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ON THE STABILITY OF KINK SOLUTIONS
OF THE ¢* MODEL IN 1+ 1 SPACE TIME
DIMENSIONS

Jean-Marc Delort, Nader Masmoudi

Abstract. — A kink is a stationary solution to a cubic one dimensional wave
equation (Gtz — 8§)¢ = ¢ — ¢3 that has different limits when z goes to —oo
and 400, like H(z) = tanh(z/v/2). Asymptotic stability of this solution under
small odd perturbation in the energy space has been studied in a recent work
of Kowalczyk, Martel and Munoz. They have been able to show that the per-
turbation may be written as the sum a(t)Y (z) +¢(t, z), where Y is a function
in Schwartz space, a(t) a function of time having some decay properties at
infinity, and (¢, x) satisfies some local in space dispersive estimate. These re-
sults are likely to be optimal when the initial data belong to the energy space.
On the other hand, for initial data that are smooth and have some decay at
infinity, one may ask if precise dispersive time decay rates for the solution in
the whole space-time, and not just for x in a compact set, may be obtained.
The goal of this paper is to attack these questions.

Our main result gives, for small odd perturbations of the kink that are
smooth enough and have some space decay, explicit rates of decay for a(t)
and for ¢(t,x) in the whole space-time domain intersected by a strip [t| <
e~4t¢ for any ¢ > 0, where € is the size of the initial perturbation. This
limitation is due to some new phenomena that appear along lines = = :I:gt
that cannot be detected by a local in space analysis. Our method of proof
relies on construction of approximate solutions to the equation satisfied by
1, conjugation of the latter in order to eliminate several potential terms, and
normal forms to get rid of problematic contributions in the nonlinearity. We
use also the Fermi Golden Rule in order to prove that the a(t)Y component
decays when time grows.



Résumé. — Un “kink” est une solutions stationnaire de 1’équation des
ondes cubique en dimension un (8t2 — 8%)¢ = ¢ — ¢ qui a des limites
différentes lorsque z tend vers —oo et +o0o, comme H(z) = tanh(z/v/2). La
stabilité asymptotique de petites perturbations impaires d’une telle solution
a été étudiée dans un travail récent de Kowalczyk, Martel et Mufioz. Ils ont
montré que la solution perturbée peut s’écrire sous la forme a(t)Y () + (¢, z),
ou Y (z) est une fonction dans l'espace de Schwartz, a(t) une fonction du
temps ayant certaines propriétés de décroissance a linfini, et ou (¢, x)
vérifie certaines estimations dispersives localisées en espace. Ces résultats
sont probablement optimaux lorsque les données initiales sont dans 1’espace
d’énergie. Par contre, pour des données initiales régulieres et décroissantes a
I'infini, se pose la question d’obtenir des taux de dispersion explicites pour la
solution, valables dans tout I’espace temps et pas seulement pour x dans un
compact. Le but de cet article est d’aborder ces questions.

Notre principal résultat donne, pour de petites perturbations impaires
régulieres et décroissantes a linfini du “kink”, des taux explicites de
décroissance pour a(t) et ¥(t,x), pour x décrivant la droite réelle et ¢
vérifiant [t| < e 4t¢ ¢ > 0 étant une constante arbitraire et e désignant la
taille de la perturbation initiale. La restriction sur l'intervalle de temps sur
lequel nous obtenons les estimations est due & un nouveau phénomene, qui
apparait en temps de lordre €%, le long de droites z = :l:gt, et qui ne
peut étre détecté par une analyse locale en espace. Notre méthode de preuve
repose sur la construction de solutions approchées a ’équation vérifiée par 1,
conjugaison de celle-ci dans le but d’éliminer plusieurs termes potentiels, et
formes normales afin de se débarrasser de contributions problématiques de la
non-linéarité. Nous utilisons également la régle d’or de Fermi afin d’obtenir
la décroissance en temps voulue de a(t)Y (z).
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CHAPTER 0

INTRODUCTION

This book is devoted to the study of dispersive estimates for small pertur-
bations of a stationary solution (the “kink”) of a cubic wave equation of the
form (8,52 — 8§)q§ = ¢ — ¢3, in one space dimension. Before discussing that
equation and stating our results, we shall give a general presentation of the
framework in which this study lies.

0.1. Long time existence for perturbed evolution equations

The question of long time (or global) existence of solutions to nonlinear
dispersive equations, like the wave equation, has been a major line of research
for at least the last fifty years. Let us start from the following simple model
that encompasses several equations

(0.1.1) (Dt — p(D2))u = N(u)

where u : (t,x) — u(t,z) is a function defined on I x R%, with I interval of
R, with values in C, where D; = %%, p(Dy) = Fp(¢)a(¢)], F~! denoting
inverse Fourier transform, and where N (u) is some nonlinearity. The function

p(§) may be equal to p(&) = |£], in which case (0.1.1]) is an half-wave equation,

to p(€) = \/1 + [€]?, corresponding to a half-Klein-Gordon equation, to p(¢) =
¢ ? in the case of a Schrodinger equation. The right hand side in |D is
a nonlinear expression, that we denote by N(u), though it may contain also

factors like %u, A& u, or their conjugates, or even first order derivatives of
x

(Da)
u in general. For instance, a Klein-Gordon equation of the form

(0.1.2) (07 = A+1)¢ = F(¢,0,9, V)
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with real valued ¢, will be reduced to (0.1.1)) defining v = (Dﬁ—\/ 1+ |Dx|2) o,
so that

) 1
O = %(u — 1), Vyp = %Vx(l + D *) "2 (u+ ),
and setting
(0.1.3)
1 ) — U 1

N(u) = F(%(l + D) "2 (u + ), Z(uzu) %Vx(l + D) 2 (u+ a)),
which is a non local nonlinearity. One may proceed in the same way for
a quasi-linear version of , i.e. equations where the right hand side of
contains second order derivatives, and is linear in these second order
derivatives. Then N(u) depends also on first order derivatives of (u,u).

When one wants to study long time existence for solutions of equations like
(0.1.1)) or (0.1.2), one of the possible ways is to try to perturb initial data
corresponding to a stationary solution, and to show that this perturbation
gives rise to a global solution that will remain, for long or all times, close
to the stationary solution. Of course, the simplest stationary solution that
one may consider is the zero one, in which case one is led to study
with small initial data. Since the right hand side vanishes at least at order
two at zero, one may hope that it might be considered as an higher order
perturbation.

This framework has been considered by many authors since the mid-
seventies, starting with problems of the form in higher space dimen-
sions. Let us explain why the question is easier in high space dimensions
describing some classical results.

0.2. The use of dispersion

A key point in the study of equations of the form is the use of
dispersion. Consider first the linear equation (Dy — p(D;))u = 0. Assuming
that p(¢) is real valued, p(D,) is self-adjoint when acting on L? or on Sobolev
spaces, so that one has preservation of the Sobolev norms of u along the
evolution: ||u(t,-)||gs = ||u(0,)|| s for any ¢. If one considers instead equation
, a Sobolev energy estimate gives just that, as long as the solution exists,
one has for any ¢t > 0,

(0.2.1) [t, s < [0, )| +/Ot||N(U)(Ta ezs dr,

so that one needs, in order to control uniformly the left hand side, to be able
to estimate the integral term in the right hand side. If one considers a simple
model where N(u) is given by N(u) = P(u,u), where P is an homogeneous
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polynomial of order r > 2, one has, for s > g where d is the space dimension,
a bound
-1
IN()llzs < Cllullzee l[ullms,

so that (0.2.1)) implies
t
©022)  Jutt. e < [, e +C [ )52 e, e dr.

As a consequence, by Gronwall lemma,

(0.2.3) lu(t, Mms < [[w(0, )] 1= exp [c/otyu(T, Y dr|.

One thus sees that, if we want to get a control of ||u(t,-)| gs for large ¢, one
needs to obtain as well a priori estimates for ||u(7,-)||z~. In particular, to get
a uniform global bounds in , one would need the right hand side of this
inequality to be bounded i.e. [, u(r,-)||} dr < +o0.

One may try to guess what are the best estimates one may expect for
|[u(7, )|z from those holding true for solutions to the linear equation (D; —
p(Dz))u = 0. As the solution is given by

(0.2.4) u(t,z) = (2;)d /eitp(ﬁ)ﬂzéao(f) d¢

where ug = u(0, ), one sees from the stationary phase formula that if ug is
smooth enough and has enough decay at infinity, ||u(t, )|~ = O(t~2), where
k depends on the rank of the Hessian of p(£). In the case of the wave equation
p(§) = [¢], K = d — 1, while for Schrédinger or Klein-Gordon equations (i.e.
p(§) = @ orp(§) =+/1+ |§|2, k = d. Conjecturing that the same decay will

hold for solutions of the nonlinear equation, we would get that the integral
in the right hand side of (0.2.3) will converge if §(r — 1) > 1, so that if
2ZL(r — 1) > 1 for the wave equation and 2(r — 1) > 1 for the Klein-Gordon
or Schrodinger ones.

0.3. Vector fields methods and global solutions

The above heuristics turn out to give a correct answer for nonlinear wave
equations, if one considers general nonlinearities: actually, in this case, smooth
enough decaying initial data of small size give rise to global solutions when
d > 4 if the nonlinearity does not depend on u and is at least quadratic (i.e.
r > 2) as it has been proved by Klainerman [50], Shatah [75], including for
quasi-linear nonlinearities. In the same way, for Klein-Gordon equations with
quadratic nonlinearities, global existence holds if d > 3 (see Klainerman [49],
Shatah [76]). Moreover, the solutions scatter i.e. have the same long time
asymptotics as the solution of a linear equation.
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Let us recall the “Klainerman vector fields method” that provides a powerful
way of proving that type of properties. We consider an equation of the form

(0.3.1) Ou = f(Opu, Vzu)

where u is a function of (t,z) in R x R O = 02 — A, and f is a
smooth function vanishing at least at order 2 at the origin. Instead of
[ in the linear part of , one may more generally take the operator
2k % (0yu, V4u)0;0), where zo = t and the coefficients g/¥ are smooth
and satisfy > ¢7%(0,0)0;0, = O, so that the method is not limited to
semi-linear equations, but works as well for quasi-linear ones, that is one
of its main interests. For the sake of simplification, we shall just discuss
(0.3.1)), referring to the original paper of Klainerman [51] and to the book
of Hérmander [42] for the more general case. The Sobolev energy inequality
applied to together with nonlinear estimates for the right hand side
imply that, if s > 4, the energy Es(t) = [|0yu(t, )|« + || Vou(t, -)||%. satisfies,
as long as ||v/(7, )| is bounded,

[N

(0.3.2) E,(t)? <E 2+0/ (7, )| Eo(7)? do,

where we set u’ for (Oyu, V,u). This is the analogous of for the solution
of and in order to exploit this estimate, one needs to show that ¢t —
|/ (t,)|| o~ is integrable. The Klainerman vector fields method allows one to
deduce such a property from L? estimates for the action of convenient vector
fields on uw. More precisely, one introduces the Lie algebra of vector fields
tangent to the wave cone t? = \a:| generated by

t0y, + a0, j=1,....d

a:iawj —a:jé?xi, 1<i<y<d
(0.3.3)

d
t&t + Z .%'ja%.
j=1

and if one denotes by (Z;);ez the family of fields given by (0.3.3) or by the
usual derivatives 9y, 0y, j = 1,...,d, we set, for I = {iy,...,ip} C IP, zl =
Zi -+ Z; and |I| = p. Then, as Z! commutes to [J by construction, one gets

from (0.3.1)
(0.3.4) 071w = Z7 f(du, V,u)

from which it follows that, if ¢t > 0,

t
(0.3.5)  [|Z7u(t, )| z2 < [|1Z7w(0, )| 12 + /0 127 f(0yu, Vau) (T, )| 12 dr.
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Using that Z! is a composition of vector fields, one deduces from Leibniz rule
that, setting u/y = (Zlu’)|1|<N,

[ (8 )l p2 < Juin (0, )l 2

¢
+/0 C (Il o (7, oo ) [ty o (7, )l oo 1y (7, )l 2 d

This is thus an inequality of the form (0.3.2)), and in order to deduce from it
an a priori bound for the left hand side of (0.3.6)), one again needs a disper-
sive estimate for ||u’N/2(T, I||zee in 0(77%). This estimate follows from the

Klainerman-Sobolev inequality

(0.3.7) (L[t + 2D L+ [t] = [2lDw(t, 2)* < C Y (25 w(t, . )2

d+2
II\ST

(0.3.6)

for the proof of which we refer for instance to Proposition 6.5.1 in [42]. This
implies in particular that, if we take IV large enough so that % + % < N,
one has for ¢t > 0

(0.3.8) luly ot )| < C(LA+ )T [July (£, )| 2.

One deduces from ((0.3.6) and (0.3.8) a priori bounds of the form
(0.3.9) luy (£, )2 < Ae

(0.3.10) HuN/Q( Iz < Be(1 + t)

by a bootstrap argument when d > 4: If one assumes that ,
hold for ¢ in some interval [0,7], one shows that if A, B have been taken
large enough in function of the initial data, and if € is small enough, then
0:3:9), hold on the same interval with (A, B) replaced by (A/2, B/2).

One has just to plug d0.3.9b, d0.3.10 in d0.3.6|), and to use that (1 + t)_%
is integrable in order to prove (0.3.9) with A replaced by A/2. Concerning
(0.3.10) with B replaced by B/2, it follows from and (0.3.9) if B is
taken large enough with respect to A. Combining these a priori bounds with
local existence theory for smooth data shows that solutions are global, for €
small enough, and satisfy (0.3.9) -, m for any time.

The same type of arguments works more generally when f in 1)) vanishes
at order r > 2 at zero and %( -1)>1

Of special interest is the limiting case of long range nonlinearities when
@(r — 1) = 1. This happens in particular if d = 3,7 = 2 i.e. for quadratic
nonlinearities in three space dimension. In this case, one gets in general that
data of size € > 0 give rise to solutions existing over a time interval of length
at least e“/¢ for some ¢ > 0, but finite time blow up may occur. Neverthe-

less, if the solution satisfies a special structure, the so called “null condition”,
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global existence holds true (see Klainerman [51]). We again refer to the book
of Hérmander [42] and references therein for more discussion of long time
existence for wave equations, in particular in two space dimension, and to Al-
inhac [2] for the study of blow-up phenomena when solutions are not global.
We also refer to Christodoulou and Klainerman [11] and to Lindblad and
Rodnianski [62] for applications to general relativity.

In section below we discuss the case of long range nonlinearities for
Schrédinger and Klein-Gordon equations in one space dimension, which is the
relevant framework for the problem we study in this book. To conclude the
present section, let us make some comments on another well known way of
exploiting the dispersive character of wave (or other linear) equations, namely
Strichartz estimates. The vector fields method that we described above has
the advantage of providing explicit decay rates for the solution (and, combined
with other arguments, may even furnish precise information on asymptotic
behavior of solutions). Moreover, it applies to quasi-linear equations, even if
we described it just on a simple semi-linear case. On the other hand, it is
limited to the study of equations with small and decaying data.

When one deals with semi-linear equations, and wants to study solutions
whose data do not have further decay than being in some Sobolev space, one
may instead use Strichartz estimates. Recall that they are given, for a solution

u to a linear wave equation,

0} — Au=F
(0.3.11) (0 =4)
u(0, ) = ug, Ou(0,-) = uq,

defined on I x R%, where I is an interval containing 0, by

(0.3.12) lellzgrrasray < Cllwollz + lluallg— + 1 g o ey
where the indices satisfy
1 1
-+ ==1, i + Nl =1
q q ror
1 d d 1 d d
-4 ==, o+ =-==-+2
qg r 2°q v 2
(0.3.13) 1,od=1_d-1 1 ,d-1_d-1
q 2r T 4 7§ 2F T 4
(7T7d)#(2700’3)7 q7T‘227r<Oo

(q’?/f‘7d) # (270073)’ 67f227f< .

We refer to the book of Tao [83] and references therein for the proof. These
estimates express both a smoothing and a time decay property of the solution.
Because of that, they are useful both in the study of local existence with non
smooth initial data or for global existence and scattering problems in the
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semi-linear case, including for large data. We shall not pursue here on that
matter, as this is not the kind of methods we shall use below, since we are
more interested in explicit decay rates of solutions. We refer to [83] for some
of the many applications of these Strichartz estimates.

0.4. Klainerman-Sobolev estimates in one dimension

The preceding section was devoted to the use of Klainerman vector fields in
the framework of wave equations in higher space dimensions. In the present
section, we shall focus on the case of (half)-Klein-Gordon or Schréodinger equa-
tions in dimension one, as this is the closest framework to our main theorem.
As a prerequisite, we shall describe first how (a variant of) the method of
Klainerman vector fields allows one to get dispersive decay estimates for solu-
tions when the nonlinearity vanishes at high enough order at initial time. We
start with the simplest model of gauge invariant nonlinearities, to which more
general equations may be in any case reduces by the normal forms methods

we shall discuss later. Denote thus for £ in R p(§) = /1 +&2 or p(§) = %

and consider equation (0.1.1)) with N(u) = |u|*’u with p € N* i.e.
Di — p(Dy))u = alu|*u
o (Dy — p(D2)u = olu

u|t:1 = Uo,

where for convenience of notation we take the initial data at time ¢t = 1, « is
a complex number and ug will be given in a convenient space. One has the
following statement:

Theorem 0.4.1. — Let p be larger or equal to 2 in . There are sg, po
in N such that, for any s > s, there are g > 0,C > 0 and for any € €0, €],
any u € H*(R) satisfying

(0.4.2) lluol| s + [|zuollr2 < e,

the solution to 1s global and satisfies for any t > 1
(0.4.3) [u(t, )las < Ce, [lu(t,-)lwroee < C%
where ||w]|weoe = |[{Dy)°w|| o0

We shall present the proof following arguments due to Hayashi and Tsut-
sumi [40] in the case of Schrodinger equations. For Klein-Gordon equations,
the first proof of such a result is due to Klainerman and Ponce [52] and
Shatah [75], using a different method. We shall describe here a unified ap-
proach for both equations. Notice also that for Klein-Gordon equations, global
existence result hold for much more general nonlinearities. We shall give ref-
erences to that in the forthcoming sections.
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Idea of proof of Theorem [0.4.1: We apply the Klainerman vector fields idea,
except that instead of using true vector fields, we make use of the operator

(0.4.4) Ly =x+tp (D).

This operator commutes to the linear part of the equation, [Ly, Dy —p(D,)] =
0. Moreover, because the nonlinearity is gauge invariant, a Leibniz rule holds.
Actually, in the case of Schrédinger equations, one has a bound

(0.4.5) 14 (JulPu) 2 < Cllullf || Ly ul| 2
that follows using that if p(§) = %, then L, = x + tD, and then
Lo (juf®u) = Lo (@) = (p+ 1)(Ly )l — pur e Ty,

When p(€) = /1 + £2, one has an estimate similar to lb up to replacing

the L norm by a Wr%> one, for some large enough pg, and up to some
remainders that do not affect the argument below (see [20]). We shall pursue
here the argument in the Schrédinger case. Applying L4 to and using
the commutation property seen above and , we obtain

(0.4.6) (Dt = p(Da)) (L) = O ([l e | L] 2)

so that one has by L? energy inequality

t
(0.4.7)  [[Lyult, )Lz < [ Lyu(l, )|z + 0/1 (s e | Ll )| 2

The proof of the theorem now proceeds with a bootstrap argument: One wants
to find constants A > 0, B > 0 such that
[u(t, ) as < Ae
[ Lyu(t, )2 < Ae
€
Vit
for any t > 1, as long as € > 0 is small enough. Assume that these inequalities
hold true for t in some interval [1,7]. Then, it is enough to show, using

equation (0.4.1), that for ¢ in the same interval [1,7], one has in fact the
better estimates

(0.4.8)
[u(t, )|~ < B

N

[ult, )z < <

IN
IRWENI NN
B

(0.4.9) [ Lyu(t, )]l 2

IN

[Ju(t, )| Lo
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Actually, estimates ((0.4.8) hold on some interval [1, 7], if one has taken A, B
large enough, because of assumptions ((0.4.2) made on the initial data, and of
Sobolev embedding in order to get the L>° bound.

To show that (0.4.8)) implies the first two estimates (0.4.9)), one uses (0.2.2))
(with r replaced by 2p 4+ 1) and (0.4.7). Plugging there the a priori bounds

(0.4.8)), one gets for any ¢ in [1, 7]

t
lut, ) as < ||U0HH5+CB2PA€2”+1/ P dr
(0.4.10) . t
| Lyu(t, )2 < [|[Lyu(l, )| gs +OB2pA62p+1/l P

with p > 1. Consequently, using assumption , taking A large enough
and € small enough, one gets the first two inequalities . To obtain the
last one, one uses Klainerman-Sobolev estimates, that allow one to recover a
L> bound with the right time decay from an L? one for L u. In the case

we are treating p(§) = %, this is very easy: one writes, by the usual Sobolev
embedding

1 1
[wllze < Cllwl|Z: ]| Dewl|7s-
L2
Applying this with w = e' 2 u(t, -), one gets

C 1 1
(0.4.11) [[u(t, )[ee < 7HU(t, M2l Lrult, )7

7
Plugging the first two inequalities ({0.4.8]) inside the right hand side, one gets
lu(t, )||Le < ﬁCA, which gives the last bound 1) if B is chosen large
enough relatively to A and concludes the proof. O

0.5. The case of long range nonlinearities

In equation (0.4.1)) we limited ourselves to the case p > 1, which may be
considered as a short range case: actually, if we consider |u|2p as a potential,

the time decay of ||u(t, -)|| e in ¢~ shows that |[|w(t, -)|?P|| o is time integrable
at infinity. This played an essential role in order to bound the integrals in the
right hand side of (0.4.10]). Thought, a variant of Theorem holds as well
when p = 1:

Theorem 0.5.1. — Letp(§) = /1 + &% orp(§) = 72 in one space dimension,
a a real constant. There are sg, po in N, § > 0 such that for any s > sg, there
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are € > 0,C > 0 so that, for any € €]0, €], any uo in H*(R) satisfying (0.4.9),
the solution of

(D¢ — p(Dg))u = olul*u
ule=1 = uo

is defined for any t > 1 and satisfies there

(0.5.1)

€
7

Remarks: o A difference between the conclusion of Theorem [0.4.7] and the
above statement is that the Sobolev estimate is not uniform: a slight growth
in ¢ is possible. Actually, § may be taken of the form Ce? for some constant
C.

e The form of the nonlinearity is important, at the difference with the short
range case of the preceding section. For instance, one cannot take in the right
hand side of for « an arbitrary complex number. The fact that o should
be real is an example of a null condition that has to be imposed in order to
get global solutions.

e The proof of the theorem provides also modified scattering for u as t goes
to infinity.

Let us give some references. For the Schrodinger case, a first proof of
Theorem and of modified scattering of solutions is due to Hayashi and
Naumkin [38]. See also Katayama and Tsutsumi [46] and, more recently,
Lindblad and Soffer [65], Kato and Pusateri [47] and Ifrim and Tataru [45].
In the case of Klein-Gordon equations, including in the case of quasi-linear
nonlinearities satisfying a null condition, we refer to Moriyama, Tonegawa
and Tsutsumi [71], Moriyama [70], Delort [18, 19} [20], Lindblad and Sof-
fer [64], Lindblad [63] and Stingo [82]. See also Hani, Pausader, Tzvetkov
and Visciglia [37] for some further applications.

(0.5.2) lu(t, e < Cet?, Jfut, ) woooe < C

Before explaining the general strategy of proof of Theorem [0.5.1] let us
describe informally how the dispersive estimate in (0.5.2)) will be proved, using
an auxiliary ODE deduced from (0.5.1)). We make this derivation in the case

p(§) = %, deferring to next paragraph the case of general p. Denote by
o(x) = —%2 and look for a solution to li under the form

cite(e/?) ( | x)

(0.5.3) u(t,x) = 7 -

t
where A(t,y) is a smooth function. Plugging this Ansatz inside (0.5.1)) with
2

p(Dy) = %, one gets

1 1
(0.5.4) DiA(t,y) = ;IA(t,y)IZ)A(t, y) + ﬁDﬁA(t,y)-
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If one ignores the last term (that will be proved a posteriori to be a time
integrable remainder), one gets that A solves the ODE

(055) DiA(t,) = 714 )AL Y)

from which follows that |A(t,y)| = |A(1,y)| for all ¢ > 1, whence A(t,y) =
A(1,y)exp [z’]A(l,y)]Q logt]. One thus gets a uniform bound for A, and also
discovers that the phase of oscillation of involves a logarithmic modifi-
cation that reflects modified scattering, i.e. one gets when time goes to infinity

2 2
u(t,z) ~ \}EAO (%) exp [—Z% + i‘Ag (%)‘ logt}
for some function Ag. Of course, to establish this rigorously, one has to show
that the last term in is really a remainder whose addition to the right
hand side of does not modify the analysis of asymptotic behavior of
solutions.

One may perform such a derivation in a rigorous way using a wave-packets
analysis as in Ifrim-Tataru [45] or using a semi-classical approach as we do
here. The idea is the following: because of formula , u appears naturally
as a function of ¢ and ¥, so that it is natural to write it in terms of a new
unknown v by

1 z
0.5.6 u(t,r) = —=v (t, 7),
(05.6) ()=
where v will satisfy an equation

1 D
(0.5.7) Dyv — 2—75(:1:-DI+DI -x)v—p(%)v: %|U|2U.
By (0.5.3), we expect v(t,z) to oscillate like #(*), We compute for any
smooth function a(t, x)

P (%) [eitm)a(t’ w)} = [p(Bup(@))a(t, z) + Ot™)] ).

One expects thus that the main contribution to the left hand side of
will be obtained replacing % by O0yp. This gives an ODE which is nothing
but if we replace v by e A(t,z). In other words, we obtain an
ODE allowing us to describe the asymptotics of the solution starting from the
quantum problem given by the PDE ((0.5.5) and reducing it to the classical
problem obtained making in (@ the substitution % — Ozp. We explain
below, in the strategy of proof of Theorem [0.5.1} the rigorous way of doing so
controlling the errors.

Strategy of proof of Theorem [0.5.1; The starting point of the proof is the
same as for Theorem [0.4.1] except that the inequalities to be bootstrapped
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read now as
lut, e < Act?
(0.5.8) ILsut, )2 < Aet?
lu(t, weose < B~

Vit

instead of (0.4.8), with § > 0 a small number. Again, one has (0.4.10) with
p = 1 and the integral term replaced by flt 0 dr < 5710, If €26 ! is small

enough, one deduces from ((0.4.10) that the first two inequalities in (0.5.8)
actually hold with A replaced by A/2. On the other hand, one cannot deduce

the L™ estimate in ((0.5.8) from the Sobolev and L? ones using (0.4.11)), as the

lack of uniformity in the estimate of ||Lyu(t,-)|| ;2 would just provide a bound

in O(f%*O) instead of O(F% ). On thus needs an extra argument to obtain the
L™ estimates (since the L? ones cannot be expected to be improved). There
have been several approaches to do so, that all rely on the derivation from the
PDE ({0.5.1]) of an ODE, that may be used in order to get the optimal L>° decay
(and the asymptotics of the solution). That ODE may be written either on the
solution itself or on its Fourier transform (actually on the profile e??©)(t, £) of
the Fourier transform). As indicated in the preceding paragraph, the method
we shall use in this book, inspired in part from the approach of Ifrim and
Tataru [45] based on wave packets, relies on a semiclassical version of the
equation satisfied by a rescaled unknown.

We introduce as a semiclassical parameter h = % €]0,1] and define from
the unknown u the new unknown v through . If we denote |[v|[ps =

[(hDz)vl|2, then [[u(t,-)||ms = |lv(t,-)|lms. The last estimate in (0.5.8) is
equivalent to getting a O(e) bound for |[(hDy)*°v(t,-)||L~. Plugging (0.5.6))
inside (0.5.1)), one gets

(0.5.9) (D¢ — OpYY (z€ + p(€)))v = halv[*v

where the semiclassical Weyl quantization Op}iv associates to a “symbol”
a(z, ) the operator

r+y
2

The above formula makes sense for more general functions a than the one

a(z,§) = x€ + p(§) appearing in (0.5.9). We do not give here these precise
assumptions, referring to Appendix below. Let us just remark that one

may translate the action of operator Ly on u by

1 .
(0.5.10) v — Op) (a)v = oh /ez(x*y)%a< ,f)v(y) dydg.

(0.5.11) Lyu(t,z) = \}%(cw) (t, %)
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with

(05.12) Lo =3 0pl (w +9(€))

so that the second a priori assumption may be translated as
(0.5.13) |£40] 12 = O(eh™®).

This brings us to introduce the submanifold

(0.5.14) A={(z,6) eRx Rz +p'(¢) =0}

that is actually the graph

(0.5.15) A = {(z,do(x));z €] — 1,1[} with o(z) = /1 — 22

given by the following picture:

The idea is to deduce from (0.5.9) an ODE restricting the symbol x£ + p(§)
to A. By (0.5.15)) and a direct computation, (x€ + p(£))|a = ¢(z), so that we

would want to deduce from ((0.5.9) an ODE of the form
(0.5.16) (D¢ — p(z))w = halw*w + R

21

where w should be conveniently related to v and R being a remainder such

that [{"°[|R(t, ) o dt = O(e).

We notice first that a priori bound ((0.5.13)) provides a uniform estimate for

v cut-off outside a ﬂ—neighborhood of A. The idea is as follows:
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First, contributions to v cut-off for high frequencies have nice bounds
if we assume the first a priori estimate (0.5.8): actually, it implies
[(hD)v(t, )2 = O(eh™0), so that if y € C§(R) is equal to one close
to zero, § > 0 is small and sg > %, one gets by semiclassical Sobolev estimate

1 S
10pY (x(h°€)) vl < Ch™2|[(hD4)* Opy (x(h7€)) vl 2
(0.5.17) < Ch3+BE=0) | (hD,) v 2
< Ceh—-0+8(-s0),

Consequently, for any fixed N in N, if s3 is large enough, we get a O(eh')
bound for . This shows that one may assume essentially that ¢ is
supported for h?|¢| < C for some constant, some small 3 > 0. In the rest
of this section, in order to avoid technicalities, we shall argue as if we had
actually |¢| < C. The case h’|¢| < C may be treated similarly, up to an extra
loss 7" in the estimates of the remainders, > 0 being as small as we want.
This extra loss does not affect the general pattern of the reasoning.

Take v in C§°(R), equal to one close to zero, with small enough support,
and decompose

(0.5.18) UV =Up + Upe

where
(0.5.19) v, = OpYY (7(%))@, Vpe = Op}:v((l - ’7)(1._'_\/?%(§)>)U

i.e. up (resp. vpe) is the contribution to v that is microlocally located inside
(resp. outside) a v/h-neighborhood of A. Then v,. satisfies, as a consequence
of the L? estimate (0.5.13)), a uniform L° bound: define v;(z) = % and

write
e = Opl (5 (TELE) (120N,

/
x—i—\/p%(ﬁ)) ) (L4+v) + remainder.
z4p'(§)

Since, at fixed z, & — 71 (T) is supported inside an interval of length

O(v/h), one may show that the L norm of the first term in the right hand

side of (|0.5.20)) is essentially bounded from above by h=7 times its L2 norm
i.e.

1
(0521) HQAc”Loo < Ch4H£+’UHL2.
(Actually, if one takes into account the fact that on the support of 9, |¢| < ch™?

(0.5.20)
= h20py (71(

instead of |£| < C, one would get a power hi=# instead of hi, for some
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0 < B <« 1in (0.5.21)), that would not change the estimates below). In any
case, combining with ((0.5.13]), we get an estimate

(0.5.22) vaellzoe = O(ehi™), 6 > 0 small.

If we assume a uniform a priori bound for v (that follows from the third

inequality (0.5.8)) and from (0.5.6])), we see that (0.5.22) implies that the dif-

ference |v|*v — v, >, will be O(eghif‘sl), so that replacing in the right hand
side of (0.5.9) R|v|*v by h|vs|*v, induces an error of the form of R in (0.5.16)

i.e. we have

(0.5.23) (Dy — OpYY (€ + p(€)))v = hlup[up + R.

We make act next Op," ('y (%\//ﬁ(ﬁ))) on that equality. We get at the left hand

side (Dt —Op)Y (z€+p(€ )))y A and a commutator whose principal contribution
may be written as

3
h2 z+p'(§)
0524 o (7 (Y9 20
( ) 7 oen (Y — 7 (L1v)
This is of the same form as (0.5.20)), up to an extra h factor, so that, argu-
. . 00 55
ing as in (]0.5.21'), (IO.5.22|), we bound the L norm of (0.5.24)) by Ceh1™° =

Cet=319. As & > 0 is small, this is an integrable quantity that may en-
ter in the remainders in the right hand side of (0.5.16). As the action of

Op)Y (7 (xﬂ’,(g) )) on the right hand side of (0.5.23)) may be written under the

Vh
same form, up to a modification of the remainder, we get

(0.5.25) (Dy — OpyY (€ + p(€)))ua = halvs[*vs + R

We make now a Taylor expansion of 2¢+p(¢) on A given by (0.5.14), (0.5.15).
As d%(xf +p(§))|a = 0, we get

(0.5.26) 2+ p() = o(x) + O((x +p'(9))?).

