.3.33), (6.3.34) as
f1, f2 and χ̃ in C∞0 (R). Decomposing Li2 = x+ i2tp

′(Dx) and using (A13.5.1),
(A13.5.2) with the roles of f1, f2 interchanged, we bound (6.3.48) by

t−
3
4 ‖χ̃(t−βDx)f̃1,i1‖Hσ0‖v2‖Hs .
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By (6.3.33) and (6.1.3), (6.1.4), this is smaller than

t−
3
4 +βσ0t−

1
2
[
t

1
4 (ε2
√
t)θ
]
εtδ

so than the right hand side of (6.3.29) if t ≤ ε−4+c and β is small enough.
To study (6.3.49), we decompose again Li2 as above and use (A13.5.2) and
(A13.5.3), to obtain a bound in

t−
1
4 ‖χ̃(t−βDx)f̃2‖Hσ0‖v2‖Hs .

By (6.3.34) for f̃2 and (6.1.3), (6.1.4), we obtain a bound by the right hand
side of (6.3.29).

Let us study next (6.3.44). If `2 = 1, we use (A13.5.15) (with f1 and f2
interchanged) and if `2 = 0 we use (A13.5.21). We bound thus (6.3.44) by

Ct−
3
4 ‖(Dt − P0)ũ‖Hs

[
tβσ0

(
‖Lũ‖L2 + ‖Lu′app,1‖L2

)
+ ‖ũ‖Hs + ‖u′app,1‖Hs

]
.

If we use (6.3.31), (6.1.3), (6.1.4), we bound this by the right hand side of
(6.3.29), using again t ≤ ε−4+c, and taking β small enough.
• To conclude Step 1, we still have to consider (6.3.41) with v1 = (Dt−P0)ũ

and `1 = 0 i.e. to bound

t−
3
2 ‖K0,`2

H,i1,i2

(
Dt − i1p(Dx)

)
ũi1 , L

`2
i2
v2,i2

)
‖Hs .

Expressing Li2 and using (A13.5.17) and (A13.5.9), we obtain abound in

t−
3
4 ‖(Dt − P0)ũ‖Hs

[
‖ũ‖Hs + ‖u′app,1‖Hs

]
.

Using (6.3.31), (6.1.3), (6.1.4), we obtain a bound of the form (6.3.29). This
concludes the proof of Step 1.

Step 2: Proof of (6.3.30)
Again, properties (A12.1.18), (A12.1.19), (A12.1.20) of operator C(t) allow

us to ignore it in the proof of the estimates. We shall have thus to bound
‖LM̂′2(v1, v2)‖L2 where M̂′2 has structure (5.2.20) and v1, v2 are given by
(6.3.40). If we express L± = x± tp′(Dx), we are reduced to studying

(6.3.50) t−
1
2 ‖K`1,`2

H,i1,i2

(
L`1i1v1,i1 , L

`2
i2
v2,i2

)
‖L2

(6.3.51) t−
3
2 ‖xK`1,`2

H,i1,i2

(
L`1i1v1,i1 , L

`2
i2
v2,i2

)
‖L2 .

By definition A13.4.1 of the class K′1, 1
2
(i), xK`1,`2

H,i1,i2
may be written as

t
1
2 K̃`1,`2

H,i1,i2
for another operator in the class K′1, 1

2
(i). It is thus enough to

bound (6.3.50).
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•We consider first the case v1 = (Dt−P0)u′app,1. By (A13.5.13), (A13.5.10),
we bound (6.3.50) by

Ct−
3
4
[
‖(Dt − P0)u′app,1‖Hs + tσ‖L(Dt − P0)u′app,1‖L2

]
×
[
‖Lu′app,1‖L2 + ‖Lũ‖L2 + ‖u′app,1‖L2 + ‖ũ‖L2

]
for any σ > 0 (if sσ is large enough). Since by Proposition 3.1.2, u′app,1

satisfies (3.1.46), (3.1.47), we deduce from (6.1.3), (6.1.4) an estimate better
than (6.3.30).
• Consider next the case v1 = (Dt − P0)ũ, `1 = 1 in (6.3.50). We replace

L(Dt−P0)ũ by the right hand side of (6.3.32). By (A13.5.10), (A13.5.14), the
f1 contribution to (6.3.50) is bounded from above by

Ct−
3
4 ‖f1‖L2

[
tσ
(
‖Lu′app,1‖L2 + ‖Lũ‖L2

)
+ ‖u′app‖Hs + ‖ũ‖Hs

]
.

Using (6.3.33), (6.1.3), (6.1.4), we get an estimate in

Ct−1[t 1
4 (ε2
√
t)θ
][

(ε2
√
t)θtσ + εtδ−

1
4
]
.

If σ is small enough, and since t ≤ ε−4+c, we get a bound of the form (6.3.30).
On the other hand, if we replace (Dt − P0)ũ by xf2, (6.3.50) is reduced to

(6.3.52) t−
1
2 ‖K`1,`2

H,i1,i2
(xf2,i1 , L

`2
i2
v2,i2)‖L2 .

A ∂ξ1 integration by parts in (A13.4.1) using (A13.4.3), shows that (6.3.52) is
reduced to

‖K̃`1,`2
H,i1,i2

(f2,i1 , L
`2
i2
v2,i2)‖L2

for a new operator in the same class. Using (A13.5.10), (A13.5.14), we get a
bound in

Ct−
1
4 ‖f2‖L2

[(
‖Lu′app,1‖L2 + ‖Lũ‖L2

)
tσ + ‖u′app,1‖Hs + ‖ũ‖Hs

]
.

Using (6.3.34), (6.1.3), (6.1.4), we obtain a bound of the form (6.3.30).
• Consider finally the case v1 = (Dt − P0)ũ, `1 = 0 in (6.3.50). By

(A13.5.10), we get a bound of (6.3.50) by

Ct−
3
4 ‖(Dt − P0)ũ‖Hs

[
‖Lũ‖L2 + ‖Lu′app,1‖L2 + ‖ũ‖L2 + ‖u′app,1‖L2

]
.

If we plug there (6.3.31) and (6.1.3), (6.1.4), we get an estimate of the form
(6.3.30). This concludes the proof. 2

This concludes the study of terms of the form (5.2.38). It remains to study
(5.2.39), (5.2.40) and (5.2.41).

Proposition 6.3.6. — (i) Denote
(6.3.53) F (t) = C(t)Rj(ũ, . . . , ũ︸ ︷︷ ︸

`

, uapp, . . . , uapp), j = 3, 4, 0 ≤ ` ≤ j
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with Rj of the form (5.2.7), (5.2.8). Then there is a function e satisfying
(4.2.8) such that

(6.3.54) ‖F (t)‖Hs ≤ t−1εtδe(t, ε)

(6.3.55) ‖L±F (t)‖L2 ≤ t−1[t 1
4 (ε2
√
t)θ
]
e(t, ε).

(ii) Denote
F (t) = C(t)R2(ũ, . . . , ũ︸ ︷︷ ︸

`

, u′app,1, . . . , u′app,1)

with 0 ≤ ` ≤ 2 and R2 =
[
R2,+
R2,−

]
given by (5.2.22). Then (6.3.54), (6.3.55)

hold.
(iii) Let F (t) = C(t)[R(t, ·) + R̃3(t, ·) + R̃4(t, ·)] + R̃2(t, ·) with R, R̃j as in

(5.2.41). Then (6.3.54) and (6.3.55) hold.

Proof. — (i) By (5.2.8) and (A11.1.30) (and the boundedness of C(t) on Hs),
we bound ‖F (t)‖Hs by

C
[
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

]j−1[‖ũ‖Hs + ‖uapp‖Hs

]
.

As j ≥ 3, (6.1.1), (6.1.3) imply (6.3.54).
To prove (6.3.55), we use once again that by (A12.1.18), (A12.1.19),

(A12.1.20), we may ignore the factor C(t), and have to estimate LRj in L2.
This expression is a sum of quantities of the form (5.2.9), (5.2.10), (5.2.11),
so of the form (6.3.35), (6.3.36), (6.3.37) with v` = ũ± or v` = u′app

± + u′′app
± .

When v1 in (6.3.35) is replaced by ũ± or u′app
± , we use (A11.1.31) to estimate

the L2 norm of these terms by

C
[
‖ũ‖W ρ0,∞ + ‖uapp‖W ρ0,∞

]j−1[‖Lũ‖L2 + ‖Lu′app‖L2
]

so by the right hand side of (6.3.55) by (6.1.1)-(6.1.3), since j ≥ 3. If v1 =
u′′app, we have a bound by (6.3.39) so by

(6.3.56) 1
t
t

1
4 (ε2
√
t)θ
[
(ε2
√
t)

1
2 +θ′−θ

tδ log(1 + t) log(1 + tε2)
]

which is bounded by the right hand side of (6.3.55) for δ > 0 small, θ, θ′ close
to 1

2 if t ≤ ε−4+c.
Expression (6.3.36) is controlled as (6.3.35). For (6.3.37), we use (A11.2.32)

if at least one of the vj ’s is equal to ũ± or u′app
± , which brings the wanted

estimate (6.3.55) by (6.1.1)-(6.1.3). If all arguments vj are equal to u′′app
± ,

we use (A11.2.33), that brings again an estimate of the form (6.3.56). This
concludes the proof of (i).

(ii) Again, we may forget operator C(t). We have to study

(6.3.57) t−2‖K`1,`2
L,i1,i2

(L`1i1v1,i1 , L
`2
i2
v2,i2)‖Hs
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(6.3.58) t−2‖L±K`1,`2
L,i1,i2

(L`1i1v1,i1 , L
`2
i2
v2,i2)‖L2

with K`1,`2
L,i1,i2

in K′1
2 ,1

(i), and v1, v2 equal to ũ or u′app,1. Since estimates (6.1.4)
are better than (6.1.3), we may argue just in the case v1 = v2 = ũ. Then
(6.3.57) is just (6.2.7) multiplied by t−

1
2 . It is then estimated by (6.2.8),

(6.2.9), (6.2.10) multiplied by t−
1
2 and thus by (6.2.11) multiplied by t−

1
2 , so

by εtδ−1tσ(ε2
√
t)θ. For t ≤ ε−4+c, this is of the form of the right hand side of

(6.3.54) if σ is small enough. Let us bound next (6.3.58). Using the expression
L± = x± tp′(Dx), we have to estimate

(6.3.59) t−1‖K`1,`2
L,i1,i2

(L`1i1v1,i1 , L
`2
i2
v2,i2)‖L2

(6.3.60) t−2‖xK`1,`2
L,i1,i2

(L`1i1v1,i1 , L
`2
i2
v2,i2)‖L2 .

By (A13.5.10), (A13.5.13), (A13.5.14), we bound (6.3.59) by

Ct−
5
4
[
‖Lũ‖L2tσ + ‖ũ‖Hs

]2
.

Using (6.1.3), we obtain

Ct−1[(ε2
√
t)θt

1
4 ]t2σ(ε2

√
t)θ

which is smaller than the right hand side of (6.3.55) for t ≤ ε−4+c if σ is small
enough.

Finally, to study (6.3.60), we notice, as after (6.2.14), that this expression
may be bounded by t−

1
2 times (6.3.59), so has the wanted bounds.

(iii) The contributions C(t)R̃3, C(t)R̃4, R̃2 are estimated by (5.2.32),
(5.2.27), (5.2.28), so largely by the right hand side of (6.3.54), (6.3.55),
using (6.1.1)-(6.1.3). The fact that C(t)R satisfies these estimates follows
from inequalities (4.2.6), (4.2.7) satisfied by R (or (5.1.22), (5.1.23)). This
concludes the proof.

We conclude this chapter summarizing the estimates we have obtained.

Proposition 6.3.7. — Let c > 0 (small) be given, 0 < θ′ < θ < 1
2 with

θ′ close to 1
2 . Let T ∈ [1, ε−4+c] and assume that we are given on [1, T ] ×

R functions ũ+, u
′app
+ , u′′app

+ , u′app,1
+ that satisfy estimates (6.1.1)-(6.1.4), for

some small δ > 0, some constants C(A,A′), D, any ε in an interval ]0, ε0],
and such that ũ solves (5.2.34). Then there are D0 > 0, ε′0 ∈]0, ε0] such that
if D ≥ D0 and ε ∈]0, ε′0], for any t ∈ [1, T ], the L2 estimates in (6.1.3) may
be improved to

(6.3.61) ‖ũ+(t, ·)‖Hs ≤ D

2 εt
δ
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(6.3.62) ‖L+ũ+(t, ·)‖L2 ≤
D

2 t
1
4 (ε2
√
t)θ.

Proof. — By Corollary 5.2.5, we know that
(6.3.63) (Dt − P0)̊u = R̂
if we define

(6.3.64) ů = C(t)
[
ũ−

4∑
j=3
M̂j(ũ, uapp)

]
− M̂′2(ũ, u′app,1).

By Proposition 6.1.1, Proposition 6.2.1 and the boundedness properties
(A12.1.17) to (A12.1.20) of C(t), we have
(6.3.65) ‖ů− C(t)ũ‖Hs ≤ εtδe(t, ε)

(6.3.66) ‖L(̊u− C(t)ũ)‖L2 ≤ t
1
4 (ε2
√
t)θe(t, ε)

where e satisfies (4.2.8).
The right hand side R̂ of (6.3.63) is the sum of terms (5.2.35) to (5.2.41).

These terms have been estimated in Proposition 6.1.2, Proposition 6.2.3,
Proposition 6.3.1, Proposition 6.3.3, Proposition 6.3.4, Proposition 6.3.6,
which imply that

‖R̂(t, ·)‖Hs ≤ εtδ−1e(t, ε)

‖LR̂(t, ·)‖L2 ≤ t−1t
1
4 (ε2
√
t)θe(t, ε).

(6.3.67)

By the fact that L commutes to (Dt−P0), it follows from the energy inequality
applied to (6.3.63) that
(6.3.68) ‖ů(t, ·)‖Hs ≤ ‖ů(1, ·)‖Hs + εtδe(t, ε)

(6.3.69) ‖Lů(t, ·)‖L2 ≤ ‖Lů(1, ·)‖L2 + t
1
4 (ε2
√
t)θe(t, ε)

and then, by (6.3.65), (6.3.66) and (A12.1.12), (A12.1.17)-(A12.1.20) that
(6.3.70) ‖ũ(t, ·)‖Hs ≤ C‖ũ(1, ·)‖Hs + εtδe(t, ε)

(6.3.71) ‖Lũ(t, ·)‖L2 ≤ C
[
‖Lũ(1, ·)‖L2 + ‖ũ(1, ·)‖L2

]
+ t

1
4 (ε2
√
t)θe(t, ε)

for some constant C, some new factors e(t, ε). Recall that ũ+ has been defined
from u+ in (4.2.1), and that since this function is O(ε) at time t = 1 in the
space {f ∈ Hs, xf ∈ L2} by (1.2.10), (1.2.8), we may take D so large that the
first term in the right hand side of (6.3.70), (6.3.71) is smaller than D

4 ε. If ε
is small enough, we thus get (6.3.61), (6.3.62) using (4.2.8).





CHAPTER 7

L∞ ESTIMATES AND END OF BOOTSTRAP

The goal of this chapter is to conclude the bootstrap argument that gives
our main theorem. At the end of the preceding chapter, we have seen that
assuming a priori estimates (6.1.3), we could prove that the first and last ones
hold with a better constant. Here, we shall bootstrap the W ρ,∞ bound in
(6.1.3). Once this is done, we still have to go back to the original unknowns
of the statement of our main Theorem 1.1.1 and to deduce from estimates of
ũ and from the study made in section 3.2 the bounds of the quantities that
appear in that theorem.

7.1. L∞ estimates

One cannot deduce an L∞ estimate of the form of the second inequality in
(6.1.3) from the Sobolev estimates satisfied by ũ+, L+ũ+ through Klainerman-
Sobolev inequalities: the fact that ‖L+ũ+‖L2 admits only aO(t

1
4 ) bound would

be too rough in order to do so. Instead, we deduce from the equation satisfied
by ũ an ODE, that will allow us to get the wanted L∞ bound.

We shall reduce ourselves to the semiclassical framework, defining from the
solution ũ =

[
ũ+
ũ−

]
of (5.2.34) a function ũ =

[
ũ+
ũ−

]
by

(7.1.1) ũ± = 1√
t
ũ±
(
t,
x

t

)
= (Θtũ)(t, x)

using notation (A9.1.7). We set h = t−1 and decompose for a given ρ ≥ 0,

(7.1.2) 〈hDx〉ρũ± = ũρ±,Λ + ũρ±,Λc

with according to notation (A11.3.13)

(7.1.3) ũρ±,Λ = OpW
h

(
γ
(x± p′(ξ)√

h

))
OpW

h (〈ξ〉ρ)ũ±
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where γ ∈ C∞0 (R) has small enough support and is equal to 1 close to zero. We
denote by ũρ±,Λ, ũ

ρ
±,Λc the functions corresponding to ũρ±,Λ, ũ

ρ
±,Λc by a change

of variables of the form (7.1.1).
The contribution ũρ±,Λc has nice L∞ bounds by Klainerman-Sobolev esti-

mates:

Proposition 7.1.1. — For any σ > 0, any s with sσ large enough, one has
the estimate
(7.1.4) ‖ũρ±,Λc‖L∞ ≤ Ct−

3
4 +σ[‖L±ũ±‖L2 + ‖ũ±‖Hs

]
.

Proof. — Translating that on ũρ±,Λc , this means

‖ũρ±,Λc‖L∞ ≤ Ch
1
4−σ
[
‖L±ũ±‖L2 + ‖ũ±‖Hs

h

]
.

This is just statement (A11.3.9) in Proposition A11.3.4.

We study from now on ũρ±,Λ. We first prove some bounds for expressions
(4.2.10)-(4.2.16), whose sum is equal to (Dt − p(Dx))ũ+. If W (t, x) is some
function and W is defined from W by (7.1.1), i.e. W (t, ·) = ΘtW (t, ·), we
denote by W ρ

Λ the function defined by (7.1.3) with sign + and ũ± replaced by
W , and we shall call W ρ

Λ the function W ρ
Λ = ΘtW

ρ
Λ.

Lemma 7.1.2. — Let

a(t) =
√

3
3 (a+(t)− a−(t)), aapp(t) =

√
3

3 (aapp
+ (t)− aapp

− (t)),

where a− = −ā+, aapp
− = −aapp

+ , and where a+, a
app
+ satisfy by (3.2.5), (3.2.6),

(3.2.7), (3.2.8), (3.2.9)

(7.1.5) |aapp
+ (t)| ≤ Ct−

1
2

ε , |a+(t)− aapp
+ (t)| ≤ Ct−

3
2

ε

for t in the interval [1, T ], T ≤ ε−4+c, where these functions are defined.
Assume moreover that on that interval, the functions ũ+, u

′app
+ , u′′app

+ satisfy
(6.1.1)-(6.1.3).

Then the quantities (4.2.10) to (4.2.16) satisfy the following estimates, with
a constant C depending on the constants A,A′, D in (6.1.1)-(6.1.3):

(7.1.6) ‖(4.2.10)‖W ρ,∞ ≤ Ct−
3
2 (ε2
√
t)θ

(7.1.7) ‖(4.2.11)‖W ρ,∞ ≤ Ct−
3
2 (ε2
√
t)θ

(7.1.8) ‖(4.2.12)‖W ρ,∞ ≤ Ct−
3
2 (ε2
√
t)θ

(7.1.9) ‖(4.2.13)ρΛ‖L∞ ≤ Ct
− 3

2 +σ(ε2
√
t)θ
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(7.1.10) ‖(4.2.14)‖W ρ,∞ ≤ Ct−
3
2 (ε2
√
t)θ

(7.1.11) ‖(4.2.15)‖W ρ,∞ ≤ Ct−
3
2 (ε2
√
t)θ

(7.1.12) ‖(4.2.16)‖W ρ,∞ ≤ Ct−
3
2 +σ(ε2

√
t)θ

where σ > 0 may be taken as small as one wants if sσ is large enough (s being
the index of Sobolev estimates (6.1.1)-(6.1.3)) relatively to ρ, and where in
(7.1.9) one uses the notation W ρ

Λ defined before the statement of the lemma.

Proof. — • Inequality (7.1.6) follows from (4.2.25) and the fact that t−
1
2

ε ≤ ε.
• We have seen in the proof of Proposition 4.2.1, that (4.2.11) is a sum of

terms of the form (4.2.27) or (4.2.28), with conditions (4.2.29) or (4.2.30) i.e.
may be written from

(7.1.13) Op(m)(v1, . . . , vn)

where m is in S̃1,0
(∏n

j=1 〈ξj〉
−1Mν

0 , n
)
, with n ≥ 3 and vj equal to ũ± or u′app±

or u′′app
± or R (with R satisfying (4.1.25), (4.1.26)). In particular, by Sobolev

estimates, one has

(7.1.14) ‖R(t, ·)‖W ρ,∞ ≤ C
Å(ε2

√
t)θ
′
tσ√

t

ã4
εtδ.

If we apply (A11.1.37), we obtain for the W ρ,∞ norm of (7.1.13) a bound in[
‖ũ+‖W ρ,∞ + ‖u′app

+ ‖W ρ,∞ + ‖u′′app
+ ‖W ρ,∞ + ‖R‖W ρ,∞

]2
×
[
tσ
[
‖ũ+‖W ρ,∞ + ‖u′app

+ ‖W ρ,∞ + ‖u′′app
+ ‖W ρ,∞ + ‖R‖W ρ,∞

]
+ t−1[‖ũ+‖Hs + ‖u′app

+ ‖Hs + ‖u′′app
+ ‖Hs + ‖R‖Hs

]]
.

By (6.1.1)-(6.1.3) and (4.1.25), (7.1.14), this is smaller than the right hand
side of (7.1.7) (if we use that (ε2

√
t)3θ′−θ

tσ ≤ C for t ≤ ε−4+c).
• The expression (4.2.12) to estimate has been seen to be of the form (4.2.38)

or (4.2.39), with either (4.2.40) or (4.2.41). Terms corresponding to (4.2.40)
are of the form (7.1.13) and, as we have just seen, satisfy the wanted bound.
We have just to consider expressions (4.2.38) or (4.2.39) under (4.2.41) i.e.
quantities of the form

(7.1.15) Op(m′)(v1, v2)

where m′ is in S̃′1,0
(∏2

j=1 〈ξj〉
−1Mν

0 , 2
)
, and v1, v2 taken among ũ±, u′app

± ,
u′′app
± , R. If both v1, v2 are different from u′′app

± , we use (A11.2.38) with r = 2,
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n = 2, ` = 0. We get a bound in

(7.1.16) t−2+σ[‖u′app
+ ‖Hs + ‖ũ+‖Hs + ‖R‖Hs

+ ‖L+u
′app
+ ‖L2 + ‖L+ũ+‖L2 + ‖L+R‖L2

]2
(estimating the W ρ0,∞ norm from the Hs one). It follows from (4.1.25),
(4.1.26) that ‖L+R‖L2 ≤ C[t

1
4 (ε2
√
t)θ]. Using also (6.1.1), (6.1.3) we esti-

mate (7.1.16) by the right hand side of (7.1.8), when t ≤ ε−4+c if σ is small
enough. Consider next the case when v1 or v2 is equal to u′′app

± . If for instance
v1 = u′′app

± and v2 = ũ± or u′app
± or R, we apply (A11.2.38) with n = 2, ` = 1.

The first term in the right hand side of this expression is largely estimated by
(7.1.8) if r is taken large enough. The second one is smaller than

Ct−2+σ[‖u′′app
+ ‖W ρ,∞ + ‖L+u

′′app
+ ‖W ρ,∞

]
×
[
‖u′app

+ ‖Hs + ‖ũ+‖Hs + ‖R‖Hs

+ ‖L+u
′app
+ ‖L2 + ‖L+ũ+‖L2 + ‖L+R‖L2

]
.

By (6.1.1)-(6.1.3) and (4.1.25), (4.1.26), this is largely bounded by the right
hand side of (7.1.8).

If v1 and v2 are both equal to u′′app
± , we use (A11.2.38) with ` = n = 2. We

obtain a bound in t−2+σ(log(1 + t))2(log(1 + tε2))2 for the second contribution
to the right hand side of (A11.2.38). If σ is small enough, this is better than
(7.1.8) since θ ≤ 1

2 .
• It follows from (A11.3.4) (with a large enough r) translated in the non

semiclassical framework, that for any function W

(7.1.17) ‖W ρ
Λ‖L∞ ≤ C

[
t−

1
4 +σ‖W‖L2 + t−2‖W‖Hs

]
.

To estimate (7.1.9), we decompose expression (4.2.13) as the sum of (4.2.47)
to (4.2.50). Consider first the nonlinear quantity (4.2.49), that may be written
as (4.2.52). By (A11.3.10) and the fact that a(t) = O(t−

1
2

ε ), its contribution
to (7.1.9) is bounded from above by

(7.1.18) tσt
− 1

2
ε

[
‖Op(m′)(v1, . . . , vn)‖W ρ,∞ + t−r‖Op(m′)(v1, . . . , vn)‖Hs

]
for any r, if σ > 0 and sσ is large enough, m′ being in S̃′1,0

(∏n
j=1 〈ξj〉

−1Mν
0 , n

)
,

2 ≤ n ≤ 4, vj being equal to ũ± or u′app
± or u′′app

± . Since (7.1.18) involves
expressions of the form (7.1.13) or (7.1.15), we already know that the first
term is estimated by the right hand side of (7.1.9). The second term is easily
bounded, as r is arbitrary.

We have thus just to consider the linear expressions (4.2.47), (4.2.48),
(4.2.50). As a(t) = O(t−

1
2

ε ), a(t)−aapp(t) = O(t−
3
2

ε ) by (7.1.5), the expressions
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to study are of the form

t
− 1

2
ε Op(m′)ũ±

t
− 1

2
ε Op(m′)R

(7.1.19)

t
− 3

2
ε Op(m′)u′app

±

t
− 3

2
ε Op(m′)u′′app

±

(7.1.20)

where m′ is in S̃′1,0(〈ξ〉−1, 1). We replace in (7.1.17) W by (7.1.19) or (7.1.20).
It follows from (A11.2.32), (A11.1.30) with n = 1 that the contribution of
(7.1.19) to the right hand side of (7.1.17) is bounded from above by

t−
5
4 +σt

− 1
2

ε

[
‖ũ±‖Hs + ‖R‖Hs + ‖L±ũ±‖L2 + ‖L±R‖L2

]
.

Combined with (6.1.1), (6.1.3) and (4.1.25), (4.1.26), this gives an estimate in
t−

3
2 +σ(ε2

√
t)θ as wanted.

To study the contribution of (7.1.20) to the right hand side of (7.1.17), we
just apply the Sobolev boundedness of Op(m′) to get

t
− 3

2
ε t−

1
4 +σ[‖u′app

+ ‖Hs + ‖u′′app
+ ‖Hs

]
.

Combining with (6.1.1), (6.1.2), we get again the wanted bound. This con-
cludes the study of (7.1.9).
• Expression (4.2.14) is made of terms of the form (4.2.12) or (4.2.11) mul-

tiplied by the decaying factor a(t). It is thus estimated by better quantities
than the right hand side of (7.1.7), (7.1.8).
• To estimate (4.2.15), we notice first that terms in that expression corre-

sponding to |I| ≥ 2 have already been treated in the proof of (7.1.7), (7.1.8).
It remains thus to study the linear terms, that are of the form

a(t)jOp(m′)u±, j ≥ 2

with m′ in S̃′1,0(〈ξ〉−1, 1). By expression (4.2.26) of u+, we shall get terms of
the form (4.2.49) with a(t) replaced by a(t)2. These terms have already been
considered in the study of (7.1.7), (7.1.8) (see (7.1.13), (7.1.15)). We obtain
also linear terms in
(7.1.21)

a(t)jOp(m′)ũ±, a(t)jOp(m′)u′app
± , a(t)jOp(m′)u′′app

± , a(t)jOp(m′)R

with j ≥ 2. To study those terms in (7.1.21) of the form a(t)jOp(m′)w with
w = ũ± or u′app

± or R, we use (A11.2.38) with n = 1, ` = 0. We obtain an
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estimate of the W ρ,∞ norm in

Ct−1
ε t−1+σ[‖u′app

+ ‖Hs + ‖ũ+‖Hs + ‖R+‖Hs

+ ‖L+ũ+‖L2 + ‖L+u
′app
+ ‖L2 + ‖L+R‖L2

]
.

Combined with (6.1.1), (6.1.2), (4.1.25), (4.1.26) this largely implies a bound
by the right hand side of (7.1.11). Finally, the W ρ,∞ norm of the terms in
(7.1.21) involving u′′app

± is estimated using (A11.2.38) when n = 1, ` = 1. One
obtains

Ct−1
ε t−1+σ[‖u′′app

+ ‖Hs + ‖u′′app
+ ‖W ρ,∞ + ‖L+u

′′app
+ ‖W ρ,∞

]
which by (6.1.2) is also largely estimated by (7.1.11).
• Finally, (7.1.12) follows from the fact that (4.2.16) satisfies bounds

(3.1.38), that largely imply (7.1.12).

We may deduce from the above lemma a L∞ bound for (Dt − p(Dx))ũ+.

Proposition 7.1.3. — Denote f+ = (Dt − p(Dx))ũ+ and define f+ by

(7.1.22) f+(t, x) = 1√
t
f+

(
t,
x

t

)
= Θtf+(t, x)

using notation (A9.1.7). According to (A11.3.13), define

(7.1.23) fρ+,Λ = OpW
h

(
γ
(x+ p′(ξ)√

h

))
OpW

h (〈ξ〉ρ)f+.

Then, under a priori assumption (6.1.3) on ũ+, for any σ > 0, any s such
that sσ is large enough, one has

(7.1.24) ‖fρ+,Λ(t, ·)‖L∞ ≤ Ch1−σ(ε2
√
t)θ.

Proof. — Recall that f+ = (Dt−p(Dx))ũ+ is given by the sum of expressions
(4.2.10) to (4.2.16). Call f+,2 contribution (4.2.13) and f+,1 the sum of all
other contributions. Define fρ+,j,Λ, j = 1, 2 from f+,j as in (7.1.23). Then
(7.1.9) shows that fρ+,2,Λ satisfies (7.1.24). To obtain the same estimates for
fρ+,1,Λ, we apply (A11.3.10) in order to bound the different contributions to
fρ+,1,Λ in L∞ from (7.1.6)-(7.1.8) and (7.1.10)-(7.1.12), using moreover (6.3.31)
in order to estimate the Hs norm in (A11.3.10) (taking the power N in the
pre-factor hN large enough). This concludes the proof.

We shall now write an ODE satisfied by function (7.1.3).
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Proposition 7.1.4. — Assume a priori assumptions (6.1.1)-(6.1.3). There
is a real valued function θh, supported in ] − 1, 1[ such that ũρ+,Λ defined by
(7.1.3) satisfies

(7.1.25)
(
Dt − θh(x)

√
1− x2

)
ũρ+,Λ = OL∞

(
t−1+σ(ε2

√
t)θ
)

where σ > 0 is as small as one wants (if s in estimate (6.1.3) is large enough
relatively to 1/σ).

Proof. — Denote as in the preceding proposition f+ = (Dt − p(Dx))ũ+, so
that

(Dt − p(Dx))
(
〈Dx〉ρũ+

)
= 〈Dx〉ρf+.

If f+ is given by (7.1.22) and ũ+ by (7.1.1), this is equivalent to

(7.1.26)
(
Dt −OpW

h

(
xξ +

√
1 + ξ2

))
OpW

h (〈ξ〉ρ)ũ+ = OpW
h (〈ξ〉ρ)f+.

We make act OpW
h

(
γ
(
x+p′(ξ)√

h

))
on (7.1.26). By (A11.3.16) and the definition

(7.1.3) of ũρ+,Λ, we obtain

(7.1.27)
(
Dt −OpW

h

(
xξ +

»
1 + |ξ|

))
ũρ+,Λ = fρ+,Λ +R1 +R2

with

(7.1.28) R1 = hOpW
h

(
γ−1

(x+ p′(ξ)√
h

)(x+ p′(ξ)√
h

))
OpW

h (〈ξ〉ρ)ũ+

(7.1.29) R2 = h
3
2 OpW

h (r)OpW
h (〈ξ〉ρ)ũ+

where |∂αz γ−1(z)| ≤ Cα〈z〉−1−α and r satisfies

(7.1.30) |∂α1
x ∂α2

ξ (h∂h)kr(x, ξ, h)| ≤ Ch−
α1+α2

2

〈x+ p′(ξ)√
h

〉−1
.

By Lemma 4.2 in [82], R1 may be replaced by

(7.1.31) h
1
2 OpW

h

(
γ−1

(x+ p′(ξ)√
h

)
(x+ p′(ξ))〈ξ〉ρχ(hβξ)

)
ũ+

modulo a quantity estimated in L∞ by

(7.1.32) Ch
5
4−σ
[
‖L+ũ+‖L2 + ‖ũ+‖Hs

]
for some σ > 0, σ going to zero with β. By a priori assumption (6.1.3)
(translated on ũ+) this is estimated by the right hand side of (7.1.25). By
estimate (4.25) of Lemma 4.3 of [82], the L∞ norm of (7.1.31) is also controlled
by (7.1.32), so by the right hand side of (7.1.25).

Let us check that R2 given by (7.1.29) is also bounded by the same quantity.
This follows from semiclassical Sobolev injection together with the a priori
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Sobolev estimate in (6.1.3). Moreover, by (7.1.24), the fρ+,Λ contribution in
(7.1.27) is also bounded by the right hand side of (7.1.25).

It remains to write the left hand side of (7.1.27) as the left hand side of
(7.1.25), up to some new contributions to the right hand side of the latter.
This follows from Proposition A11.3.6, where the right hand side of the second
inequality (A11.3.15) is again estimated using (6.1.3). This concludes the
proof.

7.2. Bootstrap of L∞ estimates

We have shown in Proposition 6.3.7 that under a priori assumptions (6.1.1)-
(6.1.4), we could improve the Sobolev estimates in (6.1.3) to (6.3.61), (6.3.62).
Our first goal here will be to improve also the L∞ estimate.

Proposition 7.2.1. — Assume that (6.1.1)-(6.1.3) hold true on an interval
[1, T ]. Let c > 0 be given. Then if D in (6.1.3) has been taken large enough,
there is ε0 ∈]0, 1] such that, for all ε ∈]0, ε0], all 1 ≤ t ≤ T ≤ ε−4+c, one has
the bound

(7.2.1) ‖ũ+‖W ρ,∞ ≤ D

2
(ε2
√
t)θ
′

√
t

.

Proof. — We have to bound 〈Dx〉ρũ+ in L∞. By (7.1.1) and the notation
introduced after (7.1.3) for ũρ+,Λ, ũρ+,Λc , it suffices to show

(7.2.2) ‖ũρ+,Λ‖L∞ ≤
D

4 t
− 1

2 (ε2
√
t)θ
′

(7.2.3) ‖ũρ+,Λc‖L∞ ≤
D

4 t
− 1

2 (ε2
√
t)θ
′
.

By (7.1.4) and a priori estimate (6.1.3), one may bound (7.2.3) by
Ct−

1
2 +σ(ε2

√
t)θ. Since θ′ < θ and t ≤ ε−4+c, we bound this by the quantity

Ct−
1
2 (ε2
√
t)θ
′
e(t, ε) where e satisfies (4.2.8), if σ has been taken small enough

relatively to c(θ − θ′).
We are left with estimating (7.2.2). It is equivalent to show that ‖ũρ+,Λ‖L∞ ≤

D
4 (ε2
√
t)θ
′

if ε is small enough. Computing ∂t|ũρ+,Λ(t, x)|2 from (7.1.25) and
integrating in time, we get

|ũρ+,Λ(t, x)| ≤ |ũρ+,Λ(1, x)|+ C

∫ t

1
τ−1+σ(ε2

√
τ)θ dτ.

If D has been taken large enough so that ‖ũρ+,Λ(1, ·)‖L∞ ≤ D
8 ε, we get the

wanted estimate, using again that t ≤ ε−4+c and that σ may be taken small
relatively to c(θ − θ′). This concludes the proof.
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Propositions 6.3.7 and 7.2.1 allowed us to bootstrap estimates (6.1.3). To
be able to finish the proof of the main theorem, we shall have to bootstrap as
well the inequalities satisfied by g. We prove first some technical lemmas.

Proposition 7.2.2. — Let Z be a function in S(R). Assume that ũ+ satisfies
estimate (6.1.3). For any neighborhood W of {−1, 1} in R, there is ε0 > 0
(depending only on W and on the constants in (6.1.3)) such that for any λ
in R − W, there are functions ϕ±(λ, t), ψ±(λ, t) defined for t ∈ [1, ε−4+c],
ε ∈]0, ε0], satisfying the estimates

(7.2.4) |ϕ±(λ, t)| ≤ t−
1
2 (ε2
√
t)θ
′

(7.2.5) |ψ±(λ, t)| ≤ t−1(ε2
√
t)θ
′

and solving the equation
(7.2.6) (Dt − λ)ϕ±(λ, t) = 〈Z, ũ±〉+ ψ±(λ, t).

Moreover, denoting 〈Z, ũ〉 for the vector
[
〈Z,ũ+〉
〈Z,ũ−〉

]
, one has the bound

(7.2.7) |〈Z, ũ〉| ≤ t−
3
4 (ε2
√
t)θ
′
.

Proof. — We shall use the following notation: we set f = o(g) when we may
write |f | ≤ |g|e(t, ε) for some e(t, ε) satisfying (4.2.8). In particular, for any
given N , taking ε small enough, we may bound |f | by 1

N |g|.
We prove the proposition in the case of sign +. Let us show first that in

the right hand side of (7.2.6), we may replace 〈Z, ũ+〉 by 〈Z(C(t)ũ)+〉, up to
a contribution to ψ+. Since

(
(Id − C(t))ũ

)
+ is odd, and Z is in S, we may

use (3.1.79) to write

〈Z,
(
(Id− C(t))ũ

)
+〉 = 1

t

∫ 1

−1
〈Z1,

(
L(Id− C(t))ũ

)
+(µx)〉 dµ

−1
t

∫ 1

−1
〈Z2,

(
(Id− C(t))ũ

)
+(µx)〉µdµ

(7.2.8)

for new functions in S(R), Z1, Z2. By (6.1.3) and L2 boundedness of C(t), the
last term is O(εtδ−1) = o((ε2

√
t)θ
′
t−1). It may thus be integrated to ψ+(λ, t).

In the first term in the right hand side of (7.2.8) we write using (A12.1.18)
L(Id− C(t))ũ = (Id− C̃(t))Lũ+ C̃1(t)ũ.

By (A12.1.19), (A12.1.20) and (6.1.3), we get
(7.2.9)
‖L(Id− C(t))ũ‖L2 ≤ C(ε2

√
t)θ
′[
ειt−m+ 1

2 +δ′(ε2
√
t)θ−θ

′
+ ε1+ι−2θ′t

1
2−m+δ− θ

′
2
]
.

As θ, θ′ are fixed with θ′ < θ < 1
2 and θ′ close to 1

2 , and as δ′, 1
2 −m may be

taken as small as we want, the bracket above is o(1) when t ≤ ε−4+c and ε
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goes to zero. Thus (7.2.9) plugged in the first term in the right hand side of
(7.2.8) shows that this term is o(t−1(ε2

√
t)θ
′
), so satisfies (7.2.5). We are thus

reduced to studying equation
(7.2.10) (Dt − λ)ϕ+(λ, t) = 〈Z, (C(t)ũ)+〉+ ψ+(λ, t).
Recall the function ů defined in (6.3.64). We may write

〈Z, (C(t)ũ)+〉 = 〈Z, ů+〉+ ψ1(t)

ψ1(t) = 〈Z,
(
M̂′2(ũ, u′app,1)

)
+〉+

4∑
j=3
〈Z,
(
C(t)M̂j(ũ, u′app,1)

)
+〉.

(7.2.11)

By (6.1.5), we may bound the last sum by

Ct−1(ε2
√
t)θ
′[
tδ(ε2

√
t)θ
′
ε+ ε5−2θ′t1−

θ′
2 +δ+σ].

As t ≤ ε−4+c, this is smaller than the right hand side of (7.2.5) (for δ, σ small).
Let us show that the first term in the right hand side of the expression

of ψ1 satisfies also (7.2.5). It suffices to show that ‖M̂′2(ũ, u′app,1)‖L2 =
o(t−1(ε2

√
t)θ
′
). Recall that M̂′2(ũ, u′app,1) is given by (5.2.33) in terms of

expressions M̂′2`, that have structure (5.2.20) i.e. that may be written from
expressions

(7.2.12) t−
3
2K`1,`2

(
L`1±f1,±, L

`2
±f2,±

)
where 0 ≤ `1, `2 ≤ 1, K`1,`2 is in K′1, 1

2
(1,±,±) and f1, f2 equal to ũ or u′app,1

(see (A13.4.11)). If we apply (A13.5.10), (A13.5.13), (A13.5.14), we obtain a
bound for the L2 norm of (7.2.12) in

Ct−
3
2−

1
4 +σ[‖L+ũ+‖L2 + ‖L+u

′app,1
+ ‖L2 + ‖ũ+‖Hs + ‖u′app,1

+ ‖Hs

]2
so according to (6.1.3), (6.1.4) by

Ct−
3
2 +σ(ε2

√
t)θt

1
4 (ε2
√
t)θ

which is better than (7.2.5). In the right hand side of (7.2.10), up to incorpo-
rating ψ1 to ψ+, we thus may replace 〈Z, (C(t)ũ)+〉 by 〈Z, ů+〉, i.e. we reduced
equation (7.2.10) to
(7.2.13) (Dt − λ)ϕ+(λ, t) = 〈Z, ů+〉+ ψ+

for a new ψ+. Since ů+ is odd and Z in S(R), we may write using (3.1.79)
again

〈Z, ů+〉 = 1
t

∫ 1

−1
〈Z1, (L+ů+)(µ·)〉 dµ

−1
t

∫ 1

−1
〈Z2, ů+(µ·)〉µdµ

(7.2.14)
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for new functions in S(R), Z1, Z2. By (6.3.68), the last term is O(εtδ−1) =
o((ε2

√
t)θ
′
t−1). It may thus be incorporated to ψ+(λ, t). We decompose the

first integral in the right hand side of (7.2.14) as I1 + I2, with

I2 =
∫ 1

−1

〈
Z1,

(
χ
(√

t
(
λ−

»
1 +D2

x

))
(L+ů+)

)
(µ·)

〉
dµ

=
∫ 1

−1

〈
χ
(√

t
(
λ−

»
1 +D2

x

))[
Z1( ·

µ

)]
, L+ů+

〉 dµ
µ

(7.2.15)

where χ ∈ C∞0 (R) is real valued, equal to one close to zero. By Cauchy-
Schwarz,

(7.2.16) |I2| ≤
∫ 1

−1

∥∥χ(√t(λ−»1 +D2
x

))[
Z1( ·

µ

)]∥∥
L2
dµ

µ
‖L+ů+‖L2 .

Since λ 6∈ W, ‖χ
(√
t(λ −

√
1 + ξ2)

)
‖L2(dξ) = O(t−

1
4 ), so that the L2 norm

inside the above integral is bounded by

Ct−
1
4
∥∥Z1

( ·
µ

)∥∥
L1 = O(µCt−

1
4 ).

By (6.3.69), it follows that the contribution of I2 to the first term in (7.2.14)
satisfies (7.2.5), so may be incorporated to ψ+. We have thus written by
(7.2.8), (7.2.14)

(7.2.17) 〈Z, ů+〉 = 1
t
I1 + ψ1

+

where ψ1
+ satisfies the same estimates as ψ+ (with an arbitrary small multi-

plicative constant in the right hand side) and

(7.2.18) I1 =
∫ 1

−1

〈
Z1,

(
(1− χ)

(√
t
(
λ−

»
1 +D2

x

))
(L+ů+)

)
(µ·)

〉
dµ.

We thus reduced (7.2.13) to

(7.2.19) (Dt − λ)ϕ+(λ, t) = 1
t
I1 + ψ+(λ, t)

for a new ψ+. We define

ϕ+(λ, t) = 1
t

∫ 1

−1

〈
Z1,

Å(1− χ)
(√
t(λ−

√
1 +D2

x)
)√

1 +D2
x − λ

L+ů+

ã
(µ·)

〉
dµ

= 1√
t

∫ 1

−1

〈
χ1

(√
t(λ−

»
1 +D2

x)
)[
Z1
[ ·
µ

]]
, L+ů+

〉 dµ
µ

(7.2.20)

where χ1(z) = χ(z)−1
z . Arguing as in (7.2.16) and using (6.3.69), we obtain

that ϕ+(λ, t) satisfies (7.2.4). If we compute (Dt − λ)ϕ+(λ, t), we get the
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following terms:

(7.2.21) i

t
ϕ+(λ, t)

(7.2.22)
1
t

∫ 1

−1

〈
Z1,

Å(1− χ)
(√
t(λ−

√
1 +D2

x)
)√

1 +D2
x − λ

(Dt − p(Dx))L+ů+

ã
(µ·)

〉
dµ

(7.2.23) 1
t
I1(t)

(7.2.24) − i

2t
3
2

∫ 1

−1

〈
Z1,

(
χ′
(√
t(λ−

»
1 +D2

x)
)
L+ů+

)
(µ·)

〉
dµ.

According to (7.2.19), we shall have proved (7.2.6) (in the case of sign +) if
we show that (7.2.21), (7.2.22), (7.2.24) satisfy estimates (7.2.5), with a small
constant in front of the right hand side of this inequality. For (7.2.21), this
follows from (7.2.20) and (7.2.4). We may rewrite (7.2.22) as

1√
t

∫ 1

−1

〈
χ1
(√
t(λ−

»
1 +D2

x)
)[
Z1
[ ·
µ

]]
, (Dt −

»
1 +D2

x)L+ů+

〉 dµ
µ
.