The action of Op)" ((z+p'(€))?) on vy may be written essentially as (0.5.24)), so

provides again a contribution to R in . Finally, plugging (0.5.26]) inside
(10.5.25)), we see that we get an equation of the form (0.5.16f) for w = v,. This
implies in particular that %\y A(t, )7 is time integrable (since the coefficient
a in is real) and thus that |[v,(,-)|/z> is bounded. Coming back to
the expression of u in terms of v = vy +v e, remembering and
adjusting constants, one gets that the a priori assumptions imply that
the last inequality in these formulas holds true with B replaced by B/2 (The
reasoning for Wr0> norms instead of L° ones being similar). This shows
that the bootstrap argument holds. Moreover, the ODE ((0.5.16)) may be used
also in order to get asymptotics for u when times goes to infinity. O
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0.6. More general nonlinearities and normal forms

In model , we considered only a special case of nonlinearity namely
a|u|2u. We used this special structure in order to get a Leibniz type rule (see
(0.4.5)). However, we know that we should be able to obtain global solutions
even for (some) cubic or quadratic nonlinearities that have a more general
form. This is done in [18], 19] for quasi-linear Klein-Gordon equations with a
nonlinearity satisfying a null condition (see also Stingo [82]). One makes use
of “real” Klainerman vector fields instead of the operator L; above. On the
other hand, for other equations like Schrédinger ones, the natural operator to
be used in order to exploit dispersion is an operator like L, , that is not a
vector field. It is possible to reconcile both points of view using normal forms.
Moreover, the use of the latter allows also one to treat quadratic nonlinearities.
Consider as a model

(D¢ — p(Dy))u = agu® + aful*u

(0.6.1)
uli=1 = up

where p(£) = /1 + &2, g is a complex number and « a real one. We would
like to prove the analogous of Theorem [0.5.1] namely

Theorem 0.6.1. — There are sg,po in N, § > 0 such that, for any s > sq,
there are g > 0,C > 0 so that, for any € €]0, o], any ug in H*(R) satisfying
, the solution of is global and satisfies for any t > 1

€

Vit

Remarks: e Again, one can obtain also the asymptotics of the solution
when t goes to infinity, and in particular show modified scattering, and not
just the dispersive estimate

e One may consider more general quadratic and cubic nonlinearities than
in the right hand side of , as soon as they satisfy the null condition (see
[18, 19, [82]).

The key idea of the proof is essentially to reduce ((0.6.1]) to (0.5.1)) by normal
forms. One cannot expect to get directly energy estimates on ((0.6.1): for
instance, the quadratic part of the nonlinearity has Sobolev norm bounded
from above by Cl|u(t, )| e ||u(t, )| ms, so taking into account the a priori L>°
estimate in (0.5.8)), by %Hu(t, )zs. One thus would get an inequality of

(0.6.2) lJu(t, e < Cet?, Jfut, ) Jwonoe < C

the form (0.2.3) with » = 2, which would give only exponential time control.
Though, as shown first by Shatah [76] and Simon and Taflin [77], one may
easily reduce the quadratic nonlinearity in (0.6.1)) to a cubic one.
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Lemma 0.6.2. — Define

m(&1,82) = (\/14-514-\/1—1-52 \/1 + (&1 + &2) ) |
Then m(&1,&2) is well defined,
(0.6.3) Im(&1,€2)] < C(1+min(|&l, [€2]))

and if one sets

1
(2m)?

one has for a fized pg and any large enough s

(0.6.4) Op(m)(u1,us) = / 2(61+62) m(&1,82)01(&1)02(82) d§1dés

(0.6.5)  [[Op(m)(ur, u2)llms < C[llurllweos l[uz]l s + llurll s uzllweooe].

Moreover, the map u — u — Op(m)(u,u) is a diffeomorphism from H* N {u €
WPo lullweoce < r} to its image, for small enough r, and if u is in that
set, and solves equation , then w = u — Op(m)(u,u) solves

(0.6.6) (D¢ — p(Dz))w = a|w|?w — 2000p(m) (w?, w) + R(w)

where R is a sum of contributions of degree of homogeneity larger or equal to

/.

Proof. — Estimate follows by an immediate computation. It implies
that one does not lose derivatives when applying Op(m) to a couple (u1, ug) i.e.
that holds without losing on s in the right hand side. This allows one
to construct the local diffeomorphism v — w. When one makes act D; —p(D;)

on Op(m)(u,u), one gets using equation (0.6.1)), on the one hand
(0.6.7) Op(m) (p(Dg)u, u) + Op(m) (u, p(Dy)u) — p(Dy)Op(m)(u, u)

which, because of the definition of m is equal to u?, and on the other hand
contributions of the form

(0.6.8) Op(m) (aou® + alul*u,u), Op(m) (u, cpu® + olulu).

If we compute the left hand side of , we thus see that compensates
the quadratic term, and that we are left in the right hand side with the |u|2u
term and expressions of the form . If we express u in terms of w = u —
Op(m)(u, u), we shall get the cubic terms in the right hand side of (0.6.6), and
higher order terms R(w). These higher order contributions are essentially of
the form Ry = Op(my)(w,...,w,w,...,w), with k > 4, mp = mg(&1, ..., &)
a smooth function satisfying convenient estimates, and Ry defined as in ((0.6.4))
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from

(0.6.9)
Op(mg)(u1,...,ug) = (271r)k /eir(§1+...+§k)
X (€ ) () - e (E) Ao - di

Then R(w) satisfies estimates of the form

(0.6.10) IR ()l < Cllwllfynoce|[w] e

if w stays in some ball of W% je. plays the role of a perturbation that is
at least quartic. O

The preceding lemma thus reduces the case of a quadratic nonlinearity to
a cubic one. Of course, the cubic term in the right hand side of is
non local, but this is not a real extra difficulty. Because of that, in order not
no be disturbed by unessential technicalities, we shall pursue the reasoning

considering a simple variant of , namely
(0.6.11) (D¢ — p(Dy))u = olulPu + o u® + apu’a?

with a real, ag, a; complex, forgetting any contribution homogeneous of order
larger or equal to 5 that is in any case easier to treat. Moreover, the special
structure of the nonlinear terms in the right hand side does not matter except
the fact that « is real.

We have already noticed that a term like u? is not compatible with the
action of L, on the right hand side. The same holds for u?u2. In order to
get around that difficulty, one may try to perform a normal form in order to
get rid of cubic or quartic terms. Nevertheless, unlike the quadratic case, one
my not eliminate all these terms. Actually, to get rid of v?@? for instance, one
would have to introduce a new unknown of the form u — Op(my4)(u, u,u, u),
where my4 would be the inverse of

(06.12) — /14— /1+&+/1+8+ 1+ -1+ (& +-+&)2

But such a quantity vanishes for some values of (£1,...,&4). The idea to over-
come that difficulty is to use “space-time normal forms” introduced by Ger-
main, Masmoudi and Shatah in [29), [30}, 31, 32] and Germain-Masmoudi [28]
(see also the review paper of Lannes [58] and the works of Hu and Mas-
moudi [44], Deng, Ionescu, Pausader and Pusateri [21], Wang [84] and Deng
and Pusateri [22] for further applications and extensions of the method).
These authors define and use space-time normal forms on the profiles of the
solutions, namely the functions e~ ®(P=)y,. Here, we present an equivalent ap-
proach based on wu itself and on microlocal cut-offs similar to those introduced
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in (0.5.19)), following [20]. Actually, introducing again from u the unknown v
given by (0.5.6]), we rewrite (0.6.11)) as

(0.6.13) (Dy — OpXV(x§ +p(€)))v = halv*v + hayv® + h2 agv*?

using notation . The idea of space-time normal forms may be de-
scribed in a geometrical way as follows. As we have seen above, a term like
v?9? in (0.6.13) may not be fully eliminated by a usual (time) normal form
since (0.6.12)) may vanish for some values of the arguments. Though, we have
seen in ([0.5.3) that v defined by is expected to be a function oscil-
lating as ¢?(*)/"which means that we expect that v is “concentrated” on
the manifold A defined in (0.5.14]), (0.5.15)). This means that, up to remain-
ders having better time decay, we should hope to be able to design a normal
form eliminating the term v?%2 of (0.6.13)) as soon as does not vanish
when the frequencies £1,&s (corresponding to v) are set equal to dp(z) (by
characterization of A) and &3, &, (corresponding to v) are set equal to
—dp(z). Notice that restricted to this subset, is just equal to —1, so
does not vanish. Of course, in order to justify that, we need to explain how
we may reduce ourselves to the fact that v may be replaced by a function that
is frequency localized on A, up to convenient remainders, and show how this
allows one to prove energy estimates for the solution of . Our goal will
thus be to prove the following:

Proposition 0.6.3. — The solution v of satisfies estimates of the
form

(0.6.14)
lo(t ) e < o1, )]s
e / o, Wygn e (L 007, g e, g,
e PIWLG) ’ h(r) T
(0.6.15)
1£v(t, )2 < [[£40(1, )| ms
dr
o / o MWsoce (1 s Mgpooe 1, sz &
where h = ¢, M(r) = 7, [vllay = [{hDa) vl 12, [[vllyroce = [{hDa)"v]| e

and Ly is defined in .

Remark: These estimates are the translation on v of bounds of the form
10.2.2)), on u according to ((0.5.6)). Consequently, if we prove them, we
shall get, as in the proof of Theorem that an a priori set of inequalities
of the form will imply that the first two of these bounds hold with A
replaced by A/2.
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Proof of the Proposition: As indicated before the statement, in order to
get (0.6.14)), (0.6.15)), we have to perform a “space-time” normal form. More
precisely, we shall decompose in the v3,v?5? terms of (0.6.13)) each factor v as

(0.6.16) V= Up + Upe

where v, will have better bounds than v, so that cubic or quartic terms
involving at least one factor vy. will provide remainders. In a second step,
we shall get rid of the remaining nonlinearities a1v,23, asv, 20,2 by a normal

form process. The function v, in (0.6.16)) will be defined as in (0.5.18]), except
that we cut-off around a O(1)-neighborhood of A instead of a O(v/h) one i.e.

we define now

(0.6.17) vy =Opy (v(x +p'(£))v, vae = Opy (1 =) (x +p'(£)))v.

(Actually, the above definition is the correct one when the frequency £ stays
in a compact set. It should be adapted for large &, but we forget this technical
detail in this introduction). Then v,. will satisfy estimates with an O(h) gain,
as we may write it essentially under the form

(0.6.18) vpe = hOPy! (71 (z +p'(€))) (L 40)
where 71 (z) = U=9G) g6 that lvacllze < Ch||L4v||2. Decomposing in the

right hand side of U = U5 + Upe, one has thus
(0.6.19) (Dy — Op)Y (x€ + p(€)))v = halv|*v + hai(vy)?

+ h%agyfﬁ?\ + h?S(v)
where S(v), coming from monomials involving at least one factor vy, satisfies
an estimate of the form
(0.6.20) ISl z2 < Cllollie [ Lol 2

as long as ||v||ze stays bounded. Actually, one has to be more careful when
making the above estimates, since A has a degeneracy when & goes to infinity.
The preceding reasoning works for || staying in a compact set , or equivalently
for x staying in a compact subset of | — 1,1[. The general case is a little bit
more involved, and in particular estimate holds with [|v||ze replaced
by \|U||W£o,oo for some py.

Since making act the operator £ on S makes lose a factor h=! (see the
definition (0.5.12) of £, ), we get that
(0.6.21) RALSW)Ige < Chllolfe 125 ] 12
which will be the kind of estimate we want for remainders. By (0.4.5) with

p = 1, rewritten in terms of the unknown v, we have also

(0.6.22) RIL4([0]*0)] g2 < Chllollfoe | L10]l 2.
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On the other hand, the remaining contributions in the right hand side of
(10.6.20)) would not satisfy such estimates, but may now be eliminated by nor-
mal forms. Actually, take x in C§°(R), equal to one close to zero, and define

2 4

(0.6.23) my(z,&1,...,64) = H (z+p'(&)) H

[\/1+§1 \/1+€2+\/1+£3+\/1+§4 \/1 PG4+ &)?]

This function is well defined, as the term inside the bracket does not vanish
on the support of the cut-off: actually (again forgetting what happens for
large frequencies), on the support of the cut-off, {; = dp(x) + o(1), j = 1,2,
& = —dp(z) +o(1), j = 3,4, so that the term inside the bracket is equal to
—1+ o(1), and thus does not vanish. Consequently, if we define

(0.6.24)  Opy,(ma) (vp, vp, Vpe, Upe) =

(271T)4 /eiz(£1+---+§4)m4(€1, - ,54)@/\(fl)@/\(fg)@\(fg)@\(&) d¢y - déy

one obtains that

( —Op)Y (z€ + /1 +€2) ) [Oph myg)(vp, ... ,QAC)] = v, %)% + remainder

where the remainder, coming from the nonlinearities of the equation, contains
at least one h factor. Defining in the same way some cubic symbol mg, in
order to eliminate the v,3 term in (0.6.19)), one gets that

(0.6.25) (Dy — OpyY (z€ + /1 + £2)) [v — hOpy,(m3) (ua, va, vp)
— h20py,(ma)(uy, - ,upe)] = 1S (v) + halv[*v
for a new S(v) satisfying (0.6.20)).

In other words, we have reduced ourselves to an equation where the right
hand side has the same structure as in 4)) (up to changing the unknown
u to v by (| - modulo a remainder h S (v) that has better time decay.
Using estimates of the form (0.6.21]), (0.6.22)) one thus gets, applying L? energy

inequalities to (0.6.25)) and denoting

3
w = v — hOpp(m3)(vp,va,va) — h20p,(ma)(vn, - - Vpc),

that
¢ 9 dr
(0.6.26)  [[Lyw(t, )|z < [[L4+w(l, )] L2 +/ [l (T, oo 1£40(7, )l 22—

As one may show that ||Liw(t,-)| 12 is equivalent to ||Liv(t,-)| 12, one does

get an estimate of the form (0.6.15]). O
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Remark: As already mentioned, in the proof of Proposition [0.6.3] we ar-
gued as if the frequencies were staying in a compact set. When one makes
the reasoning taking into account what happens also for large frequencies,
one gets a lower bound of the bracket in computed for &; in a conve-
nient neighborhood of +dy(x) by a negative power of (dp(x)). Since for all
3, (do(x)) ~ (&) if (&1,...,&) is in the support of (0.6.23), one may write
(de(z)) ~ 14 maxa(|&1],---,|&4]), and the bounds one gets in general for a
symbol of the form my is

(0.6.27) maz, &1, ) < C(1+maxa(€l, ... 1)) ™

for some Ny. Because of that, one gets bounds of type
(0.6.28) 10py(ma) (v, - .., 0) [y < Cllvlyroce [0l
h

for any s and with pg depending only on Ny. In other words, coming back
to the unknown u, one obtains an estimate similar to (0.6.5). These inequali-
ties (0.6.27)), (0.6.28) explain why one gets in Proposit upper bounds
involving W/*°® norms instead of L ones.

End of proof of Theorem [0.6.1; As for the proof of Theorem [0.5.1] one has
just to bootstrap estimates , showing that if they hold on some time
interval and A, B have been taken large enough and e small enough, then they
still hold with A, B replaced by A/2, B/2. We have seen after the statement of
Proposition that this holds for the first two inequalities . To show
that the last one holds, with B replaced by B/2, one argues as in the proof of
Theorem [0.5.1] Actually, in that proof, we did not really use the special form
of the nonlinearity in (0.5.9) (except the fact that « is real), and the same
arguments hold for an equation like ((0.6.11)). O

0.7. Perturbations of nonzero stationary solution

Our main goal in this book is to study the perturbation of a nonzero sta-
tionary solution of a cubic wave equation in dimension one. In this section,
we mention some results and references on that kind of problems. The first
set of questions one may ask is the orbital stability of stationary solutions.

Let us mention first the result of Henry, Perez and Wreszinski [41] that
will be very relevant for us. Consider U a C? function on an interval [a_, a. ]
satisfying U > 0, U(a—) = U(ay) = 0, U"(ax) > 0. Assume moreover
that there is a smooth strictly increasing function x — H(x) solving the
equation H"(z) = U'(H(x)), such that lim, .1, H(z) = ax and that Ey =
Ir [% + U(H (z))] do < +0c. Define for any function ¢ and any ¢ > 0,

dg(¢) = inf [ [(¢'(x) = H'(z + ¢))* + q(¢(x) — H(z + ¢))’] du.
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One may state the main result of [41] as follows:

Theorem 0.7.1. — There are positive constants r,q,k such that if (t,z) —
¢(t, ) is the solution of
(0.7.1) (07 —02)p+U'(¢) =0

satisfying $(0,-) € HL.(R), 0:¢(0,-),0:(0,-) € L*(R), and

(0.7.2) dy(¢(0,-)) <, /R [at¢(g’x)2+a"’”¢(§’x>2+U(¢(0,w>) dz < Eg+kr®

then ¢ is globally defined and for any t
(0.7.3) da(6(t, ) < 7.

This theorem means that H is orbitally stable, in that sense that an initial
data that is close enough to H gives rise to a solution that remains at any
time close to a translation of H. It applies in particular to U(¢) = i[qﬁz —1]2,
a+ = +1, H(z) = tanh(z/+/2) i.e. it shows the orbital stability of the “kink”,
that is the stationary solution H(x) = tanh(x/v/2) of the ®* model given by
the equation

(0.7.4) (07 —02)p = ¢ — ¢°.
The question of orbital stability has been then widely studied for other
equations. In particular, we refer to Weinstein [86] for orbital stability of

Schrodinger or generalized KdV equations. References to earlier works on
that topic may be found in the reference list of that paper.

Once orbital stability is established for a given equation, the next step is
to study asymptotic stability. For Schrédinger equations, the first results are
due to Buslaev and Perelman [5), [7, [6] in dimension one and to Soffer and
Weinstein [78] in higher dimension. Buslaev and Perelman consider a one
dimensional Schréodinger equation, of the form

(0.7.5) i0r) =~ + F ([0
Under convenient assumptions on F', one may construct soliton solutions of
the equation, that have the form

(0.7.6) e~ Po—itwo 5TV b3 _ i — o)

for constants [y, wq, by, vg and where ¢ is a smooth exponentially decaying
function. The main result of the above references is that if one solves the initial
value problem for (0.7.5)), with initial condition close to the preceding soliton
solution, then the solution may be written when time goes to infinity a sum of
a modified soliton, i.e. a function of the form (0.7.6]) (with different values of
the parameters Sy, ..., vp), of a solution to a linear Schrédinger equation and
of a remainder that converges to zero in L?.
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In the work of Soffer and Weinstein, one introduces a potential in the linear
part of the operator, i.e. one considers an equation of the form

(0.7.7) 0 = —Ap+ [V(x) + M| V]o

in d = 2 or 3 space dimension, and for 1 < m < %. They assume, among

other things, that the operator —A + V(z) has exactly one eigenvalue, that
is moreover strictly negative. They show that for E close to that eigenvalue,
there is a solution of (0.7.7) of the form e~ *F!p(x), with ¥r smooth and
decaying. Then, under some further assumption, they prove that, if one solves
the Cauchy problem starting from an initial data that is close to e01,, for
given Ej close to the eigenvalue, 7y real, then the solution may be written at
any time ¢ as e(t)py) + R(t) where E(t) is real, e(t) is in the unit circle of
C and R(t) goes to zero in a weighted Sobolev space. We refer to [78] for
a precise description of the asymptotics of t — E(t),e(t) when time goes to
infinity.

Following the above references, a lot of results concerning asymptotic stabil-
ity for solutions to nonlinear Schrédinger equations or Gross-Pitaevsky ones
have been obtained. Limiting ourselves to one dimensional problems, and
without trying to give an exhaustive list of references, one may cite Buslaev
and Sulem [8], Bethuel, Gravejat and Smets [4], Gravejat and Smets [36],
Germain, Pusateri and Rousset [35], Cuccagna and Pelinovski [16], Cuccagna
and Jenkins [15], Gang and Sigal [25), 26, [27], Cuccagna, Georgiev and Vis-
ciglia [14]. Still in one space dimension, analogous results have been ob-
tained for (generalized) KdV equations, by Pego and Weinstein [73], Germain,
Pusateri and Rousset [34], Martel and Merle [67, 68, [69] and for Benjamin-
Ono equation by Kenig and Martel [48]. Let us point out that for Schrodinger
or gKdV equations, the perturbation of the initial data induces a non zero
translation speed on the stationary solution, so that the perturbed solution is
the sum of a progressive wave and of a dispersive part. This will be in contrast
with the results we shall obtain in this book, where the bound state that is
perturbed will remain stationary.

Let us discuss now some results more closely related to our work, concerning
nonlinear wave equations. A main breakthrough has been made by Soffer and
Weinstein who in [79] consider an equation similar to , but where the
Schrodinger operator is replaced by the wave (or Klein-Gordon) one in three
space dimension, namely

(0.7.8) 0o =(A=V(x)—m*)¢+ A"
where A is some real constant, m > 0 and V is a smooth decaying potential.
One assumes among other things that the —A +V +m? has [m?, +o0] as con-

tinuous spectrum and that there is a unique positive eigenvalue 0 < Q2 < m?.
One denotes by ¢ a normalized eigenfunction associated to that eigenvalue,
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so that for any R,0 in R, (¢,2) — Rcos(Qt + )¢(x) is a solution to equa-
tion (0.7.8) when A = 0. The main result of [79] asserts that if one solves
@ with small initial data in weighted Sobolev spaces of smooth enough
and decaying enough functions, the solution at time ¢t may be written under
the form

(0.7.9) o(t,x) = R(t) cos(Qxt + 0(t))p(x) + n(t, x)

where R(t) = O(|t|_i) and ||n(t, )]s = O(\t\_%) when ¢ goes to £oo. This
result holds under a special non resonance condition, the Fermi Golden Rule,
that we shall further discuss below in the framework of our problem.

The above breakthrough has been at the origin of many other works. Let us
mention in particular Bambusi and Cuccagna [3] who generalized the result of
[80] to a wider framework, namely the case when the operator —A + V(z) 4+
m? has several eigenvalues instead of just one. Closer to our main result in
this book, let us mention the work where Cuccagna [13] studies asymptotic
stability of a kink solution in three space dimension. More precisely, one
considers the solution H of as a solution independent of two of the three
space variables of the equation (02 — A)¢ = ¢ — ¢* on R®. The main result of
[13] asserts that if one starts from initial data that are a small perturbation of
(H,0) by a smooth compactly supported function on R?, then the solution of

1
the evolution equation may be written as H + ¢(t, ) where ¢(t,-) is O(|t|”2)
in L°°. The proof uses the fact that in three space dimension, one has much
better dispersive decay than on the real line.

0.8. The kink problem. I

The main goal of this book is to study long time dispersion for small per-
turbations of the “kink” H(x) = tanh(x/v/2) that is a stationary solution of
equation ((0.7.4]) that we recall below

(0F — 0o =6 — 6",
We have seen in the preceding section (see Theorem [0.7.1]) that H is orbitally

stable, and one wants to study its asymptotic stability. In order to do so, one
writes ¢ under the form

(0.8.1) o(t,x) = H(z) + o(tvV/2,2V?2)

and we aim at describing the asymptotics of ¢, in particular its dispersive
properties, when at initial time ¢ is small in a convenient weighted Sobolev
space. By Theorem [0.7.1] we know that ¢ is globally defined. It satisfies by
direct computation the equation

L 3

(0.8.2) (D} = (D} +1+2V(2))p = s(2)¢” + 5
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where

3 o (X 3 T
(0.8.3) Vix) = ~1 cosh (5), k(x) = §tanh 5
The fact that the linear part of equation (0.8.2) contains a non zero potential
has two consequences: first, as seen in the preceding section, the operator
D? +1+ 2V (z) may have bound states (and it has for the potential given by
(0.8.3))). Second, even in the absence of bound states, that operator does not
have nice commutation properties with the operator L, that we used in order
to get dispersion in sections [0-6]

Let us first discuss some results that are known concerning equations of the
form (0.8.2) either in the case of potentials without bound states, or for equa-
tions of that form with V' = 0 but where the nonlinearities have coeflicients
that are non constant functions of x, as in the right hand side of . Such
results have been proved by Kopylova [53] for linear Klein-Gordon equations
in a moving frame and, in the nonlinear case, by Lindblad and Soffer [66],
Lindblad, Luhrmann and Soffer [61], [60], Lindblad, Luhrmann, Schlag and
Soffer [59], Sterbenz [81]. Very recently, Germain and Pusateri [33] obtained
the most general result in that framework. They consider a model version of

(10.8.2) of the form

(0.8.4) (07 — 024+ V(z) + m?)p = a(z)p?

where a(x) is a function similar to £ in the right hand side of (0.8.2)), i.e. a
smooth function that has finite limits at +0co and whose derivative is rapidly

decaying. The potential V is assumed to be Schwartz and such that —92 + V
has no bound state. One of the results of [33] may be stated as follows

Theorem 0.8.1. — Let V' be a generic potential without bound state, m > 0.
There is €9 > 0 such that for any € €]0, €], the equation has for any
(w0, ¢1) satisfying

H(\/mwo,sm)“m ||t (V=02 +V + 10, ‘Pl)Hgl =€

a unique global solution corresponding to the initial data p|i—o = po, Orpli=0 =
p1. Moreover, the dispersive estimate

(0.8.5) H(\/—a§+v+1¢0,¢1)HLm < Ce(1+1t)2

holds and for some small § > 0
(0.8.6) lo(t, Mlas + 10ep(ts )l < Ce(1 + [8])°.

Finally, let us mention that for nonlinearities with coefficients that are
rapidly enough decaying in x, Lindblad, Luhrmann and Soffer [60] (in the
case V = 0) and Lindblad, Luhrmann, Schlag and Soffer [59] (for generic
potentials) could show that a dispersive bound like does not hold in
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general, and has to be replaced by the product of the right hand side with a
logarithmic loss.

Remark: e The assumption that V is generic is explained in Chapter [I]
below. The result of [33] is actually more general than Theorem [0.8.]]
above. It also applies to non generic potentials, if one makes in addition
evenness/oddness assumptions. Let us also mention that the question of
asymptotic stability estimates on a compact domain in space, when the
linearized equation on the stationary solution has no bound state, has been
adressed by Kowalczyk, Martel, Munioz and Van Den Bosch [57] for some
models of semilinear wave equations.

Let us explain the new difficulties one has to take into account to prove a
result of the form above in comparison with the case V = 0. Clearly, if one
wanted to apply the operator L ,, = = + t#jﬁ)% (or a “true” Klainerman
vector field like t0, + xd;) to equation , its commutator with the po-
tential V' would generate a new term with coefficients growing like ¢, which
makes the method inapplicable. In order to circumvent such a difficulty, two
approaches are possible. The one implemented by Germain and Pusateri re-
lies on the use of the “modified Fourier transform”, which is a version of the
Fourier transform well adapted to —A + V instead of being tailored to —A.
They introduce then the profile g of the solution by

(0.8.7) g(t,z) = etV OtV m? ((% —i\/ =02+ V + m2)d>

and its modified Fourier transform §(,&). The analogue of what does work in
the case V' = 0 would be to get estimates of ||0¢g(¢,£)|| 2 (which is related to
| L+ m®lr2 when V' = 0). It turns out that, in order to get the most general
statement of their paper, Germain and Pusateri have to introduce a bigger
space than L? in which 0¢g has to be estimated, allowing for some degeneracy
close to a special frequency. They have then to combine estimates in that
space with normal forms constructed from the modified Fourier transform.

The approach we use in this book is the one of wave operators. Let us just
say here that, when V' is a potential in S(R), without bound states, one may
construct a bounded operator W on L?, such that WiW, = Id, W, W} = Id
and Wi (—A + V)W, = —A. Applying W} to (0.8.4)) one thus gets

(07 — 02+ m*) Wi = Wila(z)e?].
If w = W7, one is thus reduced to an equation of the form
(0.8.8) (07 — 02 + m*)w = Wila(z)(Wiw)?]

i.e. to an equation for which the linear part has again constant coefficients,
and thus has nice commutation properties relatively to t0, + x0; or to Ly ,,.
Of course, the drawback is that the right hand side of (0.8.8) is no longer a
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local nonlinearity, but involves the operators W, , W7. In the framework we
shall be interested in, namely odd initial conditions and odd coefficient a(x), it
turns out that W, , WT may be expressed from pseudo-differential operators
b(xz, D,), with a symbol b(z,&) such that %(1‘,5) is rapidly decaying when
|z| tends to infinity. We shall explain in more detail in Chapter [1| how we
treat an equation of the form . Let us just say now that if we had a
cubic nonlinearity in the right hand side, one could use directly vector fields
methods on w. For a quadratic nonlinearity, one has to make use first of
normal forms in order to reduce quadratic nonlinearities to cubic ones. The
difference with Lemma is that, because of the presence of W, , Wi, a(x)
in the right hand side of ({0.8.8)), one has to consider quadratic corrections of
the form , but with a symbol m(z,&;,&2) that depends also on x. This
introduces new commutators, involving quadratic operators associated to the
symbol %—?(az, &1,&2). Though, as the latter is rapidly decaying in x, and since
we limit ourselves to odd solutions, such terms form remainders that are not
fully negligible, but that may be treated more easily than in the more general
case considered by Germain and Pusateri [33] or Lindblad, Luhrmann and
Soffer [60].

0.9. The kink problem II. Coupling with the bound state

In the preceding section, we discussed an equation of the form with
a potential V' that has no bound state. In this section, we go back to the
kink problem , where the potential V' given by does have bound
states, so that the preceding discussion does not apply.

Our starting point has been the paper [56] of Kowalczyk, Martel and Mufioz,
where the authors study the asymptotics of solutions of when one takes
as an initial condition an odd perturbation of (H,0) that is small enough in
the energy norm. They prove that the perturbation of the solution (p, d:p)
may be decomposed under the form

(0.9.1) (p(t, ), Orp(t, ) = (ua(t, @), ua(t, @) + (21(2), z2(2))Y (2)

where Y is in S(R) and is a normalized odd eigenfunction of —302 + V(z),
zj(t) are scalar functions of time and (u;(¢,z),ua(t,z)) is the dispersive part
of the solution. The main result of [56] states that the functions t — z;(t)
decay in time in the sense that

oo 4 4
/_OO (|z1(®)]" + [22(2)[") dt < 400

and that the local energy of (u1,usy) satisfies

+o00
/ / ((Opur)? +ui +u3) (¢, z)e~ 0l dtda < 400.
—oo JR
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At the light of the discussion previously given in the case of small perturbations
of the zero solution of nonlinear Klein-Gordon equations, or for with
a potential that has no bound state, the above inequalities raise the following
questions: making eventually stronger assumptions on the smoothness/decay
of the initial perturbation, could one get an explicit decay rate for the pre-
ceding quantities, instead of just integral inequalities? Moreover, could one
obtain decay estimates for |lu;(t,-)|/z~ instead of just local in space decay?

A more long term objective might be to obtain for odd perturbations of the
kink solution of a description as precise as the one that holds when
V' =0 or when V is a potential without bound state. We are far from being
able to achieve that in this paper, where as a first step we aim at describing the
perturbed solution up to time €4, if € is the small size of the smooth decaying
perturbation of the kink at initial time. Recall that if we look for solutions
of (0.7.4) under the form (0.8.1), we get that the perturbation ¢ satisfies
ith notation (0.8.3). We already mentioned that the Schrodinger
operator —02 + 2V (z) has discrete spectrum: it has two negative eigenvalues
—1 and —% and absolutely continuous spectrum [0, +oo[. Eigenvalue —1 will
not be of interest to us as it is associated to an even eigenfunction, while we
solve for odd initial data. Consequently, restricting ourselves to odd
solutions, one may decompose the solution of as ¢ = Pyep + (p, Y)Y
where P, is the projector on the absolutely continuous spectrum [0, +o00[ and
Y is an (odd) normalized eigenfunction associated to eigenvalue —%. Setting
a(t) = (Y, ), one may deduce from (0.8.2)) that (a, P,cy) satisfies a coupled
system of ODE/PDE (see (L.1.9) in Chapter [I]).

Our main result asserts the following: Let ¢ > 0 be given and consider
(0.8.2) with initial data ¢|i=1 = €po, Orpli=1 = ep1 with (¢o, 1) satisfying
for some large enough s

(0.9.2) leollFresr + lpnllEs + llzwollzn + llenlze < 1.

Then, if € < €y is small enough, the decomposition ¢(¢,-) = Pacp(t, ) + a(t)Y
of the solution of (0.8.2) satisfies

ja(t)] + [a' ()] = O(e(1 + te?)~7)

|Paciplt, Mo = O3 (2VD))
4+c‘

(0.9.3)

where 6" €0, %[, as long as t < e~ Let us mention that we limit our
study to positive times (that does not reduce generality) and that, in order to
simplify some notation, we take the Cauchy data at t = 1 instead of ¢t = 0.
Moreover, the statements we get in Theorem below give more precise
information that . We just stress here the fact that provides the
information we are looking for, namely an explicit decay rate for a and Py,

up to time e~4*t¢,
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We notice that the dispersive estimate obtained for ||Pacpl||r~ is pretty

similar to the bound in et~ % that holds for small solutions of equations (0,2 —
/ 1

92 +1)u = N(u). Here, when t < e *+¢ we get that || Pacp| p = O(e29t72),
i.e. an estimate in c(e)t_%, with ¢(e) going to zero with zero. Of course, if ¢

goes close to €74, the small factor in front of #73 in the second estimate (10.9.3)
gets closer and closer to one, and this explains why our result is limited to
times that are O(e~47¢). We shall comment more on that below.