Arguing as in (7.2.16), we estimate that by

Ct−
3
4 ‖(Dt −

»
1 +D2

x)L+ů+‖L2 .

Since L+ commutes to (Dt−
√

1 +D2
x), it follows from (6.3.63), (6.3.67) that

this is bounded by

t−
3
2 (ε2
√
t)θe(t, ε) = o(t−1(ε2

√
t)θ
′
)

which implies an estimate of the form (7.2.5). Finally, (7.2.24) is bounded by

Ct−
3
2

∫ 1

−1
‖χ′
(√

t(λ−
»

1 +D2
x)
)[
Z1[·/µ]

]
‖L2‖L+ů+‖L2

dµ

µ

≤ Ct−
3
2 (ε2
√
t)θ

according to (6.3.69). This is again better than needed.
Finally, estimate (7.2.7) follows from (7.2.8) (that is bounded by (7.2.5)),

(7.2.11), the fact that ψ1 is o
(
t−1(ε2

√
t)θ
′)

, (7.2.14) were we plug (6.3.68),
(6.3.69). This concludes the proof.

Our next task will be to show that a priori assumptions (6.1.1)-(6.1.3) imply
that the inequalities (3.2.1), (3.2.2) that we assume in section 3.2 in order to
get estimates for the solution of the ODE (3.2.3), hold.
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Lemma 7.2.3. — Assume that estimates (6.1.1)-(6.1.3) hold. Then inequal-
ity (3.2.1) is true, with a constant B′ depending only on the constants A,A′, D
in (6.1.1)-(6.1.3).

Proof. — • Consider first the contribution Φ2 in the left hand side of (3.2.1).
Recall that Φ2 is given by (1.2.22), (1.2.24) so may be written as a sum of
terms

(7.2.25)
∫∫

eix(ξ1+ξ2)m′(x, ξ1, ξ2)û±(ξ1)û±(ξ2) dξ1dξ2dx

with
m′(x, ξ1, ξ2) = κ(x)Y (x)b(x, ξ1)b(x, ξ2)p(ξ1)−1p(ξ2)−1.

By estimates (A8.1.8) satisfied by b, and the fact that Y is in S(R), we have
that m′ belongs to S̃′0,0

(∏2
j=1 〈ξj〉

−1, 2
)

and Φ2 is thus a sum of expressions∫
Op(m′)(u±, u±) dx. On the other hand, recall that u+ is related to ũ+ by

(4.2.26), with a remainder R satisfying (4.1.25), (4.1.26). By Corollary A9.2.6,
we get that (7.2.25) may be written as a sum of expressions

(7.2.26)
∫

Op(m̃′)(v1, . . . , vn) dx

where n ≥ 2 and vj is equal to u′app
± or u′′app

± , or ũ± or R, with a symbol m̃′
in S̃′1,0

(∏2
j=1 〈ξj〉

−1Mν
0 , 2
)

for some ν.
Consider first the case when at least one of the arguments vj , say the last

one, is not equal to u′′app
± . Since m̃′ is rapidly decaying an 〈M0(ξ)−1|y|〉−N ,

we may estimate (7.2.26) from the L2 norm of the integrand. If n = 2, we use
(A11.2.37) when v1 is different from u′′app

± and (A11.2.36) if v1 = u′′app
± . We

obtain for (7.2.26) a bound in

(7.2.27)
Ct−2+σ[‖L+ũ+‖L2 + ‖L+u

′app
+ ‖L2 + ‖L+R‖L2 + ‖ũ+‖Hs + ‖u′app

+ ‖Hs

+ ‖R‖Hs + ‖L+u
′′app

+ ‖W ρ0,∞ + ‖u′′app
+ ‖W ρ0,∞

]
×
[
‖L+ũ+‖L2 + ‖L+u

′app
+ ‖L2 + ‖L+R‖L2 + ‖ũ+‖Hs + ‖u′app

+ ‖Hs + ‖R‖Hs

]
.

We plug there (6.1.1)-(6.1.3) and (4.1.25), (4.1.26). We obtain a bound in
t−

3
2 +σ(ε2

√
t)2θ. As θ > θ′ and t ≤ ε−4+c, we see that if σ is small enough, this

is smaller than the right hand side of (3.2.1).
If n ≥ 3 in (7.2.26), and again at least one vj , say the last one, is different

from u′′app
± , we use Corollary A11.2.8. By (A11.2.32), we estimate then (7.2.26)

by

Ct−1[‖u′app
+ ‖W ρ0,∞ + ‖u′′app

+ ‖W ρ0,∞ + ‖ũ+‖W ρ0,∞ + ‖R+‖W ρ0,∞
]n−1

×
[
‖L+ũ+‖L2 + ‖L+u

′app
+ ‖L2 + ‖L+R‖L2 + ‖ũ+‖L2 + ‖u′app

+ ‖L2 + ‖R‖L2
]
.
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Using (6.1.1)-(6.1.3) and (4.1.25) (together with Sobolev injection), (4.1.26),
we get a bound in t−2(ε2

√
t)2θ′(ε2

√
t)θt

1
4 , which is better than what we want.

It remains to study (7.2.26) when all arguments vj are equal to u′′app
± . Again

by the rapid decay in x of the symbol m̃′, it is enough to control the L∞ norm
of the integrand (up to changing the definition of m̃′). We may use then
(A11.2.38) with n = ` ≥ 2. We obtain a bound in

(7.2.28) t−2+σ[‖u′′app
+ ‖W ρ0,∞ + ‖L+u

′′app
+ ‖W ρ0,∞ + t−

1
2 ‖u′′app

+ ‖Hs

]2
.

Using (6.1.2) and the fact that θ′ < 1
2 , σ � 1, one controls that by t−

3
2 (ε2
√
t)2θ′

for t ≤ ε−4+c. This concludes the proof of (3.2.1) for contribution Φ2.
• We study next the term t

− 3
2 + j

2
ε Γj(u+, u−) in (3.2.1), for 1 ≤ j ≤ 3.

Recall that Γj is given by (1.2.22)-(1.2.25). It has thus again the structure
(7.2.26) with n = j, as it follows from the expression (4.2.26) of u+ in terms
of uapp

+ , ũ+, R and the composition results of Appendix A9. If j ≥ 2, our
preceding reasoning implies the wanted bound. We thus just have to consider

(7.2.29) t−1
ε

∫
Op(m̃′)(v) dv

with m̃′ in S̃′1,0
(
〈ξ〉−1, 1

)
and v = u′app

± , u′′app
± , ũ±, R. When v is not equal to

u′′app
± , we use (A11.2.32) in order to bound (7.2.29) by

Ct−1
ε t−1[‖L+u

′app
+ ‖L2 + ‖L+ũ+‖L2 + ‖L+R‖L2 + ‖u′app

+ ‖L2 + ‖ũ+‖L2 + ‖R‖L2
]

which by (6.1.1)-(6.1.3), (4.1.25), (4.1.26) is bounded from above by
t−1
ε t−1(ε2

√
t)θt

1
4 . One checks that this quantity is O(t−

3
2 (ε2
√
t)2θ′) using

θ′ < θ < 1
2 .

If v in (7.2.29) is equal to u′′app
± , we bound (7.2.29) by

Ct−1
ε ‖Op(m̃′)v‖L∞

(for a new symbol m̃′). We use (A11.2.38) to get a bound in

(7.2.30) t−1
ε t−1+σ[‖u′′app

+ ‖W ρ0,∞ + ‖L+u
′′app

+ ‖W ρ0,∞ + t−
1
2 ‖u′′app

+ ‖Hs

]
.

Using (6.1.2), one bounds the bracket by tσ′t
1
4 (ε2
√
t)

1
2 for any σ′ > 0. As t ≤

ε−4+c, one concludes that if σ, σ′ are small enough, (7.2.30) is O
(
t−

3
2 (ε2
√
t)2θ′).

This concludes the proof of the lemma.

Let us show next that a priori assumptions (6.1.1)-(6.1.3) imply as well
estimates (3.2.2).

Lemma 7.2.4. — Assume that estimates (6.1.1)-(6.1.3) hold true. Then
inequality (3.2.2) holds true with a constant B′ depending only on A,A′, D in
(6.1.1)-(6.1.3).
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Proof. — Recall that Φ1[u+, u−] is given by (1.2.22) i.e. taking (1.2.23) into
account, by

(7.2.31)
√

3
3 〈Y, Y (x)κ(x)b(x,Dx)p(Dx)−1(u+ − u−)〉.

Expressing u+ using (4.2.26), we get that, if we define

Z =
√

3
3 p(Dx)−1b(x,Dx)∗[κ(x)Y (x)2]

the term inside the modulus in the left hand side of (3.2.2) may be written as
the sum of an expression 〈Z,R〉 with R satisfying (4.1.25) and of expressions
of the form (7.2.26) with n ≥ 2. We have seen that these last quantities may
be bounded by (7.2.27) or (7.2.28), and thus by the right hand side of (3.2.2).
On the other hand, by (4.1.25) 〈Z,R〉 is also O(t−

3
2 (ε2
√
t)2θ′). This concludes

the proof.

Corollary 7.2.5. — Assume that estimates (6.1.1)-(6.1.3) hold true. Then
Assumption (H ′1) of section 3.2 holds.

Proof. — We have seen that by Lemmas 7.2.3 and 7.2.4, inequalities (3.2.1)
and (3.2.2) hold. It remains to check that for any λ ∈ R− {−1, 1}, there are
functions ϕ±(λ, t), ψ±(λ, t) as at the end of the statement of condition (H ′1).
But this is exactly the statement of Proposition 7.2.2.

7.3. End of bootstrap argument

We give here the proof of Theorem 1.1.1. We shall have to gather all
estimates we proved in the preceding chapters. We first restate the main
estimates in Theorem 1.1.1.

Proposition 7.3.1. — There is ρ0 in N and for any ρ ≥ ρ0, any c ∈]0, 1[,
any θ′ ∈]0, 1

2 [, close to 1
2 , any large enough N ∈ N, there are ε0 > 0, C > 0 such

that if 0 < ε < ε0, the solution ϕ of equation (1.1.11) with odd initial conditions
with bounds (1.1.10) satisfies for t ∈ [1, ε−4+c] the following estimates (using
notation (1.1.7), (1.1.8))

‖Pacϕ(t, ·)‖W ρ,∞ ≤ Ct−
1
2 (ε2
√
t)θ
′

‖〈x〉−2NPacϕ(t, ·)‖W ρ,∞ ≤ Ct−
3
4 (ε2
√
t)θ
′

‖〈x〉−2NDtPacϕ(t, ·)‖W ρ−1,∞ ≤ Ct−
3
4 (ε2
√
t)θ
′

(7.3.1)
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and a(t) may be written as a(t) = eit
√

3
2 g+(t)− e−it

√
3

2 g−(t) with

|g±(t)| ≤ Cε(1 + tε2)−
1
2

|∂tg±(t)| ≤ Cεt−
1
2 (1 + tε2)−

1
2 .

(7.3.2)

Proof. — Recall that we have defined in (1.2.4), (1.2.5)
(7.3.3) w = b(x,Dx)∗Pacϕ, Pacϕ = b(x,Dx)w.
We have introduced in (1.2.10)
(7.3.4) u+ = (Dt + p(Dx))w.
We shall prove the following inequalities, where the last two ones are just the
restatement of (7.3.2):

‖u+(t, ·)‖W ρ,∞ ≤ Ct−
1
2 (ε2
√
t)θ
′

‖u+(t, ·)‖Hs ≤ Cεtδ
(7.3.5)

|g±(t)| ≤ Cε(1 + tε2)−
1
2

|∂tg±(t)| ≤ Cεt−
1
2 (1 + tε2)−

1
2 .

(7.3.6)

We shall deduce these estimates from bounds on ũ+ that we establish by
bootstrap of (6.1.3). Actually, let us show that if (6.1.3) holds on some interval
[1, T ] with T ≤ ε−4+c with a constant D, then it still holds with D replaced
by D

2 , as soon as D has been taken fixed enough , and ε smaller than some
ε0 (depending on D). Proposition 6.3.7 shows that this statement holds for
the Sobolev and L2 estimate as soon as bounds (6.1.1), (6.1.2), (6.1.4) hold
true (with constants A,A′ that may depend on D). By Proposition 7.2.1, the
W ρ,∞ estimate of ũ+ may also be bootstrapped.

Let us next show that we may bootstrap as well estimate (3.2.8) on g.
According to Proposition 3.2.1, we may do so as soon as Assumption (H ′1)
holds true. By Corollary 7.2.5, this follows under a priori conditions (6.1.1)
to (6.1.3). Property (6.1.3) is the bootstrap assumption. On the other hand,
(6.1.1), (6.1.2), (6.1.4) hold, for convenient constants C(A,A′) by Proposi-
tion 3.1.2 as soon as (3.1.3)-(3.1.7) hold. The first of these inequalities is the
bootstrap assumption (3.2.8) on g. The other ones are (7.2.4)-(7.2.7), that,
according to Proposition 7.2.2, hold under the bootstrap assumption (6.1.3).

Let us now deduce (7.3.5) from estimates (6.1.1)-(6.1.3) and (3.1.3), that
hold on [1, ε−4+c] for ε small, according to our bootstrap assumption. Recall
that u+ is given by (4.2.26) (or (4.1.24)) by

(7.3.7) u+ = u′app
+ + u′′app

+ + ũ+ +
∑

2≤|I|≤4
I=(I′,I′′)

Op(m̃I)(ũI′ , uapp
I′′ ) +R
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where R satisfies (4.1.25). This (and Sobolev injection) shows that R satisfies
better bounds than those given by (7.3.5). By (6.1.1)-(6.1.3), the first three
terms in (7.3.7) satisfy also the wanted bounds. Finally, the terms in the
sum are also estimated by these bounds using (6.1.1)-(6.1.3) and (A11.1.30),
(A11.1.37).

Let us check next (7.3.6). Recall that a(t) =
√

3
3 (a+(t) − a−(t)), where

a− = −a+ and a+ is given by (3.2.5). We set then, using notation (3.2.6),
(3.2.7),

(7.3.8) g+(t) =
√

3
3 e−it

√
3

2 [aapp
+ (t) + S(t)]

and g−(t) = −g+(t). It follows from the expressions of aapp
+ , S and (3.2.6)-

(3.2.10) that g+(t) = O(t−
1
2

ε ), ∂tg+(t) = O(t−
1
2

ε t−
1
2 ).

It remains to prove (7.3.1). By (1.2.5), (1.2.10),

(7.3.9) Pacϕ = b(x,Dx)w = 1
2b(x,Dx)p(Dx)−1[u+ − u−].

By Proposition A11.1.5, the operator b(x,Dx)p(Dx)−1〈Dx〉−α is bounded on
W ρ′,∞ if α > 0. It follows that the first estimate (7.3.1) follows from (7.3.5) if
we modify the value of ρ in the left hand side of (7.3.1).

To obtain the weighted estimates in (7.3.1), let us write from (7.3.9) and
(1.2.10)

(7.3.10) 〈x〉−2NPacϕ = 1
2〈x〉

−2Nb(x,Dx)p(Dx)−1(u+ − u−)

(7.3.11) 〈x〉−2NDtPacϕ = 1
2〈x〉

−2Nb(x,Dx)(u+ + u−).

In the right hand side of (7.3.10), we replace u+ by its expression (7.3.7). We
have to bound the following quantities

‖〈x〉−2Nb(x,Dx)p(Dx)−1u′app
+ ‖W ρ,∞

‖〈x〉−2Nb(x,Dx)p(Dx)−1ũ+‖W ρ,∞
(7.3.12)

(7.3.13) ‖〈x〉−2Nb(x,Dx)p(Dx)−1u′′app
+ ‖W ρ,∞

(7.3.14)
∑

2≤|I|≤4
I=(I′,I′′)

‖〈x〉−2Nb(x,Dx)p(Dx)−1Op(mI)(ũI′ , uapp
I′′ )‖W ρ,∞

(7.3.15) ‖〈x〉−2Nb(x,Dx)p(Dx)−1R‖W ρ,∞ .

If N = 2, the assumptions of Proposition A11.2.5 with n = 1 are satisfied. We
may thus apply Corollary A11.2.11 with ` = 0. Taking into account (6.1.1),
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(6.1.3), we obtain for (7.3.12) a bound in t−
3
4 +σ(ε2

√
t)θ + t−1 (ε2

√
t)θ
′

√
t

. For
(7.3.13), we apply also Corollary A11.2.11, but with ` = 1. We obtain by
(6.1.2) a bound in

t−1+σ log(1 + t) log(1 + tε2) = O
(
t−

3
4 +2σ(ε2

√
t)

1
2
)
.

modulo a bound in t−1 (ε2
√
t)θ
′

√
t

. To estimate (7.3.14), we use again Corol-
lary A11.2.11, with n = |I| and ` equal to the number of arguments equal to
u′′app
± , n−` equal to the number of arguments equal to ũ± or u′app

± . IfN is taken
large enough, we get better estimates than those holding for (7.3.12), (7.3.13).
Finally, Sobolev injection and (4.1.25) provide for (7.3.15) a better upper
bound than the one in (7.3.1). We thus got estimates of ‖〈x〉−NPacϕ(t, ·)‖W ρ,∞

in t−
3
4 (ε2
√
t)θ
′

since σ is as small as we want, t ≤ ε−4+c, and θ < 1
2 . This

implies the second inequality (7.3.1).
The proof of the last inequality (7.3.1) is similar, starting from (7.3.11).



APPENDIX A8

SCATTERING FOR TIME INDEPENDENT
POTENTIAL

This appendix is devoted to the construction of wave operators for a
Schrödinger operator of the form A = −1

2
d2

dx2 + V (x) where V is a real
valued potential in S(R). If W+ stands for the wave operator defined by
(A8.1.5) below, one knows that W+W

∗
+ = Pac,W

∗
+W+ = IdL2 where Pac is

the spectral projector associated to the absolutely continuous spectrum of A.
Moreover, one has the intertwining property W ∗+AW+ = −1

2
d2

dx2 . Our main
result below is that, under convenient assumptions on V , operator W+ acting
on odd functions may be represented from pseudo-differential operators (see
Proposition A8.1.1). Let us mention that, even if we give quite complete
proofs, our approach here is not original, and that we strongly rely on the
classical paper of Deift-Trubowitz [17] and on the work of Weder [85].

A8.1. Statement of main proposition

We consider V : R → R a potential belonging to S(R). Then the operator
−1

2∆ + V = −1
2
d2

dx2 + V is a self-adjoint operator whose spectrum is made of
an absolutely continuous part, equal to [0,+∞[, and of finitely many negative
eigenvalues (see Deift-Trubowitz [17]). For ξ in R, we define the Jost function
f1(x, ξ) (resp. f2(x, ξ)) as the unique solution to

(A8.1.1) − d2

dx2 f + 2V (x)f = ξ2f

that satisfies f1(x, ξ) ∼ eixξ when x goes to +∞ (resp. f2(x, ξ) ∼ e−ixξ when
x goes to −∞). We set

m1(x, ξ) = e−ixξf1(x, ξ)
m2(x, ξ) = eixξf2(x, ξ).

(A8.1.2)
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We shall say that the potential V is generic if

(A8.1.3)
∫ +∞

−∞
V (x)m1(x, 0) dx 6= 0.

Notice that the above integral is convergent as m1(x, ξ) is bounded when x
goes to +∞ and has at most polynomial growth as x goes to −∞ (see [17]
Lemma 1 and lemma A8.1.1 below). We say that V is very exceptional if

(A8.1.4)
∫ +∞

−∞
V (x)m1(x, 0) dx = 0 and

∫ +∞

−∞
V (x)xm1(x, 0) dx = 0.

If one sets V (x) = −3
4 cosh−2(x

2
)
, as for the potential of interest in this paper

(see (1.1.5)), it is proved in [13] Lemma 2.1 that the transmission coefficient
of this potential satisfies T (0) = 1 (see [17] or below for the definition of the
transmission coefficient). This implies on the one hand that (A8.1.3) does not
hold (as (A8.1.3) is equivalent to T (0) = 0 – see [17, 85] or (A8.2.22) below)
and that moreover

∫
xV (x)m1(x, 0) dx = 0 i.e. that (A8.1.4) holds, as follows

from (A8.2.16) and (A8.2.21).
We denote by W+ the wave operator associated to A = −1

2∆ + V , defined
as the strong limit
(A8.1.5) W+ = s− lim

t→+∞
eitAe−itA0

where A0 = −1
2∆. One knows (see Weder [85] and references therein) that

(A8.1.6) W+W
∗
+ = Pac, W ∗+W+ = IdL2

where Pac is the orthogonal projector on the absolutely continuous spectrum
and, more generally, that if b is any Borel function on R
(A8.1.7) b(A)Pac = W+b(A0)W ∗+, b(A0) = W ∗+b(A)W+.

Notice that since A and A0 preserve the space of odd functions, so do W+,W
∗
+.

For odd w, we shall obtain an expression for W+w given by the following
proposition.

Proposition A8.1.1. — Assume that V is an even potential that is either
generic or very exceptional. Let χ± be smooth functions, supported for ±x ≥
−1, with values in [0, 1], with χ−(x) = χ+(−x), χ+(x) + χ−(x) ≡ 1.

There are an odd smooth real valued function θ, and a smooth function
(x, ξ)→ b(x, ξ) satisfying∣∣∂βξ b(x, ξ)∣∣ ≤ Cβ, ∀β ∈ N∣∣∂αx ∂βξ b(x, ξ)∣∣ ≤ CαβN 〈x〉−N , ∀α ∈ N∗,∀β ∈ N,∀N ∈ N,
(A8.1.8)

and
(A8.1.9) b(x,−ξ) = b(x, ξ), b(−x,−ξ) = b(x, ξ)
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such that if we set c(ξ) = eiθ(ξ)1ξ>0 + e−iθ(ξ)1ξ<0, then for any odd function w

(A8.1.10) W+w = b(x,Dx) ◦ c(Dx)w

with
b(x,D)v = 1

2π

∫
eixξb(x, ξ)ŵ(ξ) dξ.

A8.2. Proof of main proposition

We shall give here the proof of Proposition A8.1.1, relying on the results of
Deift-Trubowitz [17] and Weder [85].

If V is a real valued even potential, the Jost functions satisfy by uniqueness
f1(−x, ξ) = f2(x, ξ) so that (A8.1.2) implies that

(A8.2.1) m1(−x, ξ) = m2(x, ξ).

By lemma 1 of [17], m1 solves the Volterra equation

(A8.2.2) m1(x, ξ) = 1 +
∫ +∞

x
Dξ(x′ − x)2V (x′)m1(x′, ξ) dx′

where

(A8.2.3) Dξ(x) =
∫ x

0
e2ix′ξ dx′ = e2ixξ − 1

2iξ .

If V is in S(R), (ii) of lemma 1 of [17] shows that∣∣∂αx ∂βξ [m1(x, ξ)− 1]
∣∣ ≤ CαβN 〈x〉−N 〈ξ〉−1−β, ∀x > −M,∀ξ ∈ R∣∣∂αx ∂βξ [m2(x, ξ)− 1]
∣∣ ≤ CαβN 〈x〉−N 〈ξ〉−1−β, ∀x < M, ∀ξ ∈ R,

(A8.2.4)

holds for m1 (and thus also for m2) when α = β = 0. To get also estimates for
the derivatives, we need to establish the following lemma, whose proof relies
on the same ideas as in [17]:

Lemma A8.2.1. — Denote for any β,N in N by Ωβ
N (x) a smooth positive

function such that Ωβ
N (x) = 〈x〉−N for x ≥ 1 and Ωβ

N (x) = 〈x〉β for x ≤ −1.
Then for any N,α, β in N, there is C > 0 such that for any ξ with Im ξ ≥ 0,
any x

(A8.2.5)
∣∣∂αx ∂βξ [m1(x, ξ)− 1

]∣∣ ≤ CΩβ+1
N (x)〈ξ〉−1−β.

Proof. — Following the proof of lemma 1 in [17], we write

(A8.2.6) m1(x, ξ) = 1 +
+∞∑
n=1

gn(x, ξ)
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with

(A8.2.7) gn(x, ξ) =
∫
x≤x1≤···≤xn

n∏
j=1

Dξ(xj − xj−1)2V (xj) dx1 . . . dxn,

using the convention x0 = x. Set Ω(x) = Ω1
0(x) and

Kξ(y, y′) = Dξ(y − y′)Ω(y′)−12V (y)Ω(y).

Then we may rewrite gn as

gn(x, ξ) = Ω(x)
∫
x≤x1≤···≤xn

n∏
j=1

Kξ(xj , xj−1)Ω(xn)−1 dx1 . . . dxn,

or equivalently

(A8.2.8)

gn(x, ξ) = Ω(x)
∫
y1≥0,...,yn≥0

n∏
j=1

Kξ(x+ y1 + · · ·+ yj , x+ y1 + · · ·+ yj−1)

× Ω(x+ y1 + · · ·+ yn)−1 dy1 . . . dyn.

By (A8.2.3), we have ∣∣∂βξDξ(y)
∣∣ ≤ Cβ〈ξ〉−1〈y〉1+β.

Fix some integer m. The definition of Kξ implies that for α+ β ≤ m

(A8.2.9)
∣∣∂αx ∂βξKξ(x+ y1 + · · ·+ yj , x+ y1 + · · ·+ yj−1)

∣∣
≤ C〈ξ〉−1Ω(x+ y1 + · · ·+ yj−1)−1〈x+ y1 + · · ·+ yj〉−1−β

×W (x+ y1 + · · ·+ yj)〈yj〉1+β,

where W is some smooth rapidly decaying function. When y1 ≥ 0, . . . , yj ≥ 0,
we may bound

〈yj〉1+βΩ(x+ y1 + · · ·+ yj−1)−1〈x+ y1 + · · ·+ yj〉−1−β ≤ CΩ(x)β.

Consequently, (A8.2.8) implies that

(A8.2.10) |∂αx ∂
β
ξ gn(x, ξ)|

≤ CΩ(x)β+1〈ξ〉−n
∫
y1≥0,...,yn≥0

n∏
j=1

W (x+ y1 + · · ·+ yj) dy1 . . . dyn.
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Define G(x) =
∫+∞
x W (z) dz, so that the last integral above may be written

(−1)n−1
∫
y1≥0,...,yn−1≥0

n−1∏
j=1

G′(x+ y1 + · · ·+ yj)

×G(x+ y1 + · · ·+ yn−1) dy1 . . . dyn−1 = 1
n!G(x)n.

As |G(x)| ≤ CNΩ0
N (x) for any N , it follows from (A8.2.10) that, for any N ,

(A8.2.11) |∂αx ∂
β
ξ gn(x, ξ)| ≤ Cn+1

N

n! 〈ξ〉
−nΩβ+1

N (x).

If we sum for n ≥ β + 1, we get a bound by the right hand side of (A8.2.5).
We are thus left with studying

(A8.2.12)
β∑
n=1

∂αx ∂
β
ξ gn(x, ξ).

Notice that (A8.2.11) summed for n = 1, . . . , β gives, when |ξ| ≤ 1, the esti-
mate (A8.2.5) for (A8.2.12) as well. Assume from now on that |ξ| ≥ 1 and let
us prove by induction on n = 1, . . . , β that |∂αx ∂

β
ξ gn(x, ξ)| is bounded by the

right hand side of (A8.2.5). We may write from (A8.2.7)

gn(x, ξ) =
∫
x≤x1

Dξ(x1 − x)2V (x1)gn−1(x1, ξ) dx1

=
∫
y1≥0

Dξ(y1)2V (y1 + x)gn−1(y1 + x, ξ) dy1

(A8.2.13)

with g0 ≡ 1. We use in (A8.2.13) the last expression (A8.2.3) for Dξ. We have
then to consider two kind of terms. The first one is∫

y1≥0

e2iy1ξ

ξ
2V (y1 + x)gn−1(y1 + x, ξ) dy1

= − 1
2iξ2 2V (x)gn−1(x, ξ)−

∫
y1≥0

e2iy1ξ

2iξ2 ∂y1

[
2V (y1 + x)gn−1(y1 + x, ξ)

]
dy1.

Repeating the integrations by parts, we end up with contributions that, ac-
cording to the induction hypothesis (and the fact that g0 ≡ 1), satisfy esti-
mates of the form (A8.2.5) (with Ωβ

N (x) replaced by 〈x〉−N ), and an integral
term of the form

(A8.2.14)
∫
y1≥0

e2iy1ξ

ξM+1∂
M
y1

[
2V (y1 + x)gn−1(y1 + x, ξ)

]
dy1
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for M as large as we want. If M = β, we see that (A8.2.14) satisfies (A8.2.5).
The second type of terms coming from (A8.2.13) to consider is

1
ξ

∫
y1≥0

2V (y1 + x)gn−1(y1 + x, ξ) dy1

which trivially satisfies (A8.2.5) by the induction hypothesis applied to gn−1.
This concludes the proof.

In order to obtain the representation (A8.1.10) for W+w, when w is odd,
we recall first the definition of the transmission and reflection coefficients.
The wronskian of (f1(x, ξ), f1(x,−ξ)) (resp. (f2(x, ξ), f2(x,−ξ))) is nonzero
for any ξ in R∗ (see [17], page 144), so that, for real ξ 6= 0, we may find unique
coefficients T1(ξ), T2(ξ) non zero, R1(ξ), R2(ξ) such that

f2(x, ξ) = R1(ξ)
T1(ξ) f1(x, ξ) + 1

T1(ξ)f1(x,−ξ)

f1(x, ξ) = R2(ξ)
T2(ξ) f2(x, ξ) + 1

T2(ξ)f2(x,−ξ).
(A8.2.15)

By Theorem I in [17], these functions extend as smooth functions on R, and
they satisfy the following properties

T1(ξ) = T2(ξ) def= T (ξ)

T (ξ)R2(ξ) +R1(ξ)T (ξ) = 0
|T (ξ)|2 + |Rj(ξ)|2 = 1, j = 1, 2

T (ξ) = T (−ξ), Rj(ξ) = Rj(−ξ).

(A8.2.16)

If the potential V is even, we have seen that f1(−x, ξ) = f2(x, ξ), so that,
plugging this equality in the first relation (A8.2.15), comparing to the second
one, and using that T1 = T2, we conclude that
(A8.2.17) R1(ξ) = R2(ξ).
We denote by R(ξ) this common value. The integral representations of the
scattering coefficients (see [17] page 145)

R(ξ)
T (ξ) = 1

2iξ

∫
e2ixξ2V (x)m1(x, ξ) dx

1
T (ξ) = 1− 1

2iξ

∫
2V (x)m1(x, ξ) dx

(A8.2.18)

together with (A8.2.5) and the fact that V ∈ S(R), show that for any N, β

(A8.2.19) ∂βξ R(ξ) = O(〈ξ〉−N ), ∂βξ (T (ξ)− 1) = O(〈ξ〉−1−β).

We need the following lemma:
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Lemma A8.2.2. — The functions T,R satisfy

(A8.2.20) T (0) = 1 +R(0)

in the following two cases:
• The generic case

∫
V (x)m1(x, 0) dx 6= 0.

• The very exceptional case
∫
V (x)m1(x, 0) dx = 0 and

∫
V (x)xm1(x, 0) dx =

0.

Proof. — Summing the two equalities (A8.2.18) and making an expansion at
ξ = 0 using (A8.2.5), we get

R(ξ) + 1 = T (ξ)
ï
1− 1

iξ

∫ +∞

−∞
V (x)m1(x, ξ) dx+ 1

iξ

∫ +∞

−∞
e2ixξV (x)m1(x, ξ) dx

ò
= T (ξ)

ï
1 + 2

∫ +∞

−∞
xV (x)m1(x, 0) dx+O(ξ)

ò
, ξ → 0

so that

(A8.2.21) R(0) + 1− T (0) = 2T (0)
∫ +∞

−∞
xV (x)m1(x, 0) dx.

In the generic case, by (A8.2.18)

(A8.2.22) T (ξ) = iξ

ï
−
∫ +∞

−∞
V (x)m1(x, 0) dx+O(ξ)

ò−1
, ξ → 0

so that T (0) = 0. This shows that (A8.2.21) vanishes in the two considered
cases.

Proof of Proposition A8.1.1: We have to prove that W+ acting on odd func-
tions is given by (A8.1.10). Recall (see for instance Weder [85] formula (2.20),
Schechter [74]) that W+w is given by

(A8.2.23) W+w = F ∗+ŵ

where F ∗+ is the adjoint of the distorted Fourier transform, given by

(A8.2.24) F ∗+Φ = 1
2π

∫
ψ+(x, ξ)Φ(ξ) dξ

where

(A8.2.25) ψ+(x, ξ) = 1ξ>0T (ξ)f1(x, ξ) + 1ξ<0T (−ξ)f2(x,−ξ).

Let χ± be the functions defined in the statement of Proposition A8.1.1 and
write

ψ+(x, ξ) = χ+(x)ψ+(x, ξ) + χ−(x)ψ+(x, ξ).
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Replace in χ+ψ+ (resp. χ−ψ+) ψ+ by (A8.2.25) where we express f2 from
f1 (resp. f1 for f2) using the first (resp. second) formula (A8.2.15). We get,
using notation (A8.1.2)

(A8.2.26) ψ+(x, ξ) =

χ+(x)
[
eixξ
(
T (ξ)m1(x, ξ)1ξ>0 +m1(x, ξ)1ξ<0

)
+ e−ixξR(−ξ)m1(x,−ξ)1ξ<0

]
+χ−(x)

[
eixξ
(
m2(x,−ξ)1ξ>0+T (−ξ)m2(x,−ξ)1ξ<0

)
+e−ixξR(ξ)m2(x, ξ)1ξ>0

]
.

Using (A8.2.1), we deduce from (A8.2.23), (A8.2.24) and (A8.2.26) that

(A8.2.27) W+w = 1
2π

∫
eixξe1(x, ξ)ŵ(ξ) dξ + 1

2π

∫
e−ixξe2(x, ξ)ŵ(ξ) dξ

with

e1(x, ξ) = χ+(x)m1(x, ξ)
[
T (ξ)1ξ>0 + 1ξ<0

]
+ χ−(x)m1(−x,−ξ)

[
1ξ>0 + T (−ξ)1ξ<0

]
e2(x, ξ) = χ+(x)R(−ξ)m1(x,−ξ)1ξ<0 + χ−(x)R(ξ)m1(−x, ξ)1ξ>0.

(A8.2.28)

If w is odd, we may rewrite (A8.2.27) as

W+w = 1
2π

∫
eixξa(x, ξ)ŵ(ξ) dξ

with

(A8.2.29) a(x, ξ) = e1(x, ξ)− e2(x,−ξ)
= χ+(x)m1(x, ξ)

[
(T (ξ)−R(ξ))1ξ>0 + 1ξ<0

]
+ χ−(x)m1(−x,−ξ)

[
1ξ>0 + (T (−ξ)−R(−ξ))1ξ<0

]
.

By (A8.2.16), |T (ξ)−R(ξ)|2 = 1 and by (A8.2.20), T (0) − R(0) = 1. We
may thus find a unique smooth real valued function θ(ξ), satisfying θ(0) = 0,
such that T (ξ)−R(ξ) = e2iθ(ξ). Moreover, using (A8.2.16), one gets that θ is
odd, and by (A8.2.19) it satisfies ∂βθ(ξ) = O(〈ξ〉−1−β). We define

(A8.2.30) c(ξ) = eiθ(ξ)1ξ>0 + e−iθ(ξ)1ξ<0

so that in (A8.2.29)

(T (ξ)−R(ξ))1ξ>0 + 1ξ<0 = eiθ(ξ)c(ξ)

1ξ>0 + (T (−ξ)−R(−ξ))1ξ<0 = e−iθ(ξ)c(ξ)

and a(x, ξ) = b(x, ξ)c(ξ) where b is a smooth function satisfying (A8.1.8) given
by

b(x, ξ) = χ+(x)m1(x, ξ)eiθ(ξ) + χ−(x)m1(−x,−ξ)e−iθ(ξ).
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We thus got W+w = b(x,Dx) ◦ c(Dx)w for odd w. Moreover, the definition of
f1,m1 shows that f1(x, ξ) = f1(x,−ξ),m1(x, ξ) = m1(x,−ξ), so that it follows
from the expression of b that equalities (A8.1.9) hold.

2

Remarks: • The proof of the last result shows that b satisfies better esti-
mates than those written in (A8.1.8): Actually, in the right hand side of these
inequalities, one could insert a factor 〈ξ〉−β. We wrote the estimates without
this factor because we shall have in any case to consider also more general
classes of symbols, for which only (A8.1.8) holds.
• The difference between generic or very exceptional potentials versus ex-

ceptional ones appears, as is well known, when considering the action of the
Fourier multiplier c(ξ) on L∞ based spaces. Since ∂βθ(ξ) = O(〈ξ〉−1−β) when
|ξ| → +∞, c(ξ) − 1 coincides with a symbol of order −1 outside a neigh-
borhood of zero. Consequently, if χ0 ∈ C∞0 (R) is equal to one close to zero,
(1 − χ0)(Dx)c(Dx) is bounded on L∞. On the other hand, χ0(ξ)c(ξ) is Lips-
chitz at zero if the potential is generic or very exceptional, since θ(0) = 0, so
that χ0(Dx)c(Dx) is also bounded on L∞. In the exceptional potential case,
c(ξ) has a jump at ξ = 0, and L∞ bounds for c(Dx) do not hold.





APPENDIX A9

(SEMICLASSICAL) PSEUDO-DIFFERENTIAL
OPERATORS

This appendix is devoted to the definition and main properties of classes of
multilinear pseudo-differential operators and their semiclassical counterparts.
Recall that the symbol of a pseudo-differential operator of order m ∈ R is in
general a smooth function (x, ξ) → a(x, ξ) defined on Rd × Rd, satisfying for
any multi-indices α, β estimates of the form

(A9.0.1) |∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−ρ|β|+δ|α|,

where 0 ≤ δ ≤ ρ ≤ 1 (see Hörmander [42, 43]). One associates to such a
symbol an operator acting on test functions in S(R) by a quantization rule,
that may be given for instance by the usual quantization

Op(a)u = 1
(2π)d

∫
eix·ξa(x, ξ)û(ξ) dξ = 1

(2π)d
∫
ei(x−y)·ξa(x, ξ)u(y) dydξ

or by the Weyl quantization

OpW(a)u = 1
(2π)d

∫
ei(x−y)·ξa

(x+ y

2 , ξ
)
u(y) dydξ.

We shall be here more interested in the semiclassical version of this calculus,
namely smooth symbols (x, ξ, h) → a(x, ξ, h) that depend on a parameter
h ∈]0, 1], and that satisfy bounds of the form

(A9.0.2) |∂αx ∂
β
ξ (h∂h)ka(x, ξ, h)| ≤ Cα,β,kM(x, ξ)

with a fixed “weight function” M(x, ξ) (see Dimassi-Sjöstrand [24]). For in-
stance, a function satisfying (A9.0.1) with ρ = δ = 0 obeys these inequalities
with M ≡ 1. One defines then the semiclassical quantization of a by the
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formulas

Oph(a)u = a(x, hDx, h)u = 1
(2π)d

∫
eix·ξa(x, hξ, h)û(ξ) dξ

= 1
(2πh)d

∫
ei(x−y)· ξ

ha(x, ξ, h)u(y) dydξ
(A9.0.3)

or for the Weyl quantization by

(A9.0.4) OpW
h (a)u = 1

(2πh)d
∫
ei(x−y)· ξ

ha
(x+ y

2 , ξ, h
)
u(y) dydξ.

One has then a symbolic calculus. Assume for instance that we are given two
symbols a, b satisfying (A9.0.2) with M ≡ 1. Then, there is a symbol c in the
same class such that Oph(a) ◦ Oph(b) = Oph(c). Moreover, one may get an
asymptotic expansion of c in terms of powers of the semiclassical parameter
h, whose first terms are given by

(A9.0.5) c(x, ξ, h) = a(x, ξ, h)b(x, ξ, h) + h

i

d∑
j=1

∂ξja(x, ξ, h)∂xjb(x, ξ, h) + · · ·

It turns out that we shall be interested only in the case of one variable d = 1,
but with more general classes of symbols. In Appendix A8, we have used sym-
bols b(x, ξ) satisfying inequalities (A8.1.8). It turns out that, if one translates
in the semiclassical framework the operators b(x,Dx) (see (A9.1.7), (A9.1.8)
below), one is led to consider instead of (A9.0.3) the more general operator

(A9.0.6) b
(x
h
, hDx

)
u = 1

2π

∫
eixξb

(x
h
, hξ
)
û(ξ) dξ.

Of course, the function (x, ξ) → b
(
x
h , ξ
)

does not satisfy the estimates in
(A9.0.2), since ∂x derivatives make lose powers of h−1. On the other hand,
because of (A8.1.8), taking a ∂x derivatives makes gain a weight in 〈x/h〉−N
for any N . We shall thus consider symbols depending on two space variables,
(y, x, ξ) → a(y, x, ξ, h), such that at fixed y, (x, ξ, h) → a(y, x, ξ, h) satisfies
(A9.0.2), and that for any ` > 0, (x, ξ, h) → ∂`ya(y, x, ξ, h) satisfies (A9.0.2)
with in the right hand side of these inequalities an arbitrarily decaying factor
in 〈x/h〉−N . We shall quantify such symbols as

(A9.0.7) Oph(a)u = a
(x
h
, x, hDx, h

)
u = 1

2π

∫
eixξa

(x
h
, x, hξ, h

)
û(ξ) dξ.

In that way, instead of getting for the composition of two such symbols an
expansion of the form (A9.0.5), we shall obtain

(A9.0.8) c(y, x, ξ, h) = a(y, x, ξ, h)b(y, x, ξ, h) + hr1 + r′1
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where r1 is in the same class as a, b and where r′1 is rapidly decaying in x/h
i.e. satisfies (A9.0.2) with in the right hand side an extra arbitrary factor in
〈x/h〉−N .

It turns out that we shall not just need linear, but also multilinear opera-
tors, defined instead of (A9.0.7) by formula (A9.1.6) below. The goal of this
chapter is thus to define such operators and study their composition proper-
ties, establishing the generalization of formulas of the form (A9.0.8) to this
multilinear framework.

A9.1. Classes of symbols and their quantization

We shall use classes of semiclassical multilinear pseudo-differential opera-
tors, analogous to those introduced in [20]. We shall use also the non semi-
classical counterparts of these operators that are deduced from the former
by conjugation through dilations. We refer to Dimassi-Sjöstrand [24] for a
reference text on semiclassical calculus. Recall first:

Definition A9.1.1. — An order function on R× Rp is a function M from
R × Rp to R+, (x, ξ1, . . . , ξp) → M(x, ξ1, . . . , ξp), such that there is N0 in N,
C > 0 and for any (x, ξ1, . . . , ξp), (x′, ξ′1, . . . , ξ′p) in R× Rp

(A9.1.1) M(x′, ξ′1, . . . , ξ′p) ≤ C〈x− x′〉
N0

p∏
j=1
〈ξj − ξj′〉N0M(x, ξ1, . . . , ξp).

An example of an order function that we use several times is

(A9.1.2) M0(ξ1, . . . , ξp) =
( ∑

1≤i<j≤p
〈ξi〉2〈ξj〉2

) 1
2
( p∑
i=1
〈ξi〉2

)− 1
2
.

Actually, this function is smooth and is equivalent to 1 + max2(|ξ1|, . . . , |ξp|),
where max2(|ξ1|, . . . , |ξp|) is the second largest among |ξ1|, . . . , |ξp|.

We shall introduce several classes of semiclassical symbols, depending on a
semiclassical parameter h ∈]0, 1]:

Definition A9.1.2. — Let p be in N∗, M be an order function on R× Rp,
M0 the function defined in (A9.1.2). Let (β, κ) be in [0,+∞[×N. We denote
by Sκ,β(M,p) the space of smooth functions

(y, x, ξ1, . . . , ξp, h)→ a(y, x, ξ1, . . . , ξp, h)
R× R× Rp×]0, 1]→ C

(A9.1.3)

satisfying for any α0 ∈ N, α ∈ Np, k ∈ N, N ∈ N, α′0 ∈ N∗ the bounds
(A9.1.4)∣∣∂α0

x ∂αξ (h∂h)ka(y, x, ξ, h)
∣∣ ≤ CM(x, ξ)M0(ξ)κ(α0+|α|)(1 + βhβM0(ξ)

)−N
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and

(A9.1.5)
∣∣∂α′0y ∂α0

x ∂αξ (h∂h)ka(y, x, ξ, h)
∣∣ ≤ CM(x, ξ)M0(ξ)κ(α0+|α|)

×
(
1 + βhβM0(ξ)

)−N(1 +M0(ξ)−κ|y|
)−N

where ξ stands for (ξ1, . . . , ξp).
We denote by S′κ,β(M,p) the subspace of Sκ,β(M,p) of those symbols that

satisfy (A9.1.5) including for α′0 = 0.
We shall set S′N ′κ,β(M,p) for the space of functions satisfying (A9.1.5) in-

cluding for α0 = 0, but with the last factor
(
1 + M0(ξ)−κ|y|

)−N replaced by(
1 +M0(ξ)−κ|y|

)−N ′, for a fixed power N ′ instead of for all N .

Remarks: • If p = 1, then M0(ξ) = 1 and symbols of the class Sκ,β(M, 1)
that do not depend on y are just usual symbols of pseudo-differential operators
as defined in [24] for instance. For symbols depending on y, we impose that
if we take at least one ∂y-derivative, we get a rapid decay in |y| in the case of
the class Sκ,β(M, 1). For elements of S′κ,β(M, 1), this rapid decay has to hold
including without taking any ∂y-derivative. Notice also that when p = 1, the
classes we define do not depend on the parameters κ, β.
• The parameter κ in the definition of the classes of symbols measures the

power of M0(ξ) that we lose when taking ∂x or ∂ξ derivatives. As these losses
involve only “small frequencies”, they will be affordable.
• When β > 0, we have an extra gain in 〈hβM0(ξ)〉−N for any N , that

allows to trade off the loss M0(ξ)κ for h−βκ. If β is small, this reduces these
losses to those ones used usually in definitions of semiclassical symbols as in
[24]. Moreover, an element of Sκ,0(M,p) may be always reduced to an element
of Sκ,β(M,p) multiplying it by χ(hβM0(ξ)) for some χ in C∞0 (R).

We shall quantize symbols in Sκ,β(M,p) as p-linear operators acting a p-
tuple of functions by

(A9.1.6) Oph(a)(v1, . . . , vp)

= 1
(2π)p

∫
eix(ξ1+···+ξp)a

(x
h
, x, hξ1, . . . , hξp

) p∏
j=1

v̂j(ξj) dξ1 . . . dξp

= 1
(2πh)p

∫
e
i
∑p

j=1(x−x′j)
ξj
h a
(x
h
, x, ξ1, . . . , ξp

) p∏
j=1

vj(x′j) dx′dξ.

We shall call (A9.1.6) the semiclassical quantization of a. We shall also use
a classical quantization, depending on the parameter t = 1

h ≥ 1, related to
(A9.1.6) through conjugation by dilations: If t ≥ 1, and v is a test function
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on R, define the L2 isometry Θt by

(A9.1.7) Θtv(x) = 1√
t
v
(x
t

)
.

We shall set for a an element of Sκ,β(M,p)

(A9.1.8) Opt(a)(v1, . . . , vp) = h
p−1

2 Θt ◦Oph(a)
(
Θt−1v1, . . . ,Θt−1vp

)
with h = t−1. Explicitly, we get from (A9.1.6)

(A9.1.9) Opt(a)(v1, . . . , vp)

= 1
(2π)p

∫
eix(ξ1+···+ξp)a

(
x,
x

t
, ξ1, . . . , ξp

) p∏
j=1

v̂j(ξj) dξ1 . . . dξp.

Remark that if a(y, x, ξ) is independent of x, then Opt(a) is independent of t,
and if p = 1, Opt(a) is just the usual pseudo-differential operator of symbol
a(y, ξ). In this case, we shall just write Op(a) for Opt(a).

A9.2. Symbolic calculus

We prove first a proposition generalizing Proposition 1.5 of [20].

Proposition A9.2.1. — Let n′, n′′ be in N∗, n = n′ + n′′ − 1. Let
M ′(x, ξ1, . . . , ξn′),M ′′(x, ξn′ , . . . , ξn)

be two order functions on R × Rn′ and R × Rn′′ respectively. In particular,
they satisfy (A9.1.1) and we shall denote by N ′′0 an integer such that

(A9.2.1) M ′′(x′, ξn′ , . . . , ξn) ≤ C〈x− x′〉N
′′
0 M ′′(x, ξn′ , . . . , ξn).

Let (κ, β) ∈ N × [0, 1], a in Sκ,β(M ′, n′), b in Sκ,β(M ′′, n′′). Assume either
(κ, β) = (0, 0) or 0 < βκ ≤ 1 or that symbol b is independent of x. Define
(A9.2.2)

M(x, ξ1, . . . , ξn) = M ′(x, ξ1, . . . , ξn′−1, ξn′ + · · ·+ ξn)M ′′(x, ξn′ , . . . , ξn).
Then there is ν in N, that depends only on N ′′0 in (A9.2.1), and symbols
(A9.2.3) c1 ∈ Sκ,β(MMνκ

0 , n), c′1 ∈ S′κ,β(MMνκ
0 , n)

such that one may write
(A9.2.4) Oph(a)[v1, . . . , vn′−1,Oph(b)(vn′ , . . . , vn)] = Oph(c)[v1, . . . , vn]
where

c(y, x, ξ1, . . . , ξn) = a(y, x, ξ1, . . . , ξn′−1, ξn′ + · · ·+ ξn)b(y, x, ξn′ , . . . , ξn)
+hc1(y, x, ξ1, . . . , ξn) + c′1(y, x, ξ1, . . . , ξn).

(A9.2.5)
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Moreover, if b is independent of y, c′1 in (A9.2.5) vanishes and if b is in-
dependent of x, c1 vanishes. In addition, if a is in S′κ,β(M ′, n′) or b is in
S′κ,β(M ′′, n′′), then c and c1 are in S′κ,β(MMνκ

0 , n).

Let us prove first a lemma:

Lemma A9.2.2. — Let ξ′ = (ξ1, . . . , ξn′−1), ξ′′ = (ξn′ , . . . , ξn), ξ = (ξ′, ξ′′).
Then
(A9.2.6) M0(ξ′, ξn′ + · · ·+ ξn) ≤ CM0(ξ), M0(ξ′′) ≤ CM0(ξ).
Moreover, if ζ is a real number and |ζ|/M0(ξ) is small enough,
(A9.2.7) max

(
M0(ξ′, ξn′ + · · ·+ ξn − ζ),M0(ξ′′)

)
≥ cM0(ξ)

for some c > 0.

Proof. — Estimate (A9.2.6) follows from the fact that M0(ξ1, . . . , ξn) is equiv-
alent to 1 + max2(|ξ1|, . . . , |ξn|).

To prove (A9.2.7), we may assume |ξn| ≥ |ξn−1| ≥ · · · ≥ |ξn′ | and |ξ1| ≥
|ξ2| ≥ · · · ≥ |ξn′−1|. Moreover, if n = n′, (A9.2.7) is trivial, so that we may
assume n′ < n.

Case 1: Assume |ξn| ≥ |ξ1|. If |ξn| ∼ |ξn−1|, then both M0(ξ′′) and M0(ξ)
are of the magnitude of 〈ξn−1〉, so (A9.2.7) is trivial.

Let us assume that |ξn−1| � |ξn|.
• If in addition |ξn| ∼ |ξ1|, then M0(ξ) ∼ 〈ξn〉 ∼ 〈ξ1〉 and

〈ξn′ + · · ·+ ξn − ζ〉 ∼ 〈ξn〉,
so that

M0(ξ′, ξn′ + · · ·+ ξn − ζ) ∼M0(ξ′, ξn) ∼ 〈ξn〉 ∼ 〈ξ1〉
and (A9.2.7) holds.
• If |ξ1| � |ξn|, then M0(ξ) ∼ max(〈ξ1〉, 〈ξn−1〉) and M0(ξ′′) ∼ 〈ξn−1〉, so

that M0(ξ′, ξn′ + · · ·+ ξn − ζ) ∼M0(ξ′, ξn) ∼ 〈ξ1〉 and (A9.2.7) holds again.
Case 2: Assume |ξ1| ≥ |ξn|. Then M0(ξ) ∼ max(〈ξ2〉, 〈ξn〉).
• If |ξn| ≥ |ξ2| and |ξn| ∼ |ξn−1|, then M0(ξ′′) ∼ 〈ξn〉, so that (A9.2.7) holds.
• If |ξn| ≥ |ξ2| and |ξn| � |ξn−1|, then |ξn′ + · · ·+ ξn − ζ| ∼ |ξn|, so that

M0(ξ′, ξn′ + · · ·+ ξn − ζ) ∼ 〈ξn〉 and (A9.2.7) holds.
• If |ξ2| ≥ |ξn|, then M0(ξ′, ξn′ + · · ·+ ξn− ζ) ∼ 〈ξ2〉, so that (A9.2.7) holds

as well. This concludes the proof.

Proof of Proposition A9.2.1: Going back to the definition (A9.1.6) of quan-
tization, we may write the composition (A9.2.4) as the right hand side of this
expression, with a symbol c given by the oscillatory integral
(A9.2.8)
c(y, x, ξ) = 1

2π

∫
e−izζa(y, x, ξ′, ξn′ + · · ·+ ξn − ζ)b(y − z, x− hz, ξ′′) dzdζ.
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We decompose
(A9.2.9)
a(y, x, ξ′, ξn′+· · ·+ξn−ζ) = a(y, x, ξ′, ξn′+· · ·+ξn)−ζã(y, x, ξ′, ξn′+· · ·+ξn, ζ)
with

(A9.2.10) ã(y, x, ξ′, ξ̃, ζ) =
∫ 1

0

(∂a
∂ξ̃

)(
y, x, ξ′, ξ̃ − λζ

)
dλ.

It follows from (A9.2.6) that
(A9.2.11) M0(ξ′, ξn′ + · · ·+ ξn − λζ) ≤ C(M0(ξ) + 〈ζ〉).
Using (A9.1.4) and the definition of order functions, we get that ã satisfies

(A9.2.12) |∂α0
x ∂αξ ∂

γ
ζ (h∂h)kã(y, x, ξ′, ξn′ + · · ·+ ξn, ζ)|

≤ C(M0(ξ) + 〈ζ〉)κ(1+|α|+|γ|+α0)〈ζ〉N0M ′(x, ξ′, ξn′ + · · ·+ ξn)

×
∫ 1

0

(
1 + βhβM0(ξ′, ξn′ + · · ·+ ξn − λζ)

)−N
dλ

for any α, α0, γ, k,N . If one takes at least one ∂y-derivative, the same estimate
holds, with an extra factor

(A9.2.13)
(

1 + (M0(ξ) + 〈ζ〉)−κ|y|
)−N

using (A9.1.5) and (A9.2.11). If we plug (A9.2.9) in (A9.2.8), we get the
first term in the right hand side of (A9.2.5) and, by integration by parts, the
following two contributions

(A9.2.14) − i

2π

∫
e−izζ ã(y, x, ξ′, ξn′ + · · ·+ ξn, ζ)∂b

∂y
(y − z, x− hz, ξ′′) dzdζ,

(A9.2.15) − ih

2π

∫
e−izζ ã(y, x, ξ′, ξn′ + · · ·+ ξn, ζ) ∂b

∂x
(y − z, x− hz, ξ′′) dzdζ.

Let us show that (A9.2.14) (resp. (A9.2.15)) provides the contribution c′1 (resp.
hc1) in (A9.2.5).

Study of (A9.2.14)
If we insert under integral (A9.2.14) a cut-off (1 − χ0)(ζ) for some C∞0

function χ0 equal to one close to zero and make N1 integrations by parts in
z, we gain a factor ζ−N1 , up to making act on ∂b

∂y (y − z, x − hz, ξ′′) at most
N1 ∂z-derivatives. By (A9.1.4), (A9.1.5), each of these ∂z-derivatives makes
lose 〈hM0(ξ′′)κ〉 if it falls on the x argument of ∂b

∂y , and does not make lose
anything if it falls on the y argument. Consequently, if β = κ = 0, or if
b is independent of x, we get no loss, while if κβ > 0, we get a loss that
may be compensated since, in this case, we get by (A9.1.4), (A9.1.5) a factor
〈hβM0(ξ′′)〉−N in the estimates, with an arbitrary N . Since we assume βκ ≤ 1,
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〈hβM0(ξ′′)〉−N 〈hM0(ξ′′)κ〉N1 = O(〈hβM0(ξ′′)〉−N/2) if N is large enough rela-
tively to N1. In other words, up to changing the definition of b, we may insert
under (A9.2.14) an extra factor decaying like 〈ζ〉−N1 as well as its derivatives,
for a given N1.

We perform next N2 integrations by parts using the operator

(A9.2.16)
〈
z(〈ζ〉+M0(ξ))−κ

〉−2[1− (〈ζ〉+M0(ξ))−2κzDζ

]
.

By (A9.2.11) and (A9.2.12), each of these integrations by parts makes gain
a factor

〈
z(〈ζ〉+M0(ξ))−κ

〉−1. Using (A9.2.12), (A9.1.5), the definition
(A9.2.2) of M and (A9.2.1), we bound the modulus of (A9.2.14) by

(A9.2.17) CM(x, ξ)
∫
〈ζ〉−N1+N0

〈
z(〈ζ〉+M0(ξ))−κ

〉−N2(〈ζ〉+M0(ξ))κ

× 〈hz〉N
′′
0
(
1 +M0(ξ)−κ|y − z|

)−N
×
∫ 1

0

(
1 + βhβM0(ξ′, ξn′ + · · ·+ ξn − λζ)

)−N
dλ

× (1 + βhβM0(ξ′′))−N dzdζ

for arbitrary N1, N2, N and given N0, N
′′
0 (coming from (A9.1.1), (A9.2.1)),

the factor in
(
1 +M0(ξ)−κ|y − z|

)−N coming from the last factor in estimate
(A9.1.5) of ∂b

∂y . If N1−N0 is large enough, and if we integrate for |ζ| ≥ cM0(ξ),
the factor 〈ζ〉−N1+N0 provides a decay in M0(ξ)−N ′ for any given N ′. On
the other hand, if we integrate for |ζ| ≤ cM0(ξ), we may use (A9.2.7) that
shows that the product of the last two factors in (A9.2.17) is smaller than
C(1 + βhβM0(ξ))−N . We thus get a bound in

(A9.2.18) CM(x, ξ)(1 + βhβM0(ξ))−N

×
∫
〈ζ〉−N1+N0+N〈z(〈ζ〉+M0(ξ))−κ

〉−N2(〈ζ〉+M0(ξ))κ

× 〈hz〉N
′′
0
(

1 +M0(ξ)−κ|y − z|
)−N

dzdζ

≤ CM(x, ξ)
(
1 + βhβM0(ξ)

)−N
M0(ξ)(2+N ′′0 )κ(1 +M0(ξ)−κ|y|

)−N
if N1 � N2 � N+N0+N ′′0 . We thus get an estimate of the form (A9.1.5), with
α0 = 0, α = 0, and the order function M replaced by M(x, ξ)M0(ξ)κ(2+N ′′0 ).

If we make the same computation after taking a ∂α0
x and a ∂αξ derivative

of (A9.2.14), we replace, according to (A9.2.12), the factor (M0(ξ) + 〈ζ〉)κ in
(A9.2.17) by (M0(ξ) + 〈ζ〉)κ(1+α0+|α|), so that we obtain again a bound of the
form (A9.1.5), with still M replaced by M(x, ξ)M0(ξ)νκ with ν = 2 +N ′′0 .

Study of (A9.2.15)
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The difference with the preceding case is that the ∂x derivative acting on b
makes lose an extra factor M0(ξ)κ, and that we do not have in (A9.2.17) the
factor in

(
1 +M0(ξ)−κ|y − z|

)−N . Instead of (A9.2.18), we thus get a bound
in

CM(x, ξ)M0(ξ)νκ
(
1 + βhβM0(ξ)

)−N
for some ν depending only on N ′′0 . On the other hand, if one takes a ∂y
derivative of (A9.2.15), either it falls on b, which reduces one to an expression
of the form (A9.2.14), or on ã, so that one gains a factor (A9.2.13) in the
estimates. In both cases, it shows that a bound of form (A9.1.5) holds. One
studies in the same way the derivatives, and shows that (A9.2.15) provides the
hc1 contribution in (A9.2.5).

If b does not depend on y, than (A9.2.14) vanishes identically so that there
is no c′1 contribution in (A9.2.16). If it is independent of x, the term hc1 given
by (A9.2.15) vanishes.

Finally, if one assumes that b is in S′κ,β(M ′′, n′′), then estimates of the form
(A9.2.18), i.e. with the factor

(
1 +M0(ξ)−κ|y − z|

)−N hold also for the study
of term (A9.2.15), so that we get that c1 in (A9.2.5) is also in S′κ,β(MMν

0 , n).
In the same way, if a is in S′κ,β(M ′, n′), one gets in (A9.2.12) an extra factor
of the form (A9.2.13) in the right hand side, so that (A9.2.15) is again in
S′κ,β(M,n). This concludes the proof. 2

Let us write a special case of Proposition A9.2.1.

Corollary A9.2.3. — Let p(ξ) = 〈ξ〉 and let b(y, ξ1, . . . , ξn) be a function
satisfying estimates

|∂αξ b(y, ξ)| ≤ C
n∏
j=1
〈ξj〉−1M0(ξ)1+|α|

|∂α
′
0

y ∂αξ b(y, ξ)| ≤ CN
n∏
j=1
〈ξj〉−1M0(ξ)1+|α|〈y〉−N

(A9.2.19)

for all α′0 ∈ N∗, α ∈ Nn, N ∈ N. Then

Oph(p(ξ))
[
Oph(b)(v1, . . . , vn)

]
= Oph

(
p(ξ)b(y, ξ)

)
(v1, . . . , vn)

+Oph(c′1)(v1, . . . , vn)
(A9.2.20)

where c′1 satisfies

(A9.2.21) |∂α
′
0

y ∂αξ c
′
1(y, ξ)| ≤ CN

n∏
j=1
〈ξj〉−1M0(ξ)1+|α|〈y〉−N

for all α′0, α,N .
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Proof. — We may not directly apply the proposition, as the order function
it would provide in the right hand side of (A9.2.21) would not be the right
one. Though, we may apply its proof that shows that the composed operator
(A9.2.20) is given by (A9.2.14) with ã given by (A9.2.10) i.e.

(A9.2.22) − i

2π

∫ 1

0

∫
e−izζp′(ξ1 + · · ·+ ξn−λζ)∂b

∂y
(y− z, ξ1, . . . , ξn) dzdζdλ.

Performing integrations by parts in z, ζ, we may bound the modulus of
(A9.2.22) by

C

∫
〈z〉−N 〈ζ〉−N 〈y − z〉−N dzdζ

n∏
j=1
〈ξj〉−1M0(ξ)

which gives (A9.2.21) performing the same computations for the derivatives.

We shall use also the following corollary.

Corollary A9.2.4. — Let b be a symbol in Sκ,β(M,n) for some order func-
tion M , some n in N∗, with (κ, β) satisfying the assumptions of Proposi-
tion A9.2.1. Assume moreover that b(y, x, ξ1, . . . , ξn) is supported inside |ξ1|+
· · ·+ |ξn−1| ≤ C〈ξn〉. There is ν ≥ 0 such that for any s ≥ 0, one may write
(A9.2.23) 〈hD〉sOph

(
b〈ξn〉−s

)
= Oph(c)

with a symbol c in Sκ,β(MMν
0 , n). The result holds also if b (and then c) satisfy

(A9.1.5) with the last exponent N replaced by 2, i.e. if b is in S′2κ,β(M,n), then
c lies in S′2κ,β(MMν

0 , n).

Proof. — We apply Proposition A9.2.1 with a(ξ) = 〈ξ〉s ∈ Sκ,β(〈ξ〉s, 1)
(for any (κ, β)) and for second symbol b(y, x, ξ1, . . . , ξn)〈ξn〉−s. Notice that,
because of the support assumption on b, this symbol belongs to the class
Sκ,β

(
M(x, ξ)

(∑n
j=1 〈ξj〉

)−s
, n
)
. Then by (A9.2.3), c in (A9.2.23) belongs to

Sκ,β(M̃(x, ξ)Mνκ
0 , n), where ν depends only on the exponent N ′′0 in (A9.2.1),

which is independent of s, and where M̃ is given, according to (A9.2.2), by

M̃(x, ξ1, . . . , ξn) = 〈ξ1 + · · ·+ ξn〉sM(x, ξ)
( n∑
j=1
〈ξj〉

)−s ≤ CM(x, ξ).

The conclusion follows, as the last statement of the corollary comes from the
fact that when taking a ∂y derivative of c given by (A9.2.8), it falls on the b
factor as a(ξ) = 〈ξ〉s and makes appear a gain

(
1 + M0(ξ)−κ|y − z|

)−2 if we
assume that (A9.1.5) holds with last exponent equal to 2.

Let us state a result on the adjoint. Since we shall need it only for linear
operators, we limit ourselves to that case.
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Proposition A9.2.5. — Let M(x, ξ) be an order function on R × R, a an
element of S0,0(M, 1). Define

(A9.2.24) a∗(y, x, ξ) = 1
2π

∫
e−izζ ā(y − z, x− hz, ξ − ζ) dzdζ.

Then a∗ belongs to S0,0(M, 1) and (Oph(a))∗ = Oph(a∗).

Proof. — By a direct computation (Oph(a))∗ is given by Oph(a∗) if a∗ is
defined by (A9.2.24). Making ∂z and ∂ζ integrations by parts, one checks that
a∗ belongs to the wanted class.

Remark: It follows from (A9.2.8), (A9.2.14), (A9.2.15), that if a, b in the
statement of Proposition A9.2.1 satisfy

a(−y,−x,−ξ1, . . . ,−ξn′) = (−1)n′−1a(y, x, ξ1, . . . , ξn′)

b(−y,−x,−ξ1, . . . ,−ξn′′) = (−1)n′′−1b(y, x, ξ1, . . . , ξn′′)
(A9.2.25)

then symbol c in (A9.2.5) satisfies
(A9.2.26) c(−y,−x,−ξ1, . . . ,−ξn) = (−1)n−1a(y, x, ξ1, . . . , ξn)
and a similar statement for c1, c

′
1. One has an analogous property for a∗.

To conclude this appendix, let us translate Propositions A9.2.1 and A9.2.5
in the framework of the non semiclassical quantization introduced in (A9.1.8),
(A9.1.9).

Corollary A9.2.6. — (i) Let n′, n′′ be in N∗, n = n′ + n′′ − 1, M ′,M ′′ two
order functions on R×Rn′ and R×Rn′′ respectively. Let (κ, β) be in N× [0, 1],
a in Sκ,β(M ′, n′), b in Sκ,β(M ′′, n′′). Assume that either (κ, β) = (0, 0) or
0 < κβ ≤ 1 or that b is independent of x. Then if M is defined in (A9.2.2),
there are ν in N, symbols c1 in Sκ,β(MMνκ

0 , n), c′1 in S′κ,β(MMνκ
0 , n) such

that if

c(y, x, ξ1, . . . , ξn) = a(y, x, ξ1, . . . , ξn′−1, ξn′ + · · ·+ ξn)b(y, x, ξn′ , . . . , ξn)
+t−1c1(y, x, ξ1, . . . , ξn) + c′1(y, x, ξ1, . . . , ξn),

(A9.2.27)

then for any functions v1, . . . , vn

(A9.2.28) Opt(a)[v1, . . . , vn′−1,Opt(b)(vn′ , . . . , vn)] = Opt(c)[v1, . . . , vn].
Moreover, if b is independent of x, c1 vanishes in (A9.2.27). Finally, if a is
in S′κ,β(M ′, n′) or b is in S′κ,β(M ′′, n′′), then c is in S′κ,β(MMνκ

0 , n).
(ii) In the same way, if a is in S0,0(M, 1), then Opt(a)∗ = Opt(a∗), for a

symbol a∗ in the same class. Moreover, if a satisfies (A9.2.25), so does a∗.

Proof. — Statement (i) is just the translation of Proposition A9.2.1. State-
ment (ii) follows from Proposition A9.2.5.
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We get also translating Corollary A9.2.3:

Corollary A9.2.7. — Under the assumptions and notation of Corol-
lary A9.2.3, one has

Op
(
p(ξ)

)
Op(b)(v1, . . . , vn) = Op(p(ξ1 + · · ·+ ξn)b)(v1, . . . , vn)

+ Op(c′1)(v1, . . . , vn)

with c′1 in the class S̃′1,0
(∏n

j=1 〈ξj〉
−1M0(ξ), n

)
of Definition 2.1.1.

We shall use also

Corollary A9.2.8. — Let n ≥ 2. Let M(ξ1, . . . , ξn) be an order function
on Rn (independent of x) and let a(y, ξ1, . . . , ξn) be a symbol in Sκ,0(M,n),
independent of x, for some κ in N. Let Z be a function in S(R). Denote
M̃(ξ1, . . . , ξn−1) = M(ξ1, . . . , ξn−1, 0). There is a symbol a′ in S′κ,0(M̃, n− 1),
independent of x, such that for any test functions v1, . . . , vn−1

(A9.2.29) Op(a)[v1, . . . , vn−1, Z] = Op(a′)[v1, . . . , vn−1].
Moreover, if Z is odd and a(−y,−ξ1, . . . ,−ξn) = (−1)n−1a(y, ξ1, . . . , ξn), then
a′(−y,−ξ1, . . . ,−ξn−1) = (−1)n−2a(y, ξ1, . . . , ξn−1).

Proof. — By (A9.1.9), we have that (A9.2.29) holds if we define

(A9.2.30) a′(y, ξ1, . . . , ξn−1) = 1
2π

∫
eiyξna(y, ξ1, . . . , ξn−1, ξn)Ẑ(ξn) dξn.

If α′ = (α1, . . . , αn−1) ∈ Nn−1, ξ′ = (ξ1, . . . , ξn−1), we deduce from (A9.1.4)
with β = 0 that

|∂α′ξ′ a′(y, ξ1, . . . , ξn−1)| ≤ C
∫
M(ξ′, ξn)M0(ξ′, ξn)κ|α′||Ẑ(ξn)| dξn.

Using (A9.1.1) both for M and M0, we obtain a bound in M̃(ξ′)M0(ξ′)κ|α′|.
To check that actually our symbol a′ is in S′κ,0(M̃, n−1), i.e. that it is rapidly
decaying in (1 + M0(ξ′)−κ|y|)−N , we just make in (A9.2.30) ∂ξn-integrations
by parts, and perform the same estimate. One bounds ∂y derivatives in the
same way. Finally, the last statement of the corollary follows from (A9.2.30)
and the oddness of Ẑ.



APPENDIX A10

BOUNDS FOR FORCED LINEAR
KLEIN-GORDON EQUATIONS

The goal of this appendix is to obtain some Sobolev or L∞ estimates of
solutions of half-Klein-Gordon equations with zero initial data and force term
that is time oscillating. The kind of equations we want to study is of the form

(
Dt −

»
1 +D2

x

)
U = eiλtt−1

ε M(x)
U |t=1 = 0

(A10.0.1)

where M is in S(R), t−1
ε = ε2

1+tε2 and λ is a real number different from one.
This restriction means that the right hand side of the equation oscillates at a
frequency which is non characteristic when one restricts the symbol

√
1 + ξ2

of the operator in the left hand side to frequency zero. Our goal is to prove
estimates for U or L+U =

(
x+t Dx〈Dx〉

)
U for large times. Actually, we shall split

the solution as U = U ′+U ′′, where U ′ is obtained writing the Duhamel formula
to express U and restricting the time integral to times that are O(

√
t). It turns

out that, when time t stays smaller than ε−4+0, L+U
′(t, ·) has L2 estimates

that are o(t
1
4 ), which is acceptable for our applications. On the other hand

L+U
′′ would not enjoy such bounds, but it has good estimates in L∞-like

spaces.
Equation (A10.0.1) is actually just a simplified model of the problem we

study in this Appendix. For the applications to our main problem, i.e. the
description of some approximate solutions (see section 1.5 of Chapter 1), we
need more general right hand sides than in (A10.0.1). Though, the method of
proof of our estimates is quite the same as for the model above. It relies on
the explicit writing of the solution using Duhamel formula and the stationary
phase formula.

We shall close this appendix with explicit computations that are used in
the main part of this text to check the Fermi Golden Rule.
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A10.1. Linear solutions to half-Klein-Gordon equations

We consider a function (t, x) → M(t, x) that is C1 in time, with values in
S(R). If λ is in R, λ 6= 1, we denote by U(t, x) the solution to

(Dt − p(Dx))U = eiλtM(t, x)
U |t=1 = 0

(A10.1.1)

where p(Dx) =
√

1 +D2
x, and where we study the solution for t in an interval

[1, T ]. We write the solution by Duhamel formula as

(A10.1.2) U(t, x) = i

∫ t

1
ei(t−τ)p(Dx)+iλτM(τ, ·) dτ.

We fix some function χ in C∞(R), equal to one close to ] −∞, 1
4 ], supported

in ]−∞, 1
2 ]. Then for t larger than some constant (say t ≥ 16), we may write

(A10.1.2) as U = U ′ + U ′′ where

U ′(t, x) = i

∫ +∞

1
ei(t−τ)p(Dx)+iλτχ

( τ√
t

)
M(τ, ·) dτ

U ′′(t, x) = i

∫ t

−∞
ei(t−τ)p(Dx)+iλτ (1− χ)

( τ√
t

)
M(τ, ·) dτ.

(A10.1.3)

Our goal is to obtain Sobolev and L∞ estimates for U ′, U ′′ and for the result
of the action on U ′, U ′′ of the operator

(A10.1.4) L± = x± tp′(Dx) = x± t Dx

〈Dx〉
,

under two sets of assumptions on M , that we describe now. We shall take ε
in ]0, 1] and for t ≥ 1, we recall that we defined in (3.1.1)

(A10.1.5) tε = ε−2〈tε2〉 = (ε−4 + t2)
1
2 .

For ω in [1,+∞[, θ′ ∈]0, 1
2 [, close to 1

2 , we introduce the following:

Assumption (H1)ω: For any α,N in N, any t in [1, T ], x in R, ε in ]0, 1],
one has bounds

|∂αxM(t, x)| ≤ Cα,N t−ωε 〈x〉
−N

|∂αx ∂tM(t, x)| ≤ Cα,N t
−ω+ 1

2
ε [t−

3
2

ε + t−
3
2 (ε2
√
t)

3
2 θ
′
]〈x〉−N .

(A10.1.6)

The second type of assumption we shall make on M is more technical. If
λ > 1, we denote by ±ξλ the two roots of

√
1 + ξ2 = λ (with ξλ > 0) and set

Wλ for a small open neighborhood of the set {ξλ,−ξλ}. We introduce:
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Assumption (H2): For any α,N , the x-Fourier transform of M(t, x) sat-
isfies bounds

|∂αξ M̂(t, ξ)| ≤ Cα,N t−
1
2 t−1
ε 〈ξ〉

−N

|∂t∂αξ M̂(t, ξ)| ≤ Cα,N t−
3
4 t−1
ε 〈ξ〉

−N .
(A10.1.7)

Moreover, for ξ in Wλ, one may decompose

(A10.1.8) DtM̂(t, ξ) = (Dt + λ−
√

1 + ξ2)Φ(t, ξ) + Ψ(t, ξ)
where Φ,Ψ satisfy the following bounds:

|Φ(t, ξ)| ≤ Ct−
1
2 t−1
ε

|Ψ(t, ξ)| ≤ Ct−1t−1
ε

(A10.1.9)

and a similar decomposition holds for xM instead of M . Of course, conditions
(A10.1.8), (A10.1.9) are void if λ < 1.

For future reference, let us state some elementary inequalities that hold if
θ′ < 1

2 is close enough to 1
2 , ε2
√
t ≤ 1 and ω ≥ 1:

(A10.1.10)
∫ √t

1
τε
−ω+ 1

2
[
τε
− 3

2 + τ−
3
2 (ε2
√
τ)

3
2 θ
′]
dτ

≤ Cε2ω[ε2
√
t+ ε3θ

′−1] ≤ Cε2ω.

(A10.1.11)
∫ t

√
t
τε
−ω+ 1

2
[
τε
− 3

2 + τ−
3
2 (ε2
√
τ)

3
2 θ
′]
dτ

≤ Cε2ω
ï
ε2t

〈ε2t〉
+ ε

3
2 θ
′(ε2
√
t)−

1
2 + 3

4 θ
′
ò

≤ C min
[
ε2ω−1

Å
ε2t

〈ε2t〉

ã 1
2
, ε2ω

]
.

(A10.1.12)
∫ √t

1
τaτε

−ω dτ ≤ Cε2ωt
1
2 +a

2 , a > −1.

(A10.1.13)
∫ t

√
t
τ−aτε

−1 dτ ≤ Cε2a
Å
ε2t

〈ε2t〉

ã1−a
≤ Cε

Å
ε2t

〈ε2t〉

ã 1
2
,

1
2 ≤ a < 1.

(A10.1.14)
∫ t

√
t
τε
−ω+ 1

2
[
τε
− 3

2 + τ−
3
2 (ε2
√
τ)

3
2 θ
′]√

τ dτ

≤ Cε2ω−1
ïÅ

ε2t

〈ε2t〉

ã 3
2

+ ε
3
2 θ
′
( ε2t

〈ε2t〉

) 3
4 θ
′ò
≤ Cε2ω−1

Å
ε2t

〈ε2t〉

ã 1
2
.
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(A10.1.15)
∫ t

√
t
τ

1
2 τε
−1 dτ ≤ C

√
t
ε2t

〈ε2t〉
.

Let us state two propositions giving the bounds we shall get for U ′, U ′′ under
either assumption (H1)ω or (H2). We denote below
(A10.1.16) ‖v‖W ρ,∞ = ‖〈Dx〉ρv‖L∞
for any ρ ≥ 0.

Proposition A10.1.1. — (i) Assume that (H1)ω holds for some ω ≥ 1.
Then for any r ≥ 0, there is Cr > 0 such that U ′ given by (A10.1.3) satisfies
for any ε ∈]0, 1], t ∈ [1, ε−4]

(A10.1.17) ‖U ′(t, ·)‖Hr ≤ Crε[ε2(ω−1)(ε2
√
t)

1
2 ]

(A10.1.18) ‖U ′(t, ·)‖W r,∞ ≤ Crε2ω

(A10.1.19) ‖L+U
′(t, ·)‖Hr ≤ Crt

1
4 [ε2(ω−1)(ε2

√
t)].

(ii) Under Assumption (H2), there is, for any r ≥ 1, a constant Cr > 0 such
that U ′ satisfies for any ε ∈]0, 1], t ∈ [1, ε−4]

(A10.1.20) ‖U ′(t, ·)‖Hr ≤ Crε(ε2
√
t)

1
2

(A10.1.21) ‖U ′(t, ·)‖W r,∞ ≤ Crε2t−
1
4

(A10.1.22) ‖L+U
′(t, ·)‖Hr ≤ Crt

1
4 [ε

1
8 (ε2
√
t)

7
8 ].

Let us state now the bounds she shall prove for U ′′.

Proposition A10.1.2. — (i) Under Assumption (H1)ω with ω ≥ 1, one has
for any r ≥ 0, the following bounds:

(A10.1.23) ‖U ′′(t, ·)‖Hr ≤ Crε2ω−1
Å
ε2t

〈ε2t〉

ã 1
2

(A10.1.24) ‖U ′′(t, ·)‖W r,∞ ≤ Crε2ω log(1 + t)

(A10.1.25) ‖L+U
′′(t, ·)‖W r,∞ ≤ Cr log(1 + t) log(1 + ε2t), if ω = 1

(A10.1.26) ‖L+U
′′(t, ·)‖W r,∞ ≤ Crε2(ω−1) log(1 + t)

Å
ε2t

〈ε2t〉

ã
, if ω > 1.

(ii) Under Assumption (H2), one has for any r ≥ 0, the following bounds

(A10.1.27) ‖U ′′(t, ·)‖Hr ≤ Crε
Å
ε2t

〈ε2t〉

ã 1
2
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(A10.1.28) ‖U ′′(t, ·)‖W r,∞ ≤ Crε2(log(1 + t))2

(A10.1.29) ‖L+U
′′(t, ·)‖W r,∞ ≤ Cr log(1 + t) log(1 + ε2t).

Remark: Notice that we obtain Sobolev estimates for L+U
′(t, ·) in

(A10.1.19), (A10.1.22), while we bound L+U
′′(t, ·) in W r,∞ spaces in

(A10.1.25), (A10.1.26), (A10.1.29). Actually, we could not obtain for
the L+U

′′ contribution to L+U as good Sobolev estimates as those that hold
for L+U

′, and this is the reason for our splitting U = U ′ + U ′′.

Study of the U ′ contribution

We shall prove Proposition A10.1.1. By (A10.1.3), (A10.1.4)

(A10.1.30) U ′(t, x) = i

2π

∫ +∞

1

∫
ei[(t−τ)

√
1+ξ2+λτ+xξ]χ

( τ√
t

)
M̂(τ, ξ) dξdτ

L+U
′(t, x) = i

2π

∫ +∞

1

∫
ei[(t−τ)

√
1+ξ2+λτ+xξ]χ

( τ√
t

)
×
[
τ
ξ

〈ξ〉
M̂(τ, ξ) + x̂M(τ, ξ)

]
dξdτ.

(A10.1.31)

We shall estimate first the above integrals when either λ < 1, so that the
coefficient of τ in the phase λ −

√
1 + ξ2 never vanishes, or when λ > 1 but

M̂(τ, ξ) is supported outside a neighborhood of the two roots ±ξλ of that
expression.

Lemma A10.1.3. — Assume that either λ < 1 or λ > 1 and there is a
neighborhood Wλ of {−ξλ, ξλ} such that M̂(·, ξ) vanishes for ξ in Wλ. Assume
also t ≤ ε−4.

(i) Under assumption (H1)ω, estimates (A10.1.17) to (A10.1.19) hold true.
(ii) Under assumption (H2), estimates (A10.1.20) to (A10.1.22) hold true.

Proof. — Let us prove first the Sobolev bounds (A10.1.17), (A10.1.19),
(A10.1.20), (A10.1.22). By (A10.1.30) Û ′(t, ξ) may be written as

(A10.1.32) eit
√

1+ξ2
∫ +∞

1
ei(λ−

√
1+ξ2)τχ

( τ√
t

)
N(τ, ξ) dτ

where N(τ, ξ) satisfies for any N , any α, according to (A10.1.6), (A10.1.7)
(A10.1.33)

|∂αξ ∂jτN(τ, ξ)| ≤ Cα,Nτε−ω+ j
2
[
τε
− 3

2 + τ−
3
2 (ε2
√
τ)

3
2 θ
′]j〈ξ〉−N , j = 0, 1

under (H1)ω and

(A10.1.34) |∂αξ ∂jτN(τ, ξ)| ≤ Cα,Nτ−
1
2 τε
−1τ−

j
4 〈ξ〉−N , j = 0, 1
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under (H2). In the same way, by (A10.1.31), ’L+U ′(t, ξ) may be written under
the form (A10.1.32), where N satisfies according to (A10.1.6), (A10.1.7)

(A10.1.35) |∂αξ ∂jτN(τ, ξ)| ≤ Cα,Nτ1−jτε
−ω〈ξ〉−N , j = 0, 1

under (H1)ω and

(A10.1.36) |∂αξ ∂jτN(τ, ξ)| ≤ Cα,Nτ
1
2−

j
4 τε
−1〈ξ〉−N , j = 0, 1

under (H2).
Since N(τ, ξ) is supported outside a neighborhood of the zeros of

√
1 + ξ2−

λ, we may perform in (A10.1.32) one ∂τ integration by parts. Taking moreover
a L2(〈ξ〉rdξ) norm, we obtain quantities bounded in the following way:
• If N satisfies (A10.1.33), we obtain a control of (A10.1.32) in terms of

Cε2ω and of (A10.1.10). This gives a ε2ω estimate, better than the right hand
side (A10.1.17).
• If N satisfies (A10.1.34), we obtain an upper bound by the right hand

side of (A10.1.12), which is better than (A10.1.20).
• If N satisfies (A10.1.35), the L2(〈ξ〉rdξ) norm of (A10.1.32) is bounded

by (A10.1.12) with a = 0, so by (A10.1.19).
• If N satisfies (A10.1.36), that same norm is bounded by (A10.1.12), thus

by the right hand side of (A10.1.22).
We have thus proved Lemma A10.1.3 for Sobolev estimates. It remains

to establish (A10.1.18) and (A10.1.21). Since M̂ is rapidly decaying in ξ, it
is sufficient to estimate the L∞ norm of U ′. Notice that the dξ-integral in
(A10.1.30) may be written as

(A10.1.37)
∫
e
it

[(
1− τ

t

)√
1+ξ2+x

t
ξ

]
M̂(τ, ξ) dξ

and that on the support of χ(τ/
√
t), |τ/t| � 1, so that the stationary phase

formula implies that (A10.1.37) is smaller in modulus than Ct−
1
2 τε
−ω1τ<

√
t

under conditions (A10.1.6) and Ct−
1
2 τ−

1
2 τε
−11τ<

√
t under condition (A10.1.7).

Integrating in τ , we get bounds in O(ε2ω) and O(ε2t−
1
4 ) respectively as in

(A10.1.18), (A10.1.21). This concludes the proof.

Lemma A10.1.3 provides Proposition A10.1.1 when either λ < 1 or
λ > 1 and M̂ in (A10.1.30), (A10.1.31) is cut-off outside a neighborhood of√

1 + ξ2 = λ. We have thus to study now the case when λ > 1 and M̂ is
supported in a small neighborhood of one of the roots ±ξλ of that equation.
More precisely, we have to study, in order to estimate the contribution to U ′,
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the expressions
(A10.1.38)

Ũ ′±(t, x) =
∫ +∞

1

∫
e
it

[(
1− τ

t

)√
1+ξ2+λ τ

t
+x
t
ξ

]
χ
( τ√

t

)
N±(τ, ξ) dτdξ,

where N± is supported close to ±ξλ and satisfies (A10.1.33) or (A10.1.34),
and, in order to estimate the contribution to L+U

′, an expression of the form
(A10.1.38) with N± satisfying (A10.1.35) or (A10.1.36). We shall show actu-
ally the more precise result:

Proposition A10.1.4. — For any α in N, we have the following bounds:

(A10.1.39) |∂αx Ũ ′±(t, x)| ≤ Cαε2ω〈t−
1
2 (λx± tξλ)〉

−1

if N± satisfies (A10.1.33),

(A10.1.40) |∂αx Ũ ′±(t, x)| ≤ Cαε2t−
1
4 〈t−

7
8 (λx± tξλ)〉

−1

if N± satisfies (A10.1.34),

(A10.1.41) |∂αx Ũ ′±(t, x)| ≤ Cαε2ωt
1
2 〈t−

1
2 (λx± tξλ)〉

−1

if N± satisfies (A10.1.35),

(A10.1.42) |∂αx Ũ ′±(t, x)| ≤ Cαε2t
1
4 〈t−

7
8 (λx± tξλ)〉

−1

if N± satisfies (A10.1.36).

It follows immediately from (A10.1.39) (resp. (A10.1.40)) that (A10.1.17)
and (A10.1.18) (resp. (A10.1.20) and (A10.1.21)) hold true. In the same way,
computing the L2 norms of (A10.1.41) (resp. (A10.1.42)) we obtain upper
bounds by (A10.1.19) (resp. (A10.1.22)). Consequently, Proposition A10.1.1
will be proved if we establish Proposition A10.1.4.

Lemma A10.1.5. — One may write the derivatives of Ũ ′± given by
(A10.1.38) under the form

(A10.1.43) ∂αx Ũ
′
±(t, x) =

∫ +∞

1
eiψ±(τ,t,z±)χ̃±(t, τ, z±)Jα(τ, t, z±) dτ +R±α

where χ̃± is supported for τ ≤
√
t and for |z±| ≤ c, and where

(A10.1.44) z± = x

t
± ξλ
λ
, χ̃± = O(1), ∂τ χ̃± = O(t−

1
2 ),

where ψ±(τ, t, z±) satisfies

(A10.1.45) |∂τψ±(τ, t, z±)| ∼ |z±|, ∂2
τψ± = 0
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on the support of the integrand, it t is large enough, and where Jα satisfies the
bounds

|Jα(τ, t, z±)| ≤ Cαt−
1
2 τε
−ω

|∂τJα(τ, t, z±)| ≤ Cαt−
1
2 τε
−ω+ 1

2
[
τε
− 3

2 + t−1τε
− 1

2 + τ−
3
2 (ε2
√
τ)

3
2 θ
′]

(A10.1.46)

if N± satisfies (A10.1.33),

|Jα(τ, t, z±)| ≤ Cαt−
1
2 τε
−1τ−

1
2

|∂τJα(τ, t, z±)| ≤ Cαt−
1
2 τε
−1τ−

3
4

(A10.1.47)

if N± satisfies (A10.1.34).
In the same way, ∂αx Ũ ′± is given by an integral of the form (A10.1.43) with

Jα satisfying

|Jα(τ, t, z±)| ≤ Cαt−
1
2 τε
−ωτ

|∂τJα(τ, t, z±)| ≤ Cαt−
1
2 τε
−ω

(A10.1.48)

if N± satisfies (A10.1.35),

|Jα(τ, t, z±)| ≤ Cαt−
1
2 τε
−1τ

1
2

|∂τJα(τ, t, z±)| ≤ Cαt−
1
2 τε
−1τ

1
4

(A10.1.49)

if N± satisfies (A10.1.36). Finally, the remainder R±α in (A10.1.43) satisfies

|R±α | ≤ Cα,N ε2ωt−N 〈λx± tξλ〉
−N , under (H1)ω

|R±α | ≤ Cα,N ε2t−N 〈λx± tξλ〉
−N , under (H2),

(A10.1.50)

for any N in N.

Proof. — For t bounded, estimates of the form (A10.1.50) follow from
(A10.1.33), (A10.1.35) and ∂ξ integration by parts. Assume t � 1. We treat
the case of sign + and set z for z+ in (A10.1.44). We consider the dξ integral
in (A10.1.38), expressed in terms of z instead of x. The oscillatory phase may
be written as tφ(t, τ, z, ξ) with

(A10.1.51) ∂φ

∂ξ
(t, τ, z, ξ) =

( ξ√
1 + ξ2

− ξλ
λ

)
− τ

t

ξ√
1 + ξ2

+ z.

Since we assume t � 1, τ
t ≤

1√
t
� 1 in (A10.1.51). If |z| ≥ c > 0, un-

der this condition on t, and for |ξ − ξλ| � 1, we see from (A10.1.51) that∣∣∂φ
∂ξ (t, τ, z, ξ)

∣∣ ∼ |z|, so that, performing ∂ξ-integration by parts, we get again
estimates of the form (A10.1.50).
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We may thus assume from now on that t � 1, |z| � 1. For z = 0, τ
t = 0,

(A10.1.51) vanishes at ξ = ξλ, and since the ∂ξ-derivative at this point is
λ−3 6= 0, we have for t � 1, |z| � 1, a unique critical point ξ(t, τ, z) close to
ξλ. Moreover, it follows from (A10.1.51) that

(A10.1.52) ∂ξ

∂τ
(t, τ, z) = O

(1
t

)
,
∂2ξ

∂τ2 (t, τ, z) = O
( 1
t2

)
.