Let us remark also that for dispersive estimates of the form , there is a
“trivial” regime, corresponding to ¢t < ce 2. For such times, the ODE satisfied
by a(t), from which we shall deduce the first bound (0.9.3), is in a small time
regime, before any singularity could form. On the other hand, to reach a
time of size e 4*0, one has to use the structure of that ODE, namely exploit
the Fermi Golden Rule that we shall discuss in Chapter [I] below, in order to
exclude blowing up in finite time, and prove the decay estimate .

Let us comment more on the limitation to times ¢t = O(e~**?) which con-
trasts with the fact that, when the potential has no bound state, one may
obtain dispersive estimates up to infinity. The new difficulty, when bound
states are present, comes from the fact that in (0.9.3), a(t),da’(t) have a de-

cay in , which is larger than the rate in % that holds for dispersive

14-te2 3
bounds(in th)e absence of eigenvalues. This has consequences on the estimates
satisfied by the dispersive part of the solution P,.¢(t,-). Actually, applying
P, to equation , one will get an equations that, at first glance, might
seem pretty similar to , since on the range of P, —0% + 2V will have
no bound state. Though, a major difference appears in the right hand side:
if, for instance, one plugs in the quadratic term of the decomposition
©(t,+) = Pacp(t, ) + a(t)Y, one might get a source term

(0.9.4) a(t)? Pacr(x)Y?]

where a(t) has only a O(%) decay for ¢ > ¢~2 (ant not a ﬁ bound). This

has dramatic consequences on the solution to the equation itself. Actually, the
solution P,.p will have to encompass the solution of the linear equation

(D} — (D2 41+ 2V(2)))w = a(t)* Pac[r(z)Y?]

with zero initial data. We shall solve this equation, but will be able to obtain
1 /

for its solution only a bound in t~2(e2y/t)? for t < e4*% and some ¢’ > 0.

When doing so, we are not able to obtain O(t_%) bounds for w along two lines

7= :t\/g when t > e~4. Actually, one might expect a logarithmic loss along

these two lines, similar to the ones in the work of Lindblad, Luhrmann and
Soffer [60] and Lindblad, Luhrmann, Schlag and Soffer [59].



0.9. THE KINK PROBLEM II. COUPLING WITH THE BOUND STATE 39

Let us also stress on the fact that, besides , other new terms appear
in comparison to the case of potentials without bound states. For instance, a
contribution like Py.[k(z)(Pacp)a(t)Y] needs also a specific treatment, as it is
not amenable to standard normal forms treatment. We describe that in more

detail in section [1.7] of Chapter

To conclude this introduction, let us point out the results of Kopylova and
Komech [54), [55] concerning asymptotic stability of a (moving) kink for a
modified version of . In their model, the Hamiltonian of the equation is
tuned in such a way that the projection of equation on the absolutely
continuous spectrum has coefficients in the nonlinearity that decay when = goes
to infinity (instead of converging to some constant) This allows the authors to
obtain a description of the dispersive behavior of the corresponding solution
for any time.

Finally, let us refer to the recent paper of Chen, Liu and Lu [10] concerning
asymptotic stability of kinks for sine-Gordon equations. Using the integrability
of that equation, they may prove soliton resolution for generic data and show
the full asymptotic stability of kinks under space decaying perturbations (see
Corollary 1.5 of their paper). In particular, the difference between the solution
and the moving kink is shown to decompose, when time goes to infinity, as
the sum of a O(t_%) contribution that involves a logarithmic phase correction
and of a more decaying remainder.






CHAPTER 1

THE KINK PROBLEM

1.1. Statement of the main result

Consider ¢ : R x R — R a global solution to the nonlinear wave equation

(1.1.1) (0F —2)p =0 — ¢
The function

X
(1.1.2) H(z) = tanh(ﬁ)

is a stationary solution of (L.1.1]), and we are interested in describing the
dispersive behaviour in large time of solutions to corresponding to
initial data that are small, smooth, odd and decaying perturbations of the
state H. It is known that this state is orbitally stable in the energy space by
Henry, Perez and Wreszinski [41], and for odd perturbations in that space,
asymptotic stability with space exponential weight is proved by Kowalczyk,
Martel and Munoz [56]. This result describes the dispersive behaviour of the
perturbation on compact space domains, but does not give insight into its
behaviour in the whole space time. Our goal is to obtain information when
(t,z) describes I. x R, where I, is a time interval of length O(e~#*0), € being
the size of the initial data in a convenient space of smooth decaying functions.
We shall look for solutions to (|1.1.1) under the form

(1.1.3) o(t,z) = H(z) + ¢(tV2,2V2).

We get for ¢ the equation
(1.1.4) (D} = (DF 4142V (2)p = w(2)¢” + 5o
where D; = %%, D, = %8% and

(1.1.5) Vx) = —z cosh_2<§>, k(z) = §tanh(g).
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The operator —92 + 2V has [0, +-00[ as its continuous spectrum and has two
eigenvalues —1 and —%. The first one is associated to an even eigenfunction,
and the second one to the odd normalized eigenfunction

(1.1.6) Y(z) = \f tanh(g) cosh ™! (g)

(see Nikiforov and Uvarov [72] and Kowalczyk, Martel and Mutioz [56]).

We denote by P,. the spectral projector on the continuous spectrum, re-
stricted to odd functions. The spectral projector on the eigenspace associated
to the eigenvalue —3 is ¢ — (0, Y)Y so that

(1.1.7) Pacp=¢— (o, Y)Y
where (-, -) denotes the L? scalar product. If ¢ solves (1.1.4), we set
(1.1.8) aft) = (¢, Y)

so that (1.1.4) may be written

(Dg - %)a(t) - <Y, k(x) (a(t)Y + Paey)” + %(a(t)Y + Pacso)?’}
(1.1.9) (D} — (D24 1+2V(2))) Pacp
= Pacls(2) (lt)Y + Pucg)? + 3 ()Y + Pacp)”].
Our main result asserts that, up to a time of order e, the dispersive part

P of (1.1.9) has a time decay in uniform norm of magnitude t_%, and that

the function a(t) in (|1.1.8) has some oscillatory behaviour, with decay in 3.
More precisely, we have:

Theorem 1.1.1. — There is pg € N and for any p > pg, any ¢ > 0, any
0’ €]o, %[, any large enough N in N, any large enough s in N, there are €y in
10,1[, C > 0, such that for any couple (g, p1) of real valued odd functions in
HsTY(R) x H*(R) satisfying
(1.1.10) leollFerr + lloalizrs + lzwollFn + lzerll7e < 1,
the global solution ¢ of
1

(D = (D2 + 142V (@) = k(@) + 5¢°
(1.1.11) Plie1 = €po
Orpli=1 = ep1
satisfies when € €]0, eo[ the following bounds for any t € [1,e 4+¢]:

The oscillatory part a of ¢ given by may be written

(1.1.12) at) = 5 g, (t) — e 5 g_(#)
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where
(1.1.13) 92 (D] < Ce(L+1€)72, 992 (8)] < Cet ™2 (14 1e%) 2.

The dispersive part Pyep(t,-) satisfies
| Pacip(t, oo < C73 (VD)
(1.1.14) 142) 2N Paccp(t, ) lwre < C3 (V)
142) 72N PucDisp(t, w100 < CE3(EVD)
where [ llwoee = [(Da)?t] oo

Remarks: e The first estimate ([1.1.14]) shows that, up to time essentially

equal to e 4, the dispersive part of the solution decays like t_%, which is the
behaviour of small global solutions to nonlinear Klein-Gordon equations (see
18], 19, 63, [82]). Nevertheless, in that case, the upper bound is in O(et_%),
while in 1) we have a degeneracy of the factor multiplying =3 when ¢
goes to e =,

e We construct in the proof some approximate solutions that are o(f%)
for times ¢t < e *T¢ and € small. To go past that time seems to require extra
arguments — like devising more accurate approximate solutions — in order to
get a useful pointwise control of P, for t > ¢4,

e Our estimates are consistent with the ones of Kowalczyk, Martel and
Mutioz [56] in time O(e~%). Actually, it follows from (1.1.12)), (1.1.13) that if
p>2

674+c

/ ()P dt < CeP=?
1

J

for large enough N. These estimates are in accordance with those proved in
[56] (when p = 4 for the first one) (see Theorem 1.2 in that reference).

674+c

(1) ™2V Pacsolt, ) s + 116) 2N DyPacsp(t, ) 3] i < Cet”

1.2. Reduced system

We shall conjugate the second equation by the wave operator W
associated to —%8% +V(x). We discuss in Appendix [A8.1|below the properties
of such an operator. According to Proposition[A8.1.1|of that Appendix, it may
be written, when acting on odd functions, under the form

(1.2.1) W+ = b(x, Dx) © C(DCL‘)’
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where b(x, ) is a symbol of order zero satisfying estimates (A8.1.8) and ¢(&) =
ei9(5)1€>0 + e*w(é)l&g for some odd smooth real valued function 6. Moreover,
if we set A = —302 + V(z), Ag = —102, one has by (A8.1.6), (A8.1.7), for
any Borel function m on R,

m(A) P = Wim(Ag)W75, m(Ag) = Wim(A)W,
WJer,i == Pac, W:‘;W‘i’ == IdL2

so that applying W3 on the second equation (1.1.9)), we get

(D7 = (D3 + 1)) [W; Pactp) = W7 [K(2)(a(t)Y + Pactp)?]

(1.2.2)

1.2.3
(1:23) +WE [%(a(t)Y + Pacp)?].

Let us define
(1.2.4) w = b(x, Dy)* Pacp.

Since P,cp is real valued, and since because of the symmetry proper-

ties (A8.1.9) of b(z,§), b(z,D;) and b(z, D;)* preserve the space of real
(resp. even, resp. odd) functions, w is still a real valued odd function. As

¢(Dy) o e(D,)* = Id,
Pacp = W WZ P = b(x, Dy)w
c(Dy)WiPacp =w,
so that making act ¢(D,) on we see that w solves
(D? — (D2 +1))w = bz, Dy)* [w(z) (a()Y + b(z, Dy)w)?]

(1.2.5)

1.2.6
(126) 2@ D) (a(t)Y + b Do)’

We shall study from now on the system given by the first equation ((1.1.9)) and
(1.2.6). We define
(1.2.7) wo = b(x, Dy)* Pacpo, w1 = b(x, Dy)* Pacpr1.

Since by (1.2.1), (1.2.2), Pic = b(x,D;) o b(z, Dg)*, and since b(z, Dy),
[,b(x, D;)] are bounded on Sobolev spaces, we get from ((1.1.10) that

(1.2.8) wolZess + o [ + lawollZ + lwwn |22 < Co
for some constant Cy. Denote by p(D,) the operator

(1.2.9) p(Dz) = +/1+ D3

and introduce complex values odd unknowns
(1.2.10) uy = (D + p(Dy))w, u— = (Dy — p(Dy))w = —1iy.
If I = (i1,...,%p) is an element of {—, +}?, we shall set

(1211) ury = (uila"'7uip)
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and we denote also uy j = u;;, so that equivalently

(1.2.12) ur = (ur1,...,urp).
Let us write ([1.2.6) under the equivalent form

2 3
(1.2.13) (D¢ — p(Dg))uyg = ZFJZ[a;qu,u,] + Z Ff’[a; Ug, U_]
j=0 j=0
where F2 (resp. F3) will be made of terms that are O(t~1) (resp. O(f%)) i

Lo if the bounds (| m m hold true, and are given by the following:
e Contribution depending only on a and not on uy are:

(1.2.14) Fila;ur,u-] = Fgla] = a(t)*b(x, Dy)*[+(z)Y?]
2. Fog[a;u+,u,] = Fg’[a] — %a(t)?’b(x,Dm)*[Y?)].

e Contributions that are homogeneous of degree j > 0 in (u4,u_) are given
by the followmg quantities, where if [I| = (i1,...,4p), we set |I| = p and

€r —21 p:

F]-Q[a;u+, t)>7 Z IUI j=1,2
I|=j
(1.2.15) 1=
F]?’[a;qu, _(1 3 - Z IU'I j:1a2737
[|=j

with linear terms in (u4,u_)

Ff’l[u]] = erb(x, Dy)* [Y(x)/i(a;)b(a:, Dx)p(Dx)*luI]
(1.2.16) \ 3 ) , B
Fl,[[uf] = Zelb(xv DI) [Y(x) b(m, Dw)p(DI) UI]:
quadratic terms in (uy,u_)
2

F3 luf) = iﬁfb(%Da;)* [5(2) [] b(. Da)p(D2) ur ]
(1.2.17) f:;
Fy glur] = gﬁfb(% Dy)* [V (z) [] b(x, Da)p(Dz) ur ],
=1

and a cubic term in (u4,u_)

(1.2.18) F§rlug] = er (z,Dy) p(Dy) tug,].

||’:]w

Notice that since k and Y are odd, as well as uy, and b(x, D,) preserves odd
functions, sz, Fj‘?’ are odd functions.
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Let us write now the first equation in (1.1.9) in terms of a,u,u_.

define
(1.2.19) ay(t) = (Dt + ‘f’)a a_(t) = (Dt _ \f)a .
so that a = ?(cu — a_) and we rewrite the first equation 1 as
V3 2 _;
(Dt - 7)‘” = (ay —a- )7 @fuy, u]
(1.2.20) =0

Z: a4 —a— [U+, ]

where the terms independent of u4 are

®, — %<Y ny2>

(1.2.21) A
3
Ty = Y,Y?
0= LYY
and for j > 1
lusu] =Y @ fus]
I
(1.2.22) 1=
jlug,u Z L' rlug]
[1|=j

with linear expressions

(1.2.23) o] = ?61<Y’ Y ib(z, Da)p(Dy) " ur)
il D),

quadratic expressions

1 2
Dy r[us] = Z61~<Y, K H b(x,Dm)p(Dz)_luM>

(1.2.24) =
V3 1
Ty rur] = ?61<Y, v [ bz, D2)p(Ds) u17g>,
=1
and cubic quantities
1 3
(1225) FgJ[U,[] E61<Y H b([]}, Dx)p(Dz)*luI’g>.
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We shall study from now on system ((1.2.13)), (1.2.20) with initial data at
t = 1. According to (1.2.10)), (1.2.7), (1.2.8), (1.2.19) and the fact that by
(1.1.8), a(1) = (epo, Y), 0ra(l) = (ep1,Y), with o, ¢1 satisfying (1.1.10)), we

may assume

(1.2.26) u+\t:1 = €U+ 0, a+]t:1 = €a4+0
where u ¢ is a complex valued odd function in H*(R, C) satisfying
2 2 2
Ut 0l rs + lzusoll72 < C
(1.2.27) [t 0ll7rs + lzusollze 0
lay0l < Cq

for some fixed constant Cj.

In the following sections, we shall describe the main steps of the method of
proof of our main result.

1.3. Step 1: Writing of the system from multilinear operators

In section we have reduced (1.1.9) to the system made of equations
(1.2.13)) and ([1.2.20). One may rewrite (|1.2.13)) on a more synthetic way as

(Di = p(D2))uy = Fgla] + Fgla]
+ Y Op(mor)[u]

2<|1|<3

(1.3.1) +a(t) Y Op(m])|ur]

1<|1]<2

+a(t)* Y Op(mj p)[ur]
1I]=1

with the following notation: The term FZ[a] (resp. F§[a]) is the quadratic
(resp. cubic) contribution in a obtained setting w = 0 in the right hand side
of (1.2.13). Tt has structure a(t)?Zy (resp. a(t)3Z3) for some S(R)-function Zy
(resp. Z3). The other terms in the right hand side of are expressed in

terms of multilinear operators Op(m)(u1,...,u,), defined if m(x,&,...,§,) is
a smooth function satisfying convenient estimates, as
(1.3.2)

) p
Op(m)(ula cee 7up) = (2711_)1, /ew(&-l-'“—i—fp)m(x, 517 te 7‘5}7) H ’&J(Ej) dfl o dgp
j=1

In the right hand side of , we denote by I p-tuples I = (iy,...,1p)
where iy = & and set |I| = p. Then u; stands for a p-tuple u; = (u,, ..., u;,)
whose components are equal to us or u_ defined in . The symbols
mo,1, My 1, My are functions of (z,£1,...,&,) with p = [I|. We do not write



48 CHAPTER 1. THE KINK PROBLEM

explicitly in this presentation of the proof the estimates that are assumed on
these functions and their derivatives: we refer to Definition 2.1.1] below and to
Appendix [A9| for the precise description of the classes of symbols we consider.
Let us just say that symbols mg ; are bounded in x, while their 0,-derivatives
are rapidly decaying in x. This comes from the fact that the symbol b(x, &)
and the functions k,Y in (|1.2.6]) satisfy such properties. On the other hand,
symbols m’1 I m’2, ; (and more generally any symbol that we shall denote as m/
in what follows) decay rapidly in x even without taking derivatives. It turns
out that operators with decaying symbol in x acting on functions we shall
introduce below will give quantities with a better time decay than operators
associated to non decaying symbols.

1.4. Step 2: First quadratic normal form

The goal of the whole paper is to obtain energy estimates for the solution

ut to (1.2.13) and a4 to (1.2.20)).

As we have seen in section [0.6] the first thing to do in order to get Sobolev
estimates for an equation like is to eliminate the quadratic contri-
butions 77—, Op(mo,r)[ur]. We do that through a “time normal form” a la
Shatah [76] and Simon-Taflin [77] (see also for one dimensional Klein-Gordon
equations Moriyama, Tonegawa and Tsutsumi [71], Moriyama [70], Hayashi
and Naumkin [39] and the very recent works of Germain and Pusateri [33], of
Lindblad, Luhrmann and Soffer [60] and of Lindblad, Luhrmann, Schlag and
Soffer [59]). Actually, we construct new symbols (1,r)|7j=2 such that

(1.4.1)

(Dy = p(D2)) [y = 7 Op(ri,)[ur]| = Fila] + Fila]
|7]=2

+ Y Op(mo,)[ug]

3<|1|<4
+ Z Op(mg,;)[u1]

7]=2

3
+>aty > Op(m)p)[ui]

Jj=1 1<||<4—5

where in the right hand side, we have eliminated the quadratic contributions
Op(mo,r)[ur], but made appear new quadratic terms Op(mg ;)[us] given in
terms of new symbols m{)’ ; that decay rapidly when x goes to infinity. These
corrections come from the fact that, at the difference with a usual normal form
method where one eliminates quadratic expressions like ([1.3.2]) with p = 2
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and a symbol m(&1,&2) independent of z, we have here to cope with symbols
m(x,&1,&2). This x dependence makes appear somme commutator, given es-
sentially in terms of Op(%—?(w,&,ﬁg)), with a symbol rapidly decaying in x.
These commutators are the new quadratic terms Op(mfl 7)ur] in the right
hand side of . As already mentioned, such expressions will have better
time decay estimates than the quadratic expressions given by non space de-
caying symbols that we have eliminated, and are actually better than most
remaining terms in the right hand side of . They are not completely
negligible, but will be treated only at the end of the reasoning.

1.5. Step 3: Approximate solution

Our general strategy is to define from the solution uy of a new
unknown 4,4 that would satisfy similar estimates as those of the bootstrap
(0.5.8)) of the introduction. More precisely, we aim at constructing a new
unknown 7, for which we could get, for ¢t € [1,e 4] with ¢ > 0 given,
bounds of the following form

(15.1) s (¢, )l ze = O(et?)

(15.2) |Liin(t, )2 = O((EVD)th)
) (VD)

(1.5.3) s (¢, lwee = O(T)

where § > 0 is small, §/ < 6 < % with 6’ close to %, s> p> 1, and where we
denoted ||w||we.ce = ||{(Dz)’wl||pse. The first estimate (1.5.1)) is the one that
would follow by energy inequality for the solution of (|0.5.1f), assuming that
holds (since, for t < e~4+¢, implies a bound in c(e)t_%, with
c(€) going to zero when € goes to zero). In the same way, assuming and
assuming that % solves an equation of the form with p = 1, one could

bootstrap a bound of the form ([1.5.2)). Finally, an estimate of the form (1.5.3)
(1.5.2

will have to be deduced from (|1.5.2)) constructing from the PDE solved by @
an ODE with remainder term controlled from .

Of course, the right hand side of is far from having the nice structure
of the one of , and this is why we shall have to modify the unknown
u4 in order to eliminate all bad terms in the right hand side of . In
Chapterof the paper we shall get rid of the contributions F[a], Fj[a]. These
functions are bounded as well as their space derivatives by t_1<x>7N for any
N. Clearly, if we make act L, on them and compute the L? norm, we shall
get an O(1) quantity. If we were integrating such a bound, we would deduce
that ||Lyui(t,-)||2 = O(t), a much worse estimate than the one we
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want. We shall thus remove from uy the solution of the linear equation with
force terms Fg[a] + F§[a] i.e. we shall solve
(D¢ = p(Da))U = Fila] + Fyla]

1.5.4
(1.5.4) Uy = 0

and then make the difference between (1.4.1]) and ([1.5.4)) in order to eliminate
Fgla], F§[a] from the right hand side of the new equation obtained in that
way. Actually, one needs to take also into account at this stage bilinear terms
in (a,u) in (1.4.1). We thus construct in Proposition an approximate

solution uipp of

(Dt = p(Da) Juf? = Fg () + F (a™P)

(1.5.5) +a®? >~ Op(m} )(u7") + remainder
7]=1

WPl =0

where a®PP is some approximation of the function a(t) solving the first equation
([T.1.9).

Let us explain What are the bounds satisfied by the approximate solution
uipp of equation (|1.5.5)) that we obtain in Proposition |3.1.2| using the results of
Appendix [A10] m We decompose uPP = /PP PP The term /5" satisfies
the kind of estimates we aim at proving, namely (| - - and actually
shghtly better ones) for times t = O(¢~**¢). On the other hand inequalities
) hold for u”°"" (and even actually slightly better ones), but

” pp does not verify (1.5.2). On the other hand, Liu"%"® obeys good
estlmates in L norms, of the form

(1.5.6) | L4 u" PP |wree = O(log(1 + t) log(1 + €°t))

that will allow us to estimate conveniently nonlinear terms containing u”%"".

Let us stress that the limitation of our main result to times O(e~%) comes
from the degeneracy of bound ( - ) for L« PP when ¢ becomes larger than

. We do not claim that, in such a regime, an estimate of the form
would be optimal. But we remark that in the construction of u’ PP made from
the results of Appendix [A10], the main contribution comes from quantities
that have pretty explicit bounds see Proposition 4] and in particular
bound (A10.1.39) with w = 1 (that gives the main contrlbutron to «/%*P) and
(A10.1.41)) with w = 1 (that gives the main contribution to L u/%""). If we ex-
trapolate estimate for t > ¢4 (which is of course not legitimate, as
we prove it only for times O(e~?)), we see that outside a conical neighborhood

of the two lines = = j:t[ an estimate of [u/4*P (¢, )| in O(2t2) would hold.
On the other hand, along these two lines, a degeneracy happens, and we do
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not expect to be able to prove that, for t > ¢4, |u

1P (¢ :I:tf ’\/f remains

small (or even bounded). Because of that, we do not hope to push estimates
of the form - ) for such times, without taking into account first
some extra, correctlons In particular, going back to , we do not expect

a Ot~ 2) bound for |P,cp(t, z)| along these lines.
Notice that such a phenomenon cannot be detected using weighted space
estimates an in Kowalczyk, Martel and Munoz [56]: actually, along the lines

r =+t %, a space decaying weight is also time decaying and kills bad bounds

of u/%"? along these lines. We shall comment more extensively on that issue

in Sectlon [L10] below.

In addition to the proof of estimates of the form (|1.5.1])-(1.5.3)), we need, in
order to obtain ((0.9.3)), to study the solution of the first equation (1.1.9). We
do that in section [3.2] of Chapter [3] Setting

a(t) = (Dt + ?)a a_(t) = (Dt - ‘f)a — _a,,

the first equation (|1.1.9) may be rewritten as

V3 2 »
(Dt - 7)G+ = (ar —a ) 7P fuy,u]
(1.5.7) N
Z CL+ —a- ['LL+, ]
where ®;,I'; are expressions in the solution uy to (1.3.1) or (1.4.1). The goal

of section is to uncover the structure of a;. We write a4 (t) = a5 (t) +
0(63(1+t62)_%), where a5 (¢) has structure lb that implies in particular

3
(1.5.8) aiPP(t) = ¢*2 g(t) + more decaying terms.
The main goal of section is to prove by bootstrap that g(t) satisfies bounds
(1.5.9) l9(t)] = O(e(1 +1€%)72), |aug(1)] = O~ 2).

(Actually, we get more precise bounds for d;g: see (3.2.8))). These bounds are
obtained showing that (1.5.7]) implies that g satisfies an ODE

(1.5.10) Dyg(t) = (a - i{f?g(\/if) 19()2g(t) + remainder

where Y3 is some explicit function in S(R) and « is real. The coefficient of
the cubic term in the right hand side comes from some of the terms in the
right hand side of (| Where we replace u+ by the approximate solution

+p determined in sectlon The main contribution to u’, + P integrated
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against a S(R) function, may be computed explicitly in terms of g (see Propo-

sition , and brings the right hand side of . The key point in that
equation is that Y5(1/2)? < 0. This implies that g satisfies bounds
for t > 1 if g(1) = O(e). The inequality Y3(v/2)? < 0 is nothing but Fermi
Golden Rule. Actually, Y5(v/2)? < 0 holds trivially and the key point is to
check that 572(\/5) # 0. This reduces to showing that some explicit integral is
non zero. Kowalczyk, Martel and Muifioz checked that numerically in [56]. In
Appendix [AT4] we compute explicitly this integral by residues.

1.6. Step 4: Reduced form of dispersive equation

The goal of this step is to rewrite equation (|1.4.1)) in terms of a new unknown
G4+ that will satisfy estimates ((1.5.1))-(1.5.3). We define

(1.6.1) Uy = Uy — Z Op(mo,I)(UI) . u/j—pp o u//j_pp’
=

and set i_ = —@y. Making the difference between (1.4.1)) and (1.5.5), we
show in section (see Proposition [4.2.1)) that @, satisfies

(Dt — p(Dy)) iy = > Op(mr)(ay, ugn®)
B<| T <A T=(I" 1")
+ Z Op(ng) (@, ugP)
[1|=2,I=(I",1")

(1.6.2) +a®P(t) Y Op(mh ;) (i)
1I|=1

i3

- é(e“ég(t) +e g(t)>2 > Op(mg,p)(ir)
|I]=1

+ remainder

where:

e For 3 < |I]| < 4, my are symbols my(x,&1,...,&), p = [I| = |I'| +|I"|
which are O(1) as functions of x, but O({z)” ) if one takes at least one
Oz-derivative.

e For 1 < [I| <2, m{ ;, m} ; are symbols that are O({z) ™), even without
taking any derivative.

e Function of time g has been introduced in and gives the principal
term in the expansion of a3 (¢) or a4 (¢).

e Function a®PP(t) = @(gipp(t) —a"P(t)), where

V3

a itY3 i —itV/3 T2
(1.6.3)  a®PP(t) = €2 g(t) + wae™3g(t)? + wolg(t)|? + w_se *V3g(1)
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with convenient constants ws,wp,w_2 and a*P(t) = —Qipp(t).

We cannot derive directly from equation the estimate (1.5.2)) for
U4, as the right hand side of has not the nice structure @%Defore
applying an energy method, we shall have to use several normal forms in order
to reduce ourselves to such a nice nonlinearity. As a preparation to that step,
we show in Corollary that may be rewritten under the following
equivalent form:

2 2
_ i3 /3 i i3 _
(1.6.4) (D; —p(Dy))tiy — Z eI Op(b;-7+)u+ — Z eI Op(b;-ﬁ)u_
j=—2 j=—2
= Z Op(m[)(ﬂp,u??/p)
3<|1|<4,I=(1", 1)

+ D~ Op(mp,p)(ar) + > Op(mpp)(ar, u'E)
7= =1, 17), 1" |=| 17 |=1
+ 3" Op(mf ;) (W/P>') + remainders
|T]=2

where, in comparison with , all linear terms in @4, @ have been sent to
the left hand side, and are expressed from symbols b;-’i(t, x, &) that are rapidly
decaying in z at infinity. Moreover, in the right hand side, we still use the
convention of denoting by mf)’ ; symbols rapidly decaying in x, while m; are
O(1) in z, with J,-derivatives rapidly decaying in x. Furthermore, in the last
two sums in , we replaced 4/?PP by u/#PP:1 which is actually the main
contribution (in terms of time decay) to «/*PP. If we set @ = [% }, we may

U—
rewrite ((1.6.4) as a system of the form
(D¢ — Py = V)& = M3 (@, u®P) + My(@, u*PP)

(1.6.5) o
+M5(a, w®P ) + remainder
where Py = [p(gx) p(OD )}, V is a 2 X 2 matrix of operators of the form
- x
2 .3
(1.6.6) V= Z V12 Op(Mj(t, x,€))

i=—2

with M} 2 x 2 matrix of symbols whose entries are given in terms of the b/
in (1.6.4), and where the 2-vectors M3 (resp. My, resp. M) come from the
cubic (resp. quartic, resp. quadratic) terms in the right hand side of .

To obtain the wanted estimates (|1.5.1)), (1.5.2) for 4y, we have next to
reduce to an equation essentially of the form (0.5.1). This is the object
of Step 5 of the proof.
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1.7. Step 5: Normal forms

Equation has not structure of the form , in that sense that if
Ly 0
0 L_
to the potential term V), and second the action of L on the nonlinearities in the
right hand side does not give quantities whose L? norm is O(||@||2 || L] 12)
(which is essentially necessary if we want to get by energy estimates).
To cope with the lack of commutation of L with V, we shall construct a wave
operator and use it to eliminate V by conjugation of the equation. This is
similar to what has been done to pass from the second equation , that
was involving the potential 2V (x) to equation , where there was no
longer any potential. The difference here is that V given by is time

dependent (with O(t_%) decay). We thus cannot rely on existing references,
and have to construct by hand operators B(t),C(t) (depending on time) such
that

(1.7.1) C(t)(Dy — Py — V) = (Dy — Ry)C(2).

In that way, if @ solves (1.6.5)), then C(t)u solves the new equation without
potential

we make act L = { } , with L_ = z—tp/(D,), first L does not commute

(Dy — Py)C(t)a = C(t)Ms(a, u*PP) + C(t) Ma(a, uPP)
+C(t) M (@1, u'*PP1) + remainder

(see Proposition [5.1.2)). Moreover, since we want to pass from an L? bound
on Lii to an L% bound on LC(t)@ and conversely, we need to relate L o C(t)
and L, proving that

(1.7.3) LoC(t)=C(t)o L+ Cy(t)

where C(t) is bounded on L? uniformly in ¢ and C4(t) is bounded with a small
time growth when ¢ goes to infinity. The construction of operator C(¢) is made
in Appendix by a pretty standard series expansion. We notice however
that we need to use in that construction the fact that we are dealing with odd
functions .

Once reduced to , we still have to handle those nonlinear terms in
the right hand side that do not have a structure of the form , ie. we
have to cope with nonlinearities that have the same structure as in the model
(0.6.11)) of section of the introduction. We have seen there that problem
may be solved using “space-time normal forms”. We shall follow essentially
the approach of [20], already described in section of the introduction, that
we have to adapt to the more general operators Mg, My in the right hand side
of . Remark that the components of the vectors M3, My are, according

L6.)

to , given by expressions Op(m)(t, . .., ui?) where m(z, &1, ..., &) is

(1.7.2)
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a symbol that is O(1) when |z| goes to infinity, but O({x)~°°) if one takes at
least one J,-derivative. We have to distinguish between to type of terms, the
characteristic and the non-characteristic ones. The former correspond to the

case when, among the p arguments of Op(m) (a4, ..., u5™), % are equal to

ii; or u?PP and 231 are equal to @_ or u™.

In the case of simple monomial nonlinearities, example of characteristic
terms are given by the right hand side \u+\2u+ of (0.5.1)), which, when making
act Ly on it, may be estimated in L% by |lu(t,)||5e || Lyt (t, )|z, If m
were independent of x, the same would hold for the action of L on any
characteristic term like Op(m)(t4,...,0+), as LyOp(m)(tx,...,4+) could
be expressed from Op(m)(Lits,...,4+),...,0p(m)(tx,...,Lets). Using
the boundedness properties of Op (), one would then estimate the L? norm

of these quantities by ||| I;;ol |Lt| 2. Asp > 3, one could then obtain estimate

by energy inequality, as in . Since here m does depend on x, there
is no exact commutation relation in the characteristic case between Op(m) and
L, as some commutators of the form tOp(d,m) have to be taken into account.
It turns out that, because 9, is rapidly decaying in x, and because @ is
odd, ||tOp(m) (@4, ..., U+ )| 2 may be also estimate by the right hand side of
. Actually, the kind of expressions one has to cope with is morally of
the form

(1.7.4) tZ(x)((Dy) ag)’

where Z is in S(R) (This reflects the fact that 9,m is rapidly decaying in x).