We rewrite the phase φ as

(A10.1.53) φ(t, τ, z, ξ) = φc(t, τ, z) + 1
2A(t, τ, z, ξ)2(ξ − ξ(t, τ, z))2

where the critical value φc(t, τ, z) satisfies

(A10.1.54) |∂τφc(t, τ, z)| = O(t−1), |∂2
τφ

c(t, τ, z)| = O(t−2)

and where A is strictly positive for τ
t � 1, |z| � 1, |ξ − ξλ| � 1 and satisfies

for any γ

(A10.1.55) |∂τ∂γξA(t, τ, z, ξ)| = O(t−1).

We introduce the change of variables ζ = A(t, τ, z, ξ)(ξ − ξ(t, τ, z)) for ξ close
to ξλ and its inverse ξ = Ξ(t, τ, z, ζ). By (A10.1.52), (A10.1.55), we have

(A10.1.56) ∂ζ

∂τ
= O(t−1), ∂

γ+1Ξ
∂ζγ∂τ

= O(t−1)

for any γ. Then the expression of ∂αx Ũ ′+ may be written from (A10.1.38)

(A10.1.57) ∂αx Ũ
′
+(t, x) =

∫ +∞

1
eitφ

c(t,τ,z)χ
( τ√

t

)
Jα(t, τ, z) dτ

where

(A10.1.58) Jα(t, τ, z) =
∫
eit

ζ2
2 Ñα(t, τ, z, ζ) dζ

where Ñα is supported close to ζ = 0 and satisfies when τ ≤
√
t, by (A10.1.56),

the following estimates for any γ in N:

|∂γζ Ñα(t, τ, z, ζ)| ≤ Cτε−ω

|∂τ∂γζ Ñα(t, τ, z, ζ)| ≤ Cτε−ω+ 1
2
[
τε
− 3

2 + τ−
3
2 (ε2
√
τ)

3
2 θ
′
+ τε

− 1
2 t−1](A10.1.59)

if N± in (A10.1.38) satisfies (A10.1.33),

(A10.1.60) |∂γζ Ñα(t, τ, z, ζ)| ≤ Cτ−
1
2 τε
−1, |∂τ∂γζ Ñα(t, τ, z, ζ)| ≤ Cτ−

3
4 τε
−1

if N± satisfies (A10.1.34),

(A10.1.61) |∂γζ Ñα(t, τ, z, ζ)| ≤ Cττε−ω, |∂τ∂γζ Ñα(t, τ, z, ζ)| ≤ Cτε−ω
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if N± satisfies (A10.1.35) and

(A10.1.62) |∂γζ Ñα(t, τ, z, ζ)| ≤ Cτ
1
2 τε
−1, |∂τ∂γζ Ñα(t, τ, z, ζ)| ≤ Cτ

1
4 τε
−1

if N± satisfies (A10.1.36). If we apply the stationary phase formula to
(A10.1.58), we gain a factor t−

1
2 , which, according to (A10.1.59)–(A10.1.62)

provides bounds of the form (A10.1.46) to (A10.1.49). To get expressions of
the form (A10.1.43), we still have to replace the phase tφc of (A10.1.57) by
ψ+. By Taylor-Lagrange formula relatively to τ and (A10.1.54)

φc(t, τ, z) = φc(t, 0, z) + τ(∂τφc)(t, 0, z) +O
(τ2

t2

)
.

Moreover, by definition of the phase φ of (A10.1.38),(
∂τφ

c
)
(t, 0, z) = 1

t

(
λ−

»
1 + ξ(t, 0, z)2

)
and by (A10.1.51), the critical point ξ(t, 0, z) satisfies

ξ(t, 0, z)
〈ξ(t, 0, z)〉 = ξλ

λ
− z = ξλ

〈ξλ〉
− z

so that »
1 + ξ(t, 0, z)2 = λ− λ2ξλz +O(z2), z → 0.

We thus get

φc(t, τ, z) = φc(t, 0, z) + τ

t

(
λ2ξλz +O(z2)

)
+ r(t, τ, z)

r(t, τ, z) = O
(τ2

t2

)
, ∂τr(t, τ, z) = O

( τ
t2

)
.

(A10.1.63)

We define
ψ+(t, τ, z) = t

[
φc(t, τ, z)− r(t, τ, z)

]
χ̃+(t, τ, z) = χ

( τ√
t

)
eitr(t,τ,z).

(A10.1.64)

Plugging (A10.1.63) in (A10.1.57), we deduce from (A10.1.64) that for |z| � 1,
the properties of χ̃+, ψ+ in (A10.1.44), (A10.1.45) do hold. This concludes the
proof of the lemma.

Proof of Proposition A10.1.4: Since R±α in (A10.1.43) satisfy better esti-
mates than those we want, by (A10.1.50), we just consider the integral in the
expansion of ∂αx Ũ ′±.

Under condition (A10.1.33), Jα satisfies (A10.1.46). It follows from
(A10.1.12) that the modulus of the integral in (A10.1.43) is O(ε2ω). On the
other hand, if we multiply (A10.1.43) by z±, use (A10.1.45), integrate by
parts in τ in (A10.1.43) and use (A10.1.44), we deduce from (A10.1.10) and
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(A10.1.12) a bound in t−
1
2 ε2ω for the resulting expression. Together with the

definition (A10.1.44) of z±, this brings (A10.1.39).
To prove (A10.1.40), we proceed in the same way. Under estimates

(A10.1.34), (A10.1.47) holds for Jα. By (A10.1.12), this provides for
(A10.1.43) an estimate in ε2t−

1
4 . On the other hand, if we multiply (A10.1.43)

by z± and integrate by parts, we get using (A10.1.47) and (A10.1.12) an
estimate in ε2t−

3
8 . Together with the first one, this implies (A10.1.40).

One obtains (A10.1.41) (resp. (A10.1.42)) in the same way from (A10.1.48)
(resp. (A10.1.49)) and (A10.1.12). 2

Study of the U ′′ contribution

According to (A10.1.3), (A10.1.4) we have
(A10.1.65)

U ′′(t, x) = i

2π

∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]
(1− χ)

( τ√
t

)
M̂(τ, ξ) dξdτ

L+U
′′(t, x) = i

2π

∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]
(1− χ)

( τ√
t

)
×
[
τ
ξ

〈ξ〉
M̂(τ, ξ) + x̂M(τ, ξ)

]
dξdτ.

(A10.1.66)

We treat first the case when λ < 1 or λ > 1 and M̂ is supported for ξ outside
a neighborhood of ±ξλ.

Lemma A10.1.6. — Assume λ < 1 or λ > 1 and M̂ supported outside a
neighborhood of {−ξλ, ξλ}.

(i) Under assumption (H1)ω, estimates (A10.1.23) to (A10.1.26) hold true.
(ii) Under assumption (H2), estimates (A10.1.27) to (A10.1.29) hold true.

Proof. — We write Û ′′(t, ξ) as

(A10.1.67)
∫ t

−∞
ei
(
λ−
√

1+ξ2
)
τ (1− χ)

( τ√
t

)
N(τ, ξ) dτeit

√
1+ξ2

with N satisfying (A10.1.33) under (H1)ω and (A10.1.34) under (H2). In the
same way, ÷L+U ′′ is given by (A10.1.67) with N satisfying (A10.1.35) when
(H1)ω holds and (A10.1.36) under (H2).

We perform one ∂τ integration by parts in (A10.1.67) and compute the
L2(〈ξ〉r) norm. When N satisfies (A10.1.33), we obtain from (A10.1.11) (and
from (A10.1.12) if ∂τ falls on (1− χ)(τ/

√
t)) a bound of the form (A10.1.23).

If instead of computing the L2(〈ξ〉rdξ) norm, we estimate the L1(〈ξ〉rdξ) one,
we get (A10.1.24) from (A10.1.11), (A10.1.12).
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Under condition (A10.1.34) we get an estimate of the L2(〈ξ〉rdξ) norm of
(A10.1.67) by

C

∫ t

√
t
τε
−1τ−

3
4 dτ + Cε2t−

1
2

which is smaller than the right hand side of (A10.1.27) by (A10.1.13).
We are left with proving (A10.1.25), (A10.1.26), (A10.1.28) and (A10.1.29).

Integrating by parts in τ in (A10.1.65) and (A10.1.66), we have thus to bound
the integrals

(A10.1.68)
∫
ei(λt+xξ)N(t, ξ) dξ

(A10.1.69)
∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]
∂τ

[
N(τ, ξ)(1− χ)

( τ√
t

)]
dξdτ

where N satisfies (A10.1.34) (to get (A10.1.28)) or (A10.1.35) (to obtain
(A10.1.25), (A10.1.26)) or (A10.1.36) (to get (A10.1.29)). The W r,∞ norm
of (A10.1.68) is bounded from above by the L1 norm of 〈ξ〉rN(τ, ξ), that has
immediately the wanted estimates. Let us study (A10.1.69). Since the inte-
grand is in S(R) relatively to ξ, stationary phase shows that the dξ-integral
is O(〈t− τ〉−

1
2 ), with bounds given by the right hand side of (A10.1.34),

(A10.1.35), (A10.1.36). Consequently, the contribution of (A10.1.69) to
(A10.1.28) will be estimated by

(A10.1.70) C

∫ t

√
t
〈t− τ〉−

1
2

ε2

1 + τε2
τ−

3
4 dτ,

its contribution to (A10.1.25), (A10.1.26) will be bounded by

(A10.1.71) C

∫ t

√
t
〈t− τ〉−

1
2

ε2ω

(1 + τε2)ω dτ,

and its contribution to (A10.1.29) will be controlled by

(A10.1.72) C

∫ t

√
t
〈t− τ〉−

1
2

ε2

1 + τε2
τ

1
4 dτ.

One checks that (A10.1.70) (resp. (A10.1.71), resp. (A10.1.72)) is bounded
from above by the right hand side of (A10.1.28) (resp. (A10.1.25), (A10.1.26),
resp. (A10.1.29)). This concludes the proof of the lemma.

We have obtained estimates (A10.1.23) to (A10.1.29) when M̂ in (A10.1.65),
(A10.1.66) is supported away from the zeros of λ −

√
1 + ξ2. We shall next

obtain these bounds for M̂ supported in a small neighborhood of this set.
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We prove first these estimates under assumption (H1)ω i.e. those of (i) in the
statement of Proposition A10.1.2. We have to study again the integral

(A10.1.73)
∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]
(1− χ)

( τ√
t

)
N(τ, ξ) dξdτ

where N will satisfy (A10.1.33) or (A10.1.35) and is supported close to ±ξλ.

Lemma A10.1.7. — Assume λ > 1 and N supported in a small enough
neighborhood of {ξλ,−ξλ}. Then if N satisfies (A10.1.33) (resp. (A10.1.35)),
estimates (A10.1.23) and (A10.1.24) (resp. (A10.1.25), (A10.1.26)) hold true.

Proof. — Introduce Ω(τ, ζ) = eiτζ−1
iζ and write (A10.1.73), after making a

∂τ -integration by parts, as the sum of the following quantities:

(A10.1.74)
∫
ei(t
√

1+ξ2+xξ)Ω
(
t, λ−

√
1 + ξ2

)
N(t, ξ) dξ

(A10.1.75)

−
∫ t

−∞

∫
ei(t
√

1+ξ2+xξ)Ω
(
τ, λ−

√
1 + ξ2

)
∂τ
[
(1− χ)

( τ√
t

)
N(τ, ξ)

]
dξdτ.

Assume for instance that ξ stays in a small neighborhood of ξλ on the support
of N , and make the change of variables ζ = λ−

√
1 + ξ2 in the integrals, with

ζ staying close to zero.
Consider first the case when N satisfies (A10.1.33) and let us prove

(A10.1.24). We estimate the modulus of (A10.1.74) by∫
|ζ|�1

|Ω(t, ζ)| ε2ω

(1 + tε2)ω dζ ≤
Cε2ω

(1 + tε2)ω log t

which is controlled by the right hand side of (A10.1.24). In the same way, we
bound the modulus of (A10.1.75) by

C

∫ t

√
t

ï
τε
−ω+ 1

2

[
τε
− 3

2 + τ−
3
2 (ε2
√
τ)

3
2 θ
′]

+ 1√
t
τε
−ω1τ∼

√
t

ò ∫
|ζ|�1

|Ω(τ, ζ)| dζdτ.

As
∫
|ζ|�1 |Ω(τ, ζ)| dζ = O(log τ) = O(log t), we obtain using (A10.1.11) and

(A10.1.12) a bound in ε2ω log(1 + t) as wanted. Assume next that N sat-
isfies (A10.1.35), and let us show (A10.1.25), (A10.1.26). We estimate then
(A10.1.74) by

Cε2ωt

(1 + tε2)ω
∫
|ζ|�1

|Ω(t, ζ)| dζ

that is bounded by (A10.1.25), (A10.1.26). On the other hand, (A10.1.75)
may be controlled by

∫ t√
t log τ ε2ω

(1+τε2)ω dτ , that is bounded by (A10.1.25) if
ω = 1, (A10.1.26) if ω > 1.
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To finish the proof of the lemma, we still need to get (A10.1.23). The Hr

norm of (A10.1.74), (A10.1.75) is bounded from above respectively by

(A10.1.76) ‖Ω
(
t, λ−

√
1 + ξ2

)
N(t, ξ)‖L2(〈ξ〉rdξ)

(A10.1.77)
∫ t

√
t
‖Ω
(
τ, λ−

√
1 + ξ2

)
∂τ
[
(1− χ)

( τ√
t

)
N(τ, ξ)

]
‖L2(〈ξ〉rdξ)dτ.

We consider again the case when N is supported in a small neighbor-
hood of ξλ and use ζ = λ −

√
1 + ξ2 as the variable of integration. Since

‖Ω(τ, ζ)1|ζ|�1‖L2(dζ) = O(
√
τ), we estimate, in view of (A10.1.33), (A10.1.76)

and (A10.1.77) by (A10.1.23) again using (A10.1.14), (A10.1.12). This
concludes the proof.

Lemma A10.1.7 concludes the proof of (i) of Proposition A10.1.2. In order
to finish the proof of (ii), we need to show:

Lemma A10.1.8. — Consider (A10.1.65) (resp. (A10.1.66)) when M̂ is
supported close to {−ξλ, ξλ} and when assumption (H2) holds i.e. under con-
ditions (A10.1.7) to (A10.1.9). Then, estimates (A10.1.27), (A10.1.28) (resp.
(A10.1.29)) hold true.

Proof. — Notice first that the term x̂M under the integral (A10.1.66) satis-
fies the same hypothesis as M̂ under integral (A10.1.65) (see the lines below
(A10.1.9)). Since the right hand side of (A10.1.29) is larger than the one in
(A10.1.28), it suffices to show (A10.1.27), (A10.1.28) for expression (A10.1.65),
and (A10.1.29) for (A10.1.66) where one forgets the x̂M term. We thus have
to study an expression

(A10.1.78)
∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]
(1− χ)

( τ√
t

)
τ jN(τ, ξ) dξdτ

where, according to (A10.1.7) to (A10.1.9), N is supported in a small neigh-
borhood of {−ξλ, ξλ} and there are functions φ, ψ such that the following
estimates hold:

|N(t, ξ)|+ |φ(t, ξ)| ≤ Ct−
1
2 t−1
ε

|∂tN(t, ξ)| ≤ Ct−
3
4 t−1
ε

|ψ(t, ξ)| ≤ Ct−1t−1
ε

DtN(t, ξ) = (Dt + λ−
√

1 + ξ2)φ(t, ξ) + ψ(t, ξ),

(A10.1.79)

and where j = 0 in the case of bounds (A10.1.27), (A10.1.28) and j = 1 for
(A10.1.29).
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Let χ0 be in C∞0 (R), equal to one close to zero, and write integral (A10.1.78)
as IjL + IjR, where

IjL =
∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]
χ0

((
λ−

√
1 + ξ2

)√
t
)

×(1− χ)
( τ√

t

)
τ jN(τ, ξ) dτdξ.

(A10.1.80)

Since λ > 1, the dξ integral is O(t−
1
2 ), and using the estimate of N in

(A10.1.79), we get by (A10.1.13) and (A10.1.15)

|I0
L| ≤ C

ε√
t

Å
tε2

〈tε2〉

ã 1
2
, |I1

L| ≤ C
tε2

〈tε2〉

which are better than the right hand side of (A10.1.28), (A10.1.29) respec-
tively. To study IjR, we make a ∂τ integration by parts and write this term as
a sum of

(A10.1.81) − i
√
t

∫
ei(λt+xξ)χ1

(√
t
(
λ−

√
1 + ξ2

))
tjN(t, ξ) dξ

where χ1(z) = 1−χ0(z)
z , of

(A10.1.82) i
√
t

∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]

× χ1

((
λ−

√
1 + ξ2

)√
t
)
∂τ
[
(1− χ)

( τ√
t

)
τ j
]
N(τ, ξ) dξdτ

and of

(A10.1.83) −
√
t

∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]

× χ1

((
λ−

√
1 + ξ2

)√
t
)

(1− χ)
( τ√

t

)
τ jDτN(τ, ξ) dξdτ.

We plug the last equality (A10.1.79) in (A10.1.83). We get on the one hand

(A10.1.84) −
√
t

∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]

× χ1

((
λ−

√
1 + ξ2

)√
t
)

(1− χ)
( τ√

t

)
τ jψ(τ, ξ) dξdτ

and, after another integration by parts, the terms

(A10.1.85) i
√
t

∫
ei(λt+xξ)χ1

(√
t
(
λ−

√
1 + ξ2

))
tjφ(t, ξ) dξ
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and

(A10.1.86) − i
√
t

∫ t

√
t

∫
ei
[
(t−τ)
√

1+ξ2+λτ+xξ
]

× χ1

((
λ−

√
1 + ξ2

)√
t
)
∂τ
[
(1− χ)

( τ√
t

)
τ j
]
φ(τ, ξ) dξdτ.

Notice that since N and φ satisfy the same bound (A10.1.79), a bound for
(A10.1.81) will also provide a bound for (A10.1.85). In the same way, an
estimate for (A10.1.82) will bring one for (A10.1.86). We are just reduced, in
order to get (A10.1.28), (A10.1.29), to estimate the L∞ norms of (A10.1.81),
(A10.1.82) and (A10.1.84).

We estimate the modulus of (A10.1.81) by

C
ε2tj

〈tε2〉

∫
|ζ|<c

dζ

〈
√
tζ〉
≤ C ε

2tj−
1
2

〈tε2〉
log(1 + t)

which is better than the right hand side of (A10.1.28) (resp. (A10.1.29)) if
j = 0 (resp. j = 1). We bound (A10.1.82) by

C
√
t

∫
|ζ|<c

dζ

〈
√
tζ〉

∫ t

√
t
τ−

1
2

ε2

1 + τε2

∣∣∣∂τ[τ j(1− χ)
( τ√

t

)]∣∣∣dτ.
If j = 0, we get a bound in log(1 + t)ε2t−

1
4 , better than (A10.1.28), and if

j = 1, we obtain using (A10.1.12), a bound in

ε2t
1
4 log(1 + t)

which is better than (A10.1.29) since t ≤ ε−4.
Finally, we estimate (A10.1.84) by, using (A10.1.79),

log(1 + t)
∫ t

√
t
τ j−1 ε2

1 + τε2
dτ

which is bounded by (A10.1.28) if j = 0 and by (A10.1.29) if j = 1. We have
thus established these two estimates. To get the remaining bound (A10.1.27),
we just plug inside (A10.1.65) bound (A10.1.7) of M̂ and use (A10.1.13). This
concludes the proof.

A10.2. Action of linear and bilinear operators

The goal of this section is to study the action of some operators on a func-
tion of the form (A10.1.2), and on its decomposition U = U ′ + U ′′ given by
(A10.1.3). These operators will be of the form Op(m′), given by the non-
semiclassical quantization (A9.1.9), for symbols m′(y, ξ) that do not depend
on x and belong to the class S̃′κ,0(1, j), j = 1, 2 defined in Definition 2.1.1.

We study first linear operators.
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Proposition A10.2.1. — Let (t, x) → M(t, x) be a function satisfying as-
sumption (H1)ω i.e. inequalities (A10.1.6). Assume moreover that M is an
odd function of x.

Let m′ be a symbol on the class S̃′0,0(1, 1) of definition 2.1.1 i.e. a function
m′(y, ξ) on R× R such that

(A10.2.1) |∂α
′
0

y ∂αξm
′(y, ξ)| ≤ C(1 + |y|)−N

for any N,α′0, α, and that m′ satisfies m′(−y,−ξ) = m′(y, ξ), so that Op(m′)
will preserve odd functions. Then, for U ′′ defined from M by (A10.1.3), we
have

(A10.2.2) Op(m′)U ′′ = eiλtM1(t, x) + r(t, x)

where M1(t, x) is an odd function of x, satisfying for any α,N in N

|∂αxM1(t, x)| ≤ Cα,N t−ωε 〈x〉
−N

|∂αx ∂tM1(t, x)| ≤ Cα,N t
−ω+ 1

2
ε

(
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′)
〈x〉−N

(A10.2.3)

and where r(t, x) is such that for any α,N ,

(A10.2.4) |∂αx r(t, x)| ≤ Cα,N
[
ε2ωt−1 log(1 + t)

]
〈x〉−N .

Moreover, if L+ is the operator (A10.1.4), for any α ∈ N, k = 0, 1,∫ 1

−1
‖∂αxOp(m′)[

(
Lk+U

′)(t, µ·)]‖L∞ dµ ≤ Cαε2ω∫ 1

−1
‖∂αxOp(m′)[

(
Lk+U

′)(t, µ·)]‖L2 dµ ≤ Cαε2ω.
(A10.2.5)

Proof. — The definition (A9.1.9) of Op(m′) and the expression (A10.1.3) of
U ′′ imply that

Op(m′)U ′′ = i

2π

∫ t

−∞

∫
ei
[
xξ+(t−τ)

√
1+ξ2+λτ

]
m′(x, ξ)

×(1− χ)
( τ√

t

)
M̂(τ, ξ) dξdτ.

(A10.2.6)

We decompose M̂(τ, ξ) = M̂ ′(τ, ξ) + M̂ ′′(τ, ξ), where M̂ ′ is supported for ξ in
a small neighborhood of the two roots ±ξλ of

√
1 + ξ2 = λ and M̂ ′′ vanishes

close to that set when λ > 1, and M̂ ′ = 0 if λ < 1. Moreover M̂ ′(τ, ξ), M̂ ′′(τ, ξ)
are odd in ξ, because M is odd in x. We define then

B′(x, τ, ξ) = eixξm′(x, ξ)M̂ ′(τ, ξ)

B′′(x, τ, ξ) = eixξm′(x, ξ)M̂ ′′(τ, ξ).
(A10.2.7)
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By the evenness of m′, we have
(A10.2.8) B′(−x, τ,−ξ) = −B′(x, τ, ξ), B′′(−x, τ,−ξ) = −B′′(x, τ, ξ).

Let us study first the contribution of M̂ ′′ to (A10.2.6), given by

(A10.2.9) i

2π

∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ
]
B′′(x, τ, ξ)(1− χ)

( τ√
t

)
dξdτ.

We perform one ∂τ integration by parts, that provides on the one hand
eiλtM1(t, x), where

M1(t, x) = 1
2π

∫ (
λ−

√
1 + ξ2

)−1
B′′(x, t, ξ) dξ

satisfies (A10.2.3) by (A10.2.7), (A10.2.1) and (A10.1.6), and is odd in x by
(A10.2.8), and on the other hand a contribution

(A10.2.10) 1
2π

∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2+λτ
]
N(x, τ, ξ) dξdτ.

where

N(x, τ, ξ) = −∂τ
[
B′′(x, τ, ξ)(1− χ)

( τ√
t

)](
λ−

√
1 + ξ2

)−1

satisfies by (A10.2.1), (A10.1.6)

(A10.2.11) |∂αx ∂
β
ξN(x, τ, ξ)| ≤ C〈x〉−N 〈ξ〉−Nτε−ω

×
[
τε
−1 + τ−11τ∼

√
t + τε

1
2 τ−

3
2 (ε2
√
τ)

3
2 θ
′]
.

By oddness of M̂ in ξ, N(x, τ, 0) ≡ 0. Consequently, if we apply the stationary
phase formula to the ∂ξ-integral in (A10.2.10) at the unique (non degenerate)
critical point ξ = 0, we gain a decaying factor in 〈t− τ〉−1 instead of 〈t− τ〉−

1
2 .

Taking (A10.2.11) into account, and using (A10.1.11), we obtain for (A10.2.10)
and its ∂x-derivatives a bound in

CN 〈x〉−N
∫ t

√
t
〈t− τ〉−1τε

−ω[τε−1 + τ−11τ∼
√
t + τε

1
2 τ−

3
2 (ε2
√
τ)

3
2 θ
′]
dτ

≤ CN 〈x〉−N ε2ωt−1 log(1 + t)

which is bounded by (A10.2.4).
Let us study next the contribution of M̂ ′ to (A10.2.6). We get

(A10.2.12)
∫ t

1

∫
ei
[
(t−τ)
√

1+ξ2+λτ
]
B′(x, τ, ξ)(1− χ)

( τ√
t

)
dξdτ.

Write for 1 ≤ τ ≤ t
(A10.2.13) B′(x, τ, ξ) = B′(x, t, ξ) + (τ − t)B̃′(x, τ, t, ξ)
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where B̃′ satisfies by (A10.1.6), (A10.2.1)

|∂αx ∂
β
ξ B̃
′(x, τ, t, ξ)| ≤ Cτε−ω

[
τε
−1 + τε

1
2 τ−

3
2 (ε2
√
t)

3
2 θ
′]
〈x〉−N

and is supported for ξ close to {−ξλ, ξλ}. If we substitute in (A10.2.12) ex-
pression (τ − t)B̃′ to B′, and use that, since ξλ 6= 0, B̃′ is supported far away
the critical point ξ = 0 of the phase, we may gain a factor 〈t− τ〉−N for any
N by ∂ξ-integration by parts. We thus get a contribution to (A10.2.12) and
to its ∂x-derivatives bounded by

CN 〈x〉−N
∫ t

√
t
〈t− τ〉−Nτε−ω

[
τε
−1 + τε

1
2 τ−

3
2 (ε2
√
t)

3
2 θ
′]
dτ.

This again provides a contribution to (A10.2.4). We are left with studying
(A10.2.12) with B′(x, τ, ξ) replaced by B′(x, t, ξ) according to (A10.2.13) i.e.∫ t

1

∫
ei
[
(t−τ)
√

1+ξ2+λτ
]
(1− χ)

( τ√
t

)
B′(x, t, ξ) dξdτ

= eiλt
∫
T
(
t,
√

1 + ξ2 − λ
)
B′(x, t, ξ) dξ

(A10.2.14)

with T (t, ζ) = T1(t, ζ) + T2(t, ζ) and

T1(t, ζ) =
∫ t−1

0
eiτζ dτ

T2(t, ζ) = −
∫ t−1

0
eiτζχ

( t− τ√
t

)
dτ.

Note that if ϕ ∈ S(R)∫
T1(t, ζ)ϕ(ζ) dζ =

∫ t−1

0
ϕ̂(−τ) dτ =

∫ +∞

0
ϕ̂(−τ) dτ +O(t−∞)∫

T2(t, ζ)ϕ(ζ) dζ = O(t−∞).
(A10.2.15)

Using that B′ is supported close to ξ = ±ξλ, and that ξλ 6= 0, we may use in the
last integral in (A10.2.14) ζ =

√
1 + ξ2−λ as a variable of integration close to

this point. We express thus (A10.2.14) from integrals of the form (A10.2.15),
with ϕ expressed from B′. The definition (A10.2.7) of B′ and (A10.2.1),
(A10.1.6) imply that the principal term on the first line (A10.2.15) brings to
(A10.2.14) a contribution in eiλtM1(t, x) with M1 satisfying (A10.2.3). The
other contributions, as well as their ∂x-derivatives, are O(t−ωε t−N 〈x〉−N ) for
any N , so satisfy (A10.2.4).

It remains to prove (A10.2.5). We express L+U
′ from (A10.1.31), which

allows us to write Op(m′)[(L+U
′)(µ·)] as the sum of two expressions

(A10.2.16) i

2π

∫ +∞

1

∫
ei
[
(t−τ)
√

1+ξ2+λτ
]
χ
( τ√

t

)
Bµ
j (x, τ, ξ) dτdξ, j = 1, 2
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with

Bµ
1 (x, τ, ξ) = eixξµm′(x, µξ)x̂M(τ, ξ)

Bµ
2 (x, τ, ξ) = eixξµm′(x, µξ)τ ξ

〈ξ〉
M̂(τ, ξ).

(A10.2.17)

When j = 1, we use the stationary phase formula in ξ to make appear a
〈t− τ〉−

1
2 factor. Using also (A10.1.6) and (A10.2.1), we get for any ∂x-

derivative of (A10.2.16) with j = 1 a bound in

(A10.2.18) C

∫ √t
1
〈t− τ〉−

1
2 τε
−ω dτ〈x〉−N ≤ Cε2ω〈x〉−N .

When j = 2, we notice that because M̂ is odd in ξ, Bµ
2 (x, τ, ξ) vanishes at

second order at ξ = 0. Consequently, stationary phase formula in (A10.2.16)
makes gain a factor in 〈t− τ〉−

3
2 , so that (A10.2.16) is controlled, using again

(A10.1.12), by

C

∫ √t
1
〈t− τ〉−

3
2 ττε

−ω dτ〈x〉−N ≤ Cε2ω〈x〉−N .

Bounds (A10.2.5) follow from this inequality and (A10.2.18). This concludes
the proof of (A10.2.5) when k = 1. If k = 0, the estimate is similar to the one
with Bµ

1 above.

Let us prove a similar result to Proposition A10.2.1 for some bilinear oper-
ators.

Proposition A10.2.2. — Let M and U ′′ be as in the statement of Propo-
sition A10.2.1. Let m′ be a symbol in S̃′κ,0(

∏2
j=1 〈ξj〉

−1, 2) for some κ ≥ 0,
satisfying m′(−y,−ξ1,−ξ1) = −m′(y, ξ1, ξ2). Then for any function v

(A10.2.19) Op(m′)(U ′′, v) = eiλtOp(b1)v + Op(b2)v

where b1, b2 satisfy for any α′0, α,N the following estimates

|∂α
′
0

y ∂αξ b1(t, y, ξ)| ≤ Ct−ωε 〈y〉
−N 〈ξ〉−1

|∂α
′
0

y ∂αξ ∂tb1(t, y, ξ)| ≤ Ct−ω+ 1
2

ε

[
t
− 3

2
ε + t−

3
2 (ε2
√
t)

3
2 θ
′]
〈y〉−N 〈ξ〉−1

|∂α
′
0

y ∂αξ b2(t, y, ξ)| ≤ Cε2ωt−1 log(1 + t)〈y〉−N 〈ξ〉−1.

(A10.2.20)

Moreover bj(t,−y,−ξ) = bj(t, y, ξ).
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Proof. — By expression (A10.1.3) of U ′′, we have

Op(m′)(U ′′, v) = i

(2π)2

∫ t

−∞

∫∫
ei
[
x(ξ1+ξ)+(t−τ)

√
1+ξ2

1+λτ
]

×m′(x, ξ1, ξ)(1− χ)
( τ√

t

)
M̂(τ, ξ1)v̂(ξ) dξdξ1dτ

= Op(b)v
if

b(t, x, ξ) = i

2π

∫ t

−∞

∫∫
ei
[
xξ1+(t−τ)

√
1+ξ2

1+λτ
]

×m′(x, ξ1, ξ)(1− χ)
( τ√

t

)
M̂(τ, ξ1) dξ1dτ.

(A10.2.21)

We notice that if we consider ξ as a parameter, the function
(y, ξ1)→ m′(y, ξ1, ξ)M̂(τ, ξ1)

satisfies estimates of the form (A10.2.1) for every τ , as the losses in
M0(ξ1, ξ)κ = O(〈ξ1〉κ) appearing when one takes derivatives in the defi-
nition of symbol classes in (A9.1.5) are compensated by the rapid decay of
M̂(τ, ξ1). We obtain thus an integral of the form (A10.2.6) (with ξ replaced
by ξ1), depending on an extra parameter ξ. By (the proof of) Proposi-
tion A10.2.1, we obtain thus that (A10.2.21) has en expression of the form
(A10.2.2), i.e. eiλtb1 + b2, with b1, (resp. b2) satisfying bounds of the form
(A10.2.3) (resp. (A10.2.4)), which gives (A10.2.20), using also that m′(x, ξ1, ξ)
in (A10.2.21) is O(〈ξ〉−1). The evenness of bj in (y, ξ) comes from the oddness
of m′ and M̂ . This concludes the proof.

Corollary A10.2.3. — Under the assumptions of Proposition A10.2.2, one
has the following estimates for any α,N :

(A10.2.22) |∂αxOp(m′)(U ′′, U ′′)| ≤ C〈x〉−N
[
t−2ω
ε + ε4ωt−2(log(1 + t))2].

Proof. — By (A10.2.19), we may write

Op(m′)(U ′′, U ′′) = eiλtOp(b1)U ′′ + Op(b2)U ′′

with b1, b2 satisfying (A10.2.20). We may apply (A10.2.2) to each term above,
using that b1, b2 satisfy estimates of the form (A10.2.1), with an extra pre-
factor given by the first and last estimates (A10.2.20). Using the first bound
(A10.2.3) and (A10.2.4), we reach the conclusion.

We have obtained in the preceding results estimates under assumptions of
the form (A10.1.6) for the function M in (A10.1.3), i.e. under assumption
(H1)ω. We shall need also variants of the preceding results when assumption
(H2) i.e. (A10.1.7) holds instead. In this case, we shall split the function U
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defined in (A10.1.2) in a different way than in (A10.1.3), cutting at time of
order τ ∼ ct instead of τ ∼

√
t. More precisely, we set

U = U ′1 + U ′′1

U ′1(t, x) = i

∫ +∞

1
ei(t−τ)p(Dx)+iλτχ

(τ
t

)
M(τ, ·) dτ

U ′′1 (t, x) = i

∫ t

−∞
ei(t−τ)p(Dx)+iλτ (1− χ)

(τ
t

)
M(τ, ·) dτ

(A10.2.23)

Proposition A10.2.4. — Let us assume that M is odd in x, satisfies the
first inequality (A10.1.7) and that m′ satisfies (A10.2.1). We have then the
following estimates for any α,N in N:

(A10.2.24) |∂αxOp(m′)U ′′1 | ≤ CαN 〈x〉
−N t

− 1
2

ε t−1 log(1 + t)
and for ` = 0, 1
(A10.2.25)∫ 1

−1

[
‖∂αxOp(m′)

[(
L`+ U ′1

)
(t, µ·)

]
‖L2+‖∂αxOp(m′)

[(
L`+U

′
1
)
(t, µ·)

]
‖L∞

]
dµ ≤ Cαε2.

Estimate (A10.2.25) holds as soon as (A10.2.1) is true for some large enough
N .

Proof. — We denote B(x, τ, ξ1) = eixξ1m′(x, ξ1)M̂(τ, ξ1), that satisfies by the
first inequality (A10.1.7), (A10.2.1)

|∂α0
x ∂αξ1B(x, τ, ξ1)| ≤ Cα0,α〈x〉

−N 〈ξ1〉−Nτ−
1
2 τε
−1

and that vanishes at ξ1 = 0 as M is odd. Then as in (A10.2.6), (A10.2.9)

(A10.2.26) Op(m′)U ′′1 = i

2π

∫ t

−∞

∫
ei
[
(t−τ)
√

1+ξ2
1+λτ

]
× (1− χ)

(τ
t

)
B(x, τ, ξ1) dξ1dτ.

Using stationary phase in ξ1 and the fact that B vanishes at ξ1 = 0, we get
for some a ∈]0, 1[

|∂αxOp(m′)U ′′1 (t, x)| ≤ C
∫ t

at
〈t− τ〉−1τε

−1τ−
1
2 dτ〈x〉−N

which is bounded by the right hand side of (A10.2.24).
To prove (A10.2.25) with ` = 1, we express Op(m′)[

(
L+U

′)(µ·)] under form
(A10.2.16), except that the cut-off χ(τ/

√
t) has to be replaced by χ(τ/t) i.e.

we have to study

(A10.2.27) i

2π

∫ +∞

1

∫
ei
[
(t−τ)
√

1+ξ2
1+λτ

]
χ
(τ
t

)
Bµ
j (x, τ, ξ1) dξ1dτ
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where Bµ
j , j = 1, 2 is given by (A10.2.17). If j = 1, we get from the first

inequality (A10.1.7), (A10.2.1) and stationary phase in ξ1 a bound of ∂x-
derivatives of (A10.2.27) by

(A10.2.28) C〈x〉−N
∫ at

1
〈t− τ〉−

1
2 τ−

1
2 τε
−1 dτ

for some a ∈]0, 1[, whence the O(ε2) wanted bound for the L2 and L∞ norms.
If j = 2, using stationary phase and the fact that Bµ

2 vanishes at order 2 at
ξ = 0, we get an estimate in

(A10.2.29) C〈x〉−N
∫ at

1
〈t− τ〉−

3
2 τ

1
2 τε
−1 dτ

which is also O(ε2). This concludes the proof of (A10.2.25) when ` = 1. If
` = 0, we may use directly (A10.2.28) to get the estimate. Notice that to get
(A10.2.25), we do not need that (A10.2.28), (A10.2.29) hold for any N , but
just for a large enough N (actually N = 1 suffices), so that (A10.2.1) has to
be assumed only for some large enough N .

Let us write a version of Proposition A10.2.2 under assumption (H2) as
well.

Proposition A10.2.5. — Let M be as in Proposition A10.2.4 and m′ in
S̃′κ,0(

∏2
j=1 〈ξj〉

−1, 2). Then Op(m′)(U ′1, v) and Op(m′)(U ′′1 , v) may be written
as Op(b)v for symbols b(t, y, ξ) satisfying estimates

(A10.2.30) |∂α
′
0

y ∂αξ b(t, y, ξ)| ≤ Ct
− 1

2
ε t−1 log(1 + t)〈y〉−N 〈ξ〉−1.

Proof. — Consider first Op(m′)(U ′′1 , v) that may be written using expression
(A10.2.23) of U ′′1 as

(A10.2.31) Op(m′)(U ′′1 , v) = 1
2π

∫
eixξb(t, x, ξ)v̂(ξ) dξ

with

b(t, x, ξ) = i

2π

∫ t

−∞

∫
eixξ1+i

[
(t−τ)
√

1+ξ2
1+λτ

]
×m′(x, ξ1, ξ)M̂(τ, ξ1)(1− χ)

(τ
t

)
dξ1dτ.

Using again stationary phase with respect to ξ1 and the fact that M̂(τ, 0) = 0
to gain a decaying factor in 〈t− τ〉−1, we obtain for the ∂α

′
0

x ∂αξ derivatives of
b an upper bound in

(A10.2.32) C

∫ t

at
〈t− τ〉−1τ−

1
2 τε
−1 dτ〈x〉−N 〈ξ〉−1 (a ∈]0, 1[)
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since, as seen at the beginning of the proof of Proposition A10.2.2, (y, ξ1) →
m′(y, ξ1, ξ)M̂(τ, ξ1) and its derivatives have bounds in

C〈y〉−Nτ−
1
2 τε
−1〈ξ1〉−N 〈ξ〉−1

according to (A10.1.7). As (A10.2.32) is bounded by the right hand side of
(A10.2.30), we get the wanted conclusion for Op(m′)(U ′′1 , v).

Consider now the case of Op(m′)(U ′1, v) i.e.
1

(2π)2

∫
eix(ξ1+ξ)m′(x, ξ1, ξ)Û ′1(ξ1)v̂(ξ) dξ1dξ.

We may rewrite it as
1

2π

∫
eixξb(t, x, ξ)v̂(ξ) dξ

with, for any N ,

(A10.2.33) b(t, x, ξ) =
∫
KN (t, x− y, x, ξ)〈Dy〉2N−1U ′1(y) dy

where
KN (t, z, x, ξ) = 1

2π

∫
eizξ1〈ξ1〉−2N+1m′(x, ξ1, ξ) dξ1.

By assumption on m′, estimates of the form (A9.1.5) hold (with y in the right
hand side of this inequality replaced by x) whence

|∂α
′
0

x ∂αξ ∂
α1
ξ1
m′(x, ξ1, ξ)| ≤ C(1 + |x|〈ξ1〉−κ)−N ′〈ξ〉−1〈ξ1〉−1+κ(|α|+|α1|)

for any N ′. We conclude that for any α, β,N ′, N ′′, one has estimates

|∂αx ∂
β
ξKN (t, z, x, ξ)| ≤ C〈x〉−N

′
〈z〉−N

′′
〈ξ〉−1

if N is taken large enough relatively to N ′, N ′′, α, β. Plugging this in
(A10.2.33), we conclude that for any N ′, N ′′, α, β, there is N such that

(A10.2.34) |∂αx ∂
β
ξ b(t, x, ξ)| ≤ C〈x〉

−N ′ sup
y
|〈y〉−N

′′
〈Dy〉2N−1U ′1(y)|〈ξ〉−1.

Since U ′1 is odd, we may write

〈Dy〉2N−1U ′1(y) = i
y

2

∫ 1

−1
(Dx〈Dx〉2N−1U ′1)(µy) dµ

= i
y

2t

∫ 1

−1

[
(L+〈Dx〉2NU ′1)(µy)− µy(〈Dx〉2NU ′1)(µy)

]
dµ

using the definition (A10.1.4) of L+. We get finally

(A10.2.35) |〈y〉−N
′′
〈Dy〉2N−1U ′1(y)|

≤ C

t

[
‖〈y〉−N

′′+1L+〈Dx〉2NU ′1‖L∞ + ‖〈y〉−N
′′+2〈Dx〉2NU ′1‖L∞

]
.
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We may apply (A10.2.25) with U ′1 replaced by 〈Dx〉2NU ′1 (since 〈Dx〉2NM(τ, ·)
in (A10.2.23) satisfies the same assumption as M(τ, ·)), and the pre-factor
〈y〉−N

′′+1, 〈y〉−N
′′+2 in the right hand side of (A10.2.35) satisfies estimates of

the form (A10.2.1) with some large fixed N (instead of for any N). By the last
statement in Proposition A10.2.4, this is enough to apply (A10.2.25). Plugging
this in (A10.2.34), we get for that expression a bound in ε2t−1〈x〉−N

′
〈ξ〉−1,

which is controlled by the right hand side of (A10.2.30) since t ≤ ε−4. This
concludes the proof.

A10.3. An explicit computation

In this last section of this chapter, we make an explicit computation that
will be used in relation with Fermi Golden Rule.

Let χ be in C∞0 (R), even, equal to one close to zero. If λ > 1 and if ±ξλ
are still the two roots of

√
1 + ξ2 − λ = 0, set

(A10.3.1) χλ(ξ) = χ(ξ − ξλ) + χ(ξ + ξλ).

If λ < 1, set χλ ≡ 0.

Proposition A10.3.1. — Let M be a function satisfying (A10.1.6) with
ω = 1, that is odd in x. Let U be defined from M by (A10.1.2) ant let Z be
an odd function in S(R). Then

∫
Û(t, ξ)Ẑ(ξ) dξ = lim

σ→0+
ieiλt

∫ +∞

0

∫
eiτ
[√

1+ξ2−λ+iσ
]
χλ(ξ)M̂(t, ξ)Ẑ(ξ) dξdτ

+eiλt
∫ (1− χλ)(ξ)
λ−

√
1 + ξ2

M̂(t, ξ)Ẑ(ξ) dξ + r(t)

(A10.3.2)

where r satisfies

(A10.3.3) |r(t)| ≤ C
(
ε2t−

3
2 + t−2

ε + εt−
3
2 (ε2
√
t)

3
2 θ
′)
.

Remark: It is clear that the limit in the right hand side of (A10.3.2) exists
and may be computed from

(√
1 + ξ2 − λ + i0

)−1. We keep it nevertheless
under the form (A10.3.2) as this will be more convenient for us when using
the proposition.

To prove the proposition, we shall write the left hand side of (A10.3.2),
according to (A10.1.2), under the form

(A10.3.4) i

∫ t

1

∫
ei(t−τ)

√
1+ξ2+iλτM̂(τ, ξ)Ẑ(ξ) dξdτ.
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We decompose
M̂(τ, ξ) = M̂ ′(τ, ξ) + M̂ ′′(τ, ξ)

M̂ ′(τ, ξ) = M̂(τ, ξ)χλ(ξ)

M̂ ′′(τ, ξ) = M̂(τ, ξ)(1− χλ)(ξ).

(A10.3.5)

We notice that M̂ ′′ vanishes at order one at ξ = 0 by the oddness assumption
on M .

Lemma A10.3.2. — Expression (A10.3.4) with M̂ replaced by M̂ ′′ may be
written as

(A10.3.6) eiλt
∫ (1− χλ)(ξ)
λ−

√
1 + ξ2

M̂(t, ξ)Ẑ(ξ) dξ

modulo a remainder satisfying (A10.3.3).

Proof. — The expression under study is the sum of (A10.3.6) and of

(A10.3.7) −
∫
ei(t−1)

√
1+ξ2+iλM̂(1, ξ) (1− χλ)(ξ)

λ−
√

1 + ξ2
Ẑ(ξ) dξ

and

(A10.3.8) −
∫ t

1

∫
ei(t−τ)

√
1+ξ2+iλτ∂τM̂(τ, ξ) (1− χλ)(ξ)

λ−
√

1 + ξ2
Ẑ(ξ) dξdτ.

In (A10.3.7), (A10.3.8), the integrand vanishes at order 2 at ξ = 0 by the
oddness of M and Z. The stationary phase formula in ξ allows thus to gain
a factor t−

3
2 or 〈t− τ〉−

3
2 . Taking into account (A10.1.6) with ω = 1, we thus

bound (A10.3.7) by Cε2t−
3
2 and (A10.3.8) from∫ t

1
〈t− τ〉−

3
2

[ ε4

(1 + τε2)2 + ε1+3θ′

(1 + τε2)
1
2
τ−

3
2

(
1− θ

′
2

)]
dτ

≤ C
[
t−2
ε + εt−

3
2 (ε2
√
t)

3
2 θ
′]

(using t ≤ ε−4). We thus get quantities controlled as in (A10.3.3).