Since @4 is odd, we may write using the definition of L4 = x + t@—s

gy —ie [ (P
(1.75) (D) Yy :zx[l <@u+>(m§) dys

1
=iy /_ 1[(L+ﬂ+)(ux) — priy (pz)] dp.
The rapid decay of Z(x) allows one to absorb the powers of z in the right
hand side of ((1.7.5)), and to estimate the L? norm of (1.7.4) by

ClIIL+at] 2 + 14| 2] |t ] F o

i.e. by the right hand side of with p = 1. Similar arguments apply
when the factors @4 are replaced by u%"P.

The above reasoning disposes of the characteristic components in
M;(a,u®P) in (1.7.2). The non-characteristic ones are for instance of
the form Op(m)(d4,...,4+) and we no longer have an approximate com-
mutation property of L, with such operators. These terms have thus to be

eliminated by a space-time normal form. We construct in Proposition [5.2.1
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using the results of Appendix operators M j» J = 3,4, such that

(1.7.6) (Dy — Po) M (i, u*P) = M, (i, u®PP)yen + remainders

where M (@, u*PP),p, denotes the non-characteristic contributions to
M (@, u®PP) in the right hand side of (1.7.2)). Actually, My (@, u®™P)yen =
My (@, u*PP) as only Mg contains characteristic components. In that way, we

deduce from that
(D — Po)[C(t) (@t — M5 (i, u™P) — My (i, uP))]

(1.7.7) Ve rabo
= C(t)M5(a, u'*P»*) + R

where the remainder R satisfies bounds of the form
1L+ Rl g2 = O(|liig oo || L4-tig || 2)

as in the right hand side of (0.4.6)) with p = 1. Notice that to deduce (1.7.7)
from (1.7.6), we have to compare (D;—Py)C(t)M; and C(t)(D;— Py) M, which
by 1) makes appear a term C(t)VMj, but the time and space decay of

operator V allows one to show that such errors form part of the remainder R
in (L.7.7)).

One has still in the right hand side of term C(t) Mh (@, u'*PP1). Again

5, may be expressed in terms of quantities Op(m') (@4, @+ ) (and similar ones
with @ replaced by ' ftpp’l), so that one may gain some time decay using
expressions of the form , but as this term is just quadratic, this gain
is not sufficient to include C(t) M} into R in (1.7.7). As C(t) — Id has some
time decay, one may prove though that (C(t) — Id) M) is a remainder, but
the expression Mb (i, u/*PP-1) still needs to be eliminated from the right hand
side of (]%We do that in Proposition of Chapter [5], using results of
Appendix [A13] Actually, a quantity like Op(m/) (@<, i+ ) may be expressed,
using the z-rapid decay of m’ and the oddness of @+ as sum of expressions of
the form

(1.7.8) 2K (L, L20y), 0< 6,05 < 1

where K is an operator of form

(179 K(fuf2)(&) = [ e & &) fi6nf(e) dedse

where the kernel k£ has rapid decay in (§y — & — &2). An operator of form
(1.7.8)) slightly misses bounds in O(¢~!||L 1| ;2) when we make act on it L4
and take the L? norm. But it does satisfy such estimates if we cut-off k in

1) on a domain |£(&) £ (&1) £ (&2)] < ct3. Consequently, one may as-
sume that in 1) k is supported for |£(&o) £ (&1) + (§2)] > ct~2. This extra



1.8. STEP 6: BOOTSTRAP OF L2 ESTIMATES 57

cut-off allows to construct by normal forms a quadratic term MY (i, u/#PP-1)
such that

(Dy — Po) M (i, u'*PP1y = Mb (@, u*PP1) + remainders.

Subtracting this equation from ([1.7.7)), one gets finally

(1.7.10) (Di — Py)t =R

where
4 ~ ~

(1.7.11) a=C(t)[a— Y M@ u*P)] — Mh(a,u'*PP).
=3

and where R will satisfy among other things essentially

(1.7.12) ILR(t, |2 = Ot || Lyt | 2)-

1.8. Step 6: Bootstrap of L? estimates

As seen above, the conclusion of the main theorem follows from the boot-
strap of estimates ([1.5.1))-(1.5.3). In Chapter |6, we perform the bootstrap of
and (1.5.2)), assuming that (1.5.1))- 1_} hold on some interval [1,T]
with T < €e7*7¢ and showing that 5.2) then actually hold with the
implicit constant in the right hand side d1v1ded by 2 for instance. As we have
seen, estimate cannot be obtained making act L directly on ,
as the action of L on the right hand side of this equation has bad upper
bounds in L2. On the other hand, making act L on , commuting it to
Dy — Py and using , one may obtain a bound of the form for
| Lyt4(t, )| 2. Actually, to do so with an improved implicit constant, one
has to show that the right hand side of (1.7.12] m is o(t Y| Loty | 12) 1nstead of
just O(t~Y||Lydiy||12), but this follows from the estimates we get if t < e=4+¢
and ¢ < 1. The remaining thing to do is then to relate estimates for L4 in
L? and estimates for L i, i.e. to show that the action of L, on the Mj, /\;1’2
terms in do not perturb signiﬁcantly the a priori bound of the left
hand side. We do that in section |6.1| for M], J = 3,4 and in section |6.2[ for

. In this Chapter @ we also check that the remainder R in satlsﬁes
1) These estimates heavily rely on the boundedness propertles of the
different multilinear operators we use, that are discussed in Appendix
Putting all of that together, we conclude the bootstrap for estimates ,

([L.5.2) in Proposition [6.3.7

Y
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1.9. Step 7: Bootstrap of L* estimates and end of proof

The only remaining step in order to conclude the proof of the main theorem
is to bootstrap bound . We do that in Chapter We deduce from
equation satisfied by @4 an ordinary differential equation. We proceed
as in [1] for water waves, with simplifications inspired by Ifrim and Tataru [45]
(see also [20), 82]). If we write equation as (Dy — p(Dg))us+ = fy and
if we define @JF,LL by

1 T

(1.9.1) Ty (t,z) = %@ (t, ;), S+t @) = \}EJZ (tv %)
we obtain
(1.9.2) (Dr = OplY (at + V1+€) )i, = 1,

where we used a Weyl semiclassical quantization, depending on the parameter

h= %, defined in general by

1 (e (T Y
W - i(z—y)
(1.9.3) Op;’ (a(z,€)) 27rh/e ha( 5 ,§>u(y)dyd§.
We decompose then @, = @y + %y where
~ AW z+p' (V) -
(1.9.4) ay = Opy, (7(7\/5 ))@+

with v in C§°(R), equal to one close to zero and with small enough support.
Then 1, is localized close to A = {(z,£);x = —p'(£)} i.e. close to {€ = dp(z)}
if o(x) = V1 — 22 is the phase of oscillations of solutions to linear Klein-
Gordon equations (after rescaling ) One sees that the L? estimates
(L.5.1)), (1.5.2) allow one to get wanted bounds for the component @yc (see
Proposit. On the other hand, since %, is microlocalized close to A,
one may in the term Op)Y (z€ + /1 + £2)@i, replace the symbol by its restric-
tion to A, up to remainders that are well controlled thanks to the L? estimates
(1.5.1)), (1.5.2). This brings an ODE for @,, that implies by integration the
wanted bound (1.5.3). The end of Chapter [7| (section puts together these
estimates and those obtained in section for a(t) in order to close the boot-
strap argument and prove the main conclusions ((1.1.13]), (L.1.14)).

1.10. Further comments

In the last section of this chapter, we shall explain what is the difficulty
in order to go beyond the time limit e . Since this is much related to a
phenomenon extensively discussed in the papers of Lindblad, Luhrmann and

Soffer [60] and Lindblad, Luhrmann Schlag and Soffer [59], as well as in the
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work of Germain and Pusateri [33], let us first recall some of the results of
[60].
The authors of that paper consider an equation of the form

(1.10.1) (Dy — T+ D2)u= —%<D$>_1[a(-)(u+a)z]

on R x R, where « is a smooth decaying function (say a € S(R), even if
their assumptions are weaker), satisfying &(v/3) # 0 or &(—+/3) # 0. They
prove that if is supplemented by an initial data ug satisfying € =
[[(z)*uo|| g4 < 1, then the solution to may be decomposed as a sum

(1.10.2) u(t, ) = Ugree(t, ) + Umoa (t, x)

where ugee satisfies the same dispersive estimates as a solution a linear Klein-
1

Gordon equation, namely ||ugee(t,-)||re = O(et™2) when ¢ goes to 400, and

where u;,04 obeys only the weaker dispersive estimate

2 logt>
Vit
(see Theorem 1.1 in [60] and in particular formulas (1.12) and (1.15)). More-

over, the logarithmic loss that appears in the right hand side of (1.10.3]), in
comparison with the decay of linear solution, in unavoidable. Actually, Lind-

blad, Luhrmann and Soffer show that along the rays x = :t@t, Umod (t, i?t)
behaves when ¢ goes to +oo as

(1.10.3) Jtmoa(t, e = O(

at i« .t logt
1.10.4 —e'ie24(FV3) —=
(110 5 et alz )
for some complex coefficient ag = O(e). (See (1.15) in [60] and (1.16) of

the same paper for an explicit expression of ag in terms of the solution u to
(1.10.1)). On the other hand, outside a conical neighborhood of these two

rays, tmod has a 273 bound, without any logarithmic loss. In order to relate
this with the obstacle that prevents us from going above time e ~# in our own
result, let us recall the argument of the introduction of [60] that explains
heuristically the appearance of the logarithmic factor in . The idea is
that, since a(z) in the right hand side of is decaying when z goes to
infinity, one may replace there u(t, z) by u(t,0), up to terms that are expected
to have a stronger time decay. In that way, an approximation of is

(1.10.5) (D¢ —\/1+ D2)u = —%(Dx>_1 [ev(@) (w(t, 0) + uft, 0))2].

A second approximation (that is justified a posteriori) is to assume that u(¢, 0)
will have the same asymptotic behavior as a solution to a linear Klein-Gordon
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equation restricted to x = 0 when t goes to infinity. This allows one to replace
in ((1.10.5) wu(t,0) bye\[,

(1.10.6) (Dt = \/1+ D2)ttgnoa = —;((Dx)_la) (2t 4 4 =2t].

If more generally one considers an equation of the form

(1.10.7) (D: — m)u = %Y(x)e“‘t

with Y in S(R) (or at least smooth enough and decaying enough at infinity),
one may rewrite (1.10.7) as an equation for uy(t,z) = e~*u(t, z) of the form

(1.10.8) (Dt + X —/1+ D2)uy = %Y(x).

If A < 1, the operator \/1 4+ D2 — \ is elliptic and the solution to (1.10.8]) will

be O(F%) in L°° when t goes to infinity: This may be seen using Duhamel
formula and integrating by parts, or equivalently defining

(1.10.9) wy = uy + (/14 D2 =2 [ty (2)]

that satisfies a new equation

1 -~
(1.10.10) (Di+ A — /14 D2)wy = t—QY(x)

where Y is some new S(R) function and the new right hand side is time inte-
grable. Because of that, the solution to will have the same dispersive
time decay rate as a solution to a linear Klein-Gordon equation i.e. will be
O(t_%) in L*°. This is what happens for the last two terms on the right hand
side of (|1.10.6]). On the other hand, for the first one, one gets an equation of the
form (1.10.7), (1.10.8) with A = 2, so that the symbol y/1 + 2 — 2 vanishes at
¢ = ++/3. In this case, the analysis of the solution to 1’ expressed from
Duhamel formula and Fourier transform shows that an asymptotic behavior
of the form holds along the two rays z = :i:t@.

The logarithmic loss displayed in seems incompatible with the
known methods used to study global existence and asymptotic behavior for
Klein-Gordon equations of the form (0.4.1)) or ((1.10.1)) if we no longer assume
that «(-) is decaying at infinity. Actually, Theorem 1.1 of [60] as well as The-
orem 1.1 of [59], uses in an essential way the fact that the space decay of this
coefficient will provide, along the rays over which holds, a time decay
that will compensate the logarithmic loss.

Another situation when asymptotic behaviour may be obtained for the solu-
tion of a problem of the form , including with nonlinearities involving
terms like (u + %)?, (u + @)% (without space decaying pre-factors), appears
if the bad term vanishes. This happens for the non-resonant case

so that uyoq will be essentially the solution to
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&(v/3) = &(—/3) = 0 treated in Theorem 1.6 of [60] and Theorem 1.1 of [59],
when one recovers the same asymptotics as those holding true for equations
of the form with the function « replaced by a constant.

The second case when vanishes is when ag = 0. This happens for
instance when «a is an odd function and the initial condition in is
also odd (see where the right hand side vanishes for odd w’s, so that
the contributions coming from that were responsible of the bad term
disappear). Such a situation is studied by Germain and Pusateri [33],
in a more general framework. They consider equations of the form

(1.10.11) (07 — 024+ V(z) + m*)u = a(z)u’

where a(x) is a smooth function that has different limits at +o0o and —oo
and V(z) a S(R) potential that has no bound state. They prove a decay

estimate for the solution in O(t_%) when time goes to infinity, under some
orthogonality assumption on the solution. This assumption always holds for
generic potentials, and in the case of exceptional ones (like the zero potential),
it holds under evenness or oddness conditions on V, a and the initial data. One
of the key ingredients in the proof of Theorem 1.1 of [33] is again related to
the fact that a bad frequency ++/3 appears. Actually, it shows up when one
tries to perform a variable coefficients normal form. In order to overcome this
difficulty, the authors introduce functional spaces, involving dyadic Fourier
cut-offs close to the bad frequencies, and measuring the (distorted) Fourier
transform of the solution in such spaces.

Let us go back to the problem we study in this book, and in particular to
the limitation of our result to times O(e~*). We already discussed this issue in
section after the introduction of the approximate solution in . Here,
we want to explain how the problem we encounter to go beyond time e
might be related to some of the works we just described, namely the possible
appearance of some extra logarithm in pointwise estimates of the solution
along two rays, as in . Remark first that we are dealing only with odd
solutions. As already noticed, this implies that the coefficient ag in (1.10.4)
vanishes, so that a solution of a problem of the form has O(t72) L™
estimates. The point is that, in our problem, we do not study an equation of
the form (1.10.1)) or (1.10.11)), but a coupling between a PDE and an ODE,
namely system ([1.1.11f) or equivalently, a coupling between the PDE ((1.2.13))
and the ODE (]T2.20 ). Because of that, our PDE contains a source term given
by (|1.2.14)), involving expressions of the form

(1.10.12) a(t)*Yo(x), a(t)®Ys(x)
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where Y3, Y3 are S(R) functions and a(t), solution of the ODE, has an oscilla-
tory behavior of the form

€ /3
1.10.13 i
( ) V1 + te?

When plugged in (1.10.12f), this shows that our PDE will contain a source
term that has a similar structure as the right hand side of (1.10.6|), with

oscillating terms ettV3 ingtead of e=2* and pre-factor 1_&% instead of % (for

the quadratic contribution coming from ([1.10.12))). Because of that, and by

analogy with the study of [60], we may expect that the solution to our PDE

logtt when t goes to infinity.

contains contributions that might grow as

In this book, we prove that such a possible growth does not happen before at
least time e 4*0. Let us return to the discussion on that issue that we started
in section We introduced in a solution uipp of a linear equation
with source terms that are essentially of the form (forgetting the
second line of the first equation in (1.5.5))). If we retain only the quadratic
term a(t)?Ys in , and use , this means that we have to solve
essentially an equation of the form

2
(1.10.14) (Dy — /14 D2)U = ——— V30 (x)

1+ te?

for some function M in S(R) and zero initial data at ¢ = 1. This is an equation

of the form (|1.10.7]), and as we have seen after (1.10.8]), the delicate case is the

one corresponding to the phase /3 in the exponential, so that in the sequel
we discuss only with sign +. Then U is one of the contribution to
the approximate solution u™ of (1.5.5)), and we decompose it as U = U’ +U"
with essentially

vVt o . 24
(11015) U’(t,az) — Z/ ez(tfﬂ')\/1+D%+’Lt\/§M(') 16 7’27
1 + 7€
t ) Qd
(1.10.16) U (t,z) = Z/ (ilt=mIVIFDE B () %
Vi + Te
This decomposition corresponds to ui™* = w/5"" + w”%"" introduced before

@ in section and we may prove some good L* estimate for LU "
(see @) and some good L? estimate for L U’ (of the form @) for
times t = O(¢~4*0). This last L? bound degenerates when ¢ goes to ¢4, and
actually so does the pointwise estimate of U’ that is obtained in Appendix
(see (A10.1.39) with w = 1). We obtain there for U’ a pointwise bound in

(1.10.17) (ei\[f) <t%<% . \/§>>1
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Outside a conical neighborhood of the rays x = :Ft\/g, 1.10.17)) reduces to

a 2t e decay (whatever the value of t). On the other hand, along the lines

x = :Ft\/g , we just get a bound in (62\}?), that provides a O(t‘%) decay only

for t = O(e*). Past such a time, estimate (1.10.17) will no longer remain
valid and, at the light of the results of [60] concerning ((1.10.1)) and [59], one

may not exclude that some 1°gtt behavior might hold along the two preceding

rays. Since, unlike in (|1.10.1)), we no not have just nonlinearities involving
rapidly space decaying coefficients, we do not know how such contributions
might be handled in the nonlinear problem.






CHAPTER 2

FIRST QUADRATIC NORMAL FORM

In section of the preceding chapter, we have introduced an evolution
equation for a function u. This equation is of the type of in the
introduction, except that its nonlinearity is non local (see (1.2.17)), (1.2.18])).
In this chapter, we shall express these nonlinearities in terms of multilinear
operators, that are a special case of classes introduced in Appendix [A9] This
will give us a general framework that will be stable under the reductions we
shall have to perform.

The nonlinearity in our equation contains quadratic terms. We have al-
ready explained in section of the introduction that such terms have to be
eliminated by normal form. This is the goal of section of this chapter,
following the guidelines explained in section [I.4] of Chapter

2.1. Expression of the equation from multilinear operators

Let us define the classes of multilinear operators we shall use. They are
special cases of the operators introduced in Appendix [A9] that will be useful
in the rest of the paper. We introduce in this section only the subclasses we
need in Chapter [2

In this chapter, an order function on RP is a function from RP to Ry such
that there is some Ny in N so that, for any (&1,...,8), (£1,...,&,) in R?

p
(2.1.1) ML, &) < CTL & — €)M (&, ... &)
j=1

(In Appendix we shall allow order functions depending also on a space
variable x).
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Definition 2.1.1. — Let M be an order function on RP, with p in N*, k in
N. We denote by Sy 0(M,p) the space of smooth functions

(yvgly"'a€p> Ha(yaéla'”vép)

2.1.2
( ) RxRP — C
satisfying for any o in NP

(21.3) 2 aly, )| < CM(E)Mo(&)"!

and for any o in NP, any o in N*, any N in N

(2.14) 9803 aly, €)1 < CM(E)Mo(€)1) (1 + Mo(©)™lyl) ™™
where My(€) denotes

1

(2.15) Myl ) = (3 @W@ﬂgymﬁﬁ

1<i<j<p i=1

hS]

and is equivalent to 1 + maxa(|&1],...,|&p|), maxy standing for the second
largest of the arguments.
We denote by S, o(M,p) the subspace of SNO(M p) of those a for which

(-) holds mcludmg for oy = 0.
The symbols of Definition [2.1.1] are the special case of those defined in

Definition |A9.1.2| of Appendix when there is no x dependence in (A9.1.3)).

We associate to them operators through the quantization rule
(2.1.6)

1 o
Op(a)(v17""vp) = (27T)p /6 261+ +£p IL’ 617 "aép HU g] dgl 6
for any a in SHVO(M,p), any test functions vy, ...,v,. This is the rule defined in

(A9.1.9) of the appendix in the case of general symbols a(y, z, &), specialized
to the subclass of symbols that do not depend on z, as in Definition 2.1.1 We
shall also impose on our symbols the extra condition

(217) a(_y7 _§17--~ _Sp) ( )p ! (yvé-lv"wgp)'

Under this condition, the operator Op(a) sends a p-tuple of odd functions to
an odd function.

Let us state the symbolic calculus result that is proved in Appendix (see
Corollary [A9.2.6] (A9.2.25)), (A9.2.26))) and that we shall use below.

Proposition 2.1.2. — (i) Letn’,n" be in N*, n = n'4+n"—1, M'(&1, ..., &),
M" &y ... &) be two order functions. Let a (resp. b) be in S, o(M',n’) (resp.
Sko(M".n")). Define

(218) M(gl) cee 7571) — M/(Sla .. agn’—lvé-n’ +--- +€n)Mﬁ(§n’7~ .. aé-n)
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There are v € N, depending only on M', M", and a symbol ¢} in 5’;70(MM6"‘, n)
such that if

C(yvfla--'vgn) = a(yagla"' 7§n’71)£n/ + - +£n)b(y7£n/7 . agn)

2.1.9
( ) +C/1(y,§1>---,§n)

then for all test functions vy, ..., v,
(2.1.10) Op(a)vi, ..., v—1,0p(d)(Vps ..., vn)] = Op(c)[v1, ..., vpl.
Moreover, if a, b satisfy , so do ¢ and ¢}. )

(i1) If a is in Soo(M,1), there is a symbol a* in Soo(M,1) such that
Op(a*) = Op(a)*. Moreover, if a satisfies (2.1.7), so does a*.

We shall use the above class of symbols to re-express equation (|1.2.13]).

Proposition 2.1.3. — For any multiindex I = (i1,...,4p) in {—,+}P with
2 < |I| =p < 3, one may find symbols mo 1 in 5'070(]_[5:1 <§j)_1,p), satisfying
, for any multiindex I with 1 < |I| = p < 2, one may find symbols mll,l

n 5’(’)’0( 1;:1 <§j>71,p) satisfying , such that equation may be

written
(D¢ = p(Dz))us+ = Fgla] + Fga]
+ Y Op(mor)[u]

2<[1|<3

(2.1.11) +a(t) Y Op(m])|ur]

1<|1|<2
+a(t)? Y Op(my,)[ur]
1=1
where uy is defined in (1.2.11), (1.2.12).

Proof. — Consider first the terms in the right hand side of that do
not depend on a i.e. with notation (1.2.15)) 3=, _, F227[[u1] and 7 7j—3 F:ij[ul].
These terms are given by the first equality (1.2.17)) and (1.2.18). A symbol of
the form (y) [T7_1 b(y, &)p(&;) " or [Th_; by, &;)p(&;) " belongs respectively
to 5*070 (ngl (£j>_1, 2), 5*0,0 (H?:l <£j>_1, 3) and because of property (A8.1.9
satisfied by b and the oddness of k, condition holds. If we apply the
results of Proposition we conclude that the contributions to that
do not depend on a have the structure of the first sum in the right hand side

of ([2.1.11).

Consider next terms of the form a(t)FfJ[uI], |I| =1 or a(t)FQ?’J[uI], || =2

in (1.2.15)). They may be expressed from the first line in ((1.2.16]) and the second
line in (1.2.17)). Since Y is rapidly decaying, the symbols Y (y)x(y)b(y, £)p(&) !

and Y (y) TTi= b(y, &)p(&) " are in So((€)7" 1) and §§o(IT5= (&), 2).
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Because of the oddness of Y, k and (A8.1.9)), they satisfy (2.1.7). Using again
the composition result of Proposition and noticing that as soon as at
least one of the symbols a and b in (2.1.9)) is in the S’ class, so is the composed

symbol ¢, we conclude that the linear term in a(t) in the right hand side of

(1.2.13) is given by the second sum in (2.1.11)).

In the same way, the contributions a(t)?F};[u;] coming from the second

line (|1.2.15)) with 5 = 1, with Fﬁl given by (|1.2.16|), provide the last sum in
(2.1.11)). This concludes the proof. O

In the right hand side of , terms with higher degree of homogeneity
in (a,us) will have better decay estimates. Moreover, an expression of the
form Op(m/)[us] with |I| = p and a symbol m’ in the class 5’670(M,p), ie.
with rapid decay in y, will have better time decay than a term Op(m)[ur]
with |I| = p and a symbol m in 5’070(M,p). Consequently, we expect that the
terms in 3 71— Op(mo,r)[ur] will be, among all ui-dependent terms in the
right hand side of , those having the worst time decay. In next section,
we shall get rid of these terms by normal form.

2.2. First quadratic normal form

Proposition 2.2.1. — Define from the symbols mq 1, |I| = 2 of Proposi-
tion|2.1.5 new functions

(2.2.1)  mor(y, &1, &) = mo(y, &1, &) [—p(&1 + &) + ip(€r) + i2p(&2)] -
if I = (i1,12). Then Mg, belongs to 5170( ?:1 <§j)71M0(§1,§2), 2). Moreover,

there are mew symbols (mg r)1=2, belonging to SLO( ?:1 <§j)71M0(§),2),

(M’ Di<irj<a—y, 1 < J <3, in 5170<H‘j]:|1 (&) My(€), !I!) for some v and

new symbols (Mo, 1)3<|1)<a belonging to Sio (Hﬂl (§j>_1Mg(§), ]I|) such that
(2.2.2)

(De = p(D2)) s = 7 Oplrig,)[ur]| = Fila] + Fila]
|1|=2

+ > Op(mo,)lug]

3<|1]<4
+ > Op(mg p)[us]
|I]=2

3
+>aty > Op(m) )lug).
j=1

1<|I|<4—j
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Finally, all above symbols satisfy .
Proof. — We notice first that

223) (6)+ (&)~ (6 +6) = 2+(<<2>><§f>< - ig

> o1+ maxy(|&1], €)' = eMo(&r, &) 7"

This implies that

(€1 + E2) + (E2) — (€1) = c(1 + maxa([& + &), |€2]))

which is larger than the right hand side of (2.2.3), except when [&] > |&].
But then the left hand side is larger than one. Consequently, we deduce from
these inequalities that, for any sign i1, o, we have for any « in N2

(2.24) 08 [(61 + &2) + i (62) + 02(62)] | < CaMo(E, &)1,

This implies that 17,7 belongs to the wanted class of symbols. It obeys trivially

(2.1.7) since mq  does.
Denoting for |I| = 2, ur = (u;,,us,) as in (1.2.11)), we compute
(2.25) (D¢ — p(Ds)) [Op(mo,1)[ur]]
= —0p(p(£)) © Op(ring, 1) [ui]
+ Op(1n0,1) [11Op(P(E) ) iy , win ] + Op(mo, 1) [wiy  i2Op(p(€) i |
+ Op(1m0,1)[(Dr — iap(Dz) iy, iy ]
+ Op(mo,f)[uiu (Dt - i2p(Dx))ui2]'
By Corollary [A9.2.7] the sum of the first three terms in the right and side
may be written as a contribution to 3 ;-0 Op(mg r)[us] in (2.2.2) plus the
expression

(2.2.6) Op((—p(&1 + &2) + i1p(&r) + iap(&2))mo 1) [ug].

By (2.2.1), (2.2.6) will cancel the term 37,5 Op(mo,r)[us] in (2.1.11). Since
h

the other terms in the right hand side of (2.1.11)) are still present in (2.2.2)), we
see that to conclude the proof, we just need to show that the last two terms in
(2.2.5)) provide as well contributions to the three sums in the right hand side

of (2.2.2)). We express (D; Fp(D,))us+ from (2.1.11)) (or its conjugate). To fix

ideas, consider for instance

(2.2.7) O(it0 (4 42)[(D1 — p(Da) ity 3y

If we replace (D; — p(D,))us by the contribution FZla] + Fjla], which by

(1.2.14) may be written a(t)?Ys + a(t)3Ys, with odd functions Ys, Y3 in S(R),

we see applying Corollary [A9.2.8| of Appendix that (2.2.7) will provide
223

contributions to the Z?:Z a(t)! 2 (11=1 Op(m 1)[ur] term in
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We replace next (D; — p(D,))uy in by the a(t) or a(t)? terms in
(2.1.11)). We use (i) of Proposition noticing that if in (2.1.9), either a is
in 5], o(M’,n') or bis in S’,’{,O(M”, n”), then cisin 5;70(M, n). Consequently, we
get contributions to a(t) Yo<|7j<3 Op(m] ;)[us] and a(t)? > 11=2 Op(m p)[ug]
in . Finally, if we replace in (Dy—p(D,))us by the first sum in the
right hand side of (2.1.11)), we obtain contributions to 3 3<|;<4 Op(mo,r{ur])
in using again (i) of Proposition m This concludes the proof as
property of the symbols is preserved under composition. O



CHAPTER 3

CONSTRUCTION OF APPROXIMATE
SOLUTIONS

In the preceding chapter, we have performed a quadratic normal form in
order to reduce ourselves to an equation of the form . The right hand
side of this equation contains a source term and in section below, we
construct an approximate solution solving the linear equation whose right
hand side is essentially this source term. We explained this part of the proof in
section see equations (|1.5.4]), . The construction of the approximate
solution relies on Appendix below.

On the other hand, because of the coupling between a dispersive equation
and the evolution equation for the bound state, we have seen in section [1.2
that we have also to study an ordinary differential equation , which
is equivalent to the first equation in . We have explained at the end
of section what is the form of that ODE, and how we can show that its
solutions are global and decaying using the Fermi Golden Rule. Section
below is devoted to the asymptotic analysis of this ODE. Of course, the study
is more technical than in the presentation in Chapter [l| since we have to
fully take into account those terms in the right hand side that come from the
interaction between the bound state and the dispersive part of our problem.

3.1. Approximate solution to the dispersive equation

The proof of our main theorem being done by bootstrap, we shall assume
that we know, on some interval [1,7], an approximation of the function ¢t —

a(t) that is present in the right hand side of (2.2.2)).

Let € €]0,1], A, 4’ > 1, 6’ €]0, 5[ (close to 5) be given. Let T € [1,e~].
We shall denote for t > 1, € €]0, e

(3.1.1) te = e 2(te?)
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and assume given functions

(3.1.2) g:[1,T] —» C, it : [L,T] xR —=C
t— g(t) (t,z) — a4 (t,x)
and z — Z(z) in S(R), real valued, satisfying the following conditions:
1 _3 EPY
(313)  g(t)] < At 2, |dwg(t)] < At 2 + (VD)2 78], te (1,7
(3.1.4) (Z,ax(t, )] < (VD 75, te [1,T).

Moreover, we assume given W a neighborhood of {—1,1} in R and for any A
in R — W, two functions

(3.1.5) t = pr(\t), t = Ye(At)
satisfying for any t € [1,T], any X in R — w
(B.16) o=l < (VD 8, (1) < (VD) 1
and solving the equation
(317) (Dt - )‘)cp:t(kat) - <Z7 QjL:|:> + /‘v/}:l:(Aﬂf)'
We define from the above data
a 7 V3
afPP(t) = "2 g(t)
+ wag (6 + wolg(t) +woag(t) e
3
+e"2 [g(t)p1(0,8) — g(t)p—(0,1)]
it B ——
+e 2 [g(t)(,0+(\/§, t) - g(t)('p*(\/gv t)]a
where wp, wa, w_9 are given complex constants. We set

V3

? (Clj_pp(t) — aipp (t)) .

We assume given, as in the statement of Proposition symbols m/ ; for
|I| =1 (i.e. I = + or —) belonging to the class SLO((ﬁ)_ , 1) satisfying 1)
We want to construct an approximate solution u"? to the equation

(3.1.8)

(3.1.9) PP = — TP PP (t) =

(3.1.10) (D — p(Da))u = F2[a®™)] + Fla™"]
+a™P(t) > Op(m] ) [uf]
17]=1

that is deduced from (2.2.2)) computing the source terms Fg, Fj at a®PP, and
retaining from the other terms in the right hand side only those that are linear
both in a and u.
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Before stating the main proposition, let us re-express the source term in

(B-1.10).

Lemma 3.1.1. — Under the preceding assumptions on a®PP, one may rewrite
(3.1.11) F2[a®PP] + F3[a™P] = I + Iy + Iz + R(t,z)
where
(3.1.12) Lt,z)= > eijtéMj(t, )
je{-2,0,2}

for smooth odd functions of x, M;(t,x), satisfying for any o, N in N
|08 M;(t,€)| < Cants 1) 7,

a 9 ~N,~ 5,5 —-2,2 30
|8§ ath(t7§)’ < Ca,N<§> te ? [te 24t 2(6 \/72)2 ]
with constants Cy, n depending on A, A" in , ,

where

(3.1.14) Litz)= 3 Mt )
je{-3,-1,1,3}

(3.1.13)

for smooth odd functions of x satisfying
N _3
|08 M;(t,€)] < Cante 2 (€)™

ag v SN 32V 30
O£ 0M;(t, )] < Can(€) "t [te > +72(eVE)* ],

and where I3 is a sum of terms

(3.1.15)

1
(3.1.16) Lta) = Y ¢IV3M3 (1, x)
j=—1

where M;’ are odd and satisfy the following conditions: First, for any j with
§l <1, any a, N

OV (£,€)] < Cant 2N
02} (2, 6)] < Cate ' 3(6) Y.

Moreover, for j =1, and when § is in a small neighborhood W of the set
{&3/1 + €2 = /3}, one may find functions ®1(t,€), W1i(t,€), satisfying

1B (t, ) < Ot
Ty (¢, ) < Ot

(3.1.17)

(3.1.18)

such that for & in W
(3.1.19) DN (L, €) = (Dt + (VB VT+8))1(t,6) + T (t,6).
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A similar decomposition holds for x M3 instead of M.
Finally, the remainder R in (13.1.11 satisfies for any o, N in N

(3.1.20) |0%R(t,x)| < Cont 7 Ha)™

and we have for M;(t,z) in the following explicit expressions:
(3.1.21)

M(t, ) = S9(tPValw), Molt,) = S1g(0) PYale), Moa(t,2) = 59(0) Va(a)
where Yo is given by
(3.1.22) Ya(z) = b(x, D) [k(2)Y (2)?] € S(R).

Moreover, the constants in all above inequalities depend only on A, A’ in
B3, 1)

Proof. — Consider first the contribution F[a®PP] that is given according to
([T2.14), B.1.9) and (3.1.22) by

;[ app +aapp]2y2(l,)_

We replace o by its expansion (3.1.8)). We get terms of the following form
(up to irrelevant multiplicative constants):

(3.1.23) ¢V3g(1)2Ya, |g(t)|*Ya, e V39(0) s,
(3.1.24) G () g Ve, 0 < £ <3,
and

a1 [p1(0,1) = - (0.1) + 91 (V3,1) — - (V3,0)] Y2
(3.125)  go(t)Re [p1(0,8) — o (0,8) + 01 (V3,1) — o (V3,1)] V2

e Vg 5 ()[01(0,8) = o-(0,8) + 1 (V3,1) — o (V3,1)] Yy
with g95,j = —1,0, 1 satisfying, according to , the bounds

(3.1.26) g2 (1) < C(A)", |Ougas( (1)] < (A, A1 * [t ? NS (CNOL ]

and expressions that are, according to (3.1.3)), (3.1.6), O(t;gt_%@v)_]v) or
Ot (x)™™) for any N, as well as their 9, derivatives, so that they will
satisfy (3.1.20). Terms give I} with actually the explicit expres-
sion @D for My, Mo, M_5. Terms provide contributions to I
in (3-1.14).

To study terms in that will provide I3, let us define

(3.1.27) G\ t) = e ML (A t).




3.1. APPROXIMATE SOLUTION TO THE DISPERSIVE EQUATION 75

By (3.1.7), we have

(3.1.28) Di@a(M\t) = (Z, 1 )e™ N 4 ahy (N t)e” N

Then all contributions in (3.1.25) may be written under the form V31 ji (t,x),
J=-1,0,1, with M; * given by linear combinations of expressions

V3000 ()P (6V3, )Y, L+6=1,0<6,0<1, ifj=1
(31.29) g ou(t)@p(0V3,6)Ya, gar(t)Pa(fV/3,0)Ya, €= 0,1, if j =0
e V3G ()P (63, 8)Ys, £+5=1,0<08,0<1, if j = —1.
Since by (3.1.28)), (3.1.6]), (3.1.7)), (3.1.4)
DG+ (0V3.1)] < i (va)
we deduce from , that holds for Mf‘ which is a combi-

nation of M]Jr and My, -1<j<1 In the case j = 1, we have to obtain

(3.1.19) i.e. to find functions &7 ,, ¥y, £ = 0,1 satisfying (3.1.18), such that

if we define according to the first line in ((3.1.29))

(3.1.30) M(t, x) = gar(t) @+ (1 — 0)V3,1) Ya(),

for ¢ in the neighborhood W of {—v/2,v/2}, we have

(3.1.31) Dy Mi5(t, &) = (Dt +(V3- /1 +§2))<ff€(t,§) + W ,(L,€).

Let us apply 3.1.7 with X replaced by A\(€) = /1 + &2 —£y/3 and £ € W, so
that A(€) remains close to Z+/3, and thus outside a neighborhood of {—1,1}.
We may then find functions ¢ (A(€),t), 1+ (A(€),t) such that

(3.1.32) (D = V148 + 1V3) 0 (ME), 1) = (Z,ix) + Y (ME), 1)

with estimates of the form
(3.1.33) (), )] < (VD 175, [ue(A©),1)] < (VD) 7!
uniformly for £ in W. Define
B, (1,€) = (M), )e 1030y, (1) Vs (€).

Then implies that

(D= (VI+E = V3)) 8, (1,6) = (Z,ia)e M0V 92[( )Pa(€)
(3.1.34) e (A(E), £)eA=OV3 g0 (1) Yo (€)

+oe (A(€), 1)e M=V Dy goy (1) P (€).
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On the other hand, (3.1.30)), (3.1.28), (3.1.6)) and (3.1.26)) imply that

(3.1.35) DME,(t,€) = (Z,as)e I0V3 050 (0)Va(€) + RE (2, €)
with
(3.1.36) 08 Ry, (t, &) < Ot~ e N

for any N. Making the difference between (3.1.34) and (3.1.35)), and using

3.1.3)), 1) we obtain that (3.1.31) holds, with functions ®7, \Ilice satis-
fying (3.1.18)) since the last two terms in (3.1.34]) and (3.1.36)) are

1 3/
Ot 4+t 7 (V) ) = ot
for t < e %

As xMj é(t x) is also of the form , with Y5 replaced by xY>, the
same reasoning applies to that functlon and shows that (| m holds as well
for zM? (with different functions ®1, ¥y in the right hand 81de)

We have thus obtained that the first term F3[a®PP] in (3.1.11)) has the wanted
structure.

To study F§[a®PP], we notice that by (1.2.14), (3.1.9), (3.1.8), it may be
written as a linear combination of expressions of the form (3.1.24) (with Y5
replaced by another function in S(R)), that have been already treated, and
of products of a S(R) function by expressions that are, by (3.1.3), (3.1.6)),
O(t-'1), so that form part of the remainder term ({3.1.20)). O

We may now state the main proposition of this section.

Proposition 3.1.2. — Assume that properties (3.1.9 (m hold. One may
construct a function uipp [1,T] x R — C (where T < e * is the length of the
interval on which a'i is defined by (3.1.8 (-)) solving the equation

(Dt *p(Dx)) app __ FO( app) 4 Féﬂ(aapp)
(3.1.37) +a™P Y~ Op(m ) (uf™) + R(t, x)
[I|=1
uPPli—y = 0

where mj ; is the symbol in the last sum of (2.2.4), where the remainder R
satisfies bounds

(3.1.38) |0%R(t, z)| < Contt  og(1 + ) (z) ™Y

for any a, N in N, with constants Co n(A, A’) depending on the constants A, A’
m , and where uSP? has the following structure: One may decompose

app 7app 1app rapp
uy —u+ + """, where u”"" satisfies for any r in N

(3.1.39) [u/%PP (L, )| g < C(A, A)éti
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(3.1.40) [P (2, ) [wree < C(A, A)é?
7

(3.1.41) Ly u/%PP(t, )| e < C(A, At [(2VE) + (V) ex
where
(3.1.42) Ly =x+tp(D,),
and where u"°PP satisfies for any r
3.1.43 I1APP (¢ C(A, A ( e )2

. . r <
( ) Hu ( ’ )HH = ( ) )6 <t62>
(3.1.44) [u"2PP(t, ) lwroe < C(A, A)e? log(1 + t)?
(3.1.45) | L4 PP (¢, ) lwree < C(A, A')log(1 + t) log(1 + €%t).

For the action of the half-Klein-Gordon operator on u’j_pp, we have estimates

(3.1.46) (D = p(D)u/ PP, ) rr < C(A, AP

(3.147) [[L+(Dy = p(D)W PP (t, ) zr < C(A A (V) + (VD) el ],

Moreover, we may write also another decomposition ofu , of the form

(3.1.48) WP (t, ) = uPP (¢, @) + 24 (8, x)

where uipp’l is a sum

(3.1.49) PP ) = Y Uja(ta)
je{_270=2}

where Uj ; solves the equation

3
(Dy — (D)) Uj s = 9% My (¢, z)
Uj,+\t:1 =0,

with source term M, given by (3.1.21). The second contribution X in the
right hand side of (3 may be also wmtten as a sum 33 3 U; (t x), with

U solving an equation of the form (3.1.5(}), with source terms e % M ;(t, ),
where M ; satisfies for any o, N

(3.1.50)

j=

(3.1.51) 108 I ;(t,€)| < Can(A, ANt 2 ()N
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and for any symbol m’' in the class 5’6’0((@_1, 1) of Definition one has
for any o, N in N estimates

(3.1.52) |zNagOp(m) (T4 (¢, x))|
< C(A,A) [tZ% I t'e?] log(1 + ).

In addition, all constants C(A, A") in the above inequality depend only on A, A’

app,1 app,1 _ _ sapp,1 11app,1 ;
Moreover, uy’ may be decomposed as uy = w0 +u T, with

u’ipp’l (resp. u”j_pp’l) satisfying (I3.1.34)—(I3.1.41|) and (I3.1.46|), (f3.1.4’7|) (resp.
(3.1.73)-(3.1.739)).

Finally, all functions above are odd.

Proof. — The proof of the proposition will be divided in several steps, and
use the results of Appendix below.
e First step

We have decomposed in (3.1.11)) the source term of (3.1.37) F3[a*PP] +

F$[a®PP]. 1In this first step, we construct a first contribution uipp’l to the

solution of (3.1.37)) taking as forcing term the contribution I given by (3.1.12))
to (3.1.11]), i.e. we solve, with the notation (3.1.12))

(Dy = p(D2)) PP = >~ €T M(t, )
(3.1-53) Je{_27072}

app,1 _
uy " =1 = 0.

The functions M; in the right hand side are given by (3.1.21]), satisfy (3.1.13),

and one may thus write u? ! under the form (3.1.49), with U, + given as the

solution of 3.1.50|). We apply Appendix The solution of ([3.1.50) is given
by 1|A10.1.2 with A = j@ and may be decomposed according to (A10.1.3) in
U; . +Uj,. We define

(3.1.54) u'ipp’l = Z Ui 4 u"ipp’l = Z Ui,

Jj€{-2,0,2} je{-2,0,2}
and check that they give contributions to w4",u”%PP that satisfy (3.1.39)-
(3.1.41) and (3.1.43)-(3.1.45). By (3.1.13)), the A;’s in the right hand side
of (3.1.53)) satisfy (A10.1.6) with w = 1 i.e. Assumption (H1); holds. By (i)
of Proposition [A10.1.1} we thus get bounds of the form (3.1.39)-(3.1.41]), and

by (i) of Proposition |[A10.1.2} we have (3.1.43))-(3.1.45). We shall define the
contribution uipp’l in (3.1.48)) by

app,1 _ sapp,l /1app,1
(3.1.55) wyt =
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i.e. by the right hand side of . Moreover, as M; is odd in x, so are
Uj+,Uj ., Ul L.

e Second step

We consider now the term involving Op(m’l’ ;) in the right hand side of

(3.1.37), where we replace u{™® by uiPP given by (3.1.49) (with «*PP! =

—u®PP) e,
(3156) app Z Z Op(ml I)(U )
11|=1je{-2,0,2}
with U; — = —U; 4. Recall that we decomposed U; y = U i+ T UJ according

to (A10.1.3). Let us examine first the contribution coming from Op(mj ;)(U};)
3-1.56)

to (3.1.56). The symbol m ; lies in S’LO((ﬁ)_lM(’{, 1), which is contained in
5”670(1 1) (recall that My = 1 when there is only one £ variable), and it satisfies
2.1.7). Since U”Jr is defined by (A10.1.3) with A = 3‘2[ from some odd Mj,
we may apply Proposition [A10.2.1} with M; satisfying Assumption (H1); i.e.

(A10.1.6) with w = 1 according to (3.1.13)). We shall thus get from (A10.2.2)

ijt 3
(3.1.57) Op(m) ) (U},) = 97 M) (t,2) + ro(t, @)
with for any «, N, by (A10.2.4)),
(3.1.58) 1097 (t, )| < Cone?t og(1 +t)(z) Y

and where M(JZ satisfies by (A10.2.3

5159) 08 My (¢ 2)] < Conte (@)Y
o _1__3 3pr
020, M ") (1, 2)| < Conte 2 [te  + 172 (EVD) ().
By conjugation, we shall have also

(3.1.60) Op(mf, )(U)_) = e 15 MY (t,2) +r_(t, 2)

with Mj(lz (resp. r_) satisfying also (3.1.59)) (resp. (3.1.58)). We plug (3.1.57)),
3.1.60)) in (3.1.56]) and use the expression (3.1.9), (3.1.8]) of a®”P. We get that
3.1.560)) is a sum of quantities of the following form:

— Terms of the form
it 3 5 (1) g
(3.1.61) e 2 Mj, (t,z), j =-3,-1,1,3

coming from the product of the first term in (3.1.8) (or its conjugate) and of
the M]‘Q terms in (3.1.57)), (3.1.60)). One gets thus smooth odd functions of
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x, that satisfy by (3.1.59)), (3.1.3)) estimates
_3
M (¢,2)| < Cavte * A
3p/
020 M P (1,2)] < Cot [tF + 473 EVD ()™
— Terms satisfying (3.1.38]) and thus contributing to R in (3.1.37)). These
terms come from the product of (3.1.57)) or (3.1.60)) with all terms in the right

hand side of (3.1.8]), except eitgg( t) (and its conjugate) and from the product

of a®PP with r4 in (3.1.57)), (3.1.60). As €2t~ 't 2 < (Ct~ 1t Lift < e, we do
get that these terms satlsfy (13.1.38]).
— Terms of the form

(3.1.63) a®(t) > > Op(my)(Uj,)

[]=15€{-2,0,2}

where U’ 1 is given by (A10.1.3) in terms of M; satlsfymg Assumption (H1),
with w = 1. We shall see in fifth step below that 3.1.63)) satisfies also (3.1.38))

and thus contributes to R.

It follows thus from (3.1.53]) and the fact that (3.1.56) is given by (3.1.61]) up

to remainders, that

(Dy —P(Dx))uipp’ —a™P(t Z Op(m 1) ) (W5
(3.1.64) =
= I — I}V + R(t,z)

where [; is given by (3.1.12)), 1'2(1) is the sum of terms (3.1.61)) and R satisfies

3.1.38). Making the difference between (3.1.37)) and (3.1.64)), we get, taking
3.1.11)) into account

(3.1.62)

(3.1.65) (D — p(Dy ))[uipp PP

=L+ I3+ IV + a?PP(t ) S Op(mh ) (U3 — w3 + Rt z),
[]=1

with R satisfying (3.1.38). Notice that by (3.1.62]), 12(1) has the same form

as I given by (3.1.14)), (3.1.15]) so that we shall be able to treat both terms
altogether.
e Third step

We now construct an approximate solution in order to eliminate Is + Iél)
in the right hand side of (3.1.65). Define u’ P2 as the solution to the linear
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equation

(D = p(D2))ul? = I + 1§
u'ipp,?’t:l —0.

As the right hand side has structure (3.1.14f) with M, satisfying (3.1.15)), we

may express the solution as a sum > ;e 513 Uj+(t,x), where U;_y is ob-
tained from the j-th term in (3.1.14) and expressed under form (A10.1.2)
with A = j@. By (A10.1.3), U;+ = Uj, + U/, and since (3.1.15) shows
that (A10.1.6) holds with w = 3, Assumption (Hl) holds. By Proposi-
tion [A10.1.1] bounds (A10.1.17)-(A10.1.19 Wlth w = 3 hold for U} ,, and by
Proposition[A10.1.2] (A10.1.23), (A10.1.24) and (A10.1.26) are true. If we set

(3.1.66)

/ 2 / 1 app,2 _ "
(3.1.67) ul, PP = Z Uj7+7 u+app = Z Uj,+
Jj€{-3,—-1,1,3} Jj€{-3,—-1,1,3}
this shows that these functlons provide to w/%"", 5P contributions satisfying

estimates and (L13)- (L1

Let us study
(3.1.68) a®P(t) > Op(mf ) (ui*™?).
[7|=1
If we apply Proposition [A10.2. 1|, using that Assumption (H 1) holds, we get

from (A10.2.2), (A10.2.3)), (A10.2.4) and the fact that a®PP(¢) is O(t?), that
the contrlbutlon of u//#PP2 to (3.1.68) is O(t- 1t () ™) i.e. may be included
in R satisfying 1} On the other hand, if we replace in (3.1.68) u app,2 by

', *PP2 | we shall get terms of the form (3 1) with U ! 1 given by 1' in

terms of M satisfying Assumption (H1), with w = 5 These terms are thus
better than those in ((3.1.63)) and the fact that they fulfill remainder estimates

(13.1.38)) will be seen in Step 5 below.

Consequently, we have shown that
(De = p(Da))ulf™* = a2 (1) 37 Op(mf 1)(u™?)
(3.1.69) [1=1
=L+ IV + R(t,z)
with R satisfying (3.1.38). Making the difference between (3.1.65) and (3.1.69),
we get

(3.1.70) (D¢ — p(Dy)) [uf — uipp’l — uipp’2]

= I3 + a®PP(t (Z Op(1) ;) (uZPP — 3PP ! — 3PP )> + R(t, ).
[]=1
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e Fourth step

We construct an approximate solution in order to eliminate I3 in (3.1.70)
i.e. we solve
(D1~ p(D))" — Iy

(3.1.71) 3,

with I3 given by 1} For each contribution eijt‘/gM3(t,x) to 1|3.1.16
with —1 < j < 1, we get an equation of the form 1|A10.1.1|) with A = j/3.
Moreover, by (3.1.17), (3.1.18]), (3.1.19) assumptions (A10.1.7), (A10.1.8)),
1|A10.1.9|) hold (the last two ones being empty if A = j1/3 with j = 0 or

—1), i.e. Assumption (H2) of section (A10.1.1)) holds. We may thus apply (ii)
of Proposition |A10.1.1{ and Proposition |[A10.1.2] that allow to write w7} app3 a9
a sum

1
(3.1.72) PP = N U (), Uy = U + U,
jzf
with U}, satisfying (A10.1.20)-(A10.1.22) and U}, satisfying (A10.1.27)-

(A10.1.29). If we set uapp’d =/, 2PP:3 4 ¢/ 3PP3 with

(3.1.73) u/ PPPS = Z Tt ), WP = Z Uj (t, )
j=—1 j=—1

it follows that (3.1.39)-(3.1.41]) and (3.1.43))-(3.1.45) hold true. Let us check

that

(3.1.74) a®PP(t Z Op(m 1) app3)
[7]=1

is a remainder satisfying (3.1.38]). Since we are here under Assumption (H2),
we shall apply Proposition |A10.2.4]splitting each U; 4 in (3.1.72)) as

(3.1.75) U+ =Uj 41+ Uy

_1
according to (A10.2.23). Then by (A10.2.24)), and the fact that a®? = O(t¢ ?),
the contribution coming from U/ j4+.1 obeys remalnder estimates 1|3 1. 38|)
that ( may be written as a contribution to R in (3.1.37) and as

(3.1.76) a®PP(t) Z Op(mj 1)( u'iplfg)
17]=1

with

(3.1.77) u'ipﬁ’?’ Z Faa(t )

j=—1
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We shall see in step 5 below that (3.1.76) provides also a contribution to R.
Consequently, we have obtained that

(Dy — p(Dy))u’P*® — a®P(t) 3 Op(m} ) (u??) = I5 + R(t, x).
=1

Making the difference with ( m, we conclude that «5" will solve (3.1.37)
if and only if

3

(Di = p(Da)) [l = 3~ u™]

(=1

a®PP ( Z Op(m} ; ( Zuapp Z) R(t,x).

[]=1

Consequently, we just have to take uf™ = u%’ Pl o 2PP2 4 uapp’ We have
checked that then estimates (3.1.39)-(3.1.41)) and (3.1.43]) m hold. It
remains to check that terms of the form (3.1.63)), (3.1.76)) provide remainders,
and that estimates (3.1.46]), (3.1.47) hold true, as well as the properties of the
decomposition (3.1.48). This will be done in the following steps.

e Fifth step

Let us show that (3.1.63), (3.1.76) are remainders. Let us use the same
notation UJ,',Jr for either U} | in (3.1.63) or UJ,'nHl in (3.1.77). Notice that since
the M;’s in (3.1.12)), (3.1.14), (3.1.16) are odd in z, so are the U]’-7Jr defined

from them. Moreover, as m/ ; is in St 0(<§>_1, 1), we may write
(3.1.78) Op(m +)(Uj ) = Op(ifu £ )[(Dy) ™' Uj 4]
with /} ; in 5’{70(1, 1). By oddness of U; ,

ix I(DJ;

(D,)~'UJ D, >U]'-7+)(t,,u:r) du

it T 9

(3.1.79) 2
2t/ (L4 Uj )(t px) = paUj (8, px) | dp.

As mq ; has rapidly decaying coefficients in x, we rewrite (3.1.78]) as a linear
combination of expressions

1 R 1 -~
(3.1.80) LopGit )| [ (AU ~F ], k= 0.1

for new symbols 772} ; in gi’o(l, 1). Using (A10.2.5) with w =1 or (A10.2.25)),

we bound any L norm of %02 acting on (3.1.80) by Ce?*t~!. Taking into

_1
account that a®PP(t) is O(te ), we see that (3.1.63)), (3.1.76) satisfy (3.1.38
(using again t < e~ 4).
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e Sixth step

We shall prove estimates (3.1.46)), (3.1.47). Recall that by definition /" =
wl PPl 4! #PP2 g/ aPP3 with o/ *PPT given by (3.1.54), u/ PP given by
(3.1.67) and u/,#PP3 given by (3.1.73). Consequently, (D; — p(D;))u' P is a
sum of expressions (Dy — p(D;))U; . where U]’-, 4 is given by an integral of

the form (A10.1.3) (resp. (A10.2.23)) with M replaced by an M; satisfying
either (3.1.13]) (for those coming from (3.1.54)) or (3.1.15) (for those com-

ing from ) (resp. satisfying (3.1.17)) for those coming from (3.1.73)).
Consequently, for contributions of the form (A10.1.3),

1 [too . .
(3.1.81) (D¢ —p(Do))UL, = /1 GHE=TIP(Da) +iNyT ¢

.
~5 —)Mj(T,-)dT

(7
V3

where X(7) = 7x/(7) and \; is some integer multiple of %*. In other words, we
obtain still an expression of the form of the first line in (A10.1.3]), but with a
gain of a factor t~!. The estimates (3.1.39) and (3.1.41) that we have already
obtained for «/°" furnish thus (3.1.46), (3.1.47) multiplying them by ¢! (the
change of cut-off ¥ does not matter, as it has support contained in the one of
X)- This shows also that (3.1.46)), (3.1.47) hold for w/@PP:t + 4//aPP:2. The case

of u/PP3 is similar, using (A10.2.23) to get an expression of the form ((3.1.81),

but with X(%) replaced by Y ( 7 ), i.e. again an integral of form (A10.2.23

with the gain of a pre-factor ¢!,

e Seventh step

We have to establish still . The contribution uipp’l in the right hand
side is the one that has been defined in the first step by , with right
hand side given in terms of M; defined in (3.1.21). The term X in is
thus given by uip P2 4 uj_pp’g introduced in (]3.1.67[), d3.1.72l). These functions
are constructed as sums of contributions U, that satisfy equations of the form
(3-1.50), where the source term satisfies (3.1.15]) or (3.1.17) and thus (3.1.51).
It remains to show (3.1.52). As m’ has rapidly decaying coefficients in z, we
may forget the !V factor in (3.1.52), and are thus reduced to the study of
a20p(m/) (uiPP?) and 92 Op(m') (u?P?).

Consider first 92O0p(m/ )(uipp’2). By (3.1.67)), we express that from

(3.1.82) 97 Op(m')(Uj ), 930p(m')(U},).

As Assumption (H1),, holds with w = %, according to (3.1.15)), the second term

above is given by (A10.2.2) of Proposition [A10.2.1} It follows from (A10.2.3)),
(A10.2.4) that its modulus is smaller than

_3
te 2+t og(l + 1),
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so than the right hand side of (3.1.52). On the other hand, Op(m/)(U; ) has
been expressed in fifth step under the form (3.1.80]). If we plug there estimates

(A10.2.5)), we see that the modulus of the first term in (3.1.82)) is O(e3t~1), so
better than the right hand side of (3.1.52)).

Consider next 02Op(m’ )(uipp’g’). Solving (3.1.71)), we have written uipp’?’
under the form Zjl-:,l(Uj’.ﬁL’l + U], 1) according to (3.1.75). If we plug this
decomposition in 93O0p(m’)(:), we get on the one hand expressions of the

form (A10.2.24]), that are bounded by the right hand side of (3.1.52)). For the

contribution 95 Op(m')(Uj 1), we use again that we can write an expression of

the form (3.1.80) and bounds (A10.2.25)). We get an estimate in O(e?t~1) that
3.1.52))

is better than the right hand side of (3.1.52)). This concludes the proof. ]

To conclude this section, let us compute some integrals that will be useful
in the sequel.

Proposition 3.1.3. — Let Yy be the function defined in (3.1.29). The func-
tions Uj 1, j = —2,0,2 in the right hand side of (3.1.49) satisfy the following:

(3.1.83) / Uz, (t,2)p(Dy) Yo da = (az + iB2)e™3g(t)? + r(t)
where ag is Teal,
(3.1.84) B = L1, (V2)

for the function Ys defined in (1.1.6), and where r(t) satisfies
3y
(3.1.85)  |r(t)] < C(A, A (e%—% e 3 (VD) ) < O(A, AL,

Moreover,
(3.1.86) [ Vo6, 2p(D2) Yo do = aglg(0) + (1)
(3.1.87) /U2,7(757 2)p(Dy) WYadr = a_ag(t) e 3 1 r(t)

where ag, a_y are real constants, and where r satisfies . Finally, the

function ¥4 in satisfies
(3.1.88)

‘ / S (£ 2)p(Dy) Vs da

Proof. — Let us establish (3.1.83). The function Us 4 is defined as the solution
of (3.1.50) with j = 2 and M> in the right hand side given by (3.1.21f). We
(3-1.83

write (3.1.83)) as

_3 _1
< C(AAN[te 2+t +t 1 2 log(1 + ).

%/U2,+(t,£)p(§)’1?z(—§) de.
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Since Y3 is odd, we get from (A10.3.2)) applied with Z({) = —p(ﬁ)*lffg(f),
M(t, &) = My(t,€), A = v/3, a contribution to r and two integral terms. By

(3.1.21)), the second one is

(3.1.89) - ”W/ (1= x3)©) o) dg(t)?

VRN e e

which may be written since Ys is real and odd, under the form o/ze"t\/gg(t)2
for some real af.

Using the definition (|A10.3.1) of x», and the fact that Yg(f)Q is even, the
first term in the right hand side of (A10.3.2)) brings the contribution

+o0 .
zt\f (t)Q lim /ezr(\/l-i—g?_\/?;)—afrx(g_\/ﬁ)
37T o—0+ Jo

(3.1.90) .
x RE( dedr.

Vi

Denote by £(¢) the reciprocal of the change of variables &€ — ¢ = v/3— /1 + £2
defined from a neighborhood of ¢ = /2 to a neighborhood of ¢ = 0. We rewrite

ELI) s

—3%6”‘/39(75)2
cim [ [T (€ - VIR e

=0+ Jo €O

(3.1.91)

Notice that

lim [ e dr = (¢ —i0)" = my — ipy. -
o0 Jo 0 . C

Plugging in (3.1.91)), we obtain an expression af, + i with af, real and So
given by (|3.1.84)).

To obtain (3.1.86)), (3.1.87)), we apply again Proposition but with
A=0or A = —3 so that xx = 0 and in the first term in the right
hand side disappears. Only the second one and r remain, so that one gets no
imaginary contribution to (3.1.86)), (3.1.87)).

Finally, let us prove (3.1.88]). As Y5 isin S(R), the integral may be expressed
as an integral of Op(m’)(X ) for the symbol m’ = Ya(x)p(¢)~!, so that (3.1.52)
brings the conclusion. O
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3.2. Asymptotic analysis of the ODE

In this section, we shall prove that solutions of the ordinary differential
equation have a certain asymptotic expansion by a bootstrap argu-
ment.

We make some a priori assumptions on the functions ®;,I'; in the right
hand side of .

Assumption (Hj{): Assume that ui is a solution to equation
defined on [1, T] xR for some T' < e~ 4 such that the functions ®2, T';, j = 1,2,3

defined on (|1.2.22) satisfy the inequality

3 3,4
@ty (£, ), u(t, )] + D te 2 2Dy (u(t, ), u(t, )]
(3.2.1) j=1
< B/t_%(egﬁ)Qef

for some constant B’, some ¢’ €]0, [ (close to ), all ¢ in [1,7], and assume
that the function ®; given by (1.2.22)) satisfies for any ¢ € [1,T]

V3 ~1(,app _  app
@1 (8 ) us(t,)) = (Y, VR(@)b(w, Do)p(De) ™ (ulPP — )

(3.2.2) .
3 /
—((Z,a4) — (2, a,>)) < Bt 32V,

where u*P is the approximate solution constructed in section Z is a

function in S(R), @4 are functions verifying inequality (3.1.4) such that for

any A in R — {—1,1}, one may find functions ¢ (A, t),v+(A,t) as in (3.1.5)),
solving equation (3.1.7) and such that estimates (3.1.6]) hold true, for A outside

a given neighborhood W of {—1,1} in R.
We consider on interval [1,7] the solution a4 of equation ((1.2.20)), namely

(3.2.3)

with an initial condition at ¢t = 1 satisfying
(3.2.4) lat(1)] < Ape

for some constant Ag. We introduce as a second assumption an estimate on
a4, that we give in terms of upper bounds below:

Assumption (Hj): The solution of equation with initial condition
exists on some interval [1, 7] with T' < ¢~* and satisfies on that interval
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the following requirements: One may write
(3.2.5) at(t) = afPP(t) + S(t)
where a®PP(t) has the structure
a'PP(t) = T g(t) + wag (02 + wnlg (O] + woag(t) eV
(3.2.6) + % (1) (94 (0,1) — 9 (0,1))
D) (04 (V31) — o (V3,)

+e
and where
(3.27)  S(t) = wsg(t)3e® T +w_1]g(t)*g(t)e T + w_sg(t)

with the following notation:

e The coefficients w; in (resp. (3.2.7))) are real (resp. complex) con-
stants that will be chosen below.

e The function g satisfies, for some constants A, A" and t € [1,T]

3 V3
673zt7

_1 _3 §0/
(3.2.8) l9(t)] < At %, [ag(D)] < Alee * +172(VD]
where ¢’ €]0, 3 is close to 3 and has been introduced in (H}).
e The functions ¢ (0,1), v+ (v/3,t) satisfy conditions (3.1.5)-(3.1.7) with Z
and 44 introduced in (3.2.2)), i.e. one has estimates

(D] < (VD 173, [ (0] < (VD) 1!
(Z st )] < (@VD)
(when € is small enough) and one has the equation

(3.2.10) (Dt = Npx(At) = (Z, 0z (t, ) + (A 1)

for A =0 or /3.
We shall bootstrap Assumption (H)) i.e. estimates (3.2.8) assuming that
(H7) holds:

(3.2.9)

Proposition 3.2.1. — Let ¢ €]0,1[, ¢ €]0,%[, ¢ close to 3. There are

constants A, A’ eg > 0 such that if Assumption (H1) holds and if the solution

a4 of exists on [1,T] and has structure with g satisfying

on [1,T], then if € €]0, e[, T < e~ *+¢, one has actually, for any t in [1,T]

1
2

1 1 _3 3q1
(3.2.11) l9(t)] < 5AL 2, [9rg(t)] < At ? L3V,

As a first step towards the proof of the proposition, let us rewrite equation
(13.2.3))
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Lemma 3.2.2. — There are a real constant vy, complex constants
¥3,Y—1,Y—3 such that, under the assumptions of the proposition,
V3 W V6
D1 = |as = e lg(t) Po(t) 1 — i Ta(v2)?
o) + e g () g + e g(0) g (B
2. g B—3
+e T g() s

+ (ag — a_)*®g + (ay — a_)*Ty

+ (aq —a)[(Z,1y) — (Z,0-)] + (1)
where r(t) satisfies
(3.2.13) r()] < C(A, A, Bt 2 (2V7)
for a constant depending only on the constants A, A', B’ of , ,
523,

Proof. — Consider the right hand side of (3.2.3). By (3.2.1)), the ®2 contri-

bution is bounded by B’F%(e2\/i)2el, so satisfies (3.2.13[). By (3.2.5)), (3.2.6)),
(3-2-8), (3:2.9)

_1
(3.2.14) lay ()] + |a—(t)| < C(A)te 2
so that (3.2.1) implies that the contributions (a; —a—)377I;, j = 1,2,3 to
(3.2.3) satisfy (3.2.13). We are thus left with studying
(3.2.15) o(ay —a_)* + ®1[uy,u_](ay —a_) +Tolay —a_)>.

The first and last terms in (3.2.15)) are present in the right hand side of ((3.2.12)).

Consider (a4 —a—)®;. By (3.2.2)), up to another contribution to r, we get on
the one hand the last but one term in the right hand side of (3.2.12) and the
quantity

26’

\/g — a, a,
Yo as = a )Y, Y h(@)b(z, Dap(Dy)”H(uF — u®7))
that, according to the definition (3.1.22)) of Y5, may be written
V3 _
(3.2.16) ?(a+ — a_)(Ya, p(Dy) " H(uiPP — u®PP)).

We replace above u{™ by expansion (3.1.48). According to ([3.1.88)

1

_3 _
(Y, p(D2) 'S4 )] < CA, A [t 2 +1712 4471 2] log (1 + ¢).