The lemma implies the proposition when λ < 1. We shall assume from now
on that λ > 1 and study (A10.3.4) with M̂ replaced by M̂ ′.
End of the proof of Proposition A10.3.1: By Taylor formula, we write for
1 ≤ τ ≤ t

M̂ ′(τ, ξ) = M̂ ′(t, ξ) + (τ − t)H(t, τ, ξ)
where according to (A10.1.6) with ω = 1, H satisfies for any α

|∂αξ H(t, τ, ξ)| ≤ Cατε−
1
2
[
τε
− 3

2 + τ−
3
2 (ε2
√
t)

3
2 θ
′]
.
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Integral (A10.3.4) with M̂ replaced by M̂ ′ may be written as the sum J1 + J2
where

J1 = i

∫ t

1

∫
ei(t−τ)

√
1+ξ2+iλτM̂ ′(t, ξ)Ẑ(ξ) dξdτ

J2 = i

∫ t

1

∫
ei(t−τ)

√
1+ξ2+iλτ (τ − t)H(t, τ, ξ)Ẑ(ξ) dξdτ.

(A10.3.9)

Since H is supported close to ±ξλ, so far away from zero, we can make in J2
any number of integrations by parts in ξ in order to gain a decaying factor in
〈t− τ〉−N for any N , so that

|J2| ≤ C
∫ t

1
〈t− τ〉−N

[
τε
−2 + τε

− 1
2 τ−

3
2 (ε2
√
t)

3
2 θ
′]
dτ

which is better than the right hand side of (A10.3.3). On the other hand, we
may write

J1 = ieiλt
∫ t−1

0

∫
eiτ
(√

1+ξ2−λ
)
M̂ ′(t, ξ)Ẑ(ξ) dξdτ

= lim
σ→0+

ieiλt
∫ +∞

0

∫
eiτ
(√

1+ξ2−λ+iσ
)
M̂ ′(t, ξ)Ẑ(ξ) dξdτ + J ′1

(A10.3.10)

where

J ′1 = −ieiλt lim
σ→0+

∫ +∞

t−1

∫
eiτ
(√

1+ξ2−λ+iσ
)
M̂ ′(t, ξ)Ẑ(ξ) dξdτ.

The first term in the right hand side of (A10.3.10) provides the first term in
the right hand side of (A10.3.2). Moreover, in the expression of J ′1, we can
make as many integrations by parts in ξ as we want to get a decaying factor
in 〈τ〉−N for any N . This shows that J ′1 is O(ε2t−N ), so may be incorporated
to r in (A10.3.2). This concludes the proof.

2





APPENDIX A11

ACTION OF MULTILINEAR OPERATORS ON
SOBOLEV AND HÖLDER SPACES

In Appendix A9, we have introduced multilinear operators that generalize
the linear operators (A9.0.3). In this appendix, we want to discussed Sobolev
boundedness properties of such operators. For linear ones like (A9.0.3), given
in terms of symbols satisfying (A9.0.1) with M(x, ξ) ≡ 1, such bounds are
well known: see for instance Dimassi and Sjöstrand [24]. We generalize these
bounds to multilinear operators, under the form

(A11.0.1) ‖Oph(a)(v1, . . . , vn)‖Hs
h
≤ C

n∑
j=1

∏
`6=j
‖v`‖W ρ0,∞

h
‖vj‖Hs

h
,

where ‖v‖W ρ0,∞
h

= ‖〈hDx〉ρ0v‖L∞ and ‖v‖Hs
h

= ‖〈hDx〉sv‖L2 with s ≥ 0 and
ρ0 a large enough number independent of s. Notice that such an estimate
is the natural generalization of the standard bound ‖uv‖Hs ≤ ‖u‖L∞‖v‖Hs +
‖u‖Hs‖v‖L∞ , that holds for any s ≥ 0, to a framework of multilinear operators
more general than the product.

We give also, in the case when the symbol a
(
x
h , x, ξ1, . . . , ξn

)
in (A11.0.1) is

rapidly decaying in x
h , other estimates of the form

(A11.0.2) ‖Oph(a)(v1, . . . , vn)‖L2 ≤ Ch
n−1∏
j=1
‖vj‖W ρ0,∞

h
[‖L±vn‖L2 + ‖vn‖L2 ]

for any odd functions v1, . . . , vn, where L± = x ± Dx
〈Dx〉 . The important point

here is that the rapid decay in x/h of the symbol a allows one to gain in the
right hand side a small factor h. We have already explained in Chapter 1
where this gain comes from: The quantity inside the norm in the left hand
side of (A11.0.2) is h = t−1 times a generalization of expression (1.7.4). We
have seen that thanks to (1.7.5), one may express any of the functions vj ,
say vn, from L±vn, up to a loss of x

h that is compensated by the rapid decay
of a relatively to that variable. Such properties explain why terms like r′1 in
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(A9.0.8) may be considered somewhat as remainders: they do not involve a
factor h in their estimate, but the fact that they decay rapidly in x

h allows one
to use (A11.0.2) and thus to recover in that way a O(h) bound.

Let us indicate more precisely what are the Sobolev bounds we shall get
with respect to the symbols defined in Appendix A9. Recall that we in-
troduced classes of symbols S̃κ,0(M,p), S̃′κ,0(M,p) in Definition 2.1.1 and
their (generalized) semiclassical counterparts Sκ,β(M,p), S′κ,β(M,p) in Def-
inition A9.1.2. We shall study first the action of operators associated to the
S̃κ,0(M,p), Sκ,β(M,p) classes and then, in the second section of this appendix,
the case of operators associated to classes of decaying symbols S̃′κ,0(M,p),
S′κ,β(M,p).

A11.1. Action of quantization of non space decaying symbols

We introduce the following notation. If v is a function depending on the
semiclassical parameter h ∈]0, 1], we set

(A11.1.1) ‖v‖Hs
h

= ‖〈hDx〉sv‖L2

for any s ∈ R. For ρ in N, we define

(A11.1.2) ‖v‖W ρ,∞
h

= ‖〈hDx〉ρv‖L∞ .

Proposition A11.1.1. — Let n be in N∗, κ in N, ν ≥ 0. There is ρ0
in N such that, for any β ≥ 0, any symbol a in the class Sκ,β(Mν

0 , n) of
Definition A9.1.2 (with M0 given by (A9.1.2)), the following holds true, under
the restriction that, for (i) and (ii), either (κ, β) = (0, 0) or 0 < κβ ≤ 1 or
a(y, x, ξ1, . . . , ξn) is independent of x:

(i) Assume moreover that a(y, x, ξ1, . . . , ξn) is supported in the domain

|ξ1|+ · · ·+ |ξn−1| ≤ K(1 + |ξn|)

for some constant K. Then, for any s ≥ 0, there is C > 0 such that, for any
test functions v1, . . . , vn

(A11.1.3) ‖Oph(a)(v1, . . . , vn)‖Hs
h
≤ C

n−1∏
j=1
‖vj‖W ρ0,∞

h
‖vn‖Hs

h

uniformly in h ∈]0, 1].
(ii) Without any support condition on the symbol, we have instead

(A11.1.4) ‖Oph(a)(v1, . . . , vn)‖Hs
h
≤ C

n∑
j=1

∏
`6=j
‖v`‖W ρ0,∞

h
‖vj‖Hs

h
.
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(iii) For any j = 1, . . . , n, we have also the estimate (without any restriction
on (κ, β) or a)

(A11.1.5) ‖Oph(a)(v1, . . . , vn)‖L2 ≤ C
∏
` 6=j
‖v`‖W ρ0,∞

h
‖vj‖L2 .

Moreover, the above estimates hold true under a weaker assumption than in
Definition A9.1.2 of the symbols: namely, it is enough to assume that bounds
(A9.1.5) hold with N = 2 (instead of for all N) for the last exponent in this
formula.

Before giving the proof, we establish a lemma.

Lemma A11.1.2. — Let a be in the class S′κ,0(Mν
0 , n) of Definition A9.1.2,

(or more generally a symbol satisfying (A9.1.5) for any α′0, α0, k ∈ N, α ∈ Np,
with the last factor replaced by (1 + M−κ0 |y|)−2). There is ρ0 in N depending
only on ν, and a family of functions ak1,...,kn−1(v1, . . . , vn−1, y, x, ξ) indexed by
(k1, . . . , kn−1) ∈ Nn−1 satisfying bounds

(A11.1.6) |∂αx ∂α
′

ξ ak1,...,kn−1(v1, . . . , vn−1, y, x, ξ)|

≤ C2−max(k1,...,kn−1)〈y〉−2
n−1∏
j=1
‖vj‖W ρ0,∞

h

for 0 ≤ α, α′ ≤ 2, such that if we set for any y

(A11.1.7) a(y, x, hD1, . . . , hDn)(v1, . . . , vn−1, vn)

= 1
(2π)n

∫
eix(ξ1+···+ξn)a(y, x, hξ1, . . . , hξn)

n∏
j=1

v̂j(ξj) dξ1 . . . dξn

and use a similar notation for ak1,...,kn−1(v1, . . . , vn−1, y, x, hDx)vn, then

(A11.1.8) a(y, x, hD1, . . . , hDn)(v1, . . . , vn−1, vn)

=
+∞∑
k1=0
· · ·

+∞∑
kn−1=0

ak1,...,kn−1(v1, . . . , vn−1, y, x, hDx)vn.

Proof. — We take a Littlewood-Paley decomposition of the identity, Id =∑+∞
k=0 ∆h

k , where ∆h
0 = Oph(ψ(ξ)), ∆h

k = Oph(ϕ(2−kξ)) for k > 0, with conve-
nient functions ψ ∈ C∞0 (R), ϕ ∈ C∞0 (R − {0}). We also take ψ̃ in C∞0 (R), ϕ̃
in C∞0 (R − {0}) with ψ̃ψ = ψ, ϕ̃ϕ = ϕ. We set ϕ̃k(ξ) = ϕ̃(2−kξ) for k > 0,
ϕ̃0(ξ) = ψ̃(ξ). Plugging this decomposition on each factor vj , j = 1, . . . , n− 1
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in (A11.1.7), we obtain an expression of the form (A11.1.8) if we define

(A11.1.9) ak1,...,kn−1(v1, . . . , vn−1, y, x, ξ)

= 1
(2π)n−1

∫
eix(ξ1+···+ξn−1)a(y, x, hξ1, . . . , hξn−1, ξ)

×
n−1∏
j=1

ϕ̃kj (hξj)
÷∆h
kj
vj(ξj) dξ1 . . . dξn−1.

We may rewrite this as

(A11.1.10) ak1,...,kn−1(v1, . . . , vn−1, y, x, ξ)

= h−(n−1)
∫
Kk1,...,kn−1

(
y, x,

x− x′1
h

, . . . ,
x− x′n−1

h
, ξ
)

×
n−1∏
j=1

∆h
kjvj(x

′
j) dx′1 . . . dx′n−1

with

(A11.1.11) Kk1,...,kn−1

(
y, x, z1, . . . , zn−1, ξ

)
= 1

(2π)n−1

∫
ei(z1ξ1+···+zn−1ξn−1)a(y, x, ξ1, . . . , ξn−1, ξ)

×
n−1∏
j=1

ϕ̃kj (ξj) dξ1 . . . dξn−1.

By definition of M0(ξ1, . . . , ξn−1, ξn), on the support of
∏n−1
j=1 ϕ̃kj (ξj), one has

M0(ξ1, . . . , ξn−1, ξn) = O(2k̂), if k̂ = max(k1, . . . , kn−1). As a is in the class
S′κ,0(Mν

0 , n), this implies that a in (A11.1.11) is O(2νk̂). Moreover, if we per-

form two ∂ξj integrations by parts in (A11.1.11), we gain a factor in 〈2−k̂κzj〉
−2

under the integral, for j = 1, . . . , n− 1, according to (A9.1.5). In addition, we
have also a decaying factor in 〈2−k̂κ|y|〉

−2
. It follows that for α, α′ ≤ 1

(A11.1.12) |∂αx ∂α
′

ξ Kk1,...,kn−1

(
y, x, z1, . . . , zn−1, ξ

)
|

≤ C2[κ(α+α′+2)+ν+n−1]k̂
n−1∏
j=1
〈2−κk̂zj〉

−2
〈y〉−2.

Plugging this estimate in (A11.1.10) and using

|∆h
kjvj(x

′
j)| ≤ C2−kjρ0‖〈hDx〉ρ0vj‖L∞

we see that if ρ0 has been taken large enough relatively to ν, κ, we get bounds
of the form (A11.1.6). This concludes the proof.
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Proof of Proposition A11.1.1: (i) We reduce first to the case s = 0. Actually,
by Corollary A9.2.4, that applies under the restrictions in the statement on
(κ, β) or a, the operator

(v1, . . . , vn)→ 〈hDx〉sOph(a)(v1, . . . , vn−1, 〈hDx〉−svn)

may be written as Oph(ã)(v1, . . . , vn) for some symbol ã in Sκ,β(Mν′
0 , n) for

some ν ′ that does not depend on s. It is thus sufficient to show that

(A11.1.13) ‖Oph(ã)(v1, . . . , vn)‖L2 ≤ C
n−1∏
j=1
‖vj‖W ρ0,∞

h
‖vn‖L2 .

By expression (A9.1.6), we have

Oph(ã)(v1, . . . , vn) = ã
(x
h
, x, hD1, . . . , hDn

)
(v1, . . . , vn)

= ã(−∞, x, hD1, . . . , hDn)(v1, . . . , vn)

+
∫ x

h

−∞
(∂yã)(y, x, hD1, . . . , hDn)(v1, . . . , vn) dy.

(A11.1.14)

As ∂yã is in S′κ,0(Mν
0 , n) (for some ν), we may apply at any fixed y expan-

sion (A11.1.8) to ∂yã. The symbols ak1,...,kn−1 in the right hand side satisfy
(A11.1.6), so that we may apply to them the Calderón-Vaillancourt theorem [9]
in the version of Cordes [12], considering y, v1, . . . , vn−1 as parameters. One
gets in that way for any y, v1, . . . , vn,

(A11.1.15) ‖∂yã(y, x, hD1, . . . , hDn)(v1, . . . , vn)‖L2

≤ C
∑
k1

· · ·
∑
kn−1

2−max(k1,...,kn−1)〈y〉−2
n−1∏
j=1
‖vj‖W ρ0,∞

h
‖vn‖L2 .

The fact that the L2 norm of the last term in (A11.1.14) is bounded from
above by the right hand side of (A11.1.3) (with s = 0) follows from that
inequality. If we apply the version of Lemma A11.1.2 without parameter y
to ã(−∞, x, ξ1, . . . , ξn), we obtain also an inequality of the form (A11.1.15)
(without factor 〈y〉−2 in the right hand side), which implies for the first term
in the right hand side of (A11.1.14) the wanted estimate. This concludes the
proof.

(ii) We just split a as a sum of symbols for which
∑
` 6=j |ξ`| ≤ K(1 + |ξj |),

j = 1, . . . , n and apply (i) to each of them.
(iii) It is enough to prove (A11.1.5) with j = n for instance. Remember that

in the proof of (i), we use that the support condition on a and the restrictions
on (κ, β) or a only to reduce the case of Hs

h to L2 estimates. Once this
has been done, inequality (A11.1.13) has been proved without any support
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condition on ã, nor on (κ, β), so that it implies (A11.1.5). This concludes
the proof, the last statement of the Proposition coming from the fact that
Lemma A11.1.2 has been proved for symbols satisfying the indicated property
and that Corollary A9.2.4 used at the beginning of the proof holds also under
such a condition. 2

It will be useful to be able to decompose a symbol belonging to the class
Sκ,0(Mν

0 , n) as a sum of a symbol in Sκ,β(Mν
0 , n) for some small β > 0 and a

symbol whose quantization satisfies better estimates than (A11.1.4), (A11.1.5).
Define

(A11.1.16) L± = 1
h

Oph(x± p′(ξ)).

Corollary A11.1.3. — Let a(y, x, ξ1, . . . , ξn) be in Sκ,0(Mν
0 , n) for some

κ ≥ 0, some ν ≥ 0, some n ≥ 2. Let β > 0 (small), r ∈ R+. One may
decompose a = a1 + a2 where a1 is in Sκ,β(Mν

0 , n) and a2 is such that if s
satisfies (s− ρ0 − 1)β ≥ r + n+1

2

(A11.1.17) ‖Oph(a2)(v1, . . . , vn)‖Hs
h
≤ Chr

n∏
j=1
‖vj‖Hs

h

(A11.1.18)

‖L±Oph(a2)(v1, . . . , vn)‖L2 ≤ Chr
n−1∏
j=1
‖vj‖Hs

h
(‖vn‖L2 + ‖L±vn‖L2)

(A11.1.19)

‖L±Oph(a2)(v1, . . . , vn)‖L2 ≤ Chr
n−1∏
j=1
‖vj‖Hs

h
(‖vn‖L2 + ‖L±vn‖W ρ0,∞

h
).

(In the last two estimates, we could make play the special role devoted to n to
any other index).

A similar statement holds replacing classes Sκ,0 (resp. Sκ,β) by S′κ,0 (resp.
S′κ,β).

Proof. — Take χ in C∞0 (R) equal to one close to zero and define a1 =
aχ(hβM0(ξ)), a2 = a(1 − χ)(hβM0(ξ)). Then a1 is in Sκ,β(Mν

0 , n) as it
satisfies (A9.1.4), (A9.1.5). Let us show that a2 obeys (A11.1.17), (A11.1.18).
Decomposing a2 in a sum of several symbols, we may assume for instance
that it is supported for |ξ1| + · · · + |ξn−1| ≤ K〈ξn〉. Then, by definition of
a2, there is at least one index j, 1 ≤ j ≤ n − 1, such that |ξj | ≥ ch−β on the
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support of a2, for instance j = n− 1. Applying (A11.1.3), we get

(A11.1.20) ‖Oph(a2)(v1, . . . , vn)‖Hs
h

≤ C
n−1∏
j=1
‖vj‖W ρ0,∞

h
‖Oph((1− χ̃)(h−βξ))vn−1‖W ρ0,∞

h
‖vn‖Hs

h

for some new function χ̃ equal to one close to zero. By semiclassical Sobolev
injection, ‖vj‖W ρ0,∞

h
≤ Ch−

1
2 ‖vj‖Hs

h
if s > ρ0 + 1

2 and

‖Oph((1− χ̃)(hβξ))vn−1‖W ρ0,∞
h

≤ Ch−
1
2 ‖Oph((1− χ̃)(h−βξ))vn−1‖Hρ0+1

h

≤ Ch−
1
2 +(s−ρ0−1)β‖vn−1‖Hs

h
.

(A11.1.21)

If s is as in the statement, we get (A11.1.17).
To obtain (A11.1.18), we notice that

L±Oph(a2)(v1, . . . , vn) =± 1
h

Oph(p′(ξ))Oph(a2)(v1, . . . , vn)

+ iOph
(∂a2
∂ξn

)
(v1, . . . , vn)

+ Oph(a2)
(
v1, . . . , vn−1,

x

h
vn

)
.

(A11.1.22)

The L2 norm of the first two terms in the right hand side is bounded from
above by Chr

∏n−1
j=1 ‖vj‖Hs

h
‖vn‖L2 if we use (A11.1.5) and (A11.1.21), for s as

in the statement. On the other hand, in the third term, the last argument of
Oph(a2) in (A11.1.22) may be written L±vn∓ 1

hOph(p′(ξ)), so that we get an
upper bound by the right hand side of (A11.1.18) using again (A11.1.5) and
(A11.1.21).

We may also estimate the last term in (A11.1.22) using (A11.1.5), but
putting the L2 norm on vn−1, i.e. writing

‖Oph(a2)(v1, . . . , vn−1,L±vn)‖L2

≤ C
n−2∏
j=1
‖vj‖W ρ0,∞

h
‖Oph((1− χ̃)(hβξ))vn−1‖L2‖L±vn‖W ρ0,∞

h
.

Bounding the last but one factor by hβs‖vn−1‖Hs
h
, we get as well (A11.1.19).

The last statement of the corollary concerning classes S′κ,0, S′κ,β holds in the
same way.

Let us state next a corollary of Proposition A11.1.1.
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Corollary A11.1.4. — Let ν ≥ 0, n ∈ N∗. There is ρ0 ∈ N such that for
any κ ≥ 0, any β ≥ 0, for any j = 1, . . . , n, any a in Sκ,β(Mν

0 , n), there is
C > 0 such that for any v1, . . . , vn,
(A11.1.23)∥∥∥x

h
Oph(a)(v1, . . . , vn)

∥∥∥
L2
≤ C

∏
`6=j
‖v`‖W ρ0,∞

h
(h−1‖vj‖L2 + ‖L±vj‖L2)

and for any j 6= j′, 1 ≤ j, j′ ≤ n

(A11.1.24)
∥∥∥x
h

Oph(a)(v1, . . . , vn)
∥∥∥
L2
≤ C

( ∏
` 6=j,j′

‖v`‖W ρ0,∞
h

)
‖vj′‖L2

×
(
h−1‖vj‖W ρ0,∞

h
+ ‖L±vj‖W ρ0,∞

h

)
.

Proof. — Let us prove (A11.1.23) with j = n for instance. By definition of
the quantization
x

h
Oph(a)(v1, . . . , vn) = Oph(a)

(
v1, . . . , vn−1,

x

h
vn

)
+ iOph

( ∂a
∂ξn

)
(v1, . . . , vn).

If we write x
h = L± ∓ h−1p′(Dx), and apply (A11.1.5) with j = n, we obtain

(A11.1.23). One obtains (A11.1.24) in the same way, applying (A11.1.5) with
j replaced by j′, and using that p′(hDx) is bounded from W

ρ′0,∞
h to W ρ0,∞

h if
ρ′0 > ρ0. This concludes the proof.

We shall also use some L∞ estimates.

Proposition A11.1.5. — Let ν ∈ [0,+∞[, κ ≥ 0, n ∈ N∗, β ≥ 0. Let q > 1
and let a be a symbol in Sκ,β(Mν

0
∏n
j=1 〈ξj〉

−q, n) (It is actually enough to
assume that in estimates (A9.1.5), the last exponent N is equal to 2). Assume
(κ, β) = (0, 0) or 0 < κβ ≤ 1, or that a(y, x, ξ) is independent of x. Then,
there is ρ0 in N and for any integer ρ ≥ ρ0, a constant C > 0 such that for
any v1, . . . , vn

(A11.1.25) ‖Oph(a)(v1, . . . , vn)‖W ρ,∞
h
≤ C

n∏
j=1
‖vj‖W ρ,∞

h
.

If we have just a ∈ Sκβ
(
Mν

0
∏n
j=1 〈ξj〉

−1, n
)
, we get for any r in N, any σ > 0,

any s, ρ with (s− ρ− 1)σ ≥ r + 1
2 and ρ ≥ ρ0, the bound

‖Oph(a)(v1, . . . , vn)‖W ρ,∞
h
≤ Ch−σ

n∏
j=1
‖vj‖W ρ,∞

h

+ Chr
n∑
j=1

∏
`6=j
‖v`‖W ρ,∞

h
‖vj‖Hs

h
.

(A11.1.26)
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Proof. — One may assume that a is supported for |ξ1|+· · · |ξn−1| ≤ K(1+|ξn|).
One may use Corollary A9.2.4, whose assumptions are satisfied, in order to
reduce (A11.1.25) to estimate

(A11.1.27) ‖Oph(a)(v1, . . . , vn)‖L∞ ≤ C
n−1∏
j=1
‖vj‖W ρ0,∞

h
‖vn‖L∞ .

We apply (A11.1.14) to reduce (A11.1.27) to bounds of the form

‖a(−∞, x, hD1, . . . , hDn)(v1, . . . , vn)‖L∞ ≤ C
n−1∏
j=1
‖vj‖W ρ0,∞

h
‖vn‖L∞

∫ +∞

−∞
‖∂ya(y, x, hD1, . . . , hDn)(v1, . . . , vn)‖L∞ ≤ C

n−1∏
j=1
‖vj‖W ρ0,∞

h
‖vn‖L∞ .

(A11.1.28)

We may decompose ∂ya(y, x, hD1, . . . , hDn) using equality (A11.1.8). Each
contribution in the sum is given by a symbol satisfying (A11.1.6), with an
extra factor 〈ξn〉−q in the right hand side, coming from the fact that our
symbol a was in Sκ,β(Mν

0
∏n
j=1 〈ξj〉

−q, n). The kernel of the corresponding
operator will then be bounded in modulus by

Ch−1G
(x− x′

h

)
2−max(k1,...,kn−1)〈y〉−2

n−1∏
j=1
‖vj‖W ρ0,∞

h

with some L1 function G. The second estimate (A11.1.28) follows from that.
The first one is proved in the same way.

Finally, to get (A11.1.26), we assume again a supported as above and de-
compose it as a = a1 +a2, with a1 = aχ(hσξn) for some σ > 0 and χ in C∞0 (R)
equal to one close to zero. Then a1 is in h−σSκβ

(
Mν

0
∏n
j=1 〈ξj〉

−2, n
)

(for a
new value of ν), so that (A11.1.25) applies, with a loss hσ, which provides
the first term in the right hand side of (A11.1.26). On the other hand, we
estimate ‖Oph(a2)(v1, . . . , vn)‖W ρ,∞

h
from Ch−

1
2 ‖Oph(a2)(v1, . . . , vn)‖

Hρ+1
h

by
semiclassical Sobolev injection, and then this quantity by the last term in the
right hand side of (A11.1.26) with r = σ(s − ρ − 1) − 1

2 . This concludes the
proof.

Let us translate the preceding results in the non semiclassical case using the
transformation Θt defined in (A9.1.7) and (A9.1.8), (A9.1.9). We translate
first Proposition A11.1.1.
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Proposition A11.1.6. — Let a be a symbol satisfying the assumptions of
Proposition A11.1.1, and (κ, β) satisfying also the assumptions of that propo-
sition in the case of statements (i) and (ii) below (in particular, if a is inde-
pendent of x, these statements hold for any (κ, β) with κ ≥ 0, β ≥ 0).

(i) If moreover a is supported for |ξ1|+ · · · |ξn−1| ≤ K(1 + |ξn|), one has for
any s ≥ 0 the bound

(A11.1.29) ‖Opt(a)(v1, . . . , vn)‖Hs ≤ C
n−1∏
j=1
‖vj‖W ρ0,∞‖vn‖Hs

with some ρ0 independent of s, Opt being defined in (A9.1.8).
(ii) Without any support assumption on the symbol of a, one has

(A11.1.30) ‖Opt(a)(v1, . . . , vn)‖Hs ≤ C
n∑
j=1

∏
`6=j
‖v`‖W ρ0,∞‖vj‖Hs .

(iii) For any j = 1, . . . , n, one has also

(A11.1.31) ‖Opt(a)(v1, . . . , vn)‖L2 ≤ C
∏
`6=j
‖v`‖W ρ0,∞‖vj‖L2 .

Proof. — One combines Proposition A11.1.1, (A9.1.8) and the fact that by
(A9.1.7), ‖Θtv‖Hs = ‖v‖Hs

h
, ‖Θtv‖W ρ,∞ = h

1
2 ‖v‖W ρ,∞

h
if h = t−1.

To get non semiclassical versions of Corollaries A11.1.3 and A11.1.4, let us
notice that by (A9.1.7)

L±Θtv = 1√
t
(L±v)

(x
t

)
is L± is defined by (A11.1.16) and

(A11.1.32) L± = x± tp′(Dx).

We have then:

Corollary A11.1.7. — Let a(y, x, ξ1, . . . , ξn) be a symbol in Sκ,0(Mν
0 , n) for

some κ ≥ 0, some ν ≥ 0, some n ≥ 2. Let β > 0 be small and r in R+. One
may decompose a = a1 + a2, where a1 is in Sκ,β(Mν

0 , n) and a2 satisfies, if
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(s− ρ0)β is large enough relatively to r, n,

‖Opt(a2)(v1, . . . , vn)‖Hs ≤ Ct−r
n∏
j=1
‖vj‖Hs

‖L±Opt(a2)(v1, . . . , vn)‖L2 ≤ Ct−r
n−1∏
j=1
‖vj‖Hs

[
‖vn‖L2 + ‖L±vn‖L2

]
‖L±Opt(a2)(v1, . . . , vn)‖L2 ≤ Ct−r

(n−1∏
j=1
‖vj‖Hs

)[
‖vn‖L2 + ‖L±vn‖W ρ,∞

]
.

(A11.1.33)

Moreover, in the last two estimates, one may make play the special role devoted
to n to any other index.

Proof. — Again, we combine (A9.1.7), (A9.1.8) and estimates (A11.1.17),
(A11.1.18), (A11.1.19) (up to a change of notation for r).

In the same way, we get from Corollary A11.1.4:

Corollary A11.1.8. — With the notation of Corollary A11.1.4, we have

(A11.1.34) ‖xOpt(a)(v1, . . . , vn)‖L2 ≤ C
∏
`6=j
‖v`‖W ρ0,∞ [t‖vj‖L2 + ‖L±vj‖L2 ]

for any 1 ≤ j ≤ n. Moreover, for any j 6= j′, 1 ≤ j, j′ ≤ n

(A11.1.35) ‖xOpt(a)(v1, . . . , vn)‖L2

≤ C
∏
6̀=j,j′
‖v`‖W ρ0,∞‖vj′‖L2 [t‖vj‖W ρ0,∞ + ‖L±vj‖W ρ0,∞ ].

Finally, it follows from Proposition A11.1.5:

Proposition A11.1.9. — Under the assumptions and with the notation of
Proposition A11.1.5, one has for ρ ≥ ρ0

(A11.1.36) ‖Opt(a)(v1, . . . , vn)‖W ρ,∞ ≤ C
n∏
j=1
‖vj‖W ρ,∞

if a is in Sκ,β
(
Mν

0
∏n
j=1 〈ξj〉

−q, n
)

for some q > 1 and
(A11.1.37)

‖Opt(a)(v1, . . . , vn)‖W ρ,∞ ≤ Ctσ
n∏
j=1
‖vj‖W ρ,∞ + Ct−r

n∑
j=1

∏
` 6=j
‖v`‖W ρ,∞‖vj‖Hs

if q = 1, σ > 0 and (s− ρ)σ is large enough relatively to r.
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A11.2. Action of quantization of space decaying symbols

In this section we study the action of operators associated to symbols be-
longing to the classes S′κ,β(Mν

0 , n) on Sobolev or Hölder spaces of odd func-
tions. The oddness of the functions, together with the fact that elements in
the S′ class are symbols a(y, x, ξ) rapidly decaying in y, will allow us to re-
express the functions v on which acts the operator from hL±v (using notation
(A11.1.16)), thus gaining a power of h. Actually, it is not necessary that a be
rapidly decaying in y, and we shall give statements with less stringent decay
assumptions.

Proposition A11.2.1. — Let n be in N∗, κ in N, ν ≥ 0. There is ρ0 in
N such that, for any β ≥ 0, any symbol a(y, x, ξ1, . . . , ξn), supported in the
domain |ξ1| + · · · + |ξn−1| ≤ K(1 + |ξn|) for some constant K, and such that
for some `, 1 ≤ ` ≤ n−1, a belongs to the class S′2`+2

κ,β (Mν
0 , n) introduced at the

end of Definition A9.1.2, with κ ≥ 0 and either (κ, β) = (0, 0) or 0 < κβ ≤ 1
or a is independent of x, the following holds true:

(i) For any s ≥ 0, any odd test functions v1, . . . , vn, any choice of signs
εj ∈ {−,+}, j = 1, . . . , `

‖Oph(a)(v1, . . . , vn)‖Hs
h
≤ Ch`

∏̀
j=1

(
‖Lεjvj‖W ρ0,∞

h
+ ‖vj‖W ρ0,∞

h

)
×

n−1∏
j=`+1

‖vj‖W ρ0,∞
h
‖vn‖Hs

h
.

(A11.2.1)

(ii) Assume in addition to preceding assumptions that β > 0. Then, for any
0 ≤ `′ ≤ `, one has

‖Oph(a)(v1, . . . , vn)‖Hs
h
≤ Ch`−

1
2 `
′−σ(β)

`′∏
j=1

(
‖Lεjvj‖L2 + ‖vj‖L2

)
×

∏̀
j=`′+1

(
‖Lεjvj‖W ρ0,∞

h
+ ‖vj‖W ρ0,∞

h

)
×

n−1∏
j=`+1

‖vj‖W ρ0,∞
h
‖vn‖Hs

h

(A11.2.2)

where σ(β) > 0 goes to zero when β goes to zero (σ(β) = `′
(
ρ0 + 1

2

)
β holds).

Proof. — We shall prove (i) and (ii) simultaneously. We notice first that, by
our support condition on (ξ1, . . . , ξn), M0(ξ) ∼ 1 + |ξ1|+ · · ·+ |ξn−1|, so that,
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up to changing ν, we may study the Hs
h norm of

(A11.2.3) Oph(ã)
(

Oph(〈ξ〉−1)v1, . . . ,Oph(〈ξ〉−1)v`, v`+1, . . . , vn

)
for a new symbol ã satisfying the same assumptions as a. Moreover, when
β > 0, this symbol is rapidly decaying in hβM0(ξ) according to (A9.1.4),
(A9.1.5), so that, modifying again ã, we rewrite (A11.2.3) as

(A11.2.4) Oph(ã)
[
Oph(〈ξ〉−1〈βhβξ〉−γ)v1, . . . ,Oph(〈ξ〉−1〈βhβξ〉−γ)v`,

v`+1, . . . , vn
]

with γ > 0 to be chosen. We use now that if f is an odd function, we may
write

f(x) = x

2

∫ 1

−1
(∂f)(µx) dµ.

Consequently, for j = 1, . . . , `
(A11.2.5)

Oph
(
〈ξ〉−1〈βhβξ〉−γ

)
vj = ix

2h

∫ 1

−1

[
Oph

(
〈βhβξ〉−γ ξ

〈ξ〉

)
vj

]
(µjx) dµj ,

that we rewrite using (A11.1.16)

(A11.2.6)

Oph
(
〈ξ〉−1〈βhβξ〉−γ

)
vj = ih

εj
2
x

h

∫ 1

−1

[
Oph

(
〈βhβξ〉−γ

)
Lεjvj

]
(µjx) dµj

− ihεj2
x

h

∫ 1

−1

[
Oph

(
〈βhβξ〉−γ

)x
h
vj

]
(µjx) dµj .

We may thus write (A11.2.6) as a linear combination of expressions of the
form

(A11.2.7) h
(x
h

)q ∫ 1

−1
µq
′

j Vj(µjx) dµj

where q = 0, 1, 2, q′ ∈ N and Vj(x) is of the form

(A11.2.8) Vj(x) = Oph
(
bj(βhβξ)

)
Lεjvj or Vj(x) = Oph

(
bj(βhβξ)

)
vj

with |∂kbj(ξ)| = O(〈ξ〉−γ−k). We plug these expressions inside (A11.2.4). We
remark that when we commute each factor x

h with ã, we get again an operator
given by a symbol similar to ã, up to changing ν. Moreover, the 〈M−κ0 y〉−2`−2

decay of ã(y, x, ξ) that we assume shows that for q ≤ 2`,
(
x
h

)q
ã
(
x
h , x, ξ

)
may
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be written ã1

(
x
h , x, ξ

)
with ã1(y, x, ξ) in S′2κ,β(Mν

0 , n) (for a new ν). Conse-
quently, we may write (A11.2.4) as a combination of quantities of the form

h`
∫ 1

−1
· · ·
∫ 1

−1
Oph(ã1)

[
V1(µ1·), . . . , V`(µ`·), v`+1, . . . , vn

]
×P (µ1, . . . , µ`) dµ1 . . . dµ`

(A11.2.9)

where Vj are given by (A11.2.8) and P is some polynomial.
If we apply (A11.1.3) (together with the remark at the end of the statement

of Proposition A11.1.1) and use that Oph(bj(βhβξ)) is bounded from W ρ0,∞
h

to itself, uniformly in h, we obtain (A11.2.1). To prove (A11.2.2), we apply
again (A11.1.3) and use that, for factors indexed by j = 1, . . . , `′, we may
write if γ ≥ ρ0 + 1 and β > 0

‖Oph
(
bj(βhβξ)

)
w‖W ρ0,∞

h
= ‖Oph

(
〈ξ〉ρ0bj(βhβξ)

)
w‖L∞

≤ Ch−
1
2 ‖Oph

(
〈ξ〉ρ0〈βhβξ〉−γ

)
w‖

1
2
L2‖Oph

(
〈ξ〉ρ0ξ〈βhβξ〉−γ

)
w‖

1
2
L2

≤ Ch
− 1

2−β
(
ρ0+ 1

2

)
‖w‖L2

if γ ≥ ρ0. This brings (A11.2.2) with σ(β) = `′
(
ρ0 + 1

2

)
β.

When we want to estimate only the L2 norms, instead of the Hs ones, we
have the following statement:

Proposition A11.2.2. — Let n be in N∗, κ ∈ N, β ≥ 0, ν ≥ 0. There is
ρ0 ∈ N such that, for any symbol a in S′κ,β(Mν

0
∏n
j=1 〈ξj〉

−1, n) and for any
odd functions v1, . . . , vn, one has the following estimate:

(A11.2.10) ‖Oph(a)(v1, . . . , vn)‖L2 ≤ Ch
n−1∏
j=1
‖vj‖W ρ0,∞

h
[‖L±vn‖L2 + ‖vn‖L2 ].

Moreover, when n ≥ 2, we have also the bound

‖Oph(a)(v1, . . . , vn)‖L2 ≤Ch
n−2∏
j=1
‖vj‖W ρ0,∞

h

×
[
‖L±vn−1‖W ρ0,∞

h
+ ‖vn‖W ρ0,∞

h

]
‖vn‖L2 .

(A11.2.11)

Estimate (A11.2.10) (resp. (A11.2.11)) holds as well for n (resp. (n − 1, n))
replaced by any j ∈ {1, . . . , n} (resp. j, j′ ∈ {1, . . . , n}, j 6= j′). Moreover,
it suffices to assume that a is in S′4κ,β(Mν

0
∏n
j=1 〈ξj〉

−1, n) instead of a ∈
S′κ,β(Mν

0
∏n
j=1 〈ξj〉

−1, n).
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Proof. — Because of the assumption on a, we may write
(A11.2.12) Oph(a)(v1, . . . , vn) = Oph(ã)(v1, . . . , vn−1,Oph(〈ξ〉−1)vn))

with ã in S′κ,β
(
Mν

0
∏n−1
j=1 〈ξj〉

−1, n
)

(or ã in S′4κ,β
(
Mν

0
∏n−1
j=1 〈ξj〉

−1, n
)
). We use

next (A11.2.6) (with γ = 0) in order to express Oph(〈ξ〉−1)vn as a combination
of terms of the form (A11.2.7) with j = n and Vn given by (A11.2.8). We
obtain thus for (A11.2.12) an expression in terms of integrals

(A11.2.13) h

∫ 1

−1
Oph(ã1)[v1, . . . , vn−1, Vn(µn·)]P (µn) dµn

for some polynomial P , some ã1 ∈ S′2κ,β
(
Mν

0
∏n−1
j=1 〈ξj〉

−1, n
)
. Applying

(A11.1.5), we get (A11.2.10).
To obtain (A11.2.11), we make appear the Oph(〈ξ〉−1) operator on argument

vn−1 instead of vn in (A11.2.12), use (A11.2.6) with j = n − 1, obtain an
expression of the form (A11.2.13) with the roles of n and n− 1 interchanged,
and apply again (A11.1.5).

Let us also establish some corollaries and variants of the above results.

Corollary A11.2.3. — Let n, κ, β, ν be as in Proposition A11.2.2. Let a be
in Sκ,β(Mν

0
∏n+1
j=1 〈ξj〉

−1, n+1). Let Z be in S(R). Then for any odd functions
v1, . . . , vn
(A11.2.14)

‖Oph(a)
[
Z(x/h), v1, . . . , vn

]
‖L2 ≤ Ch

n−1∏
j=1
‖vj‖W ρ0,∞

h

(
‖L±vn‖L2 + ‖vn‖L2

)
.

If n ≥ 2, we have also

(A11.2.15) ‖Oph(a)
[
Z(x/h), v1, . . . , vn

]
‖L2 ≤ Ch

n−2∏
j=1
‖vj‖W ρ0,∞

h

×
(
‖L±vn−1‖W ρ0,∞

h
+ ‖vn−1‖W ρ0,∞

h

)
‖vn‖L2 .

Proof. — We write a(y, x, ξ) = 〈y〉4ã(y, x, ξ). Then, according to the last
remark in the statement, Proposition A11.2.2 applies to ã. Moreover, we may
write Oph(a)[Z(x/h), v1, . . . , vn] as a sum of expressions

(A11.2.16)
(x
h

)q
Oph(ã)

[
Z
(x
h

)
, v1, . . . , vn

]
, 0 ≤ q ≤ 4.

The commutator
x

h
Oph(ã)

[
Z
(x
h

)
, v1, . . . , vn

]
−Oph(ã)

[x
h
Z
(x
h

)
, v1, . . . , vn

]
is again of the form Oph(ã1)[Z(x/h), v1, . . . , vn], a new symbol satisfying the
same assumptions as a, eventually with a different ν. Finally, we express
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(A11.2.16) as a sum of expressions Oph(ã1)[Z1(x/h), v1, . . . , vn], for new sym-
bols ã1 and a new S(R) function Z1. If we apply (A11.2.10) (resp. (A11.2.11)),
we get (A11.2.14) (resp. (A11.2.15)).

We have also the following variant of Proposition A11.2.2, that we state
only for bilinear operators.

Proposition A11.2.4. — Let ν, κ ≥ 0. There is ρ0 ∈ N such that, for any
a ∈ S′κ,0(Mν

0
∏2
j=1 〈ξj〉

−1, 2), any odd functions v1, v2, one has the following
estimates
(A11.2.17)
‖Oph(a)(v1, v2)‖L2 ≤ Ch2[‖L±v1‖W ρ0,∞

h
+ ‖v1‖W ρ0,∞

h

][
‖L±v2‖L2 + ‖v2‖L2

]
for any choice of the signs ± in the right hand side. The symmetric inequality
holds as well.

If moreover s, σ are positive with sσ ≥ 2(ρ0 + 1), we get

(A11.2.18) ‖Oph(a)(v1, v2)‖L2 ≤ Ch
3
2−σ

2∏
j=1

[
‖L±vj‖L2 + ‖vj‖Hs

h

]
.

Proof. — To get (A11.2.17), we write

Oph(a)(v1, v2) = Oph(ã)
(
Oph(〈ξ〉−1)v1,Oph(〈ξ〉−1)v2

)
with some ã in Sκ,0(Mν

0 , 2). We use next (A11.2.6) (with γ = 0) for j = 1, 2
in order to reduce ourselves to expressions of the form (A11.2.9) with ` = 2.
Applying (A11.1.5), we get the conclusion.

To obtain (A11.2.18), we may assume that a is supported for |ξ1| ≤ 2(1+|ξ2|)
for instance. Let β > 0, χ ∈ C∞0 (R), equal to one close to zero and decompose

a(y, x, ξ1, ξ2) = a(y, x, ξ1, ξ2)χ(h−βξ1) + a(y, x, ξ1, ξ2)(1− χ)(h−βξ1).

If we apply (A11.1.5) to the second symbol, we obtain an estimate to the
corresponding contribution to (A11.2.18) by

C‖Oph((1− χ)(hβξ))v1‖W ρ0,∞
h
‖v2‖L2 .

By semiclassical Sobolev injection, this is bounded from above by

Ch−
1
2 +β(s−ρ0−1)‖v1‖Hs

h
‖v2‖L2 ,

so by the right hand side of (A11.2.18) if β(s− (ρ0 + 1)) ≥ 2− σ.
Consider next Oph(a1)(v1, v2) with a1 = aχ(h−βξ1), so that a1 is in

S′κ,β(Mν
0
∏2
j=1 〈ξj〉

−1, 2). Since β > 0, we may rewrite as in (A11.2.4),
Oph(a1)(v1, v2) as

Oph(ã1)
[
Oph

(
〈ξ〉−1〈hβξ〉−γ

)
v1,Oph

(
〈ξ〉−1)v2

]
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with ã1 in S′2κ,β(Mν
0 , 2), hence under form (A11.2.9) with ` = 2, V1 (resp. V2)

being given by (A11.2.8) with bj = O(〈ξ〉−γ) (resp. O(1)). Applying (A11.1.5),
we get, in view of the definition of the Vj a bound in

Ch2
[
‖Oph(b1(hβξ))L±v1‖W ρ0,∞

h
+ ‖Oph(b1(hβξ))v1‖W ρ0,∞

h

]
×
[
‖L±v2‖L2 + ‖v2‖L2

]
.

Using the semiclassical Sobolev injection, the first factor is bounded from
above by

Ch−
1
2−β(ρ0+1)[‖L±v1‖L2 + ‖v1‖L2

]
.

We set σ = β(ρ0 + 1) and get the conclusion under the condition sσ ≥ 2(ρ0 +
1).

We prove now an L∞ estimate that is a counterpart of (A11.2.1).

Proposition A11.2.5. — Let κ ∈ N, ν ≥ 0, n ∈ N. There is ρ0 ∈ N such
that, for any ρ ≥ ρ0, any a in S′2n+2

κ,0 (Mν
0 , n), any ` ≤ n, one has for any odd

functions v1, . . . , vn, any r ≥ 0, the estimate

(A11.2.19) ‖Oph(a)(v1, . . . , vn)‖W ρ,∞
h

≤ Chr
n∏
j=1

(
‖vj‖W ρ0,∞

h
+ ‖vj‖Hs

h

)
+ Ch

n
2 + `

2−σ
∏̀
j=1

(
‖vj‖W ρ,∞

h
+ ‖L±vj‖W ρ,∞

h

) n∏
j=`+1

(
‖vj‖L2 + ‖L±vj‖L2

)
for any σ > 0, any s such that

(A11.2.20) s ≥ s0(ρ, κ)
[
1 + r + 1

σ

]
(where s0(ρ, κ) is some explicit function of (ρ, κ)).