If we use also (3.2.14)), , we conclude, since t-2 < Ct_%(zf?\/f) and
1

3

te 2t1e < Ot 3(2VA), t 171 < Ot 2 (e2V/), that (3.2.16) satisfies (3.2.13
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(if we absorb the logarithm using that we assume €2/t < €2, 0 < L and that
we take € small). We are thus left with the contribution to (3.2.16)) of

(3.2.17) \ég(a+ — a7)<Y2,p(Dz)_1( ipp,l . uipp’l»_

with uipp’l given by (3.1.49). The bracket above has been computed in
3.1.83), (3.1.86), (3.1.87). It is in particular O(C(4, A")t-1). By (3.2.5)),

3.2.6)), d3.2.7 ) d3.2.8 , d3.2.9|) the difference ay — eitgg is bounded by
C(A[t! +t€_§t7%(e2\/f)9 |, so that if we replace in (3.2.17) a4 by eitég, we
get an error bounded by

_3 '
(3.2.18) C(A, AV [t72 4121735 (2VE) ] < C(A, A5 (V)

so that we get a remainder. Consequently, using again (3.1.49)), we have
reduced (|3.2.17) to

(3.2.19) ‘f (g(t)ei P4 g@e s

20’
)

S V(D) (U + T
j€{-2,0,2}

up to remainders. We have computed the bracket above in (3.1.83)), (3.1.86)),
1

3.1.87). Up to terms bounded by the product of (3.1.85) with t. 2, which still
provides remainders satisfying (3.2.13]), we get that (3.2.19)) is given by

/3 V3 3 YAV 3
32 y3g(t)® + €2 1] g(t)[g(t) + e 1 |g(t)Pg(t) + e TP E y_sg(t)

where «; are complex constants, with 4; = @(2040 + ag + a_9 + if32), where
g, aig, g are real and fo is given by (3.1.84]). We obtain thus the first four
terms in the right hand side of (3.2.12)). This concludes the proof. ]

We shall next compute from expression (3.2.5) of a4 and from (3.2.12) an
equation satisfied by g.

Lemma 3.2.3. — One may choose the coefficients wj, =3 < j <3, j # 1 in

(3.26)), such that if ay is given by and satisfies , then

g solves

3220)  Diglt) = (0= i YON(v22) la(0g(0) + ()

where « is real, Ya(v/2)? is negative and ri(t) satisfies
1 '
(3.2.21) |r(t)] < (AN 21 (VD)
+ (A A B2 + 771 (VD) + 75 (VA

—3,-32 30 202 30
+t 2t (EVHE + T (EVH? ]

260"
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where C(-) are constants depending only on the indicated quantities.

Proof. — Let us express in a more explicit way the right hand side of (3.2.12)).
By (3.2.5), (3.2.6), (3.2.7), (3.2.8]), (3.2.9))

ay(t) = (% g(t) + wag ()™ + wolg(t)  +w og(®) e ™)

(3.2.22) 1 3
<o 3@V + o)

for constants C'(A) depending only on A.
It follows that

(as(t) = a(£) = e™3g(t)? + 2lg()]* + e g ()’
42635 (1) (w2 + w_2)
(3.2.23) + 2615 (1) 29 (t) (2wo + wa + w_2)
270 |g<t>| 9(0)(2wo + w2 + w_3)
+2e79% g(1)° (wy + w_g) + (1)
where 7 satisfies (3.2.21).

In the same way

(a4 (t) — a— (1) = % g(1)° + 3¢ % g 1) g 1)
+ 3¢ g(1) Pg(D) + ¢ ¥ gB)" + (1)

where r satisfies (3.2.21])). We plug (3.2.23)), (3.2.24)) in the right hand side of
(13.2.12). We get, as ®¢, I'g given by ([1.2.21)) are real constants, the expression

; ; ——2
e““%og(tﬂ +21g(1)| 2@ + e V3Dg(t)

4B g0, 1 YOT(vV2))

S (1) + e T [g(1) PgB)y, + e
+ g7,y — (Z,i)
+ e g2, ay) — (Z,3)] + (1)

where ot J = —3,—1,1,3 are new constants with v, real, Y 5V 107 depend-

ing on w_g,wp,ws but not on w_3,w_1,ws, and where r(t) satisfies (3.2.21),
. . . - . i+ /3
and contains in particular the product of (Z,i+) with ay(t) — €' 2gg(t),

a_(t) + eitgm, according to estimates (3.2.22)) and (3.2.9).

(3.2.24)

3

(3.2.25) 9(0) v,

i

+e
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On the other hand, we may compute the left hand side of (3.2.12)) replacing

a4 by its expression 1| We get, using (3.2.10) with A = 0 or v/3,

V3 it V3 V3
(D= L) as = 67 Dug + g 1) — Duola(t)?
- 3\ggw_ge_it‘/gg(t)2 + \@wgesitgg(t)?’
i3 —
(3.2.26) — V3w 177 |g(t)*g(t)

_ 2\/§w_3e’3“§ﬁ3
43 3 N
+e" 2 ()2, 0y) - (2,0-)]
+ e GOZ, ) — (Z,a)] + ra(h)
where r1(t) is made of terms of the form
O(lgDigl), O(|Drgo+(0,1)]). O(|Digeps(v3,1)))
O(lgv(0,9)]). O(lge+(V3,)]), O(lg* Deg))-
By a priori estimate (3.2.8) and (3.2.9)), these terms are bounded by
_1 5
CA A1+t 2 3@VDE 412 @VD + 2 @vD ]
1 /
+ot @V

the last contribution coming from the first two terms in the second line of
(3.2.27). We choose now the free parameters wj, j € {—3,...,3} — {1} setting

(3.2.27)

(3.2.28)

w3 = E’Y wp = 2\f‘I’o wo = —%% w-1 = _@7
3 =3 3 ’ 3 T 3 1
_2V8 V3
RO R B R

(which is possible as Vo3 07 do not depend on w_3,w_1,ws). In that way,

when we make the difference between the two expressions (3.2.25)), (3.2.26) of
(Dt — @) we obtain equation (3.2.20) with a remainder satisfying (3.2.28)).

This concludes the proof, as 172(\f 2) being purely imaginary (since Y, is real

and odd), Y2(v/2)? < 0 and moreover, by Proposition|A14.1.2] Y5(v/2) #0. O

Proof of Proposition Let us show first that under the assumptions of
the proposition, the first inequality holds if A has been chosen large
enough, € small enough and ¢ < e~ 4+¢. In a first step, consider the case When
¢t is small, i.e. let us show that there is 7y €]0, 1] such that if 1 <¢ < 3, and
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e is small enough,

(3.2.29) ()] <

Since for these ¢ one has & < t-1 < €%, the a priori bound l) equation
(13.2.20)) and estimates (3.2.21)) imply that, for any such ¢,

lg(t)] < |g(1)| + KA3S3t + C(A, A, B) [0 4 4,

where K = ‘a—z‘l/g (\/5)2‘ and C(-) is a new constant depending on

A, A, B (and 7). If A is taken such that |g(1)| < 8 f’ and 79 small enough
so that K A%ry < T \/5, and if we take € small enough, we get, using that ¢’ is

te

M=

|

close to 1, that |g(t )’<4\[6<At67 3.2.29).
We shall thus study from now on equatlon (3.2.20) for ¢ > 73 and initial
condition at 7§ bounded by A_¢. In this regime, for some new constant

12
C(A, A, B'), (3.2.21) implies
(3.2.30) ()] < C(A, A, BY =3 (VD) +177],
remembering that t stays in [roe =2, e 4*¢]. For ¢ in [rp, e 2%¢], set
(3.2.31) e(t) = e (1 + t)%g<i>.
We deduce from (3.2.20), (3.2.30) that if 8 = —¥0¥5(v/2)2 > 0
_le(t) | —BHio 2

(3.2.32) Ore(t) = 5 + 1 le()e() + R(t)
where

(1+1t)3 L ()

IR()] < C(A, A B =5V + e |

(3.2.33) t2

_ C(4,4,B)
- 1+t
Denote w(t) = |e(t)[>. Then

—1y\ 3 Q/c —%
(147, )2[62 + €7y ]

(3.2.34) O (t) = 7= [w(®) = 28w(®)* + Q(1)]
where according to (3.2.33)), for t € [r, e 2t]
' _1
(3.2.35) Q)| < Cle=° + ery 2] Jw(t)|2
for some constant depending on A, A, B, 79. Moreover, we have
AN2
2. <{—) .
(3.2.36) w(m) < (5)
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2 4
We fix A large enough so that (%) — 26(%) < —é and then take € < ¢
small enough (in function of A, A’, B’, 7y) such that (3.2.35) implies |Q(¢)| <

1 2
$lw(t)|2. Then it follows that if, at some time t,, w(t,) reaches (%) , the

right hand side of (3.2.34)) is strictly negative. Consequently, taking (3.2.36])

2
into account, we get w(t) < (g) for any ¢ in [r, e 2+¢]. Using (3.2.31)), we

1
conclude that |g(t)| < 4t 2 for ¢ in [Z3,e~*+¢]. This gives the first inequality

B-2-11).

To get the second one, we notice that we may bound the right hand side of

(B-2-21) by

C)[tc? + 3 (evh?)

L0 B e+ VDT )i+t

for new constants C(A),C(A, A’, B'), depending only on the indicated argu-
ments. Plugging this in (3.2.20)), we get

_3 3¢/
Bug(D)] < Klgf + [C(A) + C(A, 4, Be(t, ) [t F + 13V
with lime04 Supyepy -4+ €(t,€) = 0. If we plug there the first inequality
(3.2.11)), choose A’ large enough relatively to A, so that
AN3 A
K(5) +omy <
2 +CA) < 4
and then take e small enough relatively to A, A’, B’, we get the second inequal-

ity (3.2.11f). This concludes the proof. O



CHAPTER 4

REDUCED FORM OF DISPERSIVE EQUATION

In section we performed a quadratic normal form on equation (2.1.11))
satisfied by u4 in order to get equation (2.2.2). On the other hand, in sec-
tion we constructed some approximate solution solving equation (|3.1.37)).

Making the difference between ([2.2.2]) and (3.1.37)), we shall get an equation
for the action of Dy — p(D,) on

iy =uy — _ Op(mo,r)(ur) — uf™.
=

The goal of this chapter is to invert in convenient spaces the map uy — 44,
to obtain an expression for w4 in terms of 44 and to write down the equation
satisfied by 4y in closed form.

4.1. A fixed point theorem

We establish first some abstract theorem. We consider E, F' two Banach
spaces with norms ||-|| g, [|-|| 7. We consider also two other normed spaces E, I’
such that ENE (resp. FNF') is also a Banach space. We set Br(r), Bg(r) for

the closed ball of center zero, radius r in F, E. We assume given a function
o (ENF)x (ENF)—ENF

(411) 1 1

(U 7f) —>@(U 7f)

satisfying the following estimates: There are C' > 0,0 > 0 such that for any
parameter A > 1, any u”, f, f1, fo in EN F, one has

(4.1.2) 12(u”, lle < C(lW"llr + I f1lF) (I1u"lle + 11 fll£)
(4.1.3)
|, Dl < CX (e + 1 £16)* + CX (e + 1 £1e) (le” ]2 + [ £1]2)
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2", f1) = @”, fo)lle < C(IW"|lF + I fille + 1f2lP) 1 = folle

(4.1.4) ]
+C (1"l + 1 Alle + 1 f2ll2) 1fr = f2llr

(4.1.5) [|®(u”, f1) — (", f2)|F
<C (I lp + L Alle + 1 flle) + 27 (s + I lls + 11 foll )]
X |Ifr = follr
+ CXT ([ e+ Lfalle + Lf2ll2) ]I — folle

We assume also that if, in addition to preceding assumptions, u” is in F and
fisin E, then ®(u”, f) is in F, with estimate

(4.1.6) @@, Iz < Cllu"llzllu" Il + (1"l + 1 F12) I F1| 5]
and if f1, f» are in E,
4.1.7) e, fi) — @@, f)llg < C(Iu"[lr + I fillr + I 2l 7)1 = foll 5

Lemma 4.1.1. — There is ro > 0 such that for any r in 0,79, any A > 1,
any u',u” @ in Bg(r\) N Bp(rA~7), the fized point problem
(4.1.8) f=d +a+ oW, f)

has a unique solution f in Bg(3rA\) N Bp(3rA™7). Moreover, if one defines

inductively
(41.9) o' (u",a,9) = a+ (u”, g)
A (I)n-‘,-l(u//’a’g) — (I)n(u/l’a,q)l(u//’a7g)) — <I>1(u",a, (I)n(ul/’a’g))’

and if one sets
Ex =X ([u"|r + 1 |lF + lallr) + A (" e + ' 2 + [l e)
one has for any N > 1 and a new constant C > 0
(4.1.10)
If =@V (W v+ a,0) || p < CVHEY(f — || p
+CVHET ([ | + W | + @l p)ILf — o'l e
1f =¥ (u" ' + @, )|[p < OVFLEY||f — o ||p + CVTLENATY | f — o

Furthermore, if one assumes that u', @ are also in E and " is also in F', then
f isin E and one has for any N > 1

(4.1.11)
~ ~ N
If =YW W + ad)p < CV([WllF + llalle + lu"e) " If = ol
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Proof. — We define the usual sequence of approximations
fN+1 — (I)N+1(u”,u, + ﬂ,u') = Sy, (I)(u/,,fN)
fo=0

using notation (4.1.9)). By (4.1.2)), (4.1.3), we have

Ifxialle < lldlle + lale + C(lu"lr + [ fnlle) (lu”ll e + 1 fx )

Ifnsille < lllp +llalle + O (e + L fxlle) + 27 (12 + 1 v lle)]
< (I["llr + 11 lF)-
It follows that if v/, u”, @ are in Bp(rA~=7%) N Br(A\r) with r small enough, one
has for any N

1
lfveille <5 (IIUHEH\UHE) 3l lle

4 1
v salle < 5 (e + alle) + 5l e,

In particular (fN)N remains bounded in Bp(3rA~™7%) N Bg(3Ar). Moreover,
by (4.1.4 - and the above bounds, for r small enough, (fx)x converges
in ENF toa hmlt f satisfying

f=u+a+dW, f)=d " +a,f).

Then (4.1.10)) with N = 1 follows from (4.1.4)), (4.1.5). One obtains the general
case by induction, using (4.1.4)), (4.1.5)). In the same way, (4.1.11]) follows from

E17). O

We shall apply the preceding lemma with £ = H*(R), F' = W”»*(R), s > 0,
A=t>1, pe N. We define the spaces E, F by
(4.1.12)
E={fe’R);zf € L’R)}, F={f e WI*™R);zf € Wr(R)}

and we endow them with norms depending on the parameter ¢:

11l = tlfllez + [lzflliz, 1Fz = tFllweoe + [ fllweoe.

The functions u',u” of (4.1.8) will be the functions w5, w”P of Propo-

By (3.1.39 m 3.1.41)) applied with a large enough r, and using
(3.1.42

42 , we get
[P (¢, )| < (4, A')ét
(4.1.13) [P (8, )| < C(A, A')e?
[P (2. )]l 5 < C(A A [ + 13 (VD) eb].

/\I/\
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In particular, for € small, t7|[w/ PP (¢, )| p + ¢t || w3PP (L, -)||p may be made as
small as we want (uniformly in ¢ < ¢=*) if € > 0 is small enough. In the same

way, by (145)-(5159)

[u"PP (¢, )lle < C(A, A)e
(4.1.14) lu" PP (t, )| < C(A, A)e(log(1 +1))?
lu"PP ()l < C(A A)te*(log(1 + 1))

Again, for t < €%, we see that t7||u"PP(t,-)||p + tHu"FP(t, )| may be
made as small as we want for € > 0 small.

We shall take some function i in Bg(Ar) N Brp(A~77) N E, and shall solve
in w4 the equation

(4115) 'ﬂ,+ = Uy — Z Op(mo,l)(ul) _ ulipp o u//ipp
|1|=2

where 10, 1 are symbols in 5’1,0 (H?:1 <§j)_1MO, 2) defined in Proposition|2.2.1

Setting f4 = uy — w3, we rewrite (4.1.15)) as

(4.1.16) fi —u,+pp+ﬂ++(I)( //app 1)

where

WL S L) = 3 Oplman) (" + 1)),
|7]=2

Let us check that the assumptions of Lemma are satisfied by the preced-
ing map.

Lemma 4.1.2. — If we take E = H*(R), FF = WP>(R), with s,p large
enough and E,F defined by (4 (| 1. Ia) then mequal@tzes 4.1.9 1 2) to (_) are
satisfied by the function ® defined by (4.1.17).

Proof. — To prove (4.1.2]) we have to check that, for any I with || =2,
10p(m0,0) ((u” + ) llmrs < C Il lweee + [1fllweee) (1"l s + 11 f1l2+)
which follows from (A11.1.30) if p is large enough, since Proposition [A11.1.6

applies in particular to symbols that are independent of x, which is the case of
elements of 5’1,0 (H?ﬂ (§j>71M0, 2> according to Definition [2.1.1} In the same
way, (4.1.3)) may be written

10D (1m0,1) (W + f)1)[weee < CE7([[u" [[weoo + || flwesee)
+ 7 (s + 1 F )] [ weee + [ fllwese]




4.1. A FIXED POINT THEOREM 99

which follows from (A11.1.37) with » = 1 if (s — p)o is large enough. Inequal-
ities (4.1.4) and (4.1.5) are proved in the same way using the bilinearity of

Op(1mo,1)-
Let us prove and . To simplify notation, consider for instance

the case I = (2, ()). It is enough to prove the estimates
(4.1.18) 10p(120.1) (1, f2)ll L2 < Cllfillwess [ f2l 2

(41.19)  2Op(0,1)(fu, f2) 22 < C[thfullwoe + lfillwoes | | foll 2

(4120)  [2Op(an) (1. )l < Cllfallwoos [t folle + afel ]

(and the symmetrlc ones) in order to get (4.1.6) and (4.1.7). But (4.1.13)
(

s

resp. (4.1.19)) follows from (A11.1.31) (resp. (A11.1.35)) if in the right hand

ide of the latter inequality we estimate
IL2vjlweoe < Clllzvjllweoce + v llweo+roo-]

To get (4.1.20)), one applies instead (A11.1.31)) after commuting z to Op(mo,1)
in order to put it against the fo argument.

This concludes the proof of the lemma. ]

We may now state the main result of this section, that will show that the
implicit equation (4.1.16) may be solved in fy, and that we get an expansion
for fi in terms of u/5™", w”%"* and ;..

Proposition 4.1.8. — Let WP u"""" be function satisfying 44.1.13:,

4.1.14). Let also a4 be a function of (t,z) € [1,T] x R, with T < e **¢
satisfying for some 0 < 0/ < 0 < % (0" and 6 being close to %), some § > 0,
some constant D the following estimates

I3 (¢, )lle < Det?

(vD)”
\[
las(t,)p < Dit(EVE)'.

Then, if € is small enough, there is a unique function fi in ENF with

(4.1.21) a4t )P < D—=—

o

(4.1.22) | fellF < 3max(C(A, A", D) max(eQ(log(l + 1)), (62\/\[?)
£+l < 3max(C(A, A'), D)t

such that, setting f— = —f4

(4.1.23) fr=u"P +ay 4+ > Op(mor)((u" + f)r).

[1]=2



100 CHAPTER 4. REDUCED FORM OF DISPERSIVE EQUATION

Moreover, one may find symbols (my)a<|11<4 in the class Sio (H"I:|1 (§j>_1M6’, 1))
for some v, such that one may write the solution f to under the
form

(4.1.24) fr=uPP +ay + > Op(my)(ar, uih’) + R
2<|I|<4,I=(1",I")

where R satisfies

0’ -
(4.1.25) IR, )||lue < C'(A, A, D) <(€2\/\2t)46t5
4 o
(4.1.26) JeR(E, )z < C(4, A’,D>((€2%t)4ti<e%/i>9

for some new constants C'(A, A', D), o > 0 as small as we want.

Proof. — Equation (4.1.23)) may be written under the form (4.1.16) with &

given by (4.1.17). We have seen in Lemma that inequalities (4.1.2))
to (4.1.7) hold true, with the spaces F, F, E, F defined in that lemma. By

(4.1.13), (4.1.14) and (4.1.21), if t < ¢ % and € is small enough, we can
make 7| FP(L ) |p, Ol ) E, Nl (¢ )]l and WP, )|s,
YW PP (8, ) ||, tTH|@ (L, )||E as small as we want. We may thus apply

Lemma that gives the solution fy to (4.1.23) and its uniqueness. This
11.29)

lemma gives as well the first inequality (4.1.22)). To get the second one, we

deduce from (4.1.8)), (4.1.2) that
(4.1.27) £l < 10 PlE + llaslle + o (o) [[1flle + w5l e]

where o(e€) is controlled by ||fi||r and ||u”5"P||p, so goes to zero if € goes

to zero by the first inequality (4.1.22)) and (4.1.14). Using (4.1.13]), (4.1.14]),
(4.1.21)), it follows that, for € small enough,

(4.1.28) | £+l < 3max(C(A,A"), D)et’.
In the same way, we get from (4.1.8)), (4.1.6))

1 llz < 1PN g + gl g + Clu"P a3 lle + o ()l f+ 1l

where o(€) is controlled by ||u” 3P|+ || f+ || F, so goes to zero with e. Plugging
({4.1.13), (4.1.14), (4.1.21)) in this inequality, we get for e small enough, and
some new constant C(A, A, D)

(4.1.29) If+l5 < C(A, A, D)t (EVE)'.
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We apply next (4.1.10) with N = 4. We obtain, using (4.1.13)), (4.1.14),
[@-121), [@.1.22) that

2 o' o4
(4.1.30) Hf+_q)4<u//ipp ulapp+u+7 /app HE < C/(A A D) [W\zt} 6t6

since we assume t < e~ 4¢ with some ¢ > 0. In the same way, by (4.1.11))
(4.1.31)

9/
s — @ (P P+ u'ipp>r|Es0’<A7A’7D>[W2t} eV

The right hand side of (4.1.30) (resp. (4.1.31))) is controlled by (4.1.25) (resp.
[@.1.26)).

To finish the proof, we have to rewrite ®4(u""P, /PP + Gy, u/5PP) as the
main term in the right hand side of (4.1.24)), up to remalnders Let us show
by induction that one may write

(4.1.32) N (WP /PP + G, w/EPP)

WP+ ) Op(m) (g, uhP)
2<|I|<N+1
I=(I",1")

for some new symbols m¥ in S O(Hm €)My, 1) for some v. For N =1
this follows from the definition 1_' of ®! and of (4.1.17). The general case
follows using and Corollary i.e. the stability of operators of the
form Op(m?) by composmon

We apply (4.1.32] m with N = 4, and according to (4.1.30)), (4.1.31)), equality
(4.1.24) will be proved if we show that the contribution to the right hand

side of (4.1.32)) given by I with |I| = 5 forms part of R in (4.1.24). Using
(ATLL3]

1.1.31)), we estimate the H® norm of such a term by

- 4
C sl + [P foonse + 0”22 [y e
x [l llazs + 1= s + [lu" P are]
so by the right hand side of (4.1.25)), using (4.1.13)), (4.1.14), (4.1.21)).

To study the L? norm of the product of z and of the terms in the sum
(4.1.32) with |I| = 5, we rewrite the latter, decomposing u?PP = /PP 4 ¢,//aPP
under the form
(4.1.33) > Op(m?) (tp, w/HP, u"Hr)

| 1|=5,I=(1",1",1"")

with symbols 7073 in S o (H?:l (&) My, 5).
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In (4.1.33)), we distinguish the cases [I"| < 5 and |I"’| = 5. In the first one,
we use (A11.1.34]), making play the special role to one argument different from
u”PP. We obtain a bound in

~ 4 ~
g llweoee +[[u P llwroce + [[0"5P [weoe ] [P g + [t [ 5]

which is controlled by the right hand side of (4.1.26). When |I"’| = 5, we use
(A11.1.35)), to obtain a bound in

8
1" oo.ee [[u” PP [ 2 llu" PN 7 < C(A, A"t (log(1 + 1)) "€

by (4.1.14). Since t < e~4+¢, the last bound is smaller, for ¢ small enough,

/ / @V "\ 5, o /0 . .
than C'(A, A’, D) (T) t1(e2y/t)’, so than the right hand side of (4.1.26)).
This concludes the proof.

4.2. Reduction of the dispersive equation

The goal of this section is to deduce from equation (2.2.2)) satisfied by
an equation satisfied by the function @, defined in (4.1.15). More precisely,
we shall prove:

Proposition 4.2.1. — We firc>0,0< 60 <0< %, with 0" close to % and
0 > 0 small. We take numbers satisfying s > p > 1 (that may depend on the
preceding parameters c,0,0'). Let € €]0,1] and T € [1,e-4¢]. Assume we are
given on interval [1,T] a solution u?*® = w'5** + u"%PP of satisfying
bounds (3.1.839)-(3.1.41) and (3.1.45)-(3.1.45). Assume also given a function
uy in C([1,T], H*(R)), odd, solution of (2.2.4) and such that, if we define
by i.e.

(4.2.1) Uy = uy — Z Op (10,1 () — u/%PP — /2P
=

then Uy satisfies for t € [1,T], bounds
I+ (¢, )|l < Det’
(v
Vit
|Liir (¢, )2 < Dt3(EVE)

(4.2.2) a4 (¢, ) lweee < D

for some constant D.
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Then iy solves the equation

(Dt — p(Dy)) iy = > Op(iy) (g, u7i®)
8<|1|<i (1" 1")

+ Z Op(mfu) (@, uii?)
[I|=2,1=(1",I"")

(4.2.3) +a™P(t) Y Op(mh p)(ir)
11|=1

+ é(e“%(t) +eﬂ't§@)2 >~ Op(my,p)(iir)
\T]=1
+ R(t,x)

where for some v in N, iy are symbols in Sy g (H'fil <§j>_1MO(§)”, |I\), 3<

[I] < 4, where mg ; and ™) ; are in 5’1’0( L]:‘l (fj)_lMo(f)”,]ID, all these
symbols satisfying , and where

a®P(t) = @

(4.2.4) a ;

(@3P () — o™ (1))

with a5PP (t) being given by the first four terms in the right hand side of ,
namely

V3

a it¥3 i 2
(4.25)  afPP(t) = €T g(t) + wag(t)2e™V? + wolg(t)|? + w_og(t) e V3

and a®P(t) = —a’PP(t), and where R(t,z) satisfies the bounds for t in [1,T]

(4.2.6) IR, )|z < et® Le(t, e)
(4.2.7) ILaR(t, Y2 < =5 (VD) elt, )
where

(4.2.8) lim sup e(t,e) =0.

€0+ 1<p<eate

As a preparation for the proof, let us rewrite equation (2.2.2)) replacing in its
left hand side u4 by the expression of that function that follows from (4.2.1),
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namely
(4.2.9)
(De = p(Dx)) [y + u' PP + u"FP] =Ffa] + Fi[al

+ Y. Op(mo,r)[ui]
3<|1]<4

+ > Op(mp p)[ui]

[]=2

3
+> aty Y Op(m)g)[url.
j=1

1<|1|<4—j

Recall that we have written in (3.1.37) an expression for (Dy — p(Dg))u’™.
Making the difference between (4.2.9) and (3.1.37)), we get that (Dy—p(Dy)) 4
is equal to the sum of the following expressions:

(4.2.10) FZla] — F§[a®P] + F§la] — F3[a™P]
(4.2.11) >~ Op(mo,1)[ur]
3<|1]<4
(4.2.12) > Op(mp p)[ur)
|I|=2
(4.2.13) () Y Op(m} lur] — a®PP(t) S Op(m ;)[ufPP)
[7]=1 |I|=1
(4.2.14) a(t) Y Op(myp)lur]
2<|1|<3
(4.2.15) a(t)! Z Op(myg )[ur], j=2,3
1<|1<4—j
(4.2.16) — R(t,x)

where R satisfies (3.1.38)).

We shall analyze successively the expressions (4.2.10) to (4.2.16), using
equation , in order to rewrite their sum as the right hand side of
with a new remainder R.

We first write in a lemma some elementary inequalities that we shall refer
to in the sequel.
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Lemma 4.2.2. — We denote by e(t,z) any real valued function defined on
the interval [1,e~4%¢], satisfying . We have then the following inequal-
ities:

(4.2.17) 1T = O(et et ) if y > %
1 1
(4.2.18) loge|t-7t% = O(t—%(e“’\/i)ee(t, e)> ify>5.0<3

(4.219) [+ (VD) 17 et® = O(ete(t, €)) if 6> 0,4 > 4,9 >0

(VD) logel 't 1 (VD) = O£ 5 (V) e(t, o))
(4.2.20) |
ifvy>00<0< 5
(€2v1) |loge|t "2~ [m( 2] = O(et’e(t, €))
(4.2.21) ' 1
sz—9<'y§f—0+25,a20
2 2
(4.2.22) log e|2et™3 = o(f%(e%/%)ee(t, e)) ifO<0< %
_1 1
(4.2.23) log e?ete 2t™7 = O(et™te(t, €)) if 5 <7< 1
(4.2.24) 11 = O(etLe(t, €)).

Proof of Proposition : Since (Dt — p(Dy))u4 is given by (4.2.10) to
(4.2.16)), we have to write each of these terms as contributions to the right

hand side of (4.2.3)). We study them successively.
e Terms of the form (|4.2.10]

Recall that a = @(mr —a_) with a_ = —ay (see (1.2.19)) and that a4 (¢)
_1
is given by (3.2.5). Since by (3.2.8), g(t) is O(t. ?), it follows from ({3.2.5)),
3.2.7) that ai(t) — a’™P(t) = O(te ?). The definition (1.2.14) of FZ[al, F3|a]
implies that for any «, N integers

(4.2.25) 5 (Fila] = F{[a*™)) (1, 2)| < Cant (@)™, j=2,3.

Thus (4.2.17) implies that (4.2.6]) holds (even with 6 = 0) and (4.2.18) implies

that li is true for any 6 < 5. So these terms contribute to R in (}

e Terms of the form (4.2.11))

Notice that if @, satisfies estimates (4.2.2)), then it satisfies bounds (4.1.21))
(with a new constant D) in view of the definition of E = H® F = WA

and (4.1.12) of E. Moreover, if we set fi = uy — 5P, equation (4.2.1)
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may be written as (4.1.23). Then Proposition implies that for e small
enough, there is a unique solution f solving equation (4.1.23), and we have

an expansion (4.1.24) for fi in terms of @, u®PP. We may rewrite this as

(4.2.26) uyp = uPP 4+ iy + > Op(my)(ip, ufi®) + R
2<|1|<4,1=(I" 1)

with symbols m; in 5’1,0 (H'I:I1 <§j)_1M(’)’, ]I|) and R satisfying (4.1.25)),
(#.126). We plug expansion (4.2.26)) inside ([4.2.11)). Recall that by Propo-
sition [2.2.1} the symbols mg s in (4.2.11) belong to 5’1,0(]_[']»]:‘1 (fj)_lMO, 1]).
By Corollary |A9.2.6| we shall get terms of the following form:

(4.2.27) Op(my)(ap,up?), 3 <|I| <4,I=I"1")

where 7y is some new symbol in Sy g (H‘jlzll (&)t |[1]) for some new v;

(4.2.28) Op(1m1) (U1, Us, ..., Uk), k= |I|
with m; as above and either

(4.2.29) k>5, Up € {ie,u' TP, u" PP}
or

(4.2.30) k>3, Us € {ax,u TP, u"FP, R}

with R satisfying (4.1.25)), (4.1.26)), one of the U, at least being equal to R.
Terms of the form (4.2.27) are present in the right hand side of (4.2.3). We
have to show that (4.2.28)) contributes to the remainder in that formula. By

(A11.1.30)), under (4.2.29)), the H® norm of (4.2.28) is bounded from above by

C(Isllwose + [P noe + 1" e

X (lpllzs + 1050 s + w0 s )

By (4.2.2)), (4.1.13), (4.1.14), and since k > 5, we obtain a bound in

o
(4.2.31) C’(62|loge|2 + (62\\/[?)46156

so that (4.2.19) implies that (4.2.6) holds. On the other hand, consider the
action of Ly on (4.2.28) and let us estimate the L? norm of the resulting

expression by the right hand side of (4.2.7)). If we multiply (4.2.28)) by z, we
have to study

(4.2.32) 2Op(iy) (U, . .., Up_1, Up).
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Consider first the case when among the U,’s in (4.2.28)), at least one of them
is equal to @i+ or /PP say Ug. We apply (A11.1.34) (with j = k) and obtain
thus for the L? norm of the relevant quantity at time 7 a bound in

(4.233) Ol lwoos + 10/ FPllwnoe + 1" lwoos )

X (Tltg |l g2 4 | Lytg] 2 + 7| PP || 2 + || Lyw'SPP] 12).

By (4.2.2), (3.1.40), (3.1.44), (3.1.39), (3.1.41), and the fact that k > 5, we
obtain a bound at time 7 in

o
(4.2.34) 0(62|log e|? + @)472(52\%)6.

By (4.2.20)) we get a bound of the form (4.2.7)) for (4.2.33).
Consider next the case when in (4.2.28), all the Uy are equal to u”$. In

this case, we use (A11.1.35)) (with p > pg) to estimate the L? norm of (4.2.32)

at time 7. We get a bound by

(4.2.35) Ol PPl 2 (7l e + | Lt lwoce ) PP 2.

By (3.1.43))-(3.1.45)) we get an estimate by
Ce(e2ﬁ)4|log et + 6(62ﬁ)3|log e[3r2
to which ( m largely applies.

On the other hand, the L? norm of the product of (4.2.28 m ) by 7 is estimated
using (A11.1.31) by (]4 2.33) or (4.2.35)) as well. We thus have obtained that,

under condition (4.2.29), (4.2.28) forms part of the remainder in (4.2.3).
Let us study now case (4.2.30). If we compute the H® norm of (4.2.28))
applying (A11.1.30)), we obtain a bound in

k—1
C[laslwees + 65 wese + " PP oo + | Rlwese| " IRl

4.2.36 - -
(236) o [Jasliwes + [0S llwnos + | lwnos + | Rl

< s lls + 6Pl e + 6”2 ] | Rllwoce.
By (4.1.25), that allows to bound ||R||we. by Sobolev injection, (|3.1.40)),

(13.1. 44, (4.2.2), the first line is bounded by (4 , so it satisfies (4.2.6)).
The second line of (4.2.36)) is also estimated in that way. Notice that the
assumption k > 3 is not used here, and that k > 2 suffices.

If we compute instead the L? norm of the product of by z from an

expression of the form (4.2.32) with Uy replaced by R and apply (A11.1.34),
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we obtain an estimate at time 7 in

Cllis lwoe + 43P e + 6”522 oo + | Rllwoce]|
X [7IRl 2 + 0] 12].

The first factor is O(e2?) by (3.1.40), (3.1.44), (4.2.2) and (4.1.25) (coupled
with Sobolev injection). The last one is bounded from above using (4.1.25)),
(4.1.26)), so that it satisfies using (4.2.20)). The L? norm of the product
of (4.2.28) by 7 is also estimated by (4.2.37)). Again, only k& > 2 is used.
e Terms of the form (4.2.12
We plug in expansion (4.2.26). By Corollary we get terms

of the form

(4.2.37)

(4.2.38) Op(mg ) (@, up®), |I| =2,1 = I',1")

and terms of higher degree of homogeneity. We may thus write these terms as
(4.2.39) Op(ﬁl})(Ul,...,Uk), ’I’ =k

where m/ is in 5’{10( ‘JI:|1 (&) My, |1]) for some v and where either

(4.2.40) k>3, Up € {tg,u P PP}

or

(4.2.41) k>2, Uy € {iie,uPP 4" PP R}

with at least one factor equal to R. Terms (4.2.39)) under condition (4.2.41])
provide remainders satisfying (4.2.6)), (4.2.7)), as it has been seen in (4.2.36)),

({4.2.37)). (The fact that & > 3 there has not been used).
Terms (4.2.38]) are present in the right hand side of (4.2.3]). Let us show
‘

that terms (4.2.39) under condition (4.2.40f), provide contributions to R in
(4.2.3)). To estimate the H® norm of (4.2.39)), we may first split the symbols

in new ones satisfying the support condition of Corollary [A11.2.12] i.e. for

instance [&1] + -+ + [&p—1| < K (1 + |€|). We shall apply estimate (A11.2.39)
with n = k,¢ = k — 1. Let ¢ be the number of indices j between 1 and k — 1

such that in (4.2.39)), U; is equal to @y or w/5"P. Then by (A11.2.39)

(4.2.42) [Op(}) (UL, ..., U -

—(k— _ _ v
< Ot (| Lyt | g2 + | Lo PP 2 + N |l + [[0/SEP)| 2

_1_p!
% (HL+uHippHWPOv°°+Hu//ippHWPUW+t_%HuHippHHs)k 1—¢

(g ms + =Pl ms + 0" s).

Since k > 3, we obtain from (3.1.39)-(3.1.41)), (3.1.43))-(3.1.45) and (4.2.2) a
bound in

ct? [ti G \/7;)0 llog 6\2] “etd < Ctte(t, €)et®
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if o is taken small enough, so that (4.2.6]) holds.
We consider next the L? norm of (4.2.39) multiplied by x or t. The rapid
decay of symbols in the S, ; class relatively to Mo(£)™"|y| given by (A9.1.5)

implies that the product of 7/ by z is still a symbol of the form m/ (with a
new value of ). We thus have to estimate just

(4.2.43) t||OP(~/)(U1,~- Ui 22

with Uy satisfying (4.2.40). If at least one Uj is equal to 4+ or u "SPP we use
(A11.2.32)) with that value of j. We get a bound of (4.2.43 m in

(4.2.44) O (|l oo + 10/ FP e + "3 flwm
X (I Lyatllpe + | Lya PPl g2 + Gl 22 + (1w 2]

If all U; are equal to u”PP . we use (A11.2.33) in order to obtain a bound in

(4.245) " PPl e (1L 3PP v o + [Py ) [P .

By (3.1.39)-(3.1.41), (3.1.43)-(3.1.45) and (4.2.2), the sum of and
is estimated at time 7 (since k > 3) by
2

(4.2.46) [( y) + €%[log e|? } %(62\5)0+63‘10g6’4.
By , the first term is smaller than the right hand side of . The
same holds true trivially for the last term in . This finishes the proof
that terms contributes to the remainder in .

e Terms of the form (4.2.13))

We need to prove that (4.2.13) contributes to the remainder and to the
a*P 37 71=1 Op(g ;) (ur) terms in the right hand side of . Substitute
(4.2.26) in (4.2.13). We get the following terms

(4.2. 47)
(a(t) — a* (1)) 3 Op(ml ) (i) + (a(t) — (1)) S Op(m} ;)(ar)
[I=1 []=1
(4.2.48) a™P(t) > Op(my ;)(is)
1]=1
(4.2.49) a(t) > Op(mi 1) Op(mp)(tz, u'p))
[11=1 2<||<a,F=(1",1"")
(4.2.50) a(t) > Op(m) ;)(R)
17]=1

where R satisfies (4.1.25)), (4.1.26)).
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By @.2.5), (]318|) (3.1.6), (3.1.3) and , aapp —aapp(t) =

O(te 275—5( 2", alt) — a®P(t) = O(te ) = O(t i), By
(A11.1.29)), the H*® norm of (4.2.47) is thus bounded from above at time 7 by

_1 1,4 0"t rapp napp - —1,.2 0 s
073 3@V [P i+ PPz + s ] < O (@) er

using (3.1.39), (3.1.43), (4.2.2). This quantity satisfies (4.2.6). If we make
act Ly on (|4.2.4Z|i and use 1|A11.2.32|) to estimate the L? norm, we obtain a

bound in
11 . .
Cr 277 % (e 2\f) [||L+U'2-lypp||L2 + |1 Lytig g2 + (|0 2 + [y || 2]

for the contribution of u’app and iy to (4.2.47). Using ([#.2.2) and (3.1.39),

(3.1.41), we get by (4.2.20) the wanted estlmate of the form (4.2.7). On the
other hand, if we c0n81der the contribution (a(t) — a®PP(t ))Op(ml DU to

(4.2.47) on which acts L., we may estimate the L? norm from the L™ one, as
m’LI(ac,ﬁ) is rapidly decaying in . Then, by (A11.2.38|) with { =n = 1, we

obtain a bound in

(4.251) Ctla — a®P|[t7" (lu"5P|lweo + t3 " PP s

+ t—1+a(Hu//ippHWp0’oo + HL.;_u”ippHWPO»OO)]-

_3

As a—a®P = O(te ?), it follows, taking for instance r = 1, and using (3.1.43)),
(3.1.44), (3.1.45) that (4.2.51)) at time 7 may be estimated, if o is small enough,
from

CTG_%T"Hog > < Cr. _%7_%61_2"]log el
By (4.2.18 ) will hold largely. We have thus obtained that m is a

remalnder
Term (4.2.48)) is present in the right hand side of (4.2.3).
Consider next 1|4 2. 49|) By Corollary |A9 2. 6} the composition Op(m’1 7)o

Op(mj) may be written under the form Op(m/ ) for new symbols m/ i

Sl,o (Hu| (&) tmy, \I\) for some v and 2 < ]I] < 4. Consequently, we write

(4.2.49) under the form

(4.2.52) a(t) > Op(m} 1)@z, u7,").
2<|I| <4, I=(I', 1)

Since such expressions will appear also in the study of terms of the form

(4.2.14)), we postpone their study.
Finally, let us study (4.2.50). As Op(m/ ;) is bounded on H?, the Sobolev

norm of (4.2.50) is O(t 2 ||R(t,-)||gs). Using (4.1.25)), it satisfies (4.2.6)). If we
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make act L1 on (4.2.50)), the rapid decay of m’u and (4.1.25)), show that we

obtain at time 7 an expression whose L? norm is bounded from above by
_1 40’ _
Cr2(EyT)" 77149 (er9)

that trivially satisfies (4.2.7)).
This concludes the study of terms of the form (4.2.13).

e Terms of the form (4.2.14]) (and (4.2.52)))
;

We study now expressions of the form (4.2.14)) and the related ones intro-

duced in (4.2.52)).
We plug expansion (4.2.26)) in (4.2.14). By Corollary |A9.2.6] we get again

terms of the form (4.2.52), with 2 < |I| < 6 instead of 2 < || < 4, and terms
of the form

(4.2.53) a(t)Op(my (U, ..., Uk), [I| =k >2

. . ~ / . o/ ‘I|
with again ) in 57 (Hj:1

- japp _ /app
{uzl:au:l: U 4 7R}7

(&)~ MY, |1]), Uy belonging to

one of the arguments at least being equal to R satisfying (4.1.25), (4.1.26)).
We have already checked that terms of this last form provide remainders (even
without the pre-factor a(t)) (see (4.2.36)), (4.2.37)), where the assumption k& > 3

was not used). We are thus reduced to the study of terms of the form (4.2.52)),
with |[I| > 2 in the sum. If |I| > 3, we get terms of the form (4.2.39)) with
conditions (4.2.40)), that have been seen to be remainders. We must thus just
study

(4.2.54) a(t)Op(my ) (U, Uz)

with |I| = 2, Uy, Us € {ay, 5P, u"9PP}. Moreover, we may assume, in order
to bound the Sobolev norm, that m ; is supported for [§;] < K(1 + [&2])
for instance. Applying (A11.2.39) with ¢/ = ¢ = 1 if U; = 4y or «/P and
(=10 =0if U3 =", we bound the H® norm of (4.2.54) by

R i (P A Py T P [ A P ]
1
L3P oo + ([P woose + ¢ 3 8P 7]

X Nl s + 0P e + 1”2 are]

1
As a(t) = O(te ?), one gets at time 7 a bound in er%e(t, €) using (3.1.39)-
(3.1.41)), (3.1.43))-(3.1.45)) and (4.2.2)). It follows that (4.2.6]) will hold. On the
other hand, if we make act Ly on (4.2.54) and compute the L? norm, we get a

~1
bound given by |a(t)| = O(te ?) multiplied by (4.2.44)) or (4.2.45) with k = 2.
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Using again (3.1.39)-(3.1.41)), (3.1.43)-(3.1.45)) and (4.2.2]), we obtain at time
T an upper bound in

CTE_% K(‘EZ\/\/?B/ +€’|log GIQ)T%(EQ\E)H +log(1 4 7)log(1 + T€2)6(<:z)> é} '

By (4.2.20), (4.2.22)), (4.2.7) will hold true. This concludes the estimate of
these terms.

e Terms of the form (4.2.15))

Terms with |I| > 2 are of the same form as (4.2.14)), with a smaller
pre-factor a(t)?, so they are remainders. We have thus to study

(4.2.55) a(t)! Z Op(mg )(ur), j =2,3.
17]=1

By (3.2.5), (3.2.6), (3.2.7), (3.2.9) and the definition of a(t) = ¥3(ay —a_),
one may write (4.2.55)) from the term

1 P B\ 2
(1256) 5 30 (Mg + e g{H) Oplmp ) (ur)
[I|=1
and from terms like
(4.2.57) a(t) Y Op(mg ) (ur)
|I|=1
where
/ _1
(4.2.58) (1) < ct 3 (V) 2.

Terms (4.2.56]) are present in the right hand side of (4.2.3). We have to show
that (4.2.57) provides remainders. The H® norm of these terms in bounded
from above, using the Sobolev boundedness of Op(mfu) and estimates (3.1.39)),

(3.1.43) and (4.2.2) by Ceto=1e2? so that (4.2.6) will hold.

On the other hand, if we make act L4 on (4.2.57) and compute the L2
norm, we have to estimate by (4.2.58)) expressions of the form
o1
(4.2.59) o [t 2 (V) + te 2] Oplimh U | 12

where 7, ; is of the same form as m{, ; and U = 4y or v/5™" or u

When U = 4 or /P we use (A11.2.32) to bound (4.2.59)) by

1 o -3 _
Ctr [t 2 (V) +te ?] [ Lsiigl g2 + | Ly PP 2
+ a2 + [[u5P] 2]-

Using (3.1.39)), (3.1.41)) and (4.2.2)), we see from (4.2.20) that (4.2.7) will hold.
On the other hand, if U = u"%"", we estimate the L* norm in (4.2.59) from an

/1app
+ .
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L one, using the rapid decay of fna,l, and we use (A11.2.38)) with £/ =n =1,
r =1, in order to obtain a bound in

Cqr 1 0’ -1
Tt 2 (EVE) 4 te 2] [ PP lweoee + | Lgu PP | weo.ce

1
+1t72 ||u”app|]Hs].
By (3.1.43)-(3.1.45)), we bound this by
Clog e|2et %(t"e)

so that, since t < e 4 and ¢ may be taken as small as we want, implies
that holds. This concludes the study of terms (4.2.15]).
e Terms of the form (4.2.16)|
These terms satisfy (3.1.38). It follows immediately from that

(4.2.6) holds. Using (4.2.18), we get as well (4.2.7)).
This concludes the proof of Proposition [4:2.1] ]

The reduced equation (4.2.3) obtained in Proposition still needs one
more reduction before we are able to deal with it. Recall that in Proposi-
tion we have decomposed u5”” under the form ([3.1.48) 5™ = uipp’l +

>4+, where uipp’l was given by (3.1.49)). We refined this decomposition in

(13.1.54)) as

1 1 1
uapp, — ulipp, + u//ipp»

+
1app,l /
W= Y Ujsta)
(4.2.60) je{—2,0,2}
WP = 3 Uit e)
j€{—-2,0,2}
wherei Uj ., Uj, are defined in (A10.1.3)) from the right hand side of (3.1.50),
namely

+oo . .
(4.2.61)

t
0y ) =i [ L (1 () e, e

— 00

with M; given by (3.1.21). Let us prove the following corollary of Proposi-
tion 211
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Corollary 4.2.3. — Under the assumptions of Proposition[{.2.1], 4 solves
an equation of the form

2 2
(4.2.62) (D, —p(D,))iis — 3 ™5 0p(t, )iy — 3 5 Op(b), )i
j=—2 j=—2
= Z Op(ﬁn)(ﬂp,u?gp)

3<H|<4,I=(1",1")

+ Z Op(mé],[)(ﬂf) + Z Op(mf),l)(ul’ u/[BpJ)
1]=2 I=(1",1"),|I'|=|1"|=1
+ > Op(mp )W) + Ro(t, x)
[1|=2

where (m1)3<m<4 is as in the statement of Proposition|4.2.1, where (mg 1) 11=2
are in S} 0( 1 (&)™ 1Mo(ﬁ), 2), where Ry satisfies 44.2.@), 44.2. ZI), and
where the symbols b;i satisfy and the following estimates for o, 3, N
in N:

If j=—-1o0orj=1,

(4.2.63)

|0208Y) 1. (t,3,€)| < Capnte 2 < y Mo
3
2

00200, (1,2, 6)] < Capw[te ? + (VD 1+ 3] () N g)™!

and if j = —2,0,2
020 1 (t, 2, €)] < CocﬁNt_1< >_N<5>_1

(4.2.64)

10105000, 4 (1,2.6)] < Cante *[tF + (VD 3 () (g,
Proof. — Let us analyse the different terms in the right hand side of .
The first sum appears unchanged in .

By the definition of a’PP, the fact that a®PP = @( PP 1 7PP)
and (3.1.3), the a*P(t) 3= Op(m] ;)(@r) term in contrlbutes to the
terms involving b;‘,i in the left hand side of . The same holds true for
the last but one term in . We are thus left with studying

(4.2.65) Y Op(myp)(ar,up?).
[I|=2,I=(I",I")

o If [I"| = 0, we get the 37);—, Op(mg ;) (%) contribution in 4.2.62.
e We consider next the contributions to (4.2.65) with [I'| = 1, [I"] =1
As one may decompose u’ = ’app’ +u" PP + 3, by (3.1.48), (3.1.53), we
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shall get three type of terms:

(4.2.66) 3 Op(mi 1) (@, w55
I=(1', 1) | 1|=|17]=1

(4.2.67) 3 Op(mp, 7) (@, u" 5P
I=(1',17) | I'|=|1"|=1

(4.2.68) > Op(mp 1) (i, Spm).
I:(II7III)7‘I/‘:‘III‘:1

Term (4.2.66)) appears in the right hand side of (4.2.62)). From (4.2.60), we
may rewrite (4.2.67) as a sum of expressions

(4.2.69) Op(mfy ;) (@p, Ul'p), j = —2,0,2.

We shall apply Proposition [A10.2.2] with k = 1,w = 1. Since U/, is defined
by (4.2.61)) from a M; given by (3.1.21)), thus satisfying by (3.1.3) inequalities
(A10.1.6) with w = 1, Assumption (H1); of Proposition |[A10.2.1] is satisfied,
and so Proposition |[A10.2.2| applies. It follows from (A10.2.19)), applied with
A= j@, 7 =-—2,0,2, that (4.2.69) may be written as

(4.2.70) 5 Op (0 )iy + Op(b))ar

where b} (resp. b}) satisfies (2.1.7) and the first two lines (resp. the last line)

in (A10.2.20)) with w = 1. The first term in (4.2.70]) brings thus contributions
to the last two sums in the left hand side of (4.2.62)), for j = —2,0,2, with

symbols satisfying (4.2.64)) and (2.1.7)).
We have to check next that the last term in (4.2.70) contributes to the

remainders.

By the last line in (A10.2.20) and (AT1.1.30), [{@.2.2)
|0p(Eh)ar e < Ce M log(1 + et®
from which a remainder estimate of the form (4.2.6) follows. If we make act

Ly on Op(b%)ﬁp and use (A11.2.32) with n = 1 and the bounds (A10.2.20)

for the semi-norms of b} (with w = 1), we obtain from 1)

(4.2.71) "Liop(bg)ﬂ[/ llr2 < Ce*t! log(1 + t)ti (62\/i)9

so that a bound of form (4.2.7)) holds.
It remains to study (4.2.68)). Recall the definition of ¥ given after (3.1.50):
this function is a sum 3753 U (¢, ) where U, solves (3.1.50) with source term

eijtgﬂj, where M ; satisfies (3.1.51)) i.e. the first inequality (A10.1.7). We
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may then decompose each U; as U, + U/, according to (A10.2.23) with
A= j@ and rewrite the terms in (4.2.68]) from
(4.2.72) Op(mq r)(ar,Ujy 1), Op(mg p)(ag, Uy )
to which Proposition [A10.2.5| applies. This allows us to rewrite these terms
as Op(b)(u+) where b satisfies estimates (A10.2.30]), namely
/ _1
(4.2.73) 10°0eb(t,y, €)] < Cte >t~ og(1+)(y) ™" (€)™
By (A11.1.30) and (4.2.2), we thus get

_1
10p() (@) || s < Cte 2t log(1 + t)||iit || s
_1
< Cte 2t og(1 + t)etd.

An estimate of the form follows at once. If we make act L+ on
Op(b)(@+), use the rapid decay in y of (4.2.73) and (A11.2.32), we obtain
an estimate of the L? norm by the right hand side of (4.2.71)), with €2 replaced
1

by te 2 < e. This suffices to imply that (4.2.7) holds, and thus shows that
(4.2.68) is a remainder.

e We study finally contributions to where |I'] = 0. Again, we use
(3.1.48)), (3.1.55)) to write

app __ , /app,l 11app,1
upt =w o fu o Yy

Plugging this expression inside the terms (4.2.65) with |I’| = 0, we shall get
expressions given by

(4.2.74) Op(mf ;) (W3P>1), || =2

(4.2.75) Op(mi ) (Er, PP, || = [I"| = 1,1 = (I', I")
(4.2.76) Op(mg ) (31), 1] =2

(4.2.77) Op(my ) (u"PPh), 1] =2

(4.2.78) Op(mp 1) (Sp, o5, |1 = [I"| = 1,1 = (I, T")
(4.2.79) Op(mp ) (WP "5, || = |17 = 1,1 = (I', I")

where mf, ; are still elements of 5’170( ‘f:ll (&) My, |1]).
Term (4.2.74)) appears in the right hand side of (4.2.62)
Term (4.2.75) is treated as (4.2.68): actually, u’ipp’l satisfies (3.1.39))-

(3.1.41) as has been established after (3.1.54)), and these bounds are better
than inequalities (4.2.2)) for @
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Term (4.2.76)) may be treated in the same way: we have seen in the study
of (4.2.68) that Op(ng)(-,ZIn) may be written as Op(b)- for b satisfying

(4.2.73)) (see (4.2.72))). By (3.1.52), we shall get for any N

(4.2.80)
12 Op(mp, ) (Z1)l| s < Cllz Op(b) (Z) | re

_1 _3 _1
< Cte 2t M log(1+1))?[te 2 +t 1t 2 +t71€%].

By (4.2.23]), we see that (4.2.6) will hold. Estimating the action of Ly on
Op(ng)(E[) in L2, we get an upper bound by the right hand side of (4.2.80))

multiplied by ¢. Then (4.2.22)) shows that (4.2.7) holds.
To study 1|4.2.77' , we recall that u”ipp’l is given by (3.1.54)) where U7 is
given by the second formula (A10.1.3|) in terms of an M that satisfies (3.1.13)),

i.e. such that (A10.1.6)) with w = 1 (Assumption (H1);) holds. We may thus
apply Corollary [A10.2.3[ with w = 1. It follows that the H® norm of (4.2.77)

is bounded from above by
C[t:? + €'t *(log(1 + t))?].

This largely implies (4.2.6). On the other hand, the L? norm of the action of
L. on (4.2.77) is bounded by

Cltt;? + €'t (log(1 +1))?].

Then (4.2.22)) implies that largely holds.

Terms (4.2.78) may be treated in a similar way as : we have seen
that Op(m})(Xr,w”35™") may be written as Op(b)u”?P*" with b satisfying
. By the expression {D of u”ipp’l =Y je{-202} Uj 4, where U/,
is defined by the second formula 1D with A = jﬁ and M = M; given
by , we see that we may apply Proposition with w = 1. Taking
into account the time decaying factor in the righty hand side of , it
follows from (A10.2.2), (A10.2.3)), (A10.2.4)) that

_1
(4.2.81) [950p(mp 1) (Ep,u" TP < Cte 2t (log(1 + 1))
x [t + et og(1 4 t)] (z)N.

Thus the H* norm of (4.2.78) is bounded from above by the t-depending factor
in (4.2.81). By (4.2.23)), we get that (4.2.6]) largely holds. If we make act L
on 1|4_L.2.78|) and estimate the L? norm, we get a bound in

_1
Cte 2 log(1+t)[t.1 + €%t Hog(1 +t)].

Thus ([£2:22) implies [{-2.7).
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It just remains to treat (4.2.79). Notice that (4.2.79)) is of the same form as
(4.2.67)) with @y replaced by u’??p’l, so that may be written under a similar

form as (4.2.70]), namely
(4.2.82) €15 Op(b])u/3PP" + Op(bh)u/ P!
where b (resp. b)) satisfies the first two lines (resp. the last line) in (A10.2.20)

with w = 1. We have checked after (4.2.70) that the second term in that

formula is a remainder. Since as seen above, w3 1 satisfies (3.1.39)-(3.1.41),
which are better estimates than those verified by @, it follows that the last
term in (4.2.82) is also a remainder. Let us prove that, because of the better
bounds satisfied by u/%P*" versus ., the first term in (4.2.82) is a remainder

as well. By the estimates of b; in (A10.2.20) and (A11.1.30])
[0p()u/ ™ = < Ot S| < Ot

according to (3.1.39) written for u’ipp’l. By (4.2.24), we conclude that |D

holds. To estimate HLiOp(bjl)u’ipp’lHLz, we are reduced, by the fact that
b} is rapidly decaying in z, to bounding 'tHOp(b{)u’ipp’lHLz. According to

(A11.2.32) and the bounds (A10.2.20) of b}, we thus get an estimate in
7
1 (P 2 4 Ly 2) < CoTMR[(EV) + (EVE) ]

by 3.1.41). As in 0 < é shows that holds.
' 12.70)

This ends the study of term ( and thus the proof of Corollary
U

1




CHAPTER 5

NORMAL FORMS

This chapter is devoted to the completion of step 5 of the proof of our
main theorem, that is described in section of Chapter We recall here
some elements of the strategy. The preceding steps of the proof allowed us
to reduce ourselves to an equation for a new unknown <4. In this
chapter, we first write a system made of that equation and of the one obtained

by conjugation. In that way, if we set 4_ = —@y and @ = [ZJF

we get on @ may be written (see equation (5.1.13)) below)
(D¢ — Py — V)& = Ms(@, u™P) + My(a, u®P)
+ M (6, u'*PPh) 1 R

} , the system

(5.0.1)

where R is a remainder and the other terms in the equation have the following
structure:

e Operator Py is just Py = [p(Dx) 0 }

0 —p(Dz)

e Operator V is a 2 x 2 matrix of linear operators acting on #. FEach of
these operators is a pseudo-differential operator of order —1, whose coeflicients
depend on the approximate solution u*PP constructed in Chapter 3] The main

contribution to V has thus entries of the following simplified form

V3 1
(5.0.2) ej”t§tE 2e(x)(Dy)
where ¢(z) is in S(R) and again t. = 0 62);- The left hand side of ([5.0.1)) is
+te<)?2

thus a vectorial version of the scalar operator

(5.0.3) D, —p(Dy) — t;%Re [c(m)(Dﬁ_le”@].

We get thus a perturbation of the constant coefficients operator p(D,) =
/14 D2 by a potential term, rapidly decaying in z. We already encoun-
tered such a perturbation in Chapter [1} except that there the potential was
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autonomous. Here, it is time dependent and has some decay when t goes to
infinity. Because of that, we cannot apply the results of Chapter [I] or of Ap-
pendix to eliminate term V in through conjugation. Nevertheless,
one may construct by hand some wave operators for a time depending per-
turbation of Dy — p(D;) like the one in (5.0.3). That construction is made
on the Fourier transform side: we introduce in Lemma [5.1.1] below a class of
operators, obtained composing at the left and the right the last term in
by (inverse) Fourier transform. In appendix below we design “by hand”
wave operators for such perturbations of p(D,), so that, conjugating
through them, we may eliminate V from that equation, exactly as we got rid

of potential 2V in the second equation in section of Chapter (1| (see
equation (1.2.3)).

The second part of this chapter is devoted to a normal form procedure
allowing one to eliminate non characteristic contributions to the quadratic,
cubic and quartic terms M5, M3, My in (5.0.1). Characteristic contributions
are terms like ]ﬂ+|2ﬂ+ that obey a Leibniz type rule of the form

- 12~ - -
Ly [l Pyl 2 < Cllag [froose | Ly || 2

up to remainders. These contributions may be safely kept in the right hand
side of . The non characteristic terms are those that do not satisfy such
a Leibniz rule, and that have to be eliminated by normal form. We explained
this idea on a simple model in section [0.6] of the introduction, and gave more
details in section[I.7] In the present chapter, we apply this method to M3, My
that have essentially the same structure as the models discussed there.

We have also to eliminate the quadratic term M (@, u'#PP1) in the right
hand side of . Since the arguments i, u/#PP*! are odd, and M} is morally
of the form a(x)ayt, with a(z) rapidly decaying, one may express each fac-
tor 44 using in terms of L4+ gaining a ¢~ decay for each factor.
Nevertheless, this gain is not sufficient to be able to consider M} as a remain-
der. One get operators of the form , , and we explained at the
end of section how to eliminate these expressions performing again some
elementary normal form.

5.1. Expression of the equation as a system

Let us fix some notation. From a4, a— = —a, i, v = —ufPP, /5P,
/PP = —/%PP | we introduce the vector valued functions
~ app /app
1.1 0= | Yt app _ | U4 rapp _ |U
(5.1.1) U=\~ 1, uPP | U = |/app
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In order to write (4.2.62) as a system on @, let us define, when I = +

(5.1.2) Vi(t,x, &) = Z ety b’ (t,z,€)

Jj=—2
where b;i satisfies 44.2.63[), (]4.2.64[). Denoting b'Y.(t,z,&) = V. (t,x, —€), we

define the matrix of symbols
b, (t,x,€) b (t,x,§) }
!/ o "y - P
(513) M (t’x7§) B |:—b/\i(t,ll),§) _b,i(t,$,£) '
Since Op (b )w = Op(¥'Y)w, if we denote by Op(M’) the quantization of M’

defined entry by entry, and define Op(M’) by Op(M')a = Op(M')a, the form
of M’ shows that

Op(¥,)  Op(t.)
~0p(t) —Op(t,)

(5.1.4) Op(M') = [

or equivalently, if Ny = [(1) 31

)
(5.1.5) Op(M')Ng + NoOp(M') = 0.
If we define for j = —2,...,2

! _ b/', (t,(]ﬂ‘,f) b/',—(tvxaé)
Mj(t, Z, 5) — {_E/J\/—;’(t’ z, g) _l_)/]\ij’Jr(t, x,f)

we have

M'(t,x,€) = Ze”t M’tmf)
(5.1.6) =,

Op(M})No + NoOp(M_ ;) = 0.
We shall set also, if m(x,&1,...,&,) is a multilinear symbol
(5.1.7) mY (2, &1, ., &) =m(z, &1, .., —En)

so that Op(m) = Op(m"), if we set again
Op(m) (w1, ..., wy) = Op(m) (w1, ..., Wy).

It I = (i1,...,in) € {—,+}" and u; = (wiy,...,u;,), we denote I =
(—i1,y..ny—in)

(5]‘8) Uur = (u_ih cee 7u—’in) = _(aila o 7ﬂin) = —ur

according to our definition u— = —uy. Then if my is in Sy o(M, |I]), we shall
get that

(5.1.9)

Op(m)(ur) = Op(m)(ar) = (=1)"10p(mp)(u;) = (=1)"1Op(m}) (u;).
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Let us use this notation to express nonlinear quantities constructed from
(4.2.62). We define first the quadratic terms, that will come from the right

hand side of (4.2.62]), namely

_ Op(mfy ) (W' 7iP)
(5.1.10) M (i1, u/*PPh) = [ Y 1
: ey OB )
170,17/ =2
+ Z [Op(mé,[)(ﬂp, u/é}gp,ll)l + Z {Op(mf),l)(ﬁl’>
~IV \(7_ /3PP, Y Vi
I:([’,I”) Op(m O,I)(UI’7U I ) [:([/JH) Op(m O,I)(U’I’)
[7'|=1"]=1 [1']=2,|I""|=0

and the cubic and quartic expressions, given for j = 3,4 by

S =,y Op(mr) (g, up®)
5.1.11 M (@, u?PP) = 1= o
(5.1.11) S = 1) 533 g vy Op () (i, u2P)
[T|=j

We also set

(5.1.12) R(t,z) = [fﬂ

where R, is the last term in (4.2.62)).
The system obtained taking equation (4.2.62) and the conjugated equation
may be written as follows, denoting V the operator Op(M') given by (/5.1.4))

and Py = {p(lg”’) 7p(0Dz)}:

(D¢ — Py — V)i = M3 (@, u*P) + My(a, u®P)

5.1.13
(5.1.13) + MY, WP R,

In order to apply the results of Appendix below, we need to re-express
operator V on the Fourier transform side.

Lemma 5.1.1. — For j = —2,...,2, there are two by two matrices

Q;(t,&m) = [éMZ)qj,(k,e)(t’&,n)}

1<k 6<2

whose entries satisfy estimates

1 _ N
108024, 0y < Onte 2 (€] — Inl) N ()~

(5.1.14) L o
|08 0,014 (k)| < On[te ® + (V) t2](I[ = [nl) ™" ()
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for any o, B, N if j = —1,1, and

1080} ;.0 < Ot (1€l = lnl) ™ ()~

a _1 _3 Qa/ 3 _ _
|0¢ 85@%,(1@,4)’ < Onte 2 [te 2 + (V)2 t 2] (€| = |nl) Nyt
Jor any o, B, N if j = —2,0,2, such that, if we define the operator Kq, by

(5.1.15)

(5116 Ko, 0(€) = [ Qut.&.m ) dn

for f a C? valued function, the operator V acting on odd functions may be
written as

5.1.17 V= S P K, .
Q;

Moreover, one has VNy = —NpV .