Proof. — Set |ξ|2 = ξ2
1 + · · ·+ ξ2

n. Take χ ∈ C∞0 (R) equal to one close to zero
and let β > 0 to be chosen. Decompose a = a1 + a2 with

a1(y, x, ξ1, . . . , ξn) = a(y, x, ξ1, . . . , ξn)χ(h2β|ξ|2)
a2(y, x, ξ1, . . . , ξn) = a(y, x, ξ1, . . . , ξn)(1− χ)(h2β|ξ|2).

(A11.2.21)

Let us assume in addition that a2 is supported for instance for |ξ1| + · · · +
|ξn−1| ≤ K(1 + |ξn|). By semiclassical Sobolev injection, we have

(A11.2.22) ‖Oph(a2)(v1, . . . , vn)‖W ρ,∞
h
≤ Ch−

1
2 ‖Oph(a2)(v1, . . . , vn)‖

Hρ+1
h

.
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If we use (A9.1.4), (A9.1.5), we see that the action of a hDx derivative on
Oph(a2)(v1, . . . , vn) makes lose at most one power of 〈ξn〉max(1,κ) (since ξn is
the largest frequency). Consequently, (A11.2.22) is bounded from above by

Ch−
1
2 ‖Oph(ã2)(v1, . . . , vn−1, 〈hDx〉(ρ+1) max(1,κ)vn)‖L2

for a symbol ã2 that has the same support properties as a2. We apply next
(A11.1.5) with j = n, and remember that, by definition of a2, ã2 is supported
for |ξj0 | ≥ ch−β for some j0. We thus get a bound either by

(A11.2.23) Ch−
1
2

n−1∏
j=1
‖vj‖W ρ0,∞

h
‖Oph

(
〈ξ〉(ρ+1) max(1,κ)χ1(hβξ)

)
vn‖L2

if j0 = n, or

Ch−
1
2

∏
1≤j≤n−1,j 6=j0

‖vj‖W ρ0,∞
h
‖Oph(χ1(hβξ))vj0‖W ρ0,∞

h

× ‖Oph
(
〈ξ〉(ρ+1) max(1,κ)χ1(hβξ)

)
vn‖L2

(A11.2.24)

if j0 < n, where χ1 ∈ C∞(R) is equal to one close to infinity and to zero close
to zero. Writing (using semiclassical embedding)

‖Oph
(
〈ξ〉mχ1(hβξ)

)
vn‖L2 ≤ Chβ(s−m)‖vn‖Hs

h

‖Oph
(
χ1(hβξ)

)
vj0‖W ρ0,∞

h
≤ Ch−

1
2 +β(s−(ρ0+1))‖vj0‖Hs

h

we obtain for (A11.2.23), (A11.2.24) an estimate in

(A11.2.25) Chr
n∏
j=1

(
‖vj‖W ρ0,∞

h
+ ‖vj‖Hs

h

)
if

β
(
s− (ρ+ 1) max(1, κ)

)
≥ r + 1

2
β(s− (ρ0 + 1)) ≥ r + 1.

(A11.2.26)

Consider next a1, which satisfies h3βna1 ∈ S′2n+2
κ,β

(
Mν

0
∏n
j=1 〈ξj〉

−3, n
)
. We

may write Oph(a1)(v1, . . . , vn) under form (A11.2.9) with ` = n and a new
symbol ã1, such that

h3βnã1 ∈ S′2κ,β
(
Mν

0

n∏
j=1
〈ξj〉−2, n

)
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(for a new ν). We apply (A11.1.25) that implies

(A11.2.27) ‖Oph(ã1)(v1, . . . , vn)‖W ρ,∞
h

≤ Chn(1−3β)
∫ 1

−1
· · ·
∫ 1

−1

n∏
j=1
‖Vj(µj ·)‖W ρ,∞

h
dµ1 . . . dµn

where Vj is given by (A11.2.8) with γ > ρ + 1. For j = ` + 1, . . . , n, we use
semiclassical Sobolev injection to estimate

∫ 1

−1
‖Vj(µj ·)‖W ρ,∞

h
dµj ≤ Ch−

1
2−β(ρ+1)[‖L±vj‖L2 + ‖vj‖L2

]
whence finally a bound of (A11.2.27) in

Chn(1−3β)−n−`2 −β(ρ+1)(n−`) ∏̀
j=1

[
‖vj‖W ρ,∞

h
+ ‖L±vj‖W ρ,∞

h

]
×

n∏
j=`+1

[
‖vj‖L2 + ‖L±vj‖L2

]
.

Combining this with (A11.2.25) and taking β = σ
3n+(n−`)(ρ+1) , we get the

conclusion if s satisfies the inequality in the statement.

The same type of reasoning as above may be used to remove the assumption
β > 0 in (ii) of Proposition A11.2.1.

Proposition A11.2.6. — Let a be a symbol in Sκ,0(Mν
0 , n) independent of

x, satisfying the assumptions of Proposition A11.2.1. Then for any β > 0 with
κβ ≤ 1, one may decompose a = a1 + a2 with a1 in S′2`+2

κ,β (Mν
0 , n) and a2 is

such that
(A11.2.28)

‖Oph(a2)(v1, . . . , vn)‖Hs
h
≤ Chr

n−1∑
j=1

(∏
`6=i
‖vj‖W ρ0,∞

h

)
‖vj‖Hs

h
‖vn‖Hs

h

as soon as β(s− ρ0 − 1) ≥ r + 1
2 .
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As a consequence, one has the estimate, for 1 ≤ ` ≤ n− 1, 0 ≤ `′ ≤ `,

(A11.2.29) ‖Oph(a)(v1, . . . , vn)‖Hs
h
≤ Ch`−

`′
2 −σ

`′∏
j=1

(
‖Lεjvj‖L2 + ‖vj‖Hs

h

)
×

∏̀
j=`′+1

(
‖Lεjvj‖W ρ0,∞

h
+ ‖vj‖W ρ0,∞

h
+ ‖vj‖Hs

h

)
×

n−1∏
j=`+1

(
‖vj‖W ρ0,∞

h
+ ‖vj‖Hs

h

)
‖vn‖Hs

h

where σ > 0 is any small number and s is such that (s − ρ0 − 1)σ is large
enough.

Proof. — We decompose a = a1 + a2 as at the beginning of the proof of
Corollary A11.1.3. By (A11.1.20), (A11.1.21), estimate (A11.2.28) holds if
(s− ρ0− 1)β ≥ r+ 1

2 . On the other hand, applying (A11.2.2) to Oph(a1), and
expressing σ(β) from β, one gets a bound of ‖Oph(a1)(v1, . . . , vn)‖Hs

h
by the

right hand side of (A11.2.29). Since, for r large enough, the right hand side
of (A11.2.28) may be estimated by (A11.2.29) (using semiclassical Sobolev
injection to bound some W ρ0,∞

h norm by h−
1
2 times an Hs

h one), we get the
conclusion.

Let us translate the inequalities proved in this section in the non-
semiclassical framework, using (A9.1.7), (A9.1.8), (A9.1.9).

Corollary A11.2.7. — Under the assumptions of Proposition A11.2.1, one
has the following estimates:

(i) For any s ≥ 0, any odd test functions v1, . . . , vn, any choice of signs
εj ∈ {−,+}, j = 1, . . . , `

‖Opt(a)(v1, . . . , vn)‖Hs ≤ Ct−`
∏̀
j=1

[
‖Lεjvj‖W ρ0,∞ + ‖vj‖W ρ0,∞

]
×

n−1∏
j=`+1

‖vj‖W ρ0,∞‖vn‖Hs

(A11.2.30)

with L± defined in (A11.1.32).
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(ii) If moreover β > 0, one has for any 0 ≤ `′ ≤ `

‖Opt(a)(v1, . . . , vn)‖Hs ≤ Ct−`+σ(β)
`′∏
j=1

(
‖Lεjvj‖L2 + ‖vj‖L2

)
×

∏̀
j=`′+1

[
‖Lεjvj‖W ρ0,∞ + ‖vj‖W ρ0,∞

]
×

n−1∏
j=`+1

‖vj‖W ρ0,∞‖vn‖Hs

(A11.2.31)

with σ(β) > 0 going to zero when β goes to zero.

This is just a restatement of Proposition A11.2.1. Proposition A11.2.2 gives:

Corollary A11.2.8. — Under the assumptions and with the notation of
Proposition A11.2.2, one has the following estimates for any j, 1 ≤ j ≤ n
(A11.2.32)
‖Opt(a)(v1, . . . , vn)‖L2 ≤ Ct−1 ∏

` 6=j,1≤`≤n
‖v`‖W ρ0,∞

[
‖L±vj‖L2 + ‖vj‖L2

]
and if n ≥ 2, for any j 6= j′, 1 ≤ j, j′ ≤ n,

‖Opt(a)(v1, . . . , vn)‖L2 ≤ Ct−1 ∏
`6=j,j′,1≤`≤n

‖vj‖W ρ0,∞

×
[
‖L±vj′‖W ρ0,∞ + ‖vj′‖W ρ0,∞

]
‖vj‖L2 .

(A11.2.33)

Moreover, these estimates hold as soon as a ∈ S′4κ,β(Mν
0
∏n
j=1 〈ξj〉

−1, n).

In the same way, we have the bounds of Corollary A11.2.3:

Corollary A11.2.9. — With the notation of Corollary A11.2.3, one has for
any j
(A11.2.34)
‖Opt(a)(Z, v1, . . . , vn)‖L2 ≤ Ct−1 ∏

1≤`≤n,` 6=j
‖vj‖W ρ0,∞

[
‖L±vj‖L2 + ‖vj‖L2

]
and if n ≥ 2, j 6= j′ are in {1, . . . , n}

(A11.2.35) ‖Opt(a)(Z, v1, . . . , vn)‖L2 ≤ Ct−1 ∏
`6=j,j′,1≤`≤n

‖vj‖W ρ0,∞

×
[
‖L±vj′‖W ρ0,∞ + ‖vj′‖W ρ0,∞

]
‖vj‖L2 .

Next we restate Proposition A11.2.4
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Corollary A11.2.10. — With the notation and under the assumptions of
Proposition A11.2.4, one has for any odd functions v1, v2
(A11.2.36)
‖Opt(a)(v1, v2)‖L2 ≤ Ct−2[‖L±v1‖W ρ0,∞ + ‖v1‖W ρ0,∞

][
‖L±v2‖L2 + ‖v2‖L2

]
and

(A11.2.37) ‖Opt(a)(v1, v2)‖L2 ≤ Ct−2+σ
2∏
j=1

[
‖L±vj‖L2 + ‖vj‖Hs

]
if s, σ > 0 are such that sσ ≥ 2(ρ0 + 1).

Finally, we translate the estimates of Proposition A11.2.5 and A11.2.6:

Corollary A11.2.11. — With the notation and under the assumptions of
Proposition A11.2.5, one has, for any odd functions v1, . . . , vn, any 0 ≤ ` ≤ n,
any r ≥ 0,

(A11.2.38) ‖Opt(a)(v1, . . . , vn)‖W ρ,∞ ≤ Ct−r
n∏
j=1

(
‖vj‖W ρ0,∞ + t−

1
2 ‖vj‖Hs

)
+ Ct−n+σ ∏̀

j=1

[
‖vj‖W ρ,∞ + ‖L±vj‖W ρ,∞

] n∏
j=`+1

[
‖vj‖L2 + ‖L±vj‖L2

]
if s ≥ s0(ρ, κ)

[
1 + r+1

σ

]
for some function s0(ρ, κ).

Corollary A11.2.12. — With the notation and under the assumption of
Proposition A11.2.6, one has for any odd functions v1, . . . , vn, any `, 1 ≤ ` ≤
n− 1, any 0 ≤ `′ ≤ `

‖Opt(a)(v1, . . . , vn)‖Hs ≤ Ct−`+σ
`′∏
j=1

(
‖Lεjvj‖L2 + ‖vj‖Hs

)
×

∏̀
j=`′+1

(
‖Lεjvj‖W ρ0,∞ + ‖vj‖W ρ0,∞ + t−

1
2 ‖vj‖Hs

)
×

n−1∏
j=`+1

(
‖vj‖W ρ0,∞ + t−

1
2 ‖vj‖Hs

)
‖vn‖Hs

(A11.2.39)

for any small σ > 0, as soon as (s − ρ0 − 1)σ is large enough. The same
estimate holds true if we apply in the right hand side any permutation on the
indices {1, . . . , n− 1}.
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A11.3. Weyl calculus

In Chapter 7, we use a different quantization of symbols a(x, ξ) on R × R.
We give its definition and properties here. Our classes of symbols will be
variants of those introduced in Definition A9.1.2.

Definition A11.3.1. — Let δ′ ∈ [0, 1
2 ], β ≥ 0, and (x, ξ) → M(x, ξ) be

a weight function on R × R. One denotes by SW
δ′,β(M) the space of smooth

functions (h, x, ξ)→ a(x, ξ, h) defined on ]0, 1]× R× R satisfying estimates

(A11.3.1) |∂α1
x ∂α2

ξ (h∂h)ka(x, ξ, h)| ≤ CM(x, ξ)h−δ′(α1+α2)(1 + βhβ|ξ|)−N

for any α1, α2, k,N in N.

Remark: Notice that for β > 0, we assume a rapid decay of the symbol
in 〈hβξ〉−N . This is not the same condition as in (A9.1.4), (A9.1.5) where the
rapid decay was in 〈hβM0(ξ)〉−N , which, when there is only one ξ variable,
is just O(1). Notice also that instead of having a loss in M0(ξ)κ for each
derivative acting on the symbol, we allow a h−δ′ loss. Finally, at the difference
of (A9.1.3), we consider symbols that do not depend on the y variable.

For a in SW
δ′,β(M), we define the Weyl quantization by

(A11.3.2) OpW
h (a)v = 1

2πh

∫∫
e
i
h

(x−y)ξa
(x+ y

2 , ξ, h
)
v(y) dydξ

for any test function v. We recall some results of [82] that we use in Chapter 7.

Proposition A11.3.2. — Let ρ be in R+, Γ(x, ξ, h) a function satisfying

(A11.3.3) |∂α1
x ∂α2

ξ (h∂h)kΓ(x, ξ, h)| ≤ Ch−
α1+α2

2

〈x± p′(ξ)√
h

〉−1

for any α1, α2, k in N. Then, for any σ > 0, any r ≥ 0, any s such that sσ is
large enough, we have

(A11.3.4) ‖OpW
h (Γ)OpW

h (〈ξ〉ρ)v‖L∞ ≤ C
[
h−

1
4−σ‖v‖L2 + hr‖v‖Hs

h

]
.

Proof. — Fix β > 0 small. Decompose Γ = Γχ(hβξ) + Γ(1 − χ)(hβ) for χ in
C∞0 (R) equal to one close to zero. By Lemma 3.9 of [82], we may write

(A11.3.5) OpW
h (Γχ(hβξ)) = OpW

h (r1)OpW
h (χ̃(hβξ)) + hNOpW

h (r2)

(A11.3.6) OpW
h

(
Γ(1−χ)(hβξ)

)
= OpW

h (r3)OpW
h

(
(1−χ̃1)(hβξ)

)
+hNOpW

h (r4)

where rj are in SW
1
2 ,β

(1), N is arbitrary, χ̃, χ̃1 are in C∞0 (R) equal to one close
to zero. By semiclassical Sobolev injection and Proposition A11.3.3 below,
the last term in (A11.3.5), (A11.3.6) acting on OpW

h (〈ξ〉ρ)v has L∞ norm
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estimated by the last term in (A11.3.4). Moreover, r1 satisfies estimates of
the form (A11.3.3), so that we may apply Proposition 3.11 of [82] to estimate

‖OpW
h (r1)OpW

h (χ̃(hβξ)〈ξ〉ρ)v‖L∞

by the first term in the right hand side of (A11.3.4) with σ linear in β. Finally,
by semiclassical Sobolev injection and Proposition A11.3.3, the L∞ norm of
the first term in the right hand side of (A11.3.6) is bounded from above by

Ch−
1
2 ‖OpW

h

(
〈ξ〉ρ(1− χ̃1)(hβξ)

)
‖H1

h

which is estimated by hr‖v‖Hs
h

is sβ is large enough. This concludes the
proof.

One has also Sobolev estimates (see Dimassi-Sjöstrand [24] or Proposi-
tion 3.10 in [82]):

Proposition A11.3.3. — Let β ≥ 0, δ′ ∈ [0, 1
2 ], r ∈ R, a in SW

δ′,β(〈ξ〉r).
Then OpW

h (a) is bounded from Hs
h to Hs−r

h for any s in R, with operator
norm bounded uniformly in h.

We state next Proposition 4.4 of [82].

Proposition A11.3.4. — Let γ be in C∞0 (R), equal to one close to zero.
Let L+ be the operator (A11.1.16) that may be written as well

L+ = 1
h

OpW
h (x+ p′(ξ)).

For ρ in N, v a function, define

(A11.3.7) vρΛc = OpW
h

(
(1− γ)

(x+ p′(ξ)√
h

))
OpW

h (〈ξ〉ρ)v.

Then for any σ > 0, any s such that sσ is large enough, one has estimates

(A11.3.8) ‖vρΛc‖L2 ≤ Ch
1
2−σ
[
‖L+v‖L2 + ‖v‖Hs

h

]
(A11.3.9) ‖vρΛc‖L∞ ≤ Ch

1
4−σ
[
‖L+v‖L2 + ‖v‖Hs

h

]
.

Let us prove next an L∞ estimate for OpW
h

(
γ
(
x+p′(ξ)√

h

))
.

Proposition A11.3.5. — Let γ be in C∞0 (R), with small enough support.
Then for any σ > 0, N > 0, we have as soon as sσ is large enough relatively
to N ,

(A11.3.10)
∥∥OpW

h

(
γ
(x+ p′(ξ)√

h

))
v
∥∥
L∞
≤ Ch−σ

[
‖v‖L∞ + hN‖v‖Hs

h

]
.
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Proof. — Let β > 0, χ in C∞0 (R) equal to one close to zero. Decompose

v = OpW
h

(
χ(hβξ)

)
v + OpW

h

(
(1− χ)(hβξ)

)
v.

By semiclassical Sobolev injection, Proposition A11.3.3 and the fact that

‖OpW
h

(
(1− χ)(hβξ)

)
‖L(Hs

h
,Hs′
h

) = O(hβ(s−s′))

if s > s′, we have

∥∥OpW
h

(
γ
(x+ p′(ξ)√

h

))
OpW

h

(
(1− χ)(hβξ)

)
v
∥∥
L∞

≤ Ch−
1
2
∥∥OpW

h

(
γ
(x+ p′(ξ)√

h

))
OpW

h

(
(1− χ)(hβξ)

)
v
∥∥
H1
h

≤ Ch−
1
2 +β(s−1)‖v‖Hs

h

which is estimated by the right hand side of (A11.3.10) if sβ is large enough.
On the other hand, by Lemma 3.9 in [82], we may write for any N

OpW
h

(
γ
(x+ p′(ξ)√

h

))
OpW

h

(
χ(hβξ)

)
= OpW

h

(
Γ(x, ξ, h)

)
+ hNOpW

h (r)

for some r in SW
1
2 ,β

(1) and a symbol Γ in SW
1
2 ,β

(1) supported for |ξ| ≤ h−β,

|x+ p′(ξ)| ≤ c
√
h for some small c. According to Lemma 1.2.6 in [20], we

know that setting ϕ(x) =
√

1− x2 for |x| < 1, if |x+ p′(ξ)| < c〈ξ〉−2 for some
small enough c, then

|ξ − dϕ(x)| ≤ C〈ξ〉3|x+ p′(ξ)|.
It follows that

Γ(x, ξ, h) = Γ(x, ξ, h)1
|ξ−dϕ(x)|<ch

1
2−3β .

The kernel of OpW
h (Γ) is

(A11.3.11) 1
2πh

∫
e
i
h

(x−y)ξΓ
(x+ y

2 , ξ, h
)
dξ

that may be written

(A11.3.12) 1
2π
√
h
e
i
h

(x−y)dϕ
(
x+y

2

)
×
∫
e
i(x−y) ζ√

hΓ
(x+ y

2 , dϕ
(x+ y

2

)
+
√
hζ, h

)
dζ.

The integral is of the form
∫
e
i(x−y) ζ√

hA(x, y, ζ) dζ, with A supported for
|ζ| ≤ Ch−3β and satisfying ∂αζ A = O(1). It follows that (A11.3.11) is
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O
(
h−

1
2−3β

〈
x−y√
h

〉−2)
, which implies that operator (A11.3.11) has L(L∞)

norm that is O(h−3β).
On the other hand, ‖hNOpW

h (r)v‖L∞ is bounded by the last term in the
right hand side of (A11.3.10) using again semiclassical Sobolev injection.

We shall use also Proposition 4.11 of [82] that we reproduce below.

Proposition A11.3.6. — Define

(A11.3.13) vρΛ = OpW
h

(
γ
(x+ p′(ξ)√

h

))
OpW

h (〈ξ〉ρ)v

where γ ∈ C∞0 (R) has small enough support. There is (θh)h∈]0,1] a family of
smooth functions, real valued, supported in an interval [−1 + ch2β, 1 − ch2β]
for some small c > 0, with ∂αh θh = O(h−2βα) for some small β > 0, such that,
still denoting ϕ(x) =

√
1− x2 for |x| < 1,

(A11.3.14) OpW
h (xξ + p(ξ))vρΛ = ϕ(x)θh(x)vρΛ + hR

where
‖R‖L2 ≤ Ch

1
2−σ
(
‖L+v‖L2 + ‖v‖Hs

h

)
‖R‖L∞ ≤ Ch

1
4−σ
(
‖L+v‖L2 + ‖v‖Hs

h

)(A11.3.15)

for any σ > 0, any s such that sσ is large enough.

Finally, let us reproduce Lemma 4.5 of [82].

Lemma A11.3.7. — Let γ be as in Proposition A11.3.6. One may write

(A11.3.16)
[
Dt −OpW

h

(
xξ + p(ξ)

)
,OpW

h

(
γ
(x+ p′(ξ)√

h

))]
= hOpW

h

(
γ−1

(x+ p′(ξ)√
h

)x+ p′(ξ)√
h

)
+ h

3
2 OpW

h (r)

where γ−1(z) satisfies for any α, |∂αz γ−1(z)| ≤ Cα〈z〉−1−α and where r satisfies
estimates (A11.3.3).



APPENDIX A12

WAVE OPERATORS FOR TIME DEPENDENT
POTENTIALS

The goal of this chapter is to construct wave operators for some time de-
pendent perturbations of a constant coefficients operator. We consider a ref-
erence operator P0 independent of time, and a perturbation of P0 of the form
P (t) = P0 +V(t), given in terms of a time depending potential V(t). Our goal
is to construct a “wave operator” B(t) such that

(A12.0.1) (Dt − P (t))B(t) = B(t)(Dt − P0).

We did something similar in Appendix A8 in the autonomous case, when V(t)
does not depend on time, and is given by a potential smooth and decaying in
space. Here, we shall have to consider a potential V(t) that depends on time.
As mentioned in the introduction of Chapter 5, a scalar model for the kind of
operators P (t) we want to consider is given by

(A12.0.2) Dt − p(Dx)− t−
1
2

ε Re
[
c(x)〈Dx〉−1eit

√
3

2 ]

where p(ξ) =
√

1 + ξ2 and c is in S(R). The potential perturbing the au-
tonomous problem is given here in terms of

t
− 1

2
ε c(x)〈Dx〉−1e±it

√
3

2 .

As a function of x, this is still a smooth rapidly decaying function, but we
have now also t dependence. On the one hand, this time dependence might be
considered as an advantage, since it makes the potential smaller and smaller
as time growth. On the other side, it makes impossible to use stationary
arguments in order to construct wave operators. Of course, there are well
known results concerning scattering by time dependent potentials. We refer for
instance to the book of Dereziński and Gérard [23], in particular sections 3.3
and 3.4. Though, these results would not apply to our problem, as they
demand better time decay of the potential and of its space derivatives as the
one we have in (A12.0.2). We thus have to construct B(t) by hand, composing
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(A12.0.1) at the left with Fourier transform, at the right with inverse Fourier
transform and defining a wave operator through iterated integrals.

A12.1. Statement of the result

In order to state the result, we have to introduce some notation.

Definition A12.1.1. — Let a, b be in N, m ≥ 0, ι ≥ 0. We denote by Σι,m
0,0

the space of functions (t, ξ, η) → q(t, ξ, η) defined on [1,+∞[×R × R, with
values in C, that are Lipschitz in time, smooth in (ξ, η), and satisfy for any
N in N, any j = 0, 1, any t ≥ 1, any (ξ, η) ∈ R2, any (α, α′) ∈ N2

(A12.1.1) |∂jt ∂αξ ∂α
′

η q(t, η, ξ)| ≤ Cαα′N ειt−m−j〈|ξ| − |η|〉
−N .

We denote by Σι,m
a,b the space of functions q of the form q =

(
ξ
〈ξ〉

)a(
η
〈η〉

)b
q1

with q1 in Σι,m
0,0 .

Example: Let us give an example of functions in the preceding class. Let
q = qj,(k,`), where qj,(k,`) is one of the functions defined in Lemma 5.1.1. As-
sume that these functions are defined and satisfy (5.1.14) or (5.1.15) for t in
some interval [1, T ] with 4 ≤ T ≤ ε−4+c. Extend this function to [1,+∞[ by

(A12.1.2) q(t, ξ, η)1t<T + q(2T − t, ξ, η)1t>Tχ0

( t
T

)
where χ0 ∈ C∞(R) is equal to one on ]−∞, 5

4 ] and to zero on [7
4 ,+∞[. If we

denote this extension still by q, we get a Lipschitz function of time on [1,+∞[
that satisfies (5.1.14) or (5.1.15) for any t ≥ 1. Notice that these inequalities
imply estimates of the form (A12.1.1) when we take T in (A12.1.2) smaller than
ε−4+c for some c > 0, so that (A12.1.2) is supported for t ≤ Cε−4+c. Actually,
writing for any m ∈]0, 1

2 [, t−
1
2

ε ≤ t−mε1−2m, it follows from (5.1.14) that q
belongs to Σι,m

0,0 if ι = min(1−2m, 3
4cθ
′) > 0. In the same way, under condition

(5.1.15), we obtain an element of Σι,m+ 1
2

0,0 . The matrix Qj of Lemma 5.1.1 has
thus entries in Σι,m

1,1 .

We consider in this section an operator V defined in the following way.
Assume given matrices Qj with entries en Σι,m

0,0 for m > 0, ι > 0 and −2 ≤ j ≤
2. Let λj = j

√
3

2 and define

(A12.1.3) V(t) =
2∑

j=−2
eiλjtKQj ,
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where, when q is in Σι,m
0,0 , and f is a scalar valued function, Kqf is defined by

(A12.1.4) ‘Kqf(ξ) =
∫
q(t, ξ, η)f̂(η) dη,

and when Qj is a 2 × 2 matrix, and f is C2-valued, KQjf is defined in the
natural way. We shall assume also that operator V satisfies
(A12.1.5) V(t)N0 = −N0V(t)

with N0 =
[

0 1
1 0

]
(see (5.1.5)) and that V(t) preserves the space of odd func-

tions. If P0 =
[
p(Dx) 0

0 −p(Dx)

]
, we define

(A12.1.6) P (t) = P0 + V(t).
We want to construct a family of operators B(t) so that, for any f in L2(R)
such that (Dt − P0)f is in L2(R) for any t,
(A12.1.7)

(
Dt − P (t)

)
B(t)f = B(t)(Dt − P0)f.

We shall prove:

Proposition A12.1.2. — For any t ≥ 1, let V(t) be a bounded operator on
L2(R). Assume that t→ V(t) is compactly supported and define for any t ≥ 1,
n ∈ N∗

(A12.1.8) Bn(t) = (−i)n
∫ n∏

j=1
e−iτjP0V(t+ τj)eiτjP010<τ1<···<τn dτ1 . . . dτn,

where, for non commuting variables A1, . . . , An,
∏n
j=1Aj denotes A1A2 . . . An.

Set also B0(t) = Id. Assume that for any f in L2(R), one may find a sequence
(αn)n in `1 such that one has
(A12.1.9) sup

t≥1
‖Bn(t)f‖L2 ≤ αn.

Define

(A12.1.10) B(t)f =
+∞∑
n=0

Bn(t)f,

that exists because of our assumptions. Then B(t) solves equation (A12.1.7).
Moreover, define C0(t) = Id and for n in N∗,

(A12.1.11) Cn(t) = in
∫ n∏

j=1
e−iτjP0V(t+ τj)eiτjP010<τn<···<τ1 dτ1 . . . dτn.

If we assume that the analogous of (A12.1.9) holds for Cn, and define then
C(t) as in (A12.1.10), one has
(A12.1.12) B(t)C(t) = C(t)B(t) = Id.
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Proof. — Let us denote A(t, s) = −ie−isP0V(t+ s)eisP0 . Then

[Dt −Ds, A(t, s)] = [P0, A(t, s)]

and by (A12.1.8)

(A12.1.13) Bn(t) =
∫ n∏

j=1
A(t, τj)10<τ1<···<τn dτ1 . . . dτn

so that

[Dt − P0, Bn] =
∫

(Dτ1 + · · ·+Dτn)
[ n∏
j=1

A(t, τj)
]
10<τ1<···<τn dτ1 . . . dτn

= −
∫ n∏

j=1
A(t, τj)(Dτ1 + · · ·+Dτn)10<τ1<···<τn dτ1 . . . dτn

= iA(t, 0)Bn−1(t).

Using (A12.1.6), and making the convention B−1(t) = 0, we rewrite this as

(Dt − P (t))Bn(t) = Bn(t)(Dt − P0)− V(t)(Bn(t)−Bn−1(t)).

If we denote by Sn(t) =
∑n
n′=0Bn′(t) the partial sum, we get

(A12.1.14) (Dt − P (t))Sn(t) = Sn(t)(Dt − P0)− V(t)Bn(t).

If we make act this on a function f in L2(R) such that (Dt−P0)f is in L2, we
get when n goes to infinity, in view of (A12.1.9), (A12.1.10), the conclusion
(A12.1.7).

We still have to show that C(t) is the inverse of B(t). Let us denote for
j = 0, . . . , n − 1, ϕj(τj , τj+1) = 1τj+1>τj and rewrite the definition of Bn(t)
given in (A12.1.13) as

Bn(t) =
∫ n∏

j=1
A(t, τj)χ(τ1, . . . , τn)

n−1∏
j′=1

ϕj′(τj′ , τj′+1) dτ1 . . . dτn

where χ(τ1, . . . , τn) =
∏n
`=1 10<τ` . In the same way, (A12.1.11) may be written

as

Cn(t) = (−1)n
∫ n∏

j=1
A(t, τj)χ(τ1, . . . , τn)

n−1∏
j′=1

(1− ϕj′)(τj′ , τj′+1) dτ1 . . . dτn.
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We thus get for 1 ≤ ` ≤ n

C`(t) ◦Bn−`(t) = (−1)`
∫ n∏

j=1
A(t, τj)χ(τ1, . . . , τn)

`−1∏
j′=1

(1− ϕj′)(τj′ , τj′+1)

×
n−1∏

j′=`+1
ϕj′(τj′ , τj′+1) dτ1 . . . dτn

using the convention
∏0
j=1 =

∏n−1
j=n = 1. This may be rewritten for ` =

1, . . . , n− 1

C`(t) ◦Bn−`(t) = (−1)`
∫ n∏

j=1
A(t, τj)χ(τ1, . . . , τn)

∏̀
j′=1

(1− ϕj′)(τj′ , τj′+1)

×
n−1∏

j′=`+1
ϕj′(τj′ , τj′+1) dτ1 . . . dτn

− (−1)`−1
∫ n∏

j=1
A(t, τj)χ(τ1, . . . , τn)

`−1∏
j′=1

(1− ϕj′)(τj′ , τj′+1)

×
n−1∏
j′=`

ϕj′(τj′ , τj′+1) dτ1 . . . dτn.

It follows that
∑n
`=0C`(t)Bn−`(t) = 0 when n ≥ 1, which implies C(t)◦B(t) =

Id. In the same way B(t) ◦ C(t) = Id.

In the rest of this chapter, we shall show that the preceding proposition
may be applied to an operator of the form (A12.1.3), if one makes convenient
assumptions on the Qj . Moreover, we shall obtain for the operator B(t),
C(t) estimates in other spaces than L2. More precisely, we shall prove the
proposition below, where we use the following notation. Set, according to
(A11.1.32)

(A12.1.15) L± = x± tp′(Dx), L =
[
L+ 0
0 L−

]
so that
(A12.1.16) [Dt − P0, L] = 0.
In the following sections, we shall prove:

Proposition A12.1.3. — Let Bn(t) and Cn(t) be defined respectively by
(A12.1.8) and (A12.1.11), in terms of V given by (A12.1.3) with Qj a 2 × 2
matrix of elements of Σι,m

1,1 , for some ι > 0 small, some m ∈]0, 1
2 [, close to 1

2 .
Then for ε small enough, (A12.1.9) and the corresponding inequality for Cn(t)
holds, so that

∑+∞
n=0Bn(t) = B(t) and

∑+∞
n=0Cn(t) = C(t) are well defined as
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operators acting on L2(R). Moreover, the operators B(t), C(t) are bounded
on Hs(R) for any s ≥ 0 and satisfy for small δ′ > 0

‖B(t)− Id‖L(Hs) ≤ Cειt−m+δ′+ 1
4

‖C(t)− Id‖L(Hs) ≤ Cειt−m+δ′+ 1
4 .

(A12.1.17)

One may also write for any f in L2(R;C2) such that Lf ∈ L2(R;C2)
(A12.1.18) L ◦ C(t)f = C̃(t)Lf + C̃1(t)f
where
(A12.1.19) ‖C̃(t)− Id‖L(L2) ≤ Cειt−m+δ′+ 1

4

(A12.1.20) ‖C̃1(t)‖L(L2) ≤ Cειt
1
2−m.

Moreover, under condition (A12.1.5), one has

(A12.1.21) B(t)N0 = N0B(t), C(t)N0 = N0C(t)
and if V(t) preserves the space of odd functions, so do B(t) and C(t).

A12.2. Technical lemmas

In this section, we prove some technical lemmas that will be used to obtain
Proposition A12.1.3.

Lemma A12.2.1. — For ξ, η, λ real, denote
(A12.2.1) φ±(ξ, η, λ) = 〈ξ〉 ± 〈η〉+ λ.

There is C > 0 such that for any λ in R, any t ≥ 1

(A12.2.2)
∫
|φ±(ξ,η,λ)|<1

〈tφ±(ξ, η, λ)〉−1 dη ≤ Ct−
1
2

(A12.2.3)
∫
|φ±(ξ,η,λ)|<1

〈tφ±(ξ, η, λ)〉−1 |η|
〈η〉

dη ≤ Ct−1 log(1 + t).

Proof. — We compute first the integrals over the domain η ≥ c or η ≤ −c for
some c > 0. On these domains, η → ζ = φ±(ξ, η, λ) is a change of variables,
whose jacobian has uniform lower and upper bounds. The corresponding in-
tegrals are thus bounded by

C

∫
|ζ|<1

〈tζ〉−1 dζ ≤ Ct−1 log(t+ 1).

We compute next the integrals for |η| < c. If c is small enough, we may write
on this domain

φ±(ξ, η, λ) = φ±(ξ, 0, λ) + g(η)2
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where g(0) = 0, g′(0) 6= 0, so that we may bound the two integrals (A12.2.2),
(A12.2.3) respectively by

C

∫
|ζ|<c′

〈ρ+ tζ2〉−1
dζ, C

∫
|ζ|<c′

〈ρ+ tζ2〉−1|ζ| dζ

where c′ > 0 is some constant, and ρ is some real number depending on ξ, λ, t.
These two integrals are smaller than the right hand side of (A12.2.2), (A12.2.3)
respectively, uniformly in ρ.

We study now composition of operators defined by (A12.1.4) from symbols
in the classes of Definition A12.1.1, and we prove also Sobolev estimates for
such operators.

Lemma A12.2.2. — (i) If ` is in N, set µ(`) = 1
2 if ` = 0 and let µ(`) be

strictly smaller than 1 if ` ≥ 1. Let N ≥ 2. There is a constant C > 0 such
that if two functions q1, q2 satisfy estimates

|q1(ξ, η)| ≤ K1〈|ξ| − |η|〉−N
Å |η|
〈η〉

ãb
|q2(ξ, η)| ≤ K2〈|ξ| − |η|〉−N

Å |ξ|
〈ξ〉

ãa
,

(A12.2.4)

where a, b are in {0, 1}, then the function

(A12.2.5) q3(ξ, η) =
∫
q1(ξ, ζ)q2(ζ, η)〈tφ±(ξ, ζ, λ)〉−1 dζ

satisfies

(A12.2.6) |q3(ξ, η)| ≤ CK1K2t
−µ(b+a)〈|ξ| − |η|〉−N .

(ii) Let s be in R+, δ′ > 0, N ≥ s+ 2. There is C > 0 such that if a function
(ξ, η)→ q(ξ, η) satisfies

(A12.2.7) |q(ξ, η)| ≤ K〈|ξ| − |η|〉−N
Å |ξ|
〈ξ〉

+ |η|
〈η〉

ã
then the operator Kq defined by (A12.1.4) satisfies

(A12.2.8) ‖Kq‖L(Hs) ≤ CKt−
3
4 +δ′ .

(iii) If instead of (A12.2.7), q satisfies

(A12.2.9) |q(ξ, η)| ≤ K〈|ξ| − |η|〉−N |ξ|
〈ξ〉
|η|
〈η〉

one gets instead of (A12.2.8)

(A12.2.10) ‖Kq‖L(Hs) ≤ CKt−1+δ′ .
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Proof. — (i) If in (A12.2.5) we integrate for φ±(ξ, ζ, λ) ≥ 1, then (A12.2.6)
holds trivially, as a consequence of (A12.2.4), with factor t−1 instead of
t−µ(b+a). If we integrate for |φ±(ξ, ζ, λ)| < 1 the contribution to q3 is bounded
from above by

CK1K2〈|ξ| − |η|〉−N
∫
|φ±(ξ,ζ,λ)|<1

〈tφ±(ξ, ζ, λ)〉−1
Å |ζ|
〈ζ〉

ãa+b
dζ.

Applying Lemma A12.2.1, we get (A12.2.6).
(ii) Since N ≥ s + 2, the L(Hs) estimate is reduced to a L(L2) one for

N ≥ 2 using the decay in 〈|ξ| − |η|〉 in (A12.2.7). If the kernel of Kq is cut-off
for |φ±(ξ, η, λ)| ≥ 1, then Schur’s lemma shows that (A12.2.8) holds with t−1

instead of t−
3
4 +δ′ . We have thus to study

f →
∫
q(ξ, η)〈tφ±(ξ, η, λ)〉−11|φ±(ξ,η,λ)|<1f(η) dη.

By Schur’s lemma and (A12.2.7), the L(L2) norm of this operator is bounded
from above by

CK
(

sup
ξ

∫
〈|ξ| − |η|〉−N 〈tφ±(ξ, η, λ)〉−1 |η|

〈η〉
dη
) 1

2

×
(

sup
η

∫
〈|ξ| − |η|〉−N 〈tφ±(ξ, η, λ)〉−1 dξ

) 1
2

(A12.2.11)

and by the symmetric quantity. Using (A12.2.2), (A12.2.3), we get (A12.2.8).
(iii) We make the same reasoning as above, except that (A12.2.11) is now

replaced by

CK
(

sup
ξ

∫
〈|ξ| − |η|〉−N 〈tφ±(ξ, η, λ)〉−1 |η|

〈η〉
dη
) 1

2

×
(

sup
η

∫
〈|ξ| − |η|〉−N 〈tφ±(ξ, η, λ)〉−1 |ξ|

〈ξ〉
dξ
) 1

2
.

We conclude by (A12.2.3).

Let us define a class that will contain functions obtained from those of
Definition A12.1.1 by introduction of an extra variable.

Definition A12.2.3. — We denote by Σ̃ι,m,m0
0,0 the space of functions

(t, v, ξ, η)→ q(t, v, ξ, η), defined for t ≥ 1, v ≥ 0, ξ, η in R, that are Lipschitz
and compactly supported in v and satisfy for any N and j = 0, 1
(A12.2.12) |∂jvq(t, v, ξ, η)| ≤ CN ειt1−m(1 + v)−m0−j〈|ξ| − |η|〉−N .

For a, b in N, we denote by Σ̃ι,m,mO
a,b the space of functions that may be written( ξ

〈ξ〉
)a( η
〈η〉
)b
q1 with q1 in Σ̃ι,m,m0

0,0 .
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We shall also allow q to depend on extra parameters, estimates (A12.2.12)
being uniform in these parameters.

Notice that if q belongs to the class Σι,m
a,b of Definition A12.1.1 and is com-

pactly supported in time, then q̃(t, v, ξ, η) = tq(t(1 + v), ξ, η) is in Σ̃ι,m,m0
a,b if

m ≥ m0.
We shall discuss some operators constructed from functions in Σ̃ι,m,m0

a,b . In
the following discussion, we shall identify operators and their kernels.

Let Q be in Σ̃ι,m,m0
a,b ⊗M2(R) (i.e. a 2 × 2 matrix of elements of Σ̃ι,m,m0

a,b ).
If λ is in R, we consider the operator from L2(R) to L2(R) given at fixed t, v
by the kernel in (ξ, η)

(A12.2.13) S(t, v,Q, λ) = e−itvP0(ξ)Q(t, v, ξ, η)eitv(P0(η)+λ).

If we decompose

Q(t, v, ξ, η) =
2∑
j=1

2∑
k=1

qjk(t, v, ξ, η)Ejk,

where
(A12.2.14) Ejk = (δj

′

j δ
k′
k )1≤j′,k′≤2,

we may write

(A12.2.15) S(t, v,Q, λ) =
2∑
j=1

2∑
k=1

Sjk(t, v,Q, λ)

with
(A12.2.16) Sjk(t, v,Q, λ) = qjk(t, v, ξ, η)eitvφjk(ξ,η,λ)Ejk

where
(A12.2.17) φjk(ξ, η, λ) = (−1)jp(ξ)− (−1)kp(η) + λ.

We assume given functions Q` in Σ̃ι`,m`,m`0
a`,b`

⊗M2(R) and real numbers λ` for
` in N∗. We set
(A12.2.18) Q

n
= (Qn, . . . , Q1), λ = (λn, . . . , λ1).

We define inductively a sequence of operators by their kernels, starting with

(A12.2.19) M1(t, u,Q1, λ1) =
∫ +∞

u
S(t, v,Q1, λ1) dv

and for n ≥ 1
(A12.2.20)

Mn+1(t, u,Q
n+1, λn+1) =

∫ +∞

u
S(t, v,Qn+1, λn+1) ◦Mn(t, v,Q

n
, λn) dv.
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Notice that the above integrals converge since S is compactly supported in v.
According to our convention of identification between kernels and operators,
we shall set for a function f

(A12.2.21) Mn(t, v,Q
n
, λn)f(ξ) =

∫
Mn(t, v,Q

n
, λn)(ξ, η)f(η) dη.

We shall prove the following estimates:

Lemma A12.2.4. — Let m,mn
0 ,m

′
0, ι, a, b satisfy

(A12.2.22) mn
0 ,m

′
0 >

1
4 , a, b,∈ N, a+ b ≥ 1, ι > 0,m > 0.

Let Q be in Σ̃ι,m,m′0
a,b ⊗M2(R), λ in R, and let KN be the best constant CN

in (A12.2.12) for the entries of Q. In the same way, denote by KN,` the best
constant in (A12.2.12) for the entries of Q`, ` = 1, . . . , n.

There is for any N ≥ 2, any δ′ > 0, a constant CN that does not depend on
KN ,KN,` and a symbol Q̃ in

Σ̃ι+ιn,m+mn− 1
2 ,m

n
0 +m′0−

1
2

a,bn ⊗M2(R)

if an + b = 0, and in

Σ̃ι+ιn,m+mn−δ′,mn0 +m′0−δ′
a,bn ⊗M2(R)

if an + b ≥ 1, whose N -th semi-norm is bounded from above by CNKNKN,n,
such that if n ≥ 1,

(A12.2.23)
∫ +∞

u
S(t, v,Q, λ) ◦Mn(t, v,Q

n
, λn) dv

=
∫ +∞

u
S(t, v, Q̃, λ̃) ◦Mn−1(t, v,Q

n−1, λn−1) dv +Rn(t, u)

where λ̃ = λ+ λn and Rn satisfies for any f in L2(R), any δ′ > 0
(A12.2.24)

‖sup
u
|Rn(t, u)f |‖L2 ≤ CK2ε

ιt−m+ 1
4 +δ′‖sup

u
|Mn(t, u,Q

n
, λn)f |‖L2 .

If n = 0, (A12.2.23) holds as well without the integral term in the right hand
side.

Proof. — In the left hand side of (A12.2.23) we plug (A12.2.15). Then the
kernel of that operator is the sum in j, k, 1 ≤ j, k ≤ 2 of

(A12.2.25)
∫ +∞

u

∫
Sjk(t, v,Q, λ)(ξ, ζ)Mn(t, v,Q

n
, λn)(ζ, η) dζdv.
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Let us define for 1 ≤ j, k ≤ 2 the operator

(A12.2.26) Ljkλ(ξ, ζ)

=
〈
t(1 + v)φjk(ξ, ζ, λ)

〉−2[
1 + t(1 + v)φjk(ξ, ζ, λ)(1 + v)Dv

]
where we used notation (A12.2.17). Then, by (A12.2.16)

LjkλSjk(ξ, ζ) = Sjk(ξ, ζ) + t(1 + v)φjk(ξ, ζ, λ)
〈t(1 + v)φjk(ξ, ζ, λ)〉2

(1 + v)Dvqjk(t, v, ξ, ζ, λ)

×eitvφjk(ξ,ζ,λ)Ejk.

(A12.2.27)

We plug the expression of Sjk deduced from (A12.2.27) inside (A12.2.25). We
obtain on the one hand

−
∫ +∞

u

∫
t(1 + v)φjk(ξ, ζ, λ)
〈t(1 + v)φjk(ξ, ζ, λ)〉2

(1 + v)Dvqjk(t, v, ξ, ζ, λ)

×eitvφjk(ξ,ζ,λ)EjkMn(t, v,Q
n
, λn)(ζ, η) dζdv

(A12.2.28)

and on the other hand

(A12.2.29)
∫ +∞

u

∫
LjkλSjk(t, v,Q, λ)(ξ, ζ)Mn(t, v,Q

n
, λn)(ζ, η) dζdv.

Using the expression (A12.2.26) of Ljkλ, we perform in (A12.2.29) one inte-
gration by parts in v. We get the following contributions

∫ +∞

u

∫ ï〈
t(1 + v)φjk(ξ, ζ, λ)

〉−2
−Dv

ï
(1 + v) t(1 + v)φjk(ξ, ζ, λ)

〈t(1 + v)φjk(ξ, ζ, λ)〉2
òò

×Sjk(t, v,Q, λ)(ξ, ζ)Mn(t, v,Q
n
, λn)(ζ, η) dζdv,

(A12.2.30)

−
∫ +∞

u

∫
t(1 + v)φjk(ξ, ζ, λ)
〈t(1 + v)φjk(ξ, ζ, λ)〉2

Sjk(t, v,Q, λ)(ξ, ζ)

×(1 + v)DvMn(t, v,Q
n
, λn)(ζ, η) dζdv,

(A12.2.31)

−1
i

∫
t(1 + u)2φjk(ξ, ζ, λ)
〈t(1 + u)φjk(ξ, ζ, λ)〉2

Sjk(t, u,Q, λ)(ξ, ζ)

×Mn(t, u,Q
n
, λn)(ζ, η) dζ.

(A12.2.32)

Let us show that (A12.2.28), (A12.2.30), (A12.2.31), (A12.2.32) may be writ-
ten as contributions to the right hand side of (A12.2.23).
• Contributions of (A12.2.28) and (A12.2.30)
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We make act (A12.2.28), (A12.2.30) on a function f . We shall get an
expression

(A12.2.33)
∫ +∞

u

∫
K(v, ξ, ζ)

(
Mn(t, v,Q

n
, λn)f

)
(ζ) dζdv

where, by the fact that qjk in (A12.2.16) is in Σ̃ι,m,m′0
a,b and (A12.2.12), the

kernel K satisfies the bound

|K(v, ξ, ζ)| ≤ CK2〈t(1 + v)φjk(ξ, ζ, λ)〉−1
Å |ξ|
〈ξ〉

ãaÅ |ζ|
〈ζ〉

ãb
×ειt1−m(1 + v)−m′0〈|ξ| − |η|〉−2.

(A12.2.34)

We bound the modulus of (A12.2.33) by∫ +∞

0

∫
|K(v, ξ, ζ)|

(
sup
w
|Mn(t, w,Q

n
, λn)f(ζ)|

)
dζdv.

Then the L2 norm in ξ of the supremum in u of (A12.2.33) is bounded from
above by

(A12.2.35)
∫ +∞

0

∥∥∥∫ |K(v, ξ, ζ)|
(

sup
w
|Mn(t, w,Q

n
, λn)f(ζ)|

)
dζ
∥∥∥
L2(dξ)

dv.

As a + b ≥ 1, (A12.2.34) shows that we may apply to the dζ-integral, which
is of the form of the right hand side of (A12.2.7), estimate (A12.2.8), with t
replaced by t(1 + v). We obtain that (A12.2.35) is smaller than

CK2

∫ +∞

0
ειt

1
4−m+δ′(1 + v)−m′0−

3
4 +δ′ dv

∥∥sup
w
|Mn(t, w,Q

n
, λn)f |

∥∥
L2

with δ′ > 0 as small as we want. Since by assumption m′0 >
1
4 , we obtain

a bound of the form (A12.2.24), that shows that (A12.2.28) and (A12.2.30)
contribute to Rn in (A12.2.23).
• Contribution of (A12.2.32)
This is an expression similar to (A12.2.30), except that we no not have a

dv integral and have a factor (1 +u)2 instead of (1 + v). Consequently, for the
L2 norm of that operator acting on f , we get a bound of the form (A12.2.35)
but without dv-integration and an extra factor (1 +u), and with K estimated
at u instead of v. This implies again that we obtain a contribution to Rn.
• Contribution of (A12.2.31)
By (A12.2.20) at order n− 1

DvMn(t, v,Q
n
, λn) = iS(t, v,Qn, λn) ◦Mn−1(t, v,Q

n−1, λn−1).
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Plugging this in (A12.2.31), we get the expression

(A12.2.36) − i
∫ +∞

u

∫∫
t(1 + v)φjk(ξ, ζ, λ)
〈t(1 + v)φjk(ξ, ζ, λ)〉2

Sjk(t, v,Q, λ)(ξ, ζ)

× (1 + v)S(t, v,Qn, λn)(ζ, η′)Mn−1(t, v,Q
n−1, λn−1)(η′, η) dζdη′dv.

We write by (A12.2.15)

S(t, v,Qn, λn) =
2∑

k′=1

2∑
`=1

Sk′`(t, v,Qn, λn).

By (A12.2.16) and the fact that EjkEk′` = δk
′
k Ej`, we have

(A12.2.37)
2∑

k′=1
Sjk(t, v,Q, λ)(ξ, ζ)Sk′,`(t, v,Qn, λn)(ζ, η′)

= qjk(t, v, ξ, ζ)qnk`(t, v, ζ, η′)

× eitvφjk(ξ,ζ,λ)+itvφk`(ζ,η′,λn)Ej`

where qnk` denote the entries of matrix Qn. By (A12.2.17), the phase in the
exponential is φj`(ξ, η′, λ+ λn). Define

q̃j`(t, v, ξ, η′, λ) = −i(1 + v)
∫ 2∑

k=1
qjk(t, v, ξ, ζ)qnk`(t, v, ζ, η′)

×t(1 + v)φjk(ξ, ζ, λ)〈t(1 + v)φjk(ξ, η, λ)〉−2 dζ.

(A12.2.38)

Since qjk is in Σ̃ι,m,m′0
a,b , (A12.2.12) shows that we may write this function as( ξ

〈ξ〉
)a multiplied by a function that will satisfy the first estimate (A12.2.4),

with K1 bounded by ειt1−m(1 + v)−m′0 . In the same way, since qnk` is in
Σ̃ιn,mn,mn0
an,bn , it may be written as

( η′

〈η′〉
)bn times a function satisfying the second

estimate (A12.2.4), with a replaced by an and K2 bounded by ει
n
t1−mn(1 +

v)−mn0 . By (i) of Lemma A12.2.2, applied with t replaced by t(1 + v), we see
that (A12.2.38) may be written as a product of

( ξ
〈ξ〉
)a( η′

〈η′〉
)bn times a quantity

bounded from above by

CKNKN,nε
ι+ιnt

3
2−m−m

n(1 + v)
1
2−m

n
0−m

′
0〈|ξ| − |η′|〉−N

if b+ an = 0 and by

CKNKN,nε
ι+ιnt1−m−m

n+δ′(1 + v)−mn0−m′0+δ′〈|ξ| − |η′|〉−N

for any δ′ > 0 if b+ an ≥ 1, according to (A12.2.6).
If one takes a ∂v-derivative of (A12.2.38), one gains an extra de-

cay factor in (1 + v)−1. Consequently, (A12.2.38) defines a symbol in
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Σ̃ι+ιn,m+mn− 1
2 ,m

n
0 +m′0−

1
2

a,bn (resp. Σ̃ι+ιn,m+mn−δ′,mn0 +m′0−δ′
a,bn ) if b + an = 0 (resp.

b+ an ≥ 1). Since the phases in (A12.2.37) satisfy

φjk(ξ, ζ, λ) + φk`(ζ, η′, λn) = φj`(ξ, η′, λ+ λn),

this shows that (A12.2.36) may be written under the form of the first integral
in the right hand side of (A12.2.23), with a matrix function Q̃, depending
on λ, but with estimates uniform in λ, whose entries are respectively in the
classes of the statement of the lemma. This concludes the proof as, in the
case n = 0, one has just to estimate terms of the form (A12.2.28), (A12.2.30),
(A12.2.32).

Our next goal will be to obtain bounds for (A12.2.20) iterating (A12.2.23).
We introduce some notation.

Let p, n be in N∗. Assume given for each (n, p) a sequence (Xj
(n,p))1≤j≤n,

where Xj
(n,p) is an element

(A12.2.39) Xj
(n,p) =

(
ιj(n,p),m

j
(n,p),m

j
(n,p),0, a

j
(n,p), b

j
(n,p)

)
of ]0,+∞[×]1

4 ,+∞[×]1
4 ,+∞[×N× N satisfying the following conditions:

If p ≤ n,mj
(n,p),0 >

3
8 , j = 1, . . . , n

If p ≥ n+ 1,mj
(n,p),0 >

3
8 , j = 1, . . . , n− 1 and mn

(n,p),0 >
1
4 .

(A12.2.40)

For 1 ≤ j′, j′′ ≤ n, aj
′

(n,p) + bj
′′

(n,p) ≥ 1 except eventually if

j′ < j′′ = p (This exception being void if p > n or p = 1).
(A12.2.41)

For any Xj
(n,p) of the form (A12.2.39), we denote for short by Σ̃(Xj

(n,p)) the
class

Σ̃(Xj
(n,p)) = Σ̃

ιj(n,p),m
j
(n,p),m

j
(n,p),0

aj(n,p),b
j
(n,p)

of Definition A12.2.3.
If (Xj

(n+1,p))1≤j≤n+1 is a sequence of the form (A12.2.39), we define from
it the concatenated sequence (Xj,C

(n,p))1≤j≤n and the truncated sequence
(Xj,T

(n,p))1≤j≤n in the following way: We just set

(A12.2.42) Xj,T
(n,p) = Xj

(n+1,p), j = 1, . . . , n

while we denote

Xj,C
(n,p) =

(
ιj,C(n,p),m

j,C
(n,p),m

j,C
(n,p),0, a

j,C
(n,p), b

j,C
(n,p)

)
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where the components of the preceding vector are defined in the following way:

(A12.2.43) ιn,C(n,p) = ιn+1
(n+1,p) + ιn(n+1,p), ι

j,C
(n,p) = ιj(n+1,p), j = 1, . . . , n− 1.

If n 6= p− 1, we set

mn,C
(n,p) = mn+1

(n+1,p) +mn
(n+1,p) − δ

′, mj,C
(n,p) = mj

(n+1,p), j = 1, . . . , n− 1

mn,C
(n,p),0 = mn+1

(n+1,p),0 +mn
(n+1,p),0 − δ

′, mj,C
(n,p),0 = mj

(n+1,p),0, j = 1, . . . , n− 1

(A12.2.44)

where δ′ > 0 is as small as wanted (In particular, δ′ will be small enough so that
the lower bound (A12.2.40) still holds with mj

(n,p),0 replaced by mj
(n,p),0 − δ

′).
If n = p− 1, we define instead of (A12.2.44)

mp−1,C
(p−1,p) = mp

(p,p) +mp−1
(p,p) −

1
2 , m

j,C
(p−1,p) = mj

(p,p), j = 1, . . . , p− 2

mp−1,C
(p−1,p),0 = mp

(p,p),0 +mp−1
(p,p),0 −

1
2 , m

j,C
(p−1,p),0 = mj

(p,p),0, j = 1, . . . , p− 2.

(A12.2.45)

Finally, we set for all (n, p)

an,C(n,p) = an+1
(n+1,p), b

n,C
(n,p) = bn(n+1,p)

aj,C(n,p) = aj(n+1,p), b
j,C
(n,p) = bj(n+1,p), j = 1 . . . , n− 1.

(A12.2.46)

Let us check that if the sequence (Xj
(n+1,p))1≤j≤n+1 satisfies (A12.2.40),

(A12.2.41) (with n replaced by n + 1), then (Xj,C
(n,p))1≤j≤n satisfies also

(A12.2.40), (A12.2.41).
Verification of condition (A12.2.40)
Case p ≤ n. As n 6= p − 1, (A12.2.44) applies and shows that mj,C

(n,p),0 =
mj

(n+1,p),0 for j = 1, . . . , n − 1. On the other hand, by (A12.2.40) with n

replaced by n+ 1, mj
(n+1,p),0 >

3
8 , so that the first condition (A12.2.40) holds

for mj,C
(n,p),0 if j = 1, . . . , n − 1. To get it for mn,C

(n,p),0, we write by (A12.2.44)
that

mn,C
(n,p),0 = mn+1

(n+1,p),0 +mn
(n+1,p),0 − δ

′ >
3
8 + 3

8 − δ
′ >

3
8

using the first line in (A12.2.40) with n replaced by n+ 1.
Case p = n + 1. By (A12.2.45), we have mj,C

(p−1,p),0 = mj
(p,p),0 for j =

1, . . . , p− 2, and by the first line in (A12.2.40) (with n replaced by n+ 1 = p),
this is strictly larger than 3

8 , so that the second line of (A12.2.40) holds for
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mj,C
(p−1,p),0, j = 1, . . . , p− 2. On the other hand, still by (A12.2.45)

mp−1,C
(p−1,p),0 = mp

(p,p),0 +mp−1
(p,p),0 −

1
2 >

3
8 + 3

8 −
1
2 = 1

4
so that the last condition (A12.2.40) holds for mp−1,C

(p−1,p),0. We thus got
(A12.2.40) for mj,C

(n,p),0 when n = p− 1.
Case p ≥ n+2. Again, we may apply (A12.2.44) to write for j = 1, . . . , n−1

mj,C
(n,p),0 = mj

(n+1,p),0 >
3
8 by the second condition (A12.2.40) with n replaced

by n+ 1. On the other hand, still by (A12.2.44)

mn,C
(n,p),0 = mn+1

(n+1,p),0 +mn
(n+1,p),0 − δ

′ >
1
4 + 3

8 − δ
′ >

3
8

using (A12.2.40) with n replaced by n + 1. This is better than what we
need to ensure the last condition (A12.2.40) for mn,C

(n,p),0. This concludes the
verification.

Verification of (A12.2.41)
We assume that (A12.2.41) holds at rank n+ 1 i.e.

For 1 ≤ j′, j′′ ≤ n+ 1, aj
′

(n+1,p) + bj
′′

(n+1,p) ≥ 1 except eventually if j′ < j′′ = p.

Let us check (A12.2.41) for aj
′,C

(n,p), b
j′′,C
(n,p). If both j′ and j′′ are strictly smaller

than n, then (A12.2.46) shows that the wanted property holds. On the other
hand, if j′′ ≤ n, j′ < n, then

aj
′,C

(n,p) + bj
′′,C

(n,p) = aj
′

(n+1,p) + bj
′′

(n+1,p)

by (A12.2.46), and this expression is larger or equal to one, except eventually
if j′ < j′′ = p, whence again (A12.2.41). It remains to study the case j′ = n.
We have then

an,C(n,p) + bj
′′,C

(n,p) = an+1
(n+1,p) + bj

′′

(n+1,p).

The inequality n+1 < j′′ = p cannot hold, so that the above quantity is always
larger or equal to one. This shows that (A12.2.41) is satisfied by (Xj,C

(n,p))1≤j≤n.

We may state our main proposition.

Proposition A12.2.5. — Let n be in N, p be in N∗ and assume given
a sequence (Xj

(n+1,p))1≤j≤n+1 of the form (A12.2.39), satisfying (A12.2.40),
(A12.2.41), with n replaced by n+ 1. For j = 1, . . . , n+ 1, let Qj(n+1,p) be an
element of Σ̃(Xj

(n+1,p))⊗M2(R). Denote by Kj
(n+1,p) the semi-norm provided

by the best constant in (A12.2.12), in the case N = 2. Set as in (A12.2.18),
Q
n+1 = (Qn+1

(n+1,p), . . . , Q
1
(n+1,p)). Then there is a universal constant C0 such
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that, for any f in L2, any λn+1 = (λn+1, . . . , λ1) in Rn+1, one has when
p > n+ 1 or p = 1 the bounds
(A12.2.47)∥∥sup

u>0
|Mn+1(t, u,Q

n+1, λn+1)f |
∥∥
L2 ≤ Cn+1

0 K(n+1,p)ε
ι(n+1,p)t−m(n+1,p)‖f‖L2

where

ι(n+1,p) =
n+1∑
j=1

ιj(n+1,p),

m(n+1,p) =
n+1∑
j=1

mj
(n+1,p) − (n+ 1)

(
δ′ + 1

4

)
K(n+1,p) = K1

(n+1,p) · · ·K
n+1
(n+1,p),

(A12.2.48)

while if 2 ≤ p ≤ n+ 1, one gets instead

(A12.2.49)
∥∥sup
u>0
|Mn+1(t, u,Q

n+1, λn+1)f |
∥∥
L2

≤ Cn+1
0 K(n+1,p)ε

ι(n+1,p)t
−m(n+1,p)+ 1

2−
(
δ′+ 1

4

)
‖f‖L2 .

The proposition will be deduced from the following lemma.

Lemma A12.2.6. — Let Q
n+1 be as in the statement of Proposi-

tion A12.2.5. There are C > 0, a sequence QT
n

= (Qj,T(n,p))1≤j≤n, with
Qj,T(n,p) in Σ̃(Xj,T

(n,p))⊗M2(R) with semi-norms Kj,T
(n,p) satisfying

(A12.2.50) Kj,T
(n,p) ≤ K

j
(n+1,p),

a sequence QC
n

= (Qj,C(n,p))1≤j≤n, with Qj,C(n,p) in Σ̃(Xj,C
(n,p)) ⊗M2(R) and semi-

norms Kj,C
(n,p) satisfying

(A12.2.51) Kj,C
(n,p) ≤ K

j
(n+1,p), j = 1, . . . , n− 1,Kn,C

(n,p) ≤ CK
n
(n+1,p)K

n+1
(n+1,p)

such that

(A12.2.52)
∥∥sup
u>0
|Mn+1(t, u,Q

n+1, λn+1)f |
∥∥
L2

≤
∥∥sup
u>0
|Mn(t, u,QC

n
, λC

n )f |
∥∥
L2

+ Ct
−mn+1

(n+1,p)+ 1
4 +δ′

ε
ιn+1
(n+1,p)Kn+1

(n+1,p)
∥∥sup
u>0
|Mn(t, u,QT

n
, λT

n )f |
∥∥
L2

for other sequences of real numbers λC
n , λ

T
n .
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Proof. — We apply Lemma A12.2.4 with Q
n

= (Qn(n+1,p), . . . , Q
1
(n+1,p)), Q =

Qn+1
(n+1,p), Qn−1 = (Qn−1

(n+1,p), . . . , Q
1
(n+1,p)). The left hand side (A12.2.23) is

then, according to (A12.2.20), equal to Mn+1(t, u,Q
n+1, λn+1). Let us check

that condition (A12.2.22) holds. By (A12.2.40) with n replaced by n+ 1, we
have mn+1

(n+1,p),0 >
1
4 , mn

(n+1,p),0 >
1
4 . We have to check that an+1

(n+1,p)+bn+1
(n+1,p) ≥

1, that follows from (A12.2.41) at order n+1. Let us check that the first term
in the right hand side of (A12.2.23) may be written as Mn(t, u,QC

n
, λC

n ), so
that it will provide the first term in the right hand side of (A12.2.52). We
shall define the sequence QC

n
by

(A12.2.53) Qn,C(n,p) = Q̃, Qj,C(n,p) = Qj(n+1,p), j = 1, . . . , n− 1

where Q̃ is introduced in the statement of Lemma A12.2.4. Let us check that
we get for the elements of (Xj,C

(n,p))1≤j≤n expressions (A12.2.43)–(A12.2.46).
For j = 1, . . . , n − 1, this follows from the definition of Qj,C(n,p) in (A12.2.53).
Consider now Q̃. The class to which it belongs depends on the fact that

(A12.2.54) bn+1
(n+1,p) + an(n+1,p) ≥ 1

or not. By (A12.2.41) at order n+1, (A12.2.54) holds except if n+1 = p > n.
Consequently, when n 6= p − 1, we shall have according to Lemma A12.2.4,
that ιn,C(n,p),m

n,C
(n,p),m

n,C
(n,p),0 are given by (A12.2.43), (A12.2.44) and an,C(n,p), b

n,C
(n,p)

by (A12.2.46). If n = p−1, then we know only that bn+1
(n+1,p) +an(n+1,p) ≥ 0, and

in this case, the lemma shows that mn,C
(n,p), m

n,C
(n,p),0 are given by (A12.2.45).

We thus obtain that the first term in the right hand side of (A12.2.23)
is Mn(t, u,QC

n
, λC

n ) for a convenient sequence λC
n . Moreover, again by

Lemma A12.2.4, the semi-norm of Q̃ = Qn,C(n,p) (corresponding to N = 2 in
(A12.2.12)) is controlled according to the last inequality in (A12.2.51), the
case of the semi-norms of Qj,C(n,p) = Qj(n+1,p), j = 1, . . . , n− 1 being trivial.

We have next to check that the remainder Rn in (A12.2.23) provides the last
contribution to (A12.2.52). This follows from (A12.2.24) and the fact that, by
definition, QT

n
is the truncated sequence (Qn(n+1,p), . . . , Q

1
(n,p)). This concludes

the proof.

Proof of Proposition A12.2.5: We proceed by induction on n. If n = 0, the
last statement in Lemma A12.2.4 shows that we get (A12.2.47). We assume
from now on that n ≥ 1. Assume that (A12.2.47), (A12.2.49) have been proved
at order n instead of n+ 1.
• Case p ≥ n+ 2. We apply inequality (A12.2.52). In its right hand

side, we may apply the induction hypothesis to Mn(t, u,QC
n
, λC

n ) and
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Mn(t, u,QT
n
, λT

n ). Since p > n, estimate (A12.2.47) (with n + 1 replaced by
n) for Mn(t, u,QC

n
, λC

n ) will hold, with ι(n+1,p) (resp. m(n+1,p), resp. K(n+1,p))
replaced by ιC(n,p) =

∑n
j=1 ι

j,C
(n,p) (resp. mC

(n,p) =
∑n
j=1m

j,C
(n,p) − n

(
δ′ + 1

4

)
, resp.

KC
(n,p) =

∏n
j=1K

j,C
(n,p)). Using (A12.2.43), (A12.2.44), (A12.2.51), we get a

bound of the first term in the right hand side of (A12.2.52) by

(A12.2.55) Cn0C
n+1∏
j=1

Kj
(n+1,p)ε

ι(n+1,p)t−m(n+1,p)‖f‖L2 .

On the other hand, if we apply inequality (A12.2.47) (with n+1 replaced by n)
to Mn(t, u,QT

n
, λT

n ) and use (A12.2.50), we bound the last term in (A12.2.52)
by

(A12.2.56) Ct
−mn+1

(n+1,p)+ 1
4 +δ′

ε
ιn+1
(n+1,p)Kn+1

(n+1,p)C
n
0K

T
(n,p)ε

ιT(n,p)t
−mT

(n,p)‖f‖L2

where we denoted

ιT(n,p) =
n∑
j=1

ιj,T(n,p) =
n∑
j=1

ιj(n+1,p)

mT
(n,p) =

n∑
j=1

mj,T
(n,p) − n

(1
4 + δ′

)
=

n∑
j=1

mj
(n+1,p) − n

(1
4 + δ′

)
KT =

n∏
j=1

Kj,T
(n,p) =

n∏
j=1

Kj
(n+1,p)

according to the definition of Xj,T
(n,p) in (A12.2.42). Taking (A12.2.48) into

account, we bound again (A12.2.56) by (A12.2.55).
• Case p = n+ 1. We apply again (A12.2.52). In the right hand side, the

first term may be estimated again from (A12.2.47) with n + 1 replaced by
n = p− 1, since we have p > p− 1. The exponent mC

(n,p) of t in the right hand
side will be here

mC
(p−1,p) =

p−1∑
j=1

mj,C
(p−1,p) − (p− 1)

(
δ′ + 1

4

)
=

p∑
j=1

mj
(p,p) − (p− 1)

(
δ′ + 1

4

)
− 1

2

according to (A12.2.45). On the other hand, the last term in (A12.2.52) will
be estimated by (A12.2.47) at order n instead of n+1, and thus by (A12.2.56).
We thus get a bound of the form (A12.2.49).
• Case 2 ≤ p ≤ n. We apply again (A12.2.52). The first term in the right

hand side may be estimated from the induction hypothesis (A12.2.49), applied
with n + 1 replaced by n, to Mn(t, u,QC

n
, λC

n ). As n 6= p − 1, the exponent
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mj,C
(n,p) are given by (A12.2.44), so that

mC
(n,p) =

n∑
j=1

mj,C
(n,p) − n

(
δ′ + 1

4

)
≥ m(n+1,p) + 1

4

which largely allows to bound the first term by

(A12.2.57) Cn0CK(n+1,p)ε
ι(n+1,p)t

−m(n+1,p)+ 1
2−
(
δ′+ 1

4

)
‖f‖L2 .

The second term in the right hand side of (A12.2.52) is estimated using
the induction assumption for Mn(t, u,QT

n
, λT

n ) i.e. writing for this expression
(A12.2.49) with n + 1 replaced by n. One gets again a bound of the form
(A12.2.57).
• Case p = 1. In this case, we proceed as when p > n + 1: We prove

(A12.2.47) by induction, using at each step (A12.2.52), and the fact that the
condition n 6= p − 1 = 0 holding for all n ≥ 1, we may use at each step
(A12.2.44). This concludes the proof. 2

A12.3. Proof of Proposition A12.1.3

We shall prove first Sobolev estimates.

Lemma A12.3.1. — Let Bn(t) (resp. Cn(t)) be given by (A12.1.8) (resp.
(A12.1.11)) with V(·) of the form (A12.1.3), Qj being in Σι,m

1,1 for some ι > 0,
some m ∈]0, 1

2 [ close to 1
2 (as in the example following Definition A12.1.1).

There is K > 0, δ′ > 0 small, such that for any n in N∗

‖Bn(t)‖L(Hs) ≤
(
Kειt−

(
m−δ′− 1

4

))n
‖Cn(t)‖L(Hs) ≤

(
Kειt−

(
m−δ′− 1

4

))n
.

(A12.3.1)

The same conclusion holds true if Qj is in Σι,m
2,0 for all j or Qj is in Σι,m

0,2 for
all j.

Proof. — We shall estimate ‖〈Dx〉sBn(t)〈Dx〉−s‖L(L2). By (A12.1.8)

(A12.3.2) 〈Dx〉sBn(t)〈Dx〉−s

=
∫ n∏

j=1
e−iτjP0〈Dx〉s(−i)V(t+ τj)〈Dx〉−seiτjP0

× 10<τ1<···<τn dτ1 . . . τn.
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By (A12.1.3), this may be written as a sum of 5n terms
2∑

i1=−2
· · ·

2∑
in=−2

∫ n∏
j=1

(−i)e−iτjP0〈Dx〉sKQin+1−j (t+τj)

×eiτjP0+i(t+τj)λin+1−j 〈Dx〉−s

×10<τ1<···<τn dτ1 . . . dτn

(A12.3.3)

where by assumption Qij is an element of Σι,m
1,1 (resp. Σι,m

2,0 , resp. Σι,m
0,2 ) for all

j. We shall set (a, b) = (1, 1) (resp. (2, 0), resp. (0, 2)). Composing (A12.3.3)
by Fourier transform on the left and inverse Fourier transform on the right,
as in (A12.1.4), we reduce ourselves to the L(L2) boundedness of an operator
that may be written, setting τj = vjt in the integral, as the sum in i1, . . . , in
of

(A12.3.4)
∫ n∏

j=1
S(t, vj , Q̃in+1−j , λin+1−j )10<v1<···<vn dv1 . . . dvn,

where Q̃in+1−j is defined from Qin+1−j by

(A12.3.5) Q̃in+1−j (t, vj , ξ, η) = eitλin+1−j t〈ξ〉sQin+1−j (t(1 + vj), ξ, η)〈η〉−s

and S(t, vj , Q̃in+1−j , λin+1−j ) is defined in (A12.2.13). Since Qin+1−j belongs to
the class Σι,m

a,b of Definition A12.1.1, Q̃in+1−j is in the class Σ̃ι,m,m0
a,b of Defini-

tion A12.2.3, taking for m0 any number m0 ≤ m. As m is taken close to 1
2 , we

may assume m0 >
3
8 . In other words, (A12.3.4) is of the form Mn(t, 0, Q̃n, λn),

with notation (A12.2.20) with Q̃ = (Q̃in , . . . , Q̃i1).
We shall apply Proposition A12.2.5 with n+ 1 replaced by n and p = n+ 1.

This is possible since, if in condition (A12.2.41), aj = bj = 1 for all j, or
aj = 2, bj = 0 for all j, or aj = 0, bj = 2 for all j, inequality an′ + bn′′ ≥ 1 is
always satisfied. We deduce from (A12.2.47) that the L(L2) norm of (A12.3.4)
is bounded from above by (

K̃ειt−
(
m−δ′− 1

4

))n
for some K̃ > 0. Since we have 5n terms in the sum (A12.3.3), (A12.3.1)
follows for Bn(t). Since according to (A12.1.11), Cn(t) may be written as
Bn(t)∗ for some Bn(t) of the form (A12.1.8), we get also the first estimate
(A12.3.1).

This concludes the proof.

We want next to obtain L(L2) bounds for L ◦ Cn(t), where L is defined in
(A12.1.15). We compute first the composition between L and an operator of
the form e−iτP0V(t+ τ)eiτP0 , where V is of the form (A12.1.3).
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Lemma A12.3.2. — Let Q be a 2× 2 matrix of functions in the class Σι,m
1,1

of Definition A12.1.1. Let λ be in R and set VQ(t) = eiλtKQ according to
notation (A12.1.3), (A12.1.4). Then one may find 2 × 2 matrices Q′ (resp.
Q′′) with entries in Σι,m

2,0 (resp. Σι,m
2,0 or Σι,m

0,1 ) such that

(A12.3.6) L ◦
(
e−iτP0VQ(t+ τ)eiτP0

)
=
(
e−iτP0VQ′(t+ τ)eiτP0

)
◦ L+

(
e−iτP0VQ′′(t+ τ)eiτP0

)
Proof. — Using notation (A12.2.14), we write

Q(t, ξ, η) =
2∑
j=1

2∑
k=1

qjk(t, ξ, η)Ejk
ξ

〈ξ〉
η

〈η〉

with qjk in Σι,m
0,0 . We have to compute the action of L on the operator with

kernel ∑
1≤j,k≤2

eiλ(t+τ)

2π

∫
ei(xξ−yη)+iτ [(−1)jp(ξ)−(−1)kp(η)]Ejk

× ξ

〈ξ〉
η

〈η〉
qjk(t+ τ, ξ, η) dξdη.

(A12.3.7)

One gets using expression (A12.1.15) of L

(A12.3.8)
∑

1≤j,k≤2

eiλ(t+τ)

2π

∫
ei(xξ−yη)+iτ [(−1)jp(ξ)−(−1)kp(η)]Ejk

×
(
x+ (−1)j+1tp′(ξ)

) ξ
〈ξ〉

η

〈η〉
qjk(t+ τ, ξ, η) dξdη.

As p′(ξ) = ξ
〈ξ〉 , we have

(A12.3.9)
(
x+ (−1)j+1tp′(ξ)

) ξ
〈ξ〉

η

〈η〉

= (−1)j ξ
〈ξ〉

[
x
η

〈η〉
(−1)j − y ξ

〈ξ〉
(−1)k

]
+ (−1)j+k ξ2

〈ξ〉2
[
y + (−1)k+1tp′(η)

]
.

We plug (A12.3.9) in (A12.3.8). The last term in (A12.3.9) gives an expression
of the form of the first term in the right hand side of (A12.3.6), where the
operator e−iτP0VQ′(t+ τ)eiτP0 is given by an expression of the form (A12.3.7),
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with ξ
〈ξ〉

η
〈η〉qjk replaced by (−1)j+k ξ2

〈ξ〉2 qjk i.e. Q′ is given by

Q′(t, ξ, η) =
2∑
j=1

2∑
k=1

qjk(t, ξ, η)(−1)j+kEjk
ξ2

〈ξ〉2
.

This is an element of Σι,m
2,0 as wanted.

On the other hand, if we plug the first term in the right hand side of
(A12.3.9) in (A12.3.8) and perform one integration by parts, we get

(−1)j+1
2∑
j=1

2∑
k=1

eiλ(t+τ)

2π

∫
ei(xξ−yη)+iτ [(−1)jp(ξ)−(−1)kp(η)]

×
[
(−1)j η

〈η〉
Dξ + (−1)k ξ

〈ξ〉
Dη

][ ξ
〈ξ〉

qjk(t+ τ, ξ, η)
]
dξdη.

We get an operator of the form of the last term in (A12.3.6), with a symbol
Q′′ that may be written as the sum of an element in Σι,m

2,0 and an element in
Σι,m

0,1 . This concludes the proof of the lemma.

We may prove now the following statement.

Lemma A12.3.3. — For any n in N∗, one may find operators Cpn(t), 0 ≤
p ≤ n such that

(A12.3.10) L ◦ Cn(t) = C0
n(t) ◦ L+

n∑
p=1

Cpn(t)

which have the following structure: Operator C0
n(t) is of the form

(A12.3.11)
∫ n∏

j=1
e−iτjP0iV ′(t+ τj)eiτjP010<τn<···<τ1 dτ1 . . . dτn

where V ′(t) =
∑2
`=−2 e

iλ`tKQ′
`
, with Q′` matrices with entries in Σι,m

2,0 . Opera-
tor Cpn(t) for 1 ≤ p ≤ n has structure

(A12.3.12)
∫ p−1∏

j=1
e−iτjP0iV ′(t+ τj)eiτjP0 × e−iτpP0iV ′′(t+ τp)eiτpP0

×
n∏

j=p+1
e−iτjP0iV(t+ τj)eiτjP010<τn<···<τ1 dτ1 . . . dτn

where V is as in (A12.1.3), V ′ is as above and V ′′ is a sum V ′′(t) =∑2
`=−2 e

iλ`tKQ′′
`
, with Q′′` matrices with entries in Σι,m

2,0 or Σι,m
0,1 . Moreover,

one has the following estimates

(A12.3.13) ‖C0
n(t)‖L(L2) ≤

(
K̃ειtδ

′+ 1
4−m

)n
,
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(A12.3.14) ‖Cpn(t)‖L(L2) ≤
(
K̃ειtδ

′+ 1
4−m

)n
t

1
2−
(
δ′+ 1

4

)
, 1 ≤ p ≤ n.

Proof. — We start from expression (A12.1.11) of Cn(t). If we compose at the
left with L and use (A12.3.6), we obtain the sum of an expression of the form
(A12.3.12) with p = 1 and a quantity of the form (A12.1.11), with the product
replaced by

(A12.3.15) e−iτ1P0iV ′(t+ τ1)eiτ1P0 ◦ L ◦
n∏
j=2

e−iτjP0iV(t+ τj)eiτjP0 .

If we iterate, we obtain C0
n(t) ◦L with C0

n(t) given by (A12.3.11) and the sum
for p going from 1 to n of (A12.3.12).

We have next to obtain (A12.3.13), (A12.3.14). By duality, we may replace
(A12.3.11) by

(A12.3.16) (−1)n
∫ n∏

j=1
e−iτjP0iV ′(t+ τj)∗eiτjP010<τ1<···<τn dτ1 . . . dτn

and (A12.3.12) by

(A12.3.17)

(−1)n
∫ n−p∏

j=1
e−iτjP0iV(t+ τj)∗eiτjP0e−iτn+1−pP0iV ′′(t+ τn+1−p)∗eiτn+1−pP0

×
n∏

j=n+2−p
e−iτjP0iV ′(t+ τj)∗eiτjP010<τ1<···<τn dτ1 . . . dτn

for 1 ≤ p ≤ n.
Consider first (A12.3.16). We have an operator of the form (A12.3.3) (with

s = 0) whose L(L2) boundedness reduces to the one of an expression of the
form (A12.3.4) in terms of symbols Q̃in+1−j given by (A12.3.5) from symbols
in the class Σι,m

0,2 because of the definition of V ′(t + τj). It follows from the
last statement in Lemma A12.3.1 that the same estimate as (A12.3.1) holds,
which gives a bound of the L(L2) norm of (A12.3.16) by the right hand side
of (A12.3.13).

Let us study (A12.3.17) and show that its L(L2) norm is bounded from
above by the right hand side of (A12.3.14). Operator (A12.3.17) is of the form
(A12.3.4), with a sequence of symbols (Q̃in , . . . , Q̃i1) with Q̃ij belonging to
the classes Σ̃ι,m,m0

aj ,bj
, where (aj , bj)1≤j≤n has the following form

(an, bn) = (1, 1), . . . , (ap+1, bp+1) = (1, 1), (ap, bp) = (0, 2) or (1, 0),
(ap−1, bp−1) = (0, 2), . . . , (a1, b1) = (0, 2).

(A12.3.18)
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The only couples (j′, j′′) such that aj′ + bj′′ may be eventually equal to zero
are those with j′ < j′′ = p i.e. those for which condition (A12.2.41) is satisfied.
We thus obtain that (A12.3.17) is of the form (A12.3.4) and has L(L2) norm
bounded from above by (A12.2.47), (A12.2.49), so by the right hand side of
(A12.3.14). This concludes the proof.

Proof of Proposition A12.1.3: Since m is taken close to 1
2 and δ′ close to zero,

the exponent of t in the right hand side of (A12.3.1) is negative. As ι > 0, for
ε small enough, we have

‖Bn(t)‖L(Hs) ≤
1
2n , ‖Cn(t)‖L(Hs) ≤

1
2n .

In particular, (A12.1.9) and its counterpart for Cn(t) holds, so that B(t) and
C(t) are well defined, bounded on Hs and satisfy (A12.1.17)

Since by (A12.3.13), ‖C0
n(t)‖L(L2) satisfies the same estimate as ‖Bn(t)‖L(Hs),

‖Cn(t)‖L(Hs), the operator C̃(t) = Id+
∑+∞
n=1C

0
n(t) is well defined and satisfies

(A12.1.19). We notice next that if we set for n ≥ 1, C̃1,n(t) =
∑n
p=1C

p
n(t), we

have by (A12.3.14)

‖C̃1,n(t)‖L(L2) ≤ Cn(K̃ει)nt(n−1)
(
δ′+ 1

4−m
)
t

1
2−m.

Since δ′+ 1
4 −m < 0, we get after summation estimate (A12.1.20) for C̃1(t) =∑+∞

n=1 C̃1,n(t). We still have to check the last assertions of the proposition.
To prove (A12.1.21), it suffices to check that for any n, N0Bn(t) = Bn(t)N0
for any n, and the corresponding equality for Cn(t). Because of (A12.1.8),
(A12.1.11), it is enough to show that

N0e
−iτP0V(t+ τ)eiτP0 = −eiτP0V(t+ τ)e−iτP0N0.

But this equality follows from (A12.1.5) and the fact that N0e
iτP0 = e−iτP0N0.

Moreover, if V preserves the space of odd functions, so do Bn(t), Cn(t)
because of their definition, and of the fact that P0 preserves such spaces. This
concludes the proof. 2





APPENDIX A13

DIVISION LEMMAS AND NORMAL FORMS

We have discussed in section 0.6 normal forms for an equation of the form
(Dt − p(Dx))u = N(u) where p(ξ) =

√
1 + ξ2 and N(u) is some polynomial

in u, ū. We distinguish among the monomials of u the characteristic ones,
that are those of the form up+1up = |u|2pu and the non-characteristics ones,
of the form upūq with p − q 6= 1. We have seen that if L+ = x + tp′(Dx), a
characteristic monomial will satisfy essentially an equality of the form

(A13.0.1) L+(|u|2pu) = (p+ 1)(L+u)|u|2p − pup+1ūp−1L+u+ remainders,

that allows one to obtain for the L2 norm of the left hand side a bound in
‖u‖2pL∞‖L+u‖L2 .

Our first goal in this appendix is to give a proof of inequalities of that form
for more general characteristic nonlinearities, given in terms of the kind of
nonlocal multilinear operators that we have to use in the proof of the main
theorem of the book. Section A13.2 below is devoted to that, except that we
put ourselves in the semiclassical framework that is very convenient for the
proofs.

For non-characteristic nonlinearities, (A13.0.1) non longer works, and as ex-
plained in section 0.6, one has then to eliminate such nonlinearities by space-
time normal forms. We perform in section (A13.1.3) these space-time normal
forms in the semiclassical framework, for general non-characteristic nonlinear-
ities given by the multilinear pseudo-differential operators introduced in Ap-
pendix A9. The method is the one outlined in section 0.6, extended to these
general multilinear expressions. We make also normal forms for quadratic con-
tributions given in terms of symbols with space decaying symbols, along the
lines of the end of section 1.7.
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A13.1. Division lemmas

We establish here some division lemmas, which are variants of similar results
obtained in [20].

Definition A13.1.1. — For n in N∗, denote by Γn the set of multi-indices
I = (i1, . . . , in) with ij = ±1 for j = 1, . . . , n. Denote by Γch

n the subset of Γn
made by those I = (i1, . . . , in) such that

∑n
j=1 ij = 1 and Γnch

n = Γn − Γch
n .

Let us fix some notation. If I = (i1, . . . , in) is in Γn and as above p(ξ) =√
1 + ξ2, we define

(A13.1.1) gI(ξ1, . . . , ξn) = −p
(
ξ1 + · · ·+ ξn

)
+

n∑
j=1

ijp(ξj).

Set also ϕ(x) =
√

1− x2 for |x| < 1, so that by Lemma 1.8 of [20], if γ ∈
C∞0 (R) has small enough support

a±(x, ξ) = x± p′(ξ)
ξ ∓ dϕ(x)γ

(
〈ξ〉2(x± p′(ξ))

)
b±(x, ξ) = ξ ∓ dϕ(x)

x± p′(ξ) γ
(
〈ξ〉2(x± p′(ξ))

)(A13.1.2)

satisfy estimates

|∂αx ∂
β
ξ a±(x, ξ)| ≤ Cαβ〈ξ〉−3+2|α|−|β|

|∂αx ∂
β
ξ b±(x, ξ)| ≤ Cαβ〈ξ〉3+2|α|−|β|.

(A13.1.3)

Proposition A13.1.2. — Recall notation (A9.1.2) for the function
M0(ξ1, . . . , ξn) and the class of symbols introduced in Definition A9.1.2
for β ≥ 0, κ ≥ 0. Let ν ≥ 0.

(i) Let I be a multi-index in (i1, . . . , i`) be in Γn and let mI be a symbol in
S1,β(

∏n
j=1 〈ξj〉

−1M0(ξ)ν , n). Then we may find symbols

(A13.1.4) mI,` ∈ S4,β
( n∏
j=1
〈ξj〉−1M0(ξ)4+ν〈x〉−1, n

)
, ` = 1, . . . , n

such that if γ is in C∞0 (R) and has small enough support, one may write

mI(y, x, ξ1, . . . , ξn) = mI(y, x, ξ1, . . . , ξn)
n∏
`=1

γ
(
M0(ξ)4(x+ i`p

′(ξ`))
)

+
n∑
`=1

(x+ i`p
′(ξ`))mI,`(y, x, ξ1, . . . , ξn).

(A13.1.5)
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(ii) Assume that I is in Γnch
n . Then we may find a symbol

(A13.1.6) aI ∈ S4,β
( n∏
j=1
〈ξj〉−1M0(ξ)ν〈x〉−∞, n)

and symbols mI,j as in (A13.1.4) such that

(A13.1.7) mI(y, x, ξ1, . . . , ξn) = gI(ξ1, . . . , ξn)aI(y, x, ξ1, . . . , ξn)

+
n∑
`=1

(x+ i`p
′(ξ`))mI,`(y, x, ξ1, . . . , ξn).

Proof. — Define

mI,1(y, x, ξ1, . . . , ξn) = mI(y, x, ξ1, . . . , ξn)
(1− γ)

(
M0(ξ)4(x+ i1p

′(ξ1))
)

x+ i1p′(ξ1)
m

(1)
I (y, x, ξ1, . . . , ξn) = mI(y, x, ξ1, . . . , ξn)γ

(
M0(ξ)4(x+ i1p

′(ξ1))
)

and write

mI(y, x, ξ1, . . . , ξn) = m
(1)
1 (y, x, ξ1, . . . , ξn)+mI,1(y, x, ξ1, . . . , ξn)(x+ i1p

′(ξ1)).

Then mI,1 satisfies (A13.1.4), and repeating the process with mI replaced by
mI,1, successively with respect to ξ2, . . . , ξn, we get (A13.1.5).

(ii) Equality (A13.1.7) is obtained from (A13.1.5) defining

(A13.1.8) aI = mIg
−1
I

n∏
j=1

γ
(
M0(ξ)4(x+ i`p

′(ξ`))
)

and showing that aI belongs to S4,β
(∏n

j=1 〈ξj〉
−1M0(ξ)ν+1〈x〉−∞, n). This is

done in the proof of (i) of Proposition 2.2 in [20] (with the parameter κ in
that reference set to 2).

A13.2. Commutation results

We study now the action of the operator L+ = 1
hOph(x+ p′(ξ)) introduced

in (A11.1.6) on characteristic terms.

Proposition A13.2.1. — Let I be in Γch
n for some (odd) n ≥ 3 and

ν be nonnegative. Let mI be an element of S1,β(
∏n
j=1 〈ξj〉

−1M0(ξ)ν , n)
with β > 0. Then, for some new value of ν, there are symbols mI,j in
S4,β(

∏n
j=1 〈ξj〉

−1Mν
0 , n), j = 1, . . . , n, r in S4,β(

∏n
j=1 〈ξj〉

−1Mν
0 , n), r′ in
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S′4,β(
∏n
j=1 〈ξj〉

−1Mν
0 , n), such that for any function v1, . . . , vn

(A13.2.1) L+Oph(mI)(v1, . . . , vn) =
n∑
j=1

Oph(mI,j)(v1, . . . ,Lijvj , . . . , vn)

+ Oph(r)(v1, . . . , vn) + 1
h

Oph(r′)(v1, . . . , vn).

Proof. — We write decomposition (A13.1.5) of mI , denoting the first term
in the right hand side by m(1)

I . This is an element of S4,β(
∏n
j=1 〈ξj〉

−1Mν
0 , n)

supported in

(A13.2.2)
n⋂
`=1
{(y, x, ξ1, . . . , ξn); |x+ i`p

′(ξ`)| < αM0(ξ1, . . . , ξn)−4}

for some small α > 0. It is proved in the proof of Proposition 2.2 in [20] that
on domain (A13.2.2), one has |ξ`| ≤ CM0(ξ) for any ` = 1, . . . , n and that
〈dϕ(x)〉 ∼M0(ξ) (see formulas (2.10) to (2.13) in [20], and the lines following
them as well as Lemma 1.8). Let us show that

(A13.2.3) m
(1)
I (y, x, ξ1, . . . , ξn)[p′(ξ1 + · · ·+ ξn)−

n∑
j=1

p′(ξj)]

=
n∑
j=1

mI,j(y, x, ξ1, . . . , ξn)(x+ ijp
′(ξj))

for symbols mI,j in S4,β
(∏n

j=1 〈ξj〉
−1M0(ξ)3+ν〈x〉−∞, n

)
. Actually, expanding

the bracket in the left hand side of (A13.2.3) on ξj = ijdϕ(x), j = 1, . . . , n
and using

∑n
j=1 ij = 1, one may write the left hand side of (A13.2.3) as

(A13.2.4)
n∑
j=1

m
(1)
I (y, x, ξ1, . . . , ξn)(ξj − ijdϕ(x))ẽj(x, ξ)

with
(A13.2.5)

ẽj(x, ξ) =
∫ 1

0

[
p′′
(
(1−µ)dϕ(x)+µ(ξ1+· · ·+ξn)

)
−

n∑
j=1

p′′
(
(1−µ)ijdϕ(x)+µξj

)]
dµ.

Notice that on the set (A13.2.2) containing the support of m(1)
I , x stays for

any ξ in a compact subset of ]− 1, 1[ and that for any α in N∗

〈∂αdϕ(x)〉 = O
(
〈dϕ(x)〉1+2α) = O

(
M0(ξ)1+2α) = O

(
M0(ξ)3α),

so that each ∂αx derivative of ẽj(x, ξ) is O
(
M0(ξ)3α) on that support. Moreover,

we may write using (A13.1.2)
(ξj − ijdϕ(x))ẽj(x, ξ) = (x+ ijp

′(ξj))b+(x, ξj)ẽj(x, ξ)
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if (x, ξ) stays in (A13.2.2) and the function γ in (A13.1.2) is conveniently
chosen. Plugging this in (A13.2.4) and defining

mI,j(y, x, ξ1, . . . , ξn) = m
(1)
I (y, x, ξ1, . . . , ξn)b+(x, ξj)ẽj(x, ξ)

we get (A13.2.3), with a symbol mI,j in the wanted class because of (A13.1.3)
and of the fact that |ξj | = O(M0(ξ)) on (A13.2.2). We use now Proposi-
tion A9.2.1 to write

(A13.2.6) Oph(p′(ξ)) ◦Oph
(
m

(1)
I (y, x, ξ1, . . . , ξn)

)
= Oph

(
p′(ξ1 + · · ·+ ξn)m(1)

I (y, x, ξ1, . . . , ξn)
)

+ hOph
(
r1(y, x, ξ1, . . . , ξn)

)
+ Oph

(
r′1(y, x, ξ1, . . . , ξn)

)
with r1 in S4,β(

∏n
j=1 〈ξj〉

−1Mν
0 , n), r′1 in S′4,β(

∏n
j=1 〈ξj〉

−1Mν
0 , n) for some ν.

Using (A13.2.3), we may rewrite the first term in the right hand side as

(A13.2.7)
n∑
j=1

Oph
(
m

(1)
I (y, x, ξ1, . . . , ξn)p′(ξj)

)
+

n∑
j=1

Oph
(
mI,j(y, x, ξ1, . . . , ξn)(x+ ijp

′(ξj))
)
.

Using that
∑n
j=1 ij = 1, and that L+ = 1

hOph(x + p′(ξ)), it follows from
(A13.1.5), (A13.2.6), (A13.2.7) and Proposition A9.2.1 that L+Oph(mI) is
the sum of terms of the following form:

ij
h

Oph
(
m

(1)
I (y, x, ξ1, . . . , ξn)(x+ ijp

′(ξj))
)
, j = 1, . . . , n

1
h

Oph
(
mI,j(y, x, ξ1, . . . , ξn)(x+ ijp

′(ξj))
)
, j = 1, . . . , n

Oph
(
r1(y, x, ξ1, . . . , ξn)

)
+ 1
h

Oph
(
r′1(y, x, ξ1, . . . , ξn)

)(A13.2.8)

with mI,j in S4,β
(∏n

j=1 〈ξj〉
−1M0(ξ)ν〈x〉−1, n) coming from (A13.1.5) or

(A13.2.7). To conclude the proof, we just have to apply again Proposi-
tion A9.2.1 to the first two lines of (A13.2.8), in order to rewrite them as
the sum in the right hand side of (A13.2.1), up to new contributions to the
remainders.

In the non-characteristic case, we cannot expect an equality of the form
(A13.2.1). Instead, we shall have:

Corollary A13.2.2. — Let I be in Γnch
n . Then there are symbols mI,j,

r, r′ as in the statement of Proposition A13.2.1 and a symbol r1 in
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S4,β(
∏n
j=1 〈ξj〉

−1Mν
0 , n) for some ν, such that

L+Oph(mI)(v1, . . . , vn) =
n∑
j=1

Oph(mI,j)
(
v1, . . . ,Lijvj , . . . , vn

)
+ Oph(r)(v1, . . . , vn)

+ 1
h

Oph(r′)(v1, . . . , vn)

+ x

h
Oph(r1)(v1, . . . , vn).

(A13.2.9)

Proof. — We may reproduce the proof of Proposition A13.2.1, except that,
when Taylor expanding the bracket in the left hand side of (A13.2.3) on ξj =
ijdϕ(x), we shall get the right hand side of this equality and the extra term

(A13.2.10) m
(1)
I (y, x, ξ1, . . . , ξn)

[
p′
( n∑
j=1

ijdϕ(x)
)
−

n∑
j=1

p′
(
ijdϕ(x)

)]
which does not vanish if

∑n
j=1 ij 6= 1. Since p′(ξ) = ξ

〈ξ〉 and dϕ(x) =
−x〈dϕ(x)〉, with 〈dϕ(x)〉 = O(M0(ξ)) on the support of m(1)

I , we see that
(A13.2.10) may be written as xr1 for some r1 as in the statement. This gives
the last contribution to (A13.2.9), the preceding ones being those furnished
by the proof of Proposition A13.2.1.

The last term in (A13.2.9) does not enjoy nice estimates. Because of that,
non-characteristic terms have to be eliminated by normal forms. We describe
such normal forms in next section.

A13.3. Normal forms for non-characteristic terms

Proposition A13.3.1. — With the notation and under the assumptions of
(ii) of Proposition A13.1.2, one may write for any v1, . . . , vn

(A13.3.1)
(
Dt −Oph

(
xξ + p(ξ)− inh2

))
Oph(aI)(v1, . . . , vn)

= Oph(mI)(v1, . . . , vn) +
n∑
j=1

Oph(aI)[v1, . . . , (Dt −Oph(λij ))vj , . . . , vn]

+R(v1, . . . , vn)
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where λij (x, ξ) = xξ + ijp(ξ) − i
2h, and where R is the sum of terms of the

following form

hOph(mI,j)(v1, . . . ,Lijvj , . . . , vn), 1 ≤ j ≤ n
Oph(r′I)(v1, . . . , vn)
hOph(rI)(v1, . . . , vn)

(A13.3.2)

where mI,j is in S4,β(
∏n
j=1 〈ξj〉

−1Mν
0 〈x〉

−1, n), rI (resp. r′I ) belongs to
S4,β(

∏n
j=1 〈ξj〉

−1Mν
0 〈x〉

−∞, n) (resp. S′4,β(
∏n
j=1 〈ξj〉

−1Mν
0 , n)) for some ν.

The first line in (A13.3.2) may also be written as

(A13.3.3) Oph(r1
I )(v1, . . . , vn)

for a symbol r1
I in S4,β(

∏n
j=1 〈ξj〉

−1Mν
0 , n).

Proof. — Notice first that by the definition (A9.1.6) of Oph and the fact that
h = 1

t , one has

(A13.3.4)
(
Dt −Oph(xξ)

)
Oph(aI)(v1, . . . , vn)

=
n∑
j=1

Oph(aI)
(
v1, . . . , (Dt −Oph(xξ)

)
vj , . . . , vn

)
+ ihOph

(
(x∂xaI)(y, x, ξ)

)
(v1, . . . , vn).

Moreover, by Proposition A9.2.1 and the definition (A13.1.1) of gI

(A13.3.5) −Oph(p(ξ))Oph(aI)(v1, . . . , vn)

= Oph(aIgI)(v1, . . . , vn)−
n∑
j=1

ijOph(aI)
(
v1, . . . ,Oph(p(ξ))vj , . . . , vn

)
+ hOph(rI)(v1, . . . , vn) + Oph(r′I)(v1, . . . , vn)

where rI is in S4,β(
∏n
j=1 〈ξj〉

−1Mν
0 〈x〉

−∞, n), r′I in S′4,β(
∏n
j=1 〈ξj〉

−1Mν
0 , n).

Notice that p(ξ) is in Sκ,β(〈ξ〉, 1) (for any κ, β since, this symbol depend-
ing only on one variable ξ, M0(ξ) = 1), so that, to get from Proposi-
tion A9.2.1 symbols rI , r′I in the indicated classes, we would need that aI be
in S4,β(Mν

0
∏n
j=1 〈ξj〉

−2〈x〉−∞, n) instead of (A13.1.6). But by (A13.1.8), aI
is supported in (A13.2.2), and we have seen just after this formula that this
implies that |ξ`| ≤ CM0(ξ) for any `. Consequently, the above property for aI
does hold, for large enough ν. If we make the sum of (A13.3.4) and (A13.3.5),
we get that the left hand side of (A13.3.1) is given by the sum in the right
hand side of (A13.3.1), contributions to R of the form of the last two lines in
(A13.3.2) and the term Oph(aIgI)(v1, . . . , vn). By (A13.1.7), we thus get the
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first term in the right hand side of (A13.3.1) and expressions
−Oph

(
mI,`(y, x, ξ1, . . . , ξn)(x+ i`p

′(ξ`))
)
(v1, . . . , vn).

Using again Proposition A9.2.1, we write these terms as contributions to R
given by (A13.3.2). This concludes the proof.

A13.4. Quadratic normal forms for space decaying symbols

In section 2.2 we have performed an easy quadratic normal form, that al-
lowed us to get rid of the quadratic term in the right hand side of (2.1.11),
given by Oph(m0,I)[uI ], with |I| = 2 and m0,I in S̃0,0(

∏2
j=1 〈ξj〉

−1, 2). This
procedure made appear a new quadratic term Oph(m′0,I)[uI ] in the right hand
side of (2.2.2), given in terms of a symbol m′0,I in S̃′0,0(

∏2
j=1 〈ξj〉

−1, 2). We
shall have to perform also a normal form to eliminate such terms. We define
a new class of operators.

Definition A13.4.1. — Let ω ∈ [0, 1], i = (i1, i2, i3) in {−1, 1}3. We denote
by Kκ,ω (resp. K′κ,ω(i)) the space of operators of the form
(A13.4.1)

(f1, f2)→ 1
2π

∫ 1

−1

∫ 1

−1

∫
eixξ0k(t, ξ0, ξ1, ξ2, µ1, µ2)f̂(ξ1)f̂(ξ2) dξ0dξ1dξ2dµ1dµ2

where k is a smooth function of (t, ξ0, ξ1, ξ2, µ1, µ2) that satisfies for some ν
in N, any N, γ0, γ1, γ2, µ1, µ2, j in N

(A13.4.2) |∂jt ∂
γ0
ξ0
∂γ1
ξ1
∂γ2
ξ2
k(t, ξ0, ξ1, ξ2, µ1, µ2)|

≤ CM0(ξ1, ξ2)ν+(γ0+γ1+γ2)κ〈ξ0 − µ1ξ1 − µ2ξ2〉−N tω(γ0+γ1+γ2)−j

(resp. that satisfies

(A13.4.3) |∂jt ∂
γ0
ξ0
∂γ1
ξ1
∂γ2
ξ2
k(t, ξ0, ξ1, ξ2, µ1, µ2)|

≤ CM0(ξ1, ξ2)ν+(γ0+γ1+γ2)κ〈ξ0 − µ1ξ1 − µ2ξ2〉−N tω(γ0+γ1+γ2)−j

× 〈tω(i0〈ξ0〉 − i1〈ξ1〉 − i2〈ξ2〉)〉−1

in the case of K′κ,ω(i)), where M0(ξ1, ξ2) still denoted the second largest among
〈ξ1〉, 〈ξ2〉.

If k satisfies
(A13.4.4) k(t,−ξ0,−ξ1,−ξ2) = −k(t, ξ0, ξ1, ξ2)
then (A13.4.1) sends a couple of two odd functions or two even functions to
an odd function. If k satisfies
(A13.4.5) k(t,−ξ0,−ξ1,−ξ2) = k(t, ξ0, ξ1, ξ2)
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then (A13.4.1) sends a couple (f1, f2) with f1 odd, f2 even or f1 even, f2 odd
to an odd function.

Let us check first that we may express operators of the form Op(m′)(v1, v2)
with m′ in S̃′1,0

(
M0(ξ1, ξ2)

∏2
j=1 〈ξj〉

−1, 2
)

in terms of operators Kκ,ω.

Lemma A13.4.2. — Let m′ be in S̃′1,0
(
M0

∏2
j=1 〈ξj〉

−1, 2
)
. Let i1, i2 ∈

{−1, 1}2 be any choice of signs. Then if L± is defined by (A10.1.4), one may
find operators K`1,`2 in K1,0, 0 ≤ `1, `2 ≤ 1 such that the action of Op(m′) on
any couple of odd functions (v1, v2) (as defined in (2.1.6)) may be written as

(A13.4.6) t−2
1∑

`1=0

1∑
`2=0

K`1,`2(L`1i1v1, L
`1
i2
v2).

Moreover, if m satisfies (2.1.7), K`1,`2 is given by a symbol k satisfying
(A13.4.4) if `1 + `2 = 0 or 2 and (A13.4.5) if `1 + `1 = 1.

Proof. — We may rewrite
Op(m′)(v1, v2) = Op(m′1)(〈Dx〉−1v1, 〈Dx〉−1v2)

with m′1 in S̃1,0(M0, 2). Using the oddness of vj , we write

〈Dx〉−1vj = i

2x
∫ 1

−1

(
Dx〈Dx〉−1vj)(µjx) dµj

= i

2
x

t
ij

∫ 1

−1

[
(Lijvj)(µjx)− µjxvj(µjx)

]
dµj

(A13.4.7)

for any choice of the signs ij = ±. By definition (2.1.6) of the quantization and
inequalities (2.1.4) satisfied by elements of the class S′, one may rewrite expres-
sions like Op(m′1)(xf1, f2) as sums of expressions of the form Op(m̃′1)(f1, f2),
for new symbols m̃′1 in S̃1,0(Mν

0 , 2) for some ν. Using (A13.4.7), we thus see
that Op(m′)(v1, v2) may be rewritten as a sum of terms

t−2
∫ 1

−1

∫ 1

−1
µ1−`1

1 µ1−`2
2 Op(m̃′)

[
(L`1i1v1)(µ1·), (L`2i2v2)(µ2·)

]
dµ1dµ2

for some symbols m̃′ in S′1,0(Mν
0 , 2). By (2.1.6), we have

Op(m̃′)[f1(µ1·), f2(µ2·)]

= 1
(2π)2

∫
eix(µ1ξ1+µ2ξ2)m′(x, µ1ξ1, µ2ξ2)f̂1(ξ1)f̂2(ξ2) dξ1dξ2

= 1
2π

∫
eixξ0k(ξ0, ξ1, ξ2, µ1, µ2)f̂1(ξ1)f̂2(ξ2) dξ1dξ2

with
k(ξ0, ξ1, ξ2, µ1, µ2) = 1

(2π)2 m̂
′(ξ0 − µ1ξ1 − µ2ξ2, µ1ξ1, µ2ξ2).
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It follows from estimates (2.1.4) that hold for any α, α′0, that inequalities
(A13.4.2) are true for some ν, κ = 1, ω = 0, which implies the conclusion
as the last statement follows from the transfer of property (2.1.7) to k by
inspection.

Proposition A13.4.3. — Let K be in Kκ,0. Let i = (i0, i1, i2) ∈ {−,+}3.
One may find operators KL,KH in K′

κ, 1
2
(i) such that for any f1, f2

(Dt − i0p(Dx))[
√
tKH(f1, f2)] = K(f1, f2)

+
√
tKH

(
(Dt − i1p(Dx))f1, f2

)
+
√
tKH

(
f1, (Dt − i2p(Dx))f2

)
+KL(f1, f2).

(A13.4.8)

If K satisfies (A13.4.4) (resp. (A13.4.5)), so do KH ,KL.

Proof. — Take χ in C∞0 (R) equal to one close to zero and set χ1(z) = 1−χ(z)
z .

Define from the function k associated to K by (A13.4.1) a new function

(A13.4.9) kH(t, ξ0, ξ1, ξ2, µ1, µ2) = k(ξ0, ξ1, ξ2, µ1, µ2)

× χ1

(√
t(−i0〈ξ0〉+ i1〈ξ1〉+ i2〈ξ2〉)

)
.

Then kH satisfies (A13.4.3) with ω = 1
2 . Call KH the associated operator. If

we make act Dt− i0p(Dx) on
√
tKH(f1, f2), we get the second and third terms

in the right hand side of (A13.4.8), an operator associated to the function

(A13.4.10) k(ξ0, ξ1, ξ2, µ1, µ2)(1− χ)
(√

t(−i0〈ξ0〉+ i1〈ξ1〉+ i2〈ξ2〉)
)

and contributions coming from the action of Dt on kH , that may be written
as contributions to KL in (A13.4.8) (with even an extra factor t−

1
2 ). Finally,

we see that (A13.4.10) provides K in the right hand side of (A13.4.8), modulo
another contribution to KL. This concludes the proof as the last statement
follows from (A13.4.10).

Corollary A13.4.4. — Let m′ be in S′1,0
(∏2

j=1 〈ξj〉
−1, 2

)
. One may find for

any i1, i2 in {−,+}, any `1, `2 in {0, 1} operators K`1,`2
H,i1,i2

, K`1,`2
L,i1,i2

in the class
K′1, 1

2
(1, i1, i2) such that for any odd functions v1, v2, if one sets

(A13.4.11) Qi1,i2(v1, v2) = t−
3
2

1∑
`1=0

1∑
`2=0

K`1,`2
H,i1,i2

(
L`1i1v1, L

`2
i2
v2
)
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then
(Dt − p(Dx))Qi1,i2(v1, v2) = Op(m′)(v1, v2)

+Qi1,i2
(
(Dt − i1p(Dx))v1, v2

)
+Qi1,i2

(
v1, (Dt − i2p(Dx))v2

)
+Ri1,i2(v1, v2)

(A13.4.12)

where

Ri1,i2(v1, v2) = t−2
1∑

`1=0

1∑
`2=0

K`1,`2
L,i1,i2

(
L`1i1v1, L

`2
i2
v2
)

+2it−
5
2

1∑
`1=0

1∑
`2=0

K`1,`2
H,i1,i2

(
L`1i1v1, L

`2
i2
v2
)
.

(A13.4.13)

Moreover, if m′ satisfies (2.1.7), K`1,`2
H,i1,i2

,K`1,`2
L,i1,i2

satisfy (A13.4.4) if `1 +`2 =
0 or 2 and (A13.4.5) if `1 + `2 = 1. In particular, Qi1,i2 sends a couple of odd
functions to an odd function.

Proof. — By Lemma A13.4.2, we may write Op(m′)(v1, v2) under the form
(A13.4.6). We apply to each K`1,`2 in (A13.4.6) Proposition A13.4.3. If we
define K`1,`2

H,i1,i2
(resp. K`1,`2

L,i1,i2
) from the operator KH (resp. KL) in (A13.4.8),

and use that Li` commutes to Dt − i`p
′(Dx), we obtain (A13.4.12) for the

Qi1,i2 defined in (A13.4.11). The last statement of the corollary follows from
the last statement in Proposition A13.4.3 and Lemma A13.4.2.

A13.5. Sobolev estimates

We shall prove Sobolev estimates for operators introduced in Defini-
tion A13.4.1.

Proposition A13.5.1. — Let ω ∈ [0, 1], κ ≥ 0, K be an operator in the
class K′κ,ω(i) (for a triple i = (i1, i2, i3) ∈ {−,+}3). Assume moreover that
the function k in (A13.4.1) is supported for |ξ2| ≤ 2〈ξ1〉. There is σ0 ∈ R+
(depending on the exponent ν in (A13.4.3)) such that the following estimates
hold true for any s in R+, any test functions f1, f2

(A13.5.1) ‖K(f1, f2)‖Hs ≤ Ct−
ω
2 ‖f2‖Hσ0‖f1‖Hs .

(A13.5.2) ‖K(f1, xf2)‖Hs + ‖K(xf1, f2)‖Hs + ‖xK(f1, f2)‖Hs

≤ Ct
ω
2 ‖f2‖Hσ0‖f1‖Hs .

(A13.5.3) ‖K(xf1, xf2)‖Hs ≤ Ct
3ω
2 ‖f2‖Hσ0‖f1‖Hs .
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Proof. — By (A13.4.1), we have to prove, in order to establish (A13.5.1), that
the operator

(g1, g2)→
∫ 1

−1

∫ 1

−1

∫
〈ξ0〉sk(t, ξ0, ξ1, ξ2, µ1, µ2)〈ξ1〉−s〈ξ2〉−σ0

×g1(ξ1)g2(ξ2) dξ1dξ2dµ1dµ2

(A13.5.4)

is bounded from L2 × L2 to L2, with operator norm O(t−
ω
2 ). Because of our

support assumptions, M0(ξ1, ξ2) ≤ C〈ξ2〉, so that we may control the factor
M0(ξ1, ξ2) in (A13.4.3) by C〈ξ2〉, i.e. Mν

0 will be bounded using 〈ξ2〉−σ0 if σ0
is taken large enough. Moreover, as s ≥ 0, 〈ξ0〉s〈ξ0 − µ1ξ1 − µ2ξ2〉−N 〈ξ1〉−s =
O(1) when |ξ2| ≤ 2〈ξ1〉 if N is large enough relatively to s. The proof of
(A13.5.1) is thus reduced to the proof that operators of the form
(A13.5.5)

(g1, g2)→
∫ 1

−1

∫ 1

−1

∫
k̃(t, ξ0, ξ1, ξ2, µ1, µ2)g1(ξ1)g2(ξ2) dξ1dξ2dµ1dµ2

are bounded from L2 × L2 to L2, with operator norm O(t−
ω
2 ), if k̃ satisfies

(A13.5.6) |k̃(t, ξ0, ξ1, ξ2, µ1, µ2)| ≤ C〈ξ0 − µ1ξ1 − µ2ξ2〉−1〈ξ2〉−2

〈tω(i0〈ξ0〉 − i1〈ξ1〉 − i2〈ξ2〉)〉−1.

The operator norm of (A13.5.5) is bounded from above by

(A13.5.7) C

∫ 1

−1

∫ 1

−1

ï
sup
ξ0

∫
|k̃(t, ξ0, ξ1, ξ2, µ1, µ2)| dξ1dξ2

ò 1
2

×
ï

sup
ξ1,ξ2

∫
|k̃(t, ξ0, ξ1, ξ2, µ1, µ2)| dξ0

ò 1
2
dµ1dµ2.

Notice that there is C > 0 such that for any α, β in R, any µ ∈ [−1, 1]

(A13.5.8)
∫
〈tω(α+ 〈ξ〉)〉−1〈β + µξ〉−1 dξ ≤ C|µ|−

1
2 t−

ω
2

uniformly in α, β. Actually, if we integrate for |ξ| ≥ 1, we bound (A13.5.8) by

C|µ|−
1
2

(∫
|ξ|>1

〈tω(α+ 〈ξ〉)〉−2 dξ
) 1

2
.

If one takes in the above integral computed either on domain ξ > 1 or ξ < −1,
η = 〈ξ〉 as a new variable of integration, we get a bound by the right hand side
of (A13.5.8). If one integrates for |ξ| < 1 in the left hand side of (A13.5.8), we
bound the corresponding quantity by∫

|ξ|<1

〈
tω(α+

√
1 + ξ2)

〉−1
dξ ≤ C

∫
〈α′ + tωζ2〉−1

dζ ≤ Ct−
ω
2
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which is better than the bound we want. We use (A13.5.6), (A13.5.8) with
ξ = ξ0 to estimate the second factor in (A13.5.7) by t−

ω
4 and (A13.5.8) with

ξ = ξ1 to estimate the first integral factor by t−
ω
2 |µ1|−

1
2 . We obtain that

(A13.5.7) is O(t−
ω
2 ) from which (A13.5.1) follows.

To get (A13.5.2), we notice that, by (A13.4.1), K(xf1, f2) (resp. K(f1, xf2),
resp. xK(f1, f2)) may be written as K1(f1, f2) for an operator K1 of the form
(A13.4.1), obtained replacing k by Dξ1k (resp. Dξ2k, resp. −Dξ0k). Since
by (A13.4.3) these Dξj derivatives make lose tω (and change the value of the
exponent ν), we get (A13.5.2) from (A13.5.1) (with a new value of σ0).

One obtains (A13.5.3) in a same way.

Corollary A13.5.2. — Let K be an element of K′κ,ω(i) for ω ∈ [0, 1], κ ≥ 0,
i ∈ {−,+}3. The following estimates hold true for any s ≥ 0 and some σ0
independent of s:
(A13.5.9) ‖K(f1, f2)‖Hs ≤ Ct−

ω
2
[
‖f1‖Hσ0‖f2‖Hs + ‖f1‖Hs‖f2‖Hσ0

]
‖K(f1, f2)‖L2 ≤ Ct−

ω
2 ‖f1‖L2‖f2‖Hσ0

‖K(f1, f2)‖L2 ≤ Ct−
ω
2 ‖f1‖Hσ0‖f2‖L2

(A13.5.10)

‖K(xf1, f2)‖L2 + ‖K(f1, xf2)‖L2 + ‖xK(f1, f2)‖L2 ≤ Ct
ω
2 ‖f1‖L2‖f2‖Hσ0

‖K(xf1, f2)‖L2 + ‖K(f1, xf2)‖L2 + ‖xK(f1, f2)‖L2 ≤ Ct
ω
2 ‖f1‖Hσ0‖f2‖L2

(A13.5.11)

(A13.5.12) ‖K(xf1, f2)‖Hs + ‖K(f1, xf2)‖Hs + ‖xK(f1, f2)‖Hs

≤ Ct
ω
2
[
‖f1‖Hσ0‖f2‖Hs + ‖f1‖Hs‖f2‖Hσ0

]
.

Proof. — We may split K = K< + K>, where K> (resp. K<) is given by
an expression of the form (A13.4.1) with k supported for |ξ2| ≤ 2〈ξ1〉 (resp.
|ξ1| ≤ 2〈ξ2〉). If we apply (A13.5.1) to K> and the symmetric inequality to
K<, we obtain (A13.5.9)

Let us prove (A13.5.10). It suffices to show that the two estimates hold
for K> for instance. The first one follows from (A13.5.1) with s = 0. To get
the second one, we notice that it is enough to establish the L2 × L2 → L2

boundedness of

(g1, g2)→
∫ 1

−1

∫ 1

−1
k(t, ξ0, ξ1, ξ2, µ1, µ2)〈ξ1〉−σ0g1(ξ1)g2(ξ2) dξ1dξ2dµ1dµ2

with operator norm O(t−
ω
2 ). Since |ξ2| ≤ 2〈ξ1〉 on the support, if σ0 has been

taken large enough, we see that we may rewrite this under the form (A13.5.5),
with some k̃ fulfilling (A13.5.6) so that the conclusion follows.

Finally, estimates (A13.5.11) follow from (A13.5.10), noticing that, as in the
proof of (A13.5.2), we may reduce ourselves to operator K1(f1, f2) satisfying
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the same assumptions as K, up to the loss of a factor tω. This concludes
the proof, as (A13.5.12) follows from (A13.5.2) and the above decomposition
K = K< +K>.

Corollary A13.5.3. — Let β > 0, K,σ0 as in Corollary A13.5.2 and take
s large enough so that (s− σ0)β ≥ 1. Then

(A13.5.13) ‖K(L±f1, f2)‖L2 ≤ Ct−
ω
2

[
tβσ0‖L±f1‖L2 + ‖f1‖Hs

]
‖f2‖L2

(A13.5.14) ‖K(f1, L±f2)‖L2 ≤ Ct−
ω
2 ‖f1‖L2

[
tβσ0‖L±f2‖L2 + ‖f2‖Hs

]
.

Proof. — Let χ be in C∞0 (R), χ ≡ 1 close to zero. Decompose

L±f1 = χ(t−βDx)(L±f1) + (1− χ)(t−βDx)(L±f1).
Write

(1− χ)(t−βDx)(L±f1) = x(1− χ)(t−βDx)f1 + it−βχ′(t−βDx)f1

±t(1− χ)(t−βDx) Dx

〈Dx〉
f1.

If one applies the second estimate in (A13.5.10), (A13.5.11), one gets then

‖K
(
(1− χ)(t−βDx)L±f1, f2

)
‖L2

≤ C
[
t
ω
2 ‖(1− χ)(t−βDx)f1‖Hσ0

+ t−
ω
2

(
‖χ′(t−βDx)f1‖Hσ0 + t‖(1− χ)(t−βDx)f1‖Hσ0

)]
‖f2‖L2 .

Since (s− σ0)β ≥ 1, this is bounded by Ct−
ω
2 ‖f1‖Hs‖f2‖L2 .

On the other hand, by the second estimate (A13.5.10)

‖K
(
χ(t−βDx)L±f1, f2

)
‖L2 ≤ Ct−

ω
2 ‖χ(t−βDx)L±f1‖Hσ0‖f2‖L2

≤ Ct−
ω
2 +βσ0‖L±f1‖L2‖f2‖L2 .

This concludes the proof of (A13.5.13), and thus of the corollary since
(A13.5.14) is just the symmetric estimate.

Let us get next some Sobolev estimates for K(L±f1, L±f2).

Corollary A13.5.4. — Let K be in the class K′κ,ω(i). Assume moreover
that k in (A13.4.1) is supported for |ξ1| ≤ 2〈ξ2〉. Let s, σ0, β be as in Corol-
lary A13.5.3. Then, if (s− σ0)β ≥ 1,

(A13.5.15) ‖K(L±f1, L±f2)‖Hs ≤ Ct1−
ω
2 ‖f2‖Hs

[
tβσ0‖L±f1‖L2 + ‖f2‖Hs

]
(A13.5.16) ‖K(L±f1, f2)‖Hs + ‖K(f1, L±f2)‖Hs ≤ Ct1−

ω
2 ‖f1‖Hs‖f2‖Hs
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‖K(xf1, f2)‖Hs + ‖K(f1, xf2)‖Hs ≤ Ct
ω
2 ‖f1‖Hs‖f2‖Hs

‖K(xf1, xf2)‖Hs ≤ Ct3
ω
2 ‖f1‖Hs‖f2‖Hs .

(A13.5.17)

Proof. — Take χ in C∞0 (R), equal to one close to zero and writeK(L±f1, L±f2)
as a linear combination of the four terms

I = tK
(
χ(t−βDx)L±f1,

Dx

〈Dx〉
f2

)
II = tK

(
(1− χ)(t−βDx)L±f1,

Dx

〈Dx〉
f2

)
III = K

(
χ(t−βDx)L±f1, xf2

)
IV = K

(
(1− χ)(t−βDx)L±f1, xf2

)
.

(A13.5.18)

We apply (A13.5.1) (with f1 and f2 exchanged since we assume here |ξ1| ≤
2〈ξ2〉 on the support instead of |ξ2| ≤ 2〈ξ1〉) in order to estimate the Hs norm
of I by

(A13.5.19) Ct1−
ω
2 ‖χ(t−βDx)L±f1‖Hσ0‖f2‖Hs

≤ Ct1−
ω
2 +βσ0‖L±f1‖L2‖f2‖Hs

which is bounded by the right hand side of (A13.5.15).
To study II, we write it as a combination of terms

t2K
(

(1− χ)(t−βDx) Dx

〈Dx〉
f1,

Dx

〈Dx〉
f2

)
tK
(
x(1− χ)(t−βDx)f1,

Dx

〈Dx〉
f2

)
it1−βK

(
χ′(t−βDx)f1,

Dx

〈Dx〉
f2

)
.

We estimate their Hs norm using (A13.5.1) and (A13.5.2) (with f1 and f2
interchanged) by

Ct2−
ω
2 ‖f2‖Hs

[
‖(1− χ)(t−βDx)f1‖Hσ0 + ‖χ′(t−βDx)f1‖Hσ0

]
≤ Ct2−(s−σ0)β−ω2 ‖f1‖Hs‖f2‖Hs .

This implies a bound by the right hand side of (A13.5.15) since (s−σ0)β ≥ 1.
By (A13.5.2) (with f1 and f2 exchanged), we estimate the Hs norm of III

by
Ct

ω
2 ‖χ(t−βDx)L±f1‖Hσ0‖f2‖Hs

that we bound by the right hand side of (A13.5.15) as in (A13.5.19) since
ω ≤ 1.
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We write IV as a combination of terms

tK
(

(1− χ)(t−βDx) Dx

〈Dx〉
f1, xf2

)
K
(
x(1− χ)(t−βDx)f1, xf2

)
it−βK

(
χ′(t−βDx)f1, xf2

)
.

We estimate the Hs norm of these quantities using (A13.5.2) and (A13.5.3)
with f1 and f2 interchanged. We get

C
(
t1+ω

2 + t3
ω
2
)
‖(1− χ)(t−βDx)f1‖Hσ0‖f2‖Hs

+ Ct−β+ω
2 ‖χ′(t−βDx)f1‖Hσ0‖f2‖Hs .

As (s − σ0)β ≥ ω, this implies a bound by the right hand side of (A13.5.15).
This concludes the proof of (A13.5.15)

To prove (A13.5.16), we decompose K(L±f1, f2) (resp. K(f1, L±f2)) as
the sum of ±tK

(
Dx
〈Dx〉f1, f2

)
(resp. ±tK

(
f1,

Dx
〈Dx〉f2

)
) and of K(xf1, f2) (resp.

K(f1, xf2)) and we apply (A13.5.1) and (A13.5.2) to get the conclusion.
Finally, (A13.5.17) is just a consequence of (A13.5.2), (A13.5.3).

We translate finally the preceding corollary when one does not make any
assumption of support on the frequencies.

Corollary A13.5.5. — Let K be in the class K′κ,ω(i). With the notation of
Corollary A13.5.4, one has the following inequalities

(A13.5.20)
‖K(L±f1, L±f2)‖Hs ≤ Ct1−

ω
2

[
tβσ0

(
‖L±f1‖L2‖f2‖Hs + ‖f1‖Hs‖L±f2‖L2

)
+ ‖f1‖Hs‖f2‖Hs

]
(A13.5.21) ‖K(f1, L±f2)‖Hs + ‖K(L±f1, f2)‖Hs ≤ Ct1−

ω
2 ‖f1‖Hs‖f2‖Hs ,

(with any choice of the signs ± in the left and right hand side of these inequal-
ities).

Proof. — One decomposes K = K<+K> as in the proof of Corollary A13.5.2
and applies (A13.5.15), (A13.5.16).



APPENDIX A14

VERIFICATION OF FERMI GOLDEN RULE

The goal of this Appendix is to check that the Fermi golden rule, used in
Chapter 3 (see Lemma 3.2.3 and the proof of Proposition 3.2.1) does hold. We
already know that from Kowalcyk, Martel and Muñoz, who gave a numerical
verification of the condition. We shall prove here that it may actually be
checked analytically.

A14.1. Reductions

We want to prove the following:

Proposition A14.1.1. — Let Y2 be the function defined in (3.1.22). Then
Ŷ2(
√

2) 6= 0.

Let us prove here the following reduction:

Lemma A14.1.2. — Define the integral

(A14.1.1) I =
∫
R
e2ix

√
2
[
cosh2 x+ 1

2 + i
√

2 sinh x cosh x
] sinh3 x

cosh7 x
dx.

If I 6= 0, then Ŷ2(
√

2) 6= 0.

Proof. — Recall that by (3.1.22), Y2 is given by

(A14.1.2) Y2(x) = b(x,Dx)∗[κ(x)Y (x)2]

where κ, Y are defined in (1.1.5), (1.1.6) and b(x,Dx) has been introduced
in Proposition A8.1.1. Since b(x,Dx)∗ preserves real valued functions and
odd functions, we see that Y2 is real valued and odd. By Proposition A8.1.1,
W ∗+ = c(Dx)∗ ◦ b(x,Dx)∗ (when acting on odd functions), where c(ξ) has
modulus one. In order to show that Ŷ2(

√
2) 6= 0, it thus suffices, according to
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(A14.1.2), to prove that ¤�W ∗+[κ(x)Y 2](
√

2) 6= 0. Recall that by (A8.2.23) and
(A8.2.24),

(A14.1.3) W+w = 1
2π

∫
ψ+(x, ξ)ŵ(ξ) dξ

with, by (A8.2.25),

(A14.1.4) ψ+(x, ξ) = 1ξ>0T (ξ)f1(x, ξ) + 1ξ<0T (−ξ)f2(x,−ξ),

where f1, f2 are the two Jost functions introduced at the beginning of Ap-
pendix A8 and T (ξ) is defined in (A8.2.16). We thus get¤�W ∗+[κ(x)Y 2](

√
2) =

∫
ψ+(x,

√
2)κ(x)Y (x)2 dx

= T (
√

2)
∫
f1(x,

√
2)κ(x)Y (x)2 dx.

(A14.1.5)

Since the transmission coefficient T (
√

2) is non zero, it remains to prove that
if I given by (A14.1.1) is different from zero, the same is true for the last
integral in (A14.1.5), or since κy2 is real valued, that

(A14.1.6)
∫
f1(x,

√
2)κ(x)Y (x)2 dx 6= 0.

One checks by a direct computation that the function

eix
√

2
[
1 + 1

2 cosh−2
(x

2

)
+ i
√

2 tanh x2

]
(1 + i

√
2)−1

solves (A8.1.1) with ξ =
√

2 and is equivalent to eix
√

2 when x goes to +∞, so
that is the Jost function f1(x,

√
2). If one plugs that value in (A14.1.6) and

uses the definition (1.1.5), (1.1.6) of κ, Y , one obtains that (A14.1.6) is just a
nonzero multiple of (A14.1.1). This concludes the proof.

A14.2. Proof of the non vanishing of Ŷ2(
√

2)

In order to prove Proposition A14.1.1, it remains to show that I given by
(A14.1.1) is non zero. We compute explicitly this integral by residues.

Lemma A14.2.1. — One has

(A14.2.1) I = − 2iπ
sinh(π

√
2)
.

Proof. — Denote

(A14.2.2) F (z) = e2iz
√

2
[
cosh2 z + 1

2 + i
√

2 sinh z cosh z
] sinh3 z

cosh7 z
.
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This is a meromorphic function on C with poles zk = iπ2 (2k + 1), k ∈ Z. Let
Rk be the rectangle in the complex plane with vertices at ±kπ, ±kπ+ ikπ for
k in N∗. In order to show that

(A14.2.3) I = 2iπ
+∞∑
k=0

Res (F, zk)

we have to check that ∫ 1

0
|F (±kπ + itkπ)|k dt→ 0∫ 1

−1
|F (tkπ + ikπ)|k dt→ 0

when k goes to +∞. As F (−z̄) = −F (z), we just have to prove

(A14.2.4) k

∫ 1

0

(
|F (kπ + itkπ)|+ |F (tkπ + ikπ)|

)
dt→ 0

when k → +∞. As F (z) is a sum of expressions of the form e2iz
√

2 sinhp z
coshq z with

p, q in N, p < q, and bounding∣∣∣∣ sinhp z
coshq z

∣∣∣∣ ≤ e(p−q)Re z
∣∣∣∣(1− e−2z)p

(1 + e−2z)q

∣∣∣∣
we obtain when 0 ≤ t ≤ 1, k ∈ N∗

|F (tkπ + ikπ)| ≤ e−2kπ
√

2−tkπ

|F (kπ + itkπ)| ≤ e−2kπ
√

2t−kπ (1 + e−2kπ)p

(1− e−2kπ)q

from which (A14.2.4) follows.
Using cosh(zk + w) = i(−1)k sinhw, sinh(zk + w) = i(−1)k coshw, we may

write
F (zk + w) = e−π

√
2(2k+1)G(w)

G(w) = e2i
√

2w
[
− sinh2w + 1

2 − i
√

2 sinhw coshw
]cosh3w

sinh7w

so that Res (F, zk) = e−π
√

2(2k+1)Res (G, 0). One checks by direct computation
that Res (G, 0) = −2. It follows that (A14.2.3) is given by

I = −4iπe−π
√

2
+∞∑
k=0

e−2πk
√

2 = − 2iπ
sinh(π

√
2)

whence (A14.2.1).
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a(t) (Component of the perturbation of
the kink on the odd eigenfunction of
−∂2

x + 2V ), 42
aapp

+ (t) (Approximation of a+(t)), 103
a± (Functions defined in terms of a), 46
e(t, ε) (Function going to zero), 103
φjk(ξ, η, λ) (Phase), 259
ϕ(x) (Phase of oscillation), 278
F 2

0 [a;u+, u−] (Quadratic term in a in
(1.2.13)), 45

F 3
0 [a;u+, u−] (Cubic term in a in

(1.2.13)), 45
F 2

1,I [uI ] (Linear term in u± in (1.2.15)),
45

F 2
2,I [uI ] (Quadratic term in u± in

(1.2.15)), 45
F 3

1,I [uI ] (Linear term in u± in (1.2.15)),
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F 3
2,I [uI ] (Quadratic term in u± in

(1.2.15)), 45
F 3

3,I [uI ] (Cubic term in u± in (1.2.15)), 45
F 2
j [a;u+, u−] (Term homogeneous of or-

der 2− j in a in (1.2.13)), 45
F 3
j [a;u+, u−] (Term homogeneous of or-

der 3− j in a in (1.2.13)), 45
Φ0 (Constant), 46
Φj [u+, u−] (Function of u±), 46
gI(ξ1, . . . , ξn), 278
Γ0 (Constant), 46
Γj [u+, u−] (Function of u±), 46
Γch
n (Set of characteristic indices), 278

Γnch
n (Set of non characteristic indices),

278
H(x) (Kink), 41
κ(x) (Coefficient in equation for perturba-

tion of the kink), 41
L (Matrix of L± operators), 255
L (Matrix of operators), 130
L± = 1

h
Oph(x± p′(ξ)), 230

L+ = x+ tp′(Dx), 77
L± = x± tp′(D), 234
‖·‖Wρ,∞

h
(Semiclassical Hölder norm), 226

‖·‖Wρ,∞ (Hölder norm), 43
‖·‖Hs

h
(Semiclassical Sobolev norm), 226

Op(·) (Quantization of symbols), 189
Oph(a) (Quantization of semiclassical

symbols), 188
Opt(a) (Quantization of classical sym-

bols), 189
Order function, 187
p(Dx) (Operator), 44
P0 (Matrix of operators), 122
Pac (Projector on absolutely continuous

spectrum), 42
P (t) (Time depending operator), 253
Sjk(t, v,Q, λ) (Kernel of operator), 259
Σι,ma,b (Space of functions of (ξ, η)), 252
Σ̃ι,m,m0
a,b (Space of functions), 258

Σ+ (Remainder in second decomposition
of uapp

+ ), 77
Sκ,β(M,p) (Space of symbols), 187
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S′κ,β(M,p) (Space of y-decaying symbols)
, 188

S′N
′

κ,β(M,p) (Space of mild y-decaying
symbols) , 188

tε (Rescaled time), 71
uI (p-uple of functions u±), 44
u± (Complex valued unkown defined from

w), 44
uapp (Vector with entries uapp

± ), 120
uapp

+ (Approximate solution), 76
u′app

+ (First term in decomposition of
uapp

+ ), 76
u′′app

+ (Second term in decomposition of
uapp

+ ), 76
uapp,1

+ (First term in second decomposi-
tion of uapp

+ ), 77

u′app,1
+ (First term in decomposition of
uapp,1

+ ), 78
u′′app,1

+ (Second term in decomposition of
uapp,1

+ ), 78
uI,j (j-th component of uI), 45
u′app (Vector with entries u′app

± ), 120
ũ+ (New unknown defined from u+), 102
ũ (Vector with entries ũ±), 120
V (x) (Potential in equation for perturba-

tion of the kink), 41
V(t) (Time depending operator), 252
w (First reduced unknown), 44
Y (x) (Odd eigenfunction of −∂2

x+2V ), 42
Y2(x) (Function in S(R)), 74
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