Proof. — If f = ﬁ}, we have according to the definition (5.1.4) of V =
Op(M') and (5.1.6)

2
(5.1.18) Op(M)f =Y eitngp(M]{)f
j=—2
/ Op(¥} ) .f+ + Op(b) ) f-
(5.1.19) Op(Mj)f = [—op(b’vj;_)h B Op(i,!j#)fj :

The Fourier transform of the first line of may be written
G120 [ e nnfimdn+ [5 46— nn)f-odn
where lA);i is the Fourier transform relatively to the first variable. Since b |
satisfies , if we set
dj,1,)(t,&n) = 5;',+(75,§ —,m), Gja,2)(tE€n) = B;‘,—(taf —1,7)

we see that §; .0 (t, =&, —n) = @0 (1, €, m). If we make act (5.1.20) on odd
functions fi, f—, we may rewrite this expression as the sum for (k,¢) = (1,1)

or (1,2) of
;/[Gj,(k,e)(té,??) = Qj (ko) (8, €, —n)}fi(n) dn

(with fy if (k,¢) = (1,1) and f_ if (k,¢) = (1,2)). In other words, we may
assume that §; (1,1)(¢,€,7) is odd in . Since that function is even in (§,7), it
has also to be odd in §. By (4.2.63)), (4.2.64)), z — b(t,z,n) is in S(R), and
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the function is C*° in 7. It follows that the Fourier transform in z of these
functions satisfies

108050{ 0, 1(t, & — n,m)| < Co s NTH ()€ — )~ ()~

for any «a, 5, N, £ = 1,2, where 7;€(t,e) is the time dependent pre-factor in
the ¢-th equation in (4.2.63) (resp. (4.2.64))). After the preceding reductions,
it follows that g; (1 ) satisfies for all o, 3, N € N, £ =1,2

108070¢ " Ty (1. €M) < Cap NT5 (8 (IEN = )™ ()™
Since we have seen that this function is odd in £ and odd in 1, we may write it
as éj%qﬁ(k’g)(t,f,n), where g (1¢) satisfies (5.1.14)), (5.1.15)). It follows that

we have written the first component of the Fourier transform )//? of (5.1.18) as

/B ———
the first component of 2]2-:72 e“JTSKQ]. f(&). Since the reasoning is the same

for the second component, we get (5.1.17)).
The last statement of the lemma follows from (5.1.5)). O]

We may now eliminate the operator V in the left hand side of (5.1.13), using
the results of Appendix

Proposition 5.1.2. — Fiz m in |0, %[ close to %, and set as in the example
following Definition[A12.1.1] . = min(1 — 2m, %66”) > 0. There is g > 0 such
that, for any V of the form (5.1.17), defined in terms of matrices QQ; whose
coefficients satisfy (5.1.14), (5.1.15), with € €]0, €o[, there are operators B(t),
C(t), defined for t € [1,T] (T < e 4¢), bounded on H*(R), satisfying the
properties of Propositions[A12.1.1 and[A12.1.5 of Appendiz[A13, such that, if
U solves and satisfies estimates ({.2.9), then C(t)u solves

(Dy — Py)C(t)ii = C(t) Ms(ii, u™) + C(t) My (@i, uPP)
+C () MYy(@, u'*PP) + C(H)R

(5.1.21)

with R satisfying for any t in [1, T
(5.1.22) IRt s < et?Le(t,e)

(5.1.23) LR, e <t~ 3 (VD) e(t, )

where e satisfies [4.2.8). Moreover, C(t)u is odd if @ is odd and NoC(t)u =
—C(t)a.

Proof. — By (A12.1.7), (D;— Py—V)B(t) = B(t)(D:— Py) and by (A12.1.12)),
@ = B(t)C(t)u. Replacing @ by this value in the left hand side of (5.1.13)),
composing at the left with C'(¢) and using again (A12.1.12)), we obtain (5.1.21)).

Since V(t) preserves odd functions and satisfies V(t)Ng = —NoV(t), the last
statement of the proposition follows from (A12.1.21)) and the fact that Not =
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—a. This concludes the proof, as estimates (5.1.22)), (5.1.23) are just rewriting

of (28), (23, 0

5.2. Normal forms

Our next objective will be to eliminate by normal forms most of the contri-
butions in the right hand side of . We shall construct first the relevant
operators in order to do so.

Let us fix some notation. Let n be in N*. Consider C? valued test functions
vj, defined on [1,7] x R for some 7', of the form

. — Uj7+(t7x):|

(5.2.1) (t,x) = v(t,z) = L)j,_(t,x)

with v; 4+ odd in x and satisfying v; = = —v; . If n > 3, we shall consider
n-linear maps

(5.2.2) (vl,...,vn)—>./\;lj(v1,...,vn)

sending C%-valued functions to C2-valued and having the following structure

(using notation (A9.1.9))

(5.2.3)  Mu(vr,... 3 i1j=n OP'(121) (V1,31 - - - Uni )

yUn) = n —
) 0" S OB ) ot i)
where I = (i1,...,in) € {—,+}", My is in Sy g(Mg [}, (¢;)~1,n) for some

8 > 0 small, v € N, where %}/is defined by li and where the form of
the second line of ([5.2.3)) respectively to the first one just reflects the fact that

M, (v1, ..., v,) will have a structure with respect to conjugation similar to the
one in (5.1.10), (5.1.11) (see (5.1.9)). Moreover, we assume that 7 satisfies
(524) ’I’h(y, xz, gl) s 7571) = (_1)71—1,'%(_3/’ -, _517 SERE) _En)

so that the associated operator preserves odd functions (see (2.1.7))).

Proposition 5.2.1. — Let n > 3. One may find symbols my in
Sap(Mgy TT7-4 <£j>_1<x>_°o,n) for any I with |I| = n such that, if one
sets

> Z|I|:nopt(m1)(vli1v'--)vni )
5.2.5 Ma(vi, ... on) = RN o
(5.25) w1 n) (=1)" 211 OP' (1127 ) (V1,1 -+ 5 Un i)

one may write

d@ 2 ~
Rovr,...,vn) &

Dt - PO)Mn(vla s ,vn) - M(Uh s 7Un)

(5.2.6) noL
—ZMn(’Ul, ey (Dt - Po)’Uj, cen ,Un)
7=1
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under the following form:

| Rp+(v1,...,0p)
(5.2.7) Ry(vi,...,vp) = {an_(vly o)
with R, = Rp4+, and R, 4 satisfies the following: One may write
Ry 4+ (v1,...,v,) as a sum
(5.2.8) Ry 4+ (vi,...,0p) = Z Op' (71)(V1,iys - -+ Uniyy)
[I|=n

with symbols rr in Sy s(My []j— (&))"t n) for some v € N. Moreover,
LR, +(v1,...,v,) may be written as a sum of terms of the following form:

n
(529) Z Z Opt(rl,j)(vl,ila ey Lijvjyij, e ,’Un’in)
[I|l=nj=1

with r1; in Sys(My 1)y (&), n),

(5.2.10) Z Opt(rl)(vl,iu s ’Uﬂ,in)
[I|=n

for symbols r in Sy s(M§ 17— (§j>_1,n), and

(5.2.11) t Z Opt(r/l)(vl,il’ AR Un7in)
[T|=n

for symbols 17 in Sy 5(M§ I} (£j>_1, n). Moreover, my satisfies

(5212) m[(*ya -, *513 ceey *gn) = (71)n—1m1(y’ z, 617 ce aén)
if mr does so in .

We shall prove the proposition expressing (5.2.6]) in terms of the semiclassi-
cal quantization of symbols introduced in (A9.1.6) in Appendix Ifh=1

t?

we introduce for any function vj, j =1,...,n, the function v; defined by
1 T
(5.2.13) vi(t.) = 2y <t, ;) = O, (t,7)
according to (A9.1.7). By (A9.1.8), each term on the first line of (5.2.3)) may
be written

~ n ~ X
(5.2.14) Op (1) (Wiay, -+ > Vnin ) (b 2) = BEOpy (M) (Wrays - - s Vi) (t, ;)
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and similarly for the first line of (5.2.5)). The first line in the right hand side
of (5.2.6)) may be written as the sum in I of
(5.2.15) (D¢ — p(Dy))OD' (110r) (V13 - - - s Vniy ) — OD (M) (Viys - -+ s Vniiny)

n
- Z Opt(m])(’l)lyil, ey (Dt - ijp(Da:))'Uj,ij, e ,Umin).
Jj=1

It follows from (5.2.14)) that the first term in (5.2.15)) may be written as
n .n “ T
h# [ Dy — Opy (w6 +p(&) — 2 h) | (0P (R) @1y, )) ()

2 t
The other terms in ([5.2.15) admit analogous expressions, so that (5.2.15)) may
be rewritten as hgﬂfwr(yul, e Un) (t, 7 ) with

(5216) E’IIl,+<yl,i1? ce 7Qn,in)(ta .CL’)
= [ — Opy (& +p(€) = i5h)] (0P () @14y -0,

2
- Oph(m])(gl,ila s )Qn,in)
- N . h
- Z Opy, (11) [Ql,ily cees [Dt - Oph($§ +i;p(§) — 25)}21',1']-’ e 7Qn,in} .

Jj=1

We shall study (5.2.16) both when I is characteristic and I is non character-
istic, according to the terminology introduced in Definition [A13.1.1] that we
recall in the statements of the following two lemmas.

Lemma 5.2.2. — Let I = (i1,...,in) be characteristic, i.e. iy + -+ + i, =
1. Take iy = 0 in (5.2.16). Then if L+ = +Opy(z £ p/(€)), the term

ﬁiﬁ£,+(yl,i1’ oy U ) may be written as a sum of the following expressions:
Oph(rl,j)(yl,ila . ,Eijyj,ij, R ,ym-n)

(5,2,17) Oph(ﬁ)(h,il, e ,an)
1

hoph(rlf)(ﬂl,ip cee 7Qn,in)

with ry 5, in Ss(M§ 15— &)~ n) and v} in Sh (Mg T4 &)~tn) for
some v.

Proof. — We just have to apply Proposition [AT3.2.1] of Appendix [AT3] [
We shall consider next the case of non-characteristic indices.

Lemma 5.2.3. — Let I = (iy,...,1i,) be non-characteristic, i.e. i1+ - -+ip #
1. Then one may find a symbol 1y in Sy p(My I17— (&) Hx) ™™, n), for some
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v, such that E£,+(Ql,i17 ey Upg) given by may be written as a sum
of terms

Oph(r})(gl,ip cee agn,in)
(5.2.18) hOP(r1) @iy - -+ Uniiy)
Oph(rlf)(ﬂl,z‘p s aQn,in)

with symbols 1} in Sy g(My TTi—y (&) " n), r1 in Sy a(My TTI—y (&) (2) "' n),
rr in Sy s (Mg 17— (&)t n).  Moreover, £+E,Iqj7+(y1’i1,...,yn7in) may be

written under the form and My satisfies if mr does so.

Proof. — We apply Proposition and define 7; to be the symbol a;
of that statement, that satisfies (A13.1.6)). According to (with my
replaced by 7y in its right hand side), ((5.2.16)) may be written as the sum of
(A13.3.3) and of the last two lines in (A13.3.2]). This gives (5.2.18]).

To get the last statement of the lemma, we use that E{h 4 is also given by
. We have thus to show that the action of £ = +Opy,(z + p/(€)) on
the three terms in may be rewritten under the form ([5.2.17). For
+0p;,(p'(€)) this follows from the composition result of Proposition
For the product of 7 by , this is a consequence of the fact that in

these formulas m;y ; and 7 are in classes Sy g(Mg [, (&) Hz)~ !, n). In the

case of 7, the fact that the symbol belongs to S} 5(M§ [T} <§j>_l, n) means
that it is rapidly decaying in My(&)~4|y|, so may be multiplied by x (and even
by x/h), up to a loss on the exponent v. This concludes the proof since the
definition of ay (with my replaced by ;) shows that it satisfies
(5.2.12) if m; does (taking the cut-off v even). O

Proof of Proposition[5.2.1; We just have to translate the above two lemmas
going back to functions vy, ...,v, from vy,...,v, through . The first
component Iz, 1 of is then h%E£ L (U4 y,) With R! 4 given by
(5.2.16]). In the characteristic case, with m; = 0 and show

that (5.2.8) holds, and Lemma implies that Ly R,, + is of the form ([5.2.9)).
In the non-characteristic case, these properties follow from Lemma [5.2.3] O

Proposition will allow us to treat by normal form the contributions
M3, My in the right hand side of . We need also a result that will
allow us to treat Mj.

We consider a bilinear map (vy,ve) — Mj(v1,v2) of the form

2|1|=2 Op(mé,[)(vl,il ,V2,i5)

5.2.19 Miy(v1, v9) = 7
B210) o) = [
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where my, ; is in SLO (H§:1 (&) My (¢), 2) and satisfies lb Our goal is to

prove:

Proposition 5.2.4. — One may find an operator (vy,vs) — Mb(v1,v2), that
may be written

2D (i i) — 412 Qinin (V1315 V2,45)
2 2 (i sin)ef— 12 Qi in (Vi1 V2,45)

with operators Qi i, (V14,,v24,) of the form (A15.4.11), preserving the space
of odd functions, such that, if we set

(5.2.21)
Ry (v1,v2) = (D — PO)M (v1,v2) — Mb(v1,v2) — Mb((Dy — Po)vr, v2)
—./\2/1/2 (1)1, (Dt - P())Ug)

(5.2.20) M (1, v9) =

and if vi,ve are odd functions, then Ry = [ng} with Ro— = Ro 4 and Ry 4

being a sum

1 1
(5.222) Ros(opw)=t2 S % ZKi{;ffiQ(L’flvl“,Lmvm)

(i1,i2)€{—,+}2 £1=0£2=0

L,iq,i2

with K% in the class IC'1 1(1,41,12) of Definition|A13.4.1|
2

Proof. — We just have to apply Corollary [AT3.4.4] to the first component of
equality (5.2.21)) changing the definition of the notation Kﬁlfm in the right
hand side of (|5.2.22)). O

We shall use the results established so far in that section in order to rewrite
equation ((5.1.21). Recall first that by (A12.1.6]), (A12.1.7), (A12.1.12), where

V is the operator (5.1.17]), we have
(5.2.23) (D — Py)C(t)=C(t)(Dy— Py = V)

when both sides of these equalities act on odd functions.
Recall the form of operators M, in (5.1.11)): these operators may be written
as

(5.2.24) M (@, uPP) ZMZ i, u®PP, ... utPP), j =34
ﬁ_/
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where
(5.2.25)
Z I'=(i1,...,ip) Op(mI/,I”)(vl,il7 s 7vj7ij)
M(or,... 05 = I=iepr i)
J Z I'=(i1,...,i¢) (_ ) Op(mf/ [//)(Ul —i1y e 77)]}—2']')

I’/_(7‘£+17 ’Z])

and the symbols /s # are in S O(Hm (&) T My(€)”, |I\) 3 < Il =7<4
according to Proposition [£.2.]] Accordlng to Corollary [ATI.1.7], each of these
symbols may be replaced by a symbol in S; [3(H|I| <£j> My(&)Y ,|I\), for

B > 0 small, up to adding to (5.2.24) some remainder satisfying (A11.1.33|)
for an arbitrary r. In other words, we may rewrite (5.2.24) under the form

(5.2.26)  M;(@,u"P) zw @, u™P, L utPP) + R (@, utP)

where ./\/l§ is of the form ([5.2.25|) with symbols mp ;» in

||

&AH@ &), 1),

with 6 > 0 and where Rj satisfies
(5.2.27) IR w2 < CE2Jfillze + ™)

. Ly 0
and setting L = [ o I },

(5.2.28) ||ILR; (@, u*™)| g2 < C2[[[] o + [|u®]| o)~
X [llall s + [[w™P || s + || L]l 2 + [ La™PP| L2 + || Lu"*PP|[weo- ],
where in ([5.2.28)), we decomposed the factor u?PP that eventually replaces v,
in (A11.1.33) as u®PP = /PP 4+ //2PP and used the second (resp. third) of
these estimates if v, is substituted by u/2PP (resp. u/#PP).
In the same way, operators M in (5.1.10)) may be written as

(5229) Mlz(ﬁyu/app,l) — M/%)(u/app,l’u/app,l) +M%(ﬁ, ulapp,l) +M%(ﬂ, a)
where M4? is given by the (¢4 1)-th contribution in (5.1.10). Applying again
Corollary [ATT.1.7, we may assume that

X I=(i1yie) OP(MG 11 ) (V1iy5 V2,45)

5.2.30 ML (01, v9) = I"=(igp1,mis)
( ) 2( ) > I'=(i1,....i¢) Op(m’g7l,71//)(vly_i171)27_i2)
I'"= (7/€+17 7])
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up to replacing ([5.2.29)) by
Mé(ﬂvu/app,l) M’O( /app,1 /app,l) _’_M/%(ﬂ’ q/2PP>L )+M’2(~ ~)

5.2.31
( ) +Ro (@, u PP

where R satisfies
||7é2(@’u/app,1)”Hs < C't_2[||ﬂ||Hs + Hu/app,IHHS]z
(5.2.32) [|LR2(@, w12 < Ct7 [l s + [|u/*PP!]| g+

[l + [lu'*PPH s + 1L g2 + | Lu'P> | 2]

and where the symbols mg 1 v in (5.2.30) are now in S 4 (HJQ‘:1 <§j>_1M0(§), 2)
for some 5 > 0.

Let us apply to each /\/l§ in the right hand side of (|5.2.26|) Proposition

setting Mj = M§ in order to define by ({5.2.5)) an operator Mj that we denote
just by M?, 0 < /¢ <j,j=3,4. Inthe same way, apply to each M'§, £ =0,1,2
Proposition in order to define operators M’4, £ = 0,1, 2. Denote

M;(@, w?) ZMZ i, u'P, .. uPP), j = 3,4
A/—’ N
L i—¢
(5.2.33) , J
R, P = K@ 3, oo
/=0 v
4 2—¢

Let us prove

Corollary 5.2.5. — Let U satisfying the assumptions of Proposition
so that equation (5.1.21]) holds. Then, with the above notation

(5.2.34)  (D;— R) [C’ (it — ZM i, uP)) — Mz(a,u’appvl)} -R

7=3

where R is the sum of contributions of the following form:

(5.2.35) COVO)MS(@,. .. a,u™P, ... u™P), j=34, 0< (<]
H/—’_/—’
¢ j—t
5.2.36 C(t) — IAM'S(a, ... a4, u/*PP /2Pl 0 <0 <2
( ) (Ct) = Ia)M'5 (@, - .. G, u uP), 0 <l <
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— COMS(@,..., 0, (Dy — Po), ..., 4,u™P, ... u"P)
l
— C(t)/\;lg(ﬂ, ce U uPP o uPP Dy — Po)uPP L uPP)

N——
L

(5.2.37)

forj3=3,4,0<0<3,
— C(OYM'(a, ..., (Ds — Po)ii, ..., a,u/@PPL . o/2PPl)

(5.2.38) . ¢
— C(O)MS(@, ..., a,u®PPL . (D; — Py)u/@PPL, . u/2PP)
———
¢
for0<£<2,
of remainders of type
(5.2.39) Ct)Rj(a,...,a,u™P, ..., u*P) j=34, 0</1<yj,
——— N ——
¢ j—t
where R; is of the form and
(5.2.40) Ro(ti, ... a,u*PPL /PPy 0 < <2,
~——
¢ 20

where Ro = [gif} with Ry — = Ra 1, and Ro 4 given by (5.2.24), and of
contributions
(5.2.41) C(t)[R(t,z) + Rs + Ru] + Ro
where R is given by satisﬁes (5.1.29), (5.1.23) and with Ry (resp.
Rs, resp. Ra) satisfying (resp. (|5.2.22|), resp. (1522@)
Proof. — We write, using , for j = 3,4
(Dy = Po)C(H)M; (@, u™P) = —C()V(t)M; (@, u™P)
+ C)(Dy — Po) M (@, u™P)

We plug in the right hand side of this equality with M (resp. ./\Q/ln)
replaced by Mf (resp. Mﬁ) according to the notation defined before (5.2.33|).
In the same way, we express (Dy — Po) My (@, w'*P1) from (5.2.21) with M)
(resp. /\Q/l’Q) replaced by M5 (resp. /\Q/l’gf). Making the difference between

(5.1.21)) (where we substitute (5.2.26), (5.2.31)) and these expressions, we
obtain the contributions (5.2.35)) to (5.2.41)). This concludes the proof. O

(5.2.42)




CHAPTER 6

BOOTSTRAP: L? ESTIMATES

The proof of the main theorem relies on a bootstrap argument of the type

described in sections of the introduction (see estimates (0.4.8]), (0.4.9)
and (0.5.8))). In our setting, the bounds to be bootstrapped will be actually

(L.5.1), (1.5.2), (1.5.3) of section in Chapter [1| (see (6.1.3)) below). In the
present chapter our objective is to bootstrap the first and last estimates (6.1.3))

(see Proposition below). We have thus to bound the Sobolev norm of
5.2.34

the solution @ of (5.2.34), and the L? norm of L. This is done by energy
inequality, and the main task is to estimate the right hand side of in
Sobolev spaces or the action of L on that right hand side in L?. We do that
first for cubic and quartic terms, then for quadratic ones, and finally for terms
of higher order.

6.1. Estimates for cubic and quartic terms

We consider C valued functions w/5”", «”"P, defined on some interval [1, T,

with 7' < e 4%¢ for some given ¢ > 0, and that satisfy on that interval, for a

given large r in N and some constant C'(A, A”) bounds (3.1.39)-(3.1.41)) and
(13.1.43)-(3.1.45) that we recall below:

[P (8, )| e < C(A, A)et
(6.1.1) [u%PP(t, ) [wree < C(A, A)é

ISP () e < C(A, ANt [(EVE) + (2VE)

71
86§]
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and
te? 2
22 0. e < Cla A0 1)
(6.1.2) (te)
[u”PP (2, ) |[wree < C(A, A')e* log(1 + t)?
|L 2P (1, ) e < C(A, A log(1 + 1) log(1 + ¢21).
Moreover, we shall assume that the solution o = [Zj (with 4_ = —ay) of

(5.2.34]) satisfies a priori estimates 1) i.e. having fixed ¢ > 0, 6/ < 0 < %

with €' close to %, and § > 0 small, for some 1 < p < s, we have

i (¢, as < Det?

(vD)”
NG
|Lyiiy (b )l e < DEF (VR

We recall also that we have defined from 4" the function uipp’l in (3.1.48)),
that we decomposed in (3.1.55) as u/5PP e jafp’ and we have seen after
(3.1.54) that 'S Pl g tisfies the same estlmates as u ipp, so that we shall have

[/ %P2 (8, ) | e < C(A, A')e3
(6.1.4) [P (1, ) e < C(A, A))é

ILaP (2, Y| e < C(A, A [(EVE) + (VD) ed].

We may assume that r in , is as large as we want since the
smoothness of the approximate solution u®PP is independent of s: these func-
tions are actually C'°°, since their z dependence comes only from stationary
solution to our initial problem.

Our goal in that section is to deduce from (6.1.1]) to (6.1.4) bounds for the
cubic and quartic terms in the left hand side of (5.2.34) and in ([5.2.35]) and
(15.2.37)).

Proposition 6.1.1. — Let Mj(&,uapp), j = 3,4 be given by the first line
in (5.2.33). There is a function (t,€) — e(t,€), depending on the constants
A, A D in (6.1.1)-(6.1.5), satisfying limeo4 sup;<y<c-atee(t,€) = 0, such
that the following bounds hold:

(6.15)  [[CENM; (@ u™) | < Cet? (VD)™ 171 + €47] < eble(t, e)

(6.1.3) it ¢, Yoo < DV

(6.1.6) |LC ()M, uPP) | 2 < 17 (2VE) et )
for any t € [1,e7*¢], any o > 0.



6.1. ESTIMATES FOR CUBIC AND QUARTIC TERMS 135

Proof. — We prove first (6.1.5). By (A12.1.17), C(t) is bounded on H?, uni-
formly in ¢ staying in the wanted interval. By (5.2.33) we have thus to bound

(6.1.7) MA@, ., uP, L u®P) || g, 0 <0< 5,5 = 3,4
J4 j—L
P

(where each M¢ has form 1) by the right hand side of 1} By
(A11.1.30), (6.1.7) is bounded from above by

(6:1.8)  C [l 1k e [P e + 1P 25 PP i [y

with the convention that the first (resp. second) term in the bracket should be
app
replaced by zero if £ = 0 (resp. £ = j). As u PP = /PP +0/ PP 2PP = [;Latp } ,

it follows from (6.1.1]), (6.1.2]) that )

~ t€2 2
o = / ( )
o e < O, e s

| uPP|[weoe < C(A, A)e(log(1 + t))?
for t < e~%. Using also (6.1.3)), we bound (6.1.8)) by

. 2./t ¢ j—1
(6.1.10) C’et‘s[(GQ(log(l +1)2) 7 (M) }
Vit
Since j > 3, we have obtained a bound by the right hand side of (6.1.5).
Let us prove (6.1.6). By (A12.1.18)), (A12.1.19), (A12.1.20), it suffices to

bound by the right hand side of (6.1.6)) the quantities

LN (@, w™P) || 2, (| MG (@, u®P)| 287!

where m is close to . The estimate of the second term is a consequence

2
of (6.1.5). To study the first one, we recall that L = [LO+ LO,:| with Ly =

x £ tp/(D,), so that we have to estimate

(6.1.9)

(6.1.11) MG (@, u™PP) | 2, [l M (@, u™PP)]| 2.
By (6.1.10]), the first term is estimated by (as j > 3)
(6.1.12) t5 (VD) e(t, e

with

e(t,e) = Ot log(1 + ) (VD + et 17V .

Ift<e? 0 <0< % is close enough to %, so that 20" — 6 > 0, and if § is small
enough, one gets that e satisfies the condition in the statement. This concludes

the proof of (6.1.6) for the first term in (6.1.11). To study the second one,
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0 Nl s~ ~
we have to bound by t%(GQ\/E) e the norm ||:E/\/l§(u, cey Uy uPPP PP o
£=0,...,j. Consider first the case £ > 0, so that at least one of the arguments

is equal to 4. By the form 1) of Mﬁ, we may apply (A11.1.34), putting

the L? norm on that argument equal to @, i.e. we obtain a bound in
(6.1.13) Clllallfyro.ee + 4P Ino.ce ] [Elll 2 + (| L]l 2]

The contribution of the first term in the last bracket has already been estimates
by (6.1.12)) in the study of the first term (6.1.11)). The second term gives rise,
according to (6.1.9), (6.1.3)), to a quantity bounded by

o
Cti (e2ﬂ)0 [(EQ\ﬁ) + 2(log(1 + t))z} ’

Vit
which is also of the form (6.1.12). It just remains to study the term
Ha;./\/lg(uapp,... u?P)||;2. We decompose one of the arguments u®PP, say

the last one, as u®PP = u/2PP 4+ ¢//#PP We estimate then the L? norm of

o ME(uAPP, L utPP u/2PP) (resp. oM (utPP, L utPP u/%PP)) using (A11.1.34)

with n = j (resp. (A11.1.35|) with n = j). We obtain a bound in
(6.1.14)  Cllu™ [ oo [t[u/*P| 22 + || Lu/*P| 2]

o Ol [y e ™ 2 [l g o + | Ly .

Using (6.1.9), (6.1.1)), (6.1.2) we obtain a bound in

7
(6.1.15) Ce*(log(l + t))* [62753 1 (VE+ (62\/7?)86%)}

+ Ce*(log(1 +t))%e[e*t(log(1 +t))* + log(1 + t) log(1 + €t)]
which is largely of form (6.1.12f). This concludes the proof. O

We shall study next term (5.2.35|).

Proposition 6.1.2. — With notation for e(t,€), one has the follow-
ing bounds for 0 < € <j, 7=3,4

6.1.16 COVEOME(a, ..., 4,u?P, . u®P)| g <t Letel(t,
(6.1.16)  [CHV() ](uéuu WP e < ¢ etdet, )
(6.1.17)
ILCEV M@, ... i u™P, . uP) s < ¢ (t%(e%/%)e)e(t, o).
a4

Proof. — Recall that ./\/l is given by (5.2.33)) in terms of operators /\/lg defined
in (5.2.5). Moreover, recall that V(¢) in (5.1.13) is by definition the operator

Op(M') given by -, in function of symbols ¥/, satisfying (4.2.63)), (4.2.64)).
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This means that in particular té b, are elements of g;ﬂ(@)*l, 1) (for any k, 8
as these symbols depend only on one frequency variable). Moreover, the sym-
bols 727 in belong to Sy 5(My Z:l (&)1, 4). It follows from the com-
position result of Corollary |A9.2.6/that the components of V(t)./\;lg (..., u?PP)
may be written under the form

_1
(6.1.18) te 2Op' (M) (G, . . ., G, uSPP, L ufPP)

for some symbol m’ in S} 5(M{ Z:l (€)', 4) (for some new v), and any
choice of the signs . We use (|A11.1.30)) together with the boundedness of
C(t) on H®, to estimate the left hand side of (6.1.16]) by

-3 . i—11 a -
(6.1.19) Cte ? [[[uPPlwoee + [|allwoee]” [[[u®PP]| s + ||| e ]
Using estimates (6.1.9)), (6.1.3)) and 5 > 3, we bound this largely by the right
hand side of (6.1.16)).
Let us prove (6.1.17). By (A12.1.18)), (A12.1.19), (A12.1.20) it is enough to

estimate

1_ Nl Al
etz VM@, . w2, [ LVEMS(@, . uPP)| 2
by the right hand side of (6.1.17). The first term satisfies the wanted bound
as a consequence of (6.1.19)), since the exponent % — m is close to zero. By
(6.1.18)), the study of the second one is reduced to
_1
(6.1.20) te 2| LLOp'(m/) (i, - . ., G, ufPP, oo uPP)| 12
for m' in S[’w(MO” H%:l (54)71,]'). As Ly = z + tp/(§), and symbol
m'(y,x,&1,...,&) is decaying like <M0(f)_"‘y>_N for any N, we are re-
duced to bounding by the right hand side of (6.1.17) the quantity
1
(6.1.21) tte 2(|Op" (m/) (it . . ., dix, uPP, o ufPP)|| 12

for a new m’. If there is at least one argument equal to 74 in (6.1.21]), we use
estimate (A11.2.32), making play the special role devoted to v; there to such
an 4+ argument. We obtain a bound of (6.1.21)) in

_1 -
(6.1.22) Cte [aflweos + [u*PPllwooe ] (1] 2 + | Lal 2],
By (6.1.9), (6.1.3)), this is bounded by

1 62\/i o 2 1 0
(6.1.23) Ct. 2 {(\/E) + e2(log(1 + t)ﬂ [t1(e2Vt)]

since j > 3. Again this is largely bounded by the right hand side of (6.1.17)).
Consider next the case when all arguments in (6.1.21) are equal to u®PP.
Decompose one of these arguments, say the last one, as u®PP = y/2PP 4 ¢//2PP,
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By linearity, we get a contribution in Op’(m/) (v, ... uiP w'3P) for which
(6.1.21) may be estimated by (6.1.22)) with @ replaced by /PP in the last
factor. As by (6.1.1)) the L? bounds of w/*PP, Lu/3PP are better than the corre-

sponding ones for 4, Lu in (6.1.3]), we get that (6.1.23]) holds again. We are
thus left with

1
tte 2||Op! (m/) (W8P, .. " PP || 2.
We use then (A11.2.33]) to estimate this by
1 .
(6.1.24)  Otc 2 |[u"*PP|[Jm wo |02 12 [[|u"*PP || yre0.00 + || Lu*PP |[yyro0.00].

By (6.1.2), we thus get a bound in

1 €2\ 2
172 2 (log(1 + t))%( <ie2>> log(1 + £) log(1 + te2).

Distinguishing the cases te? < 1, te?> > 1, one checks that this is smaller than

1
f%(eQ\/i)ie(t, €), so than the right hand side of (6.1.17). This concludes the
proof. O

6.2. Estimates for quadratic terms
We shall study in this section the quadratic term in (5.2.34)) and ([5.2.36)).

Proposition 6.2.1. — Let MIZ be given by the second line in . One
has the following bounds

(6.2.1) | M (@, u?PPY) || s < etde(t, €)

6.2.2 LM (@, u?PP )| 2 < ti eVt 96 t,e
2
for any t € [1,e4F¢], where e(t,€) satisfies .

To prove the proposition, we shall study the three terms in the definition

of M},

Lemma 6.2.2. — One has the following estimates:
(6.2.3) IR (@, @) || s < Cet? (t—%+f’(e2\/£)9)
(6.2.4) LN, @) 12 < £3(EVE) et €)

for any t in [1,e 1], any o > 0, if s is large enough relatively to %
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Proof. — By definition, M 2 is obtained applying Proposition to M'3
5.2.33))

given by the first term in the right hand side of the second line in ( It
has structure (5.2.20). We thus have to study

(6'2'5) ||Qé1,i2(ﬂi1’ai2)”Hs

(6'2'6) ||LiQ{L‘1,i2 (ailﬁﬂiz)HL2

to obtain respectively (6.2.3) and (6.2.4), where Q;N-Q are operators of the

form (A13.4.11)), preserving the space of odd functions. To bound (6.2.5)), we
thus have to study

(6.2.7) K, (L iy, L2, )| e

Hiiryig\ iy
where 0 < /1,05 < 1.

If 41 = 5 = 0, we apply inequality (A13.5.9) of Corollary [A13.5.2 with
w = % We obtain a bound of (6.2.7) in

_Th.
(6.2.8) Ot 7|y || s

If /4 = 0,43 = 1 (or the symmetric case), we apply (A13.5.21)), which gives for
(6.2.7) an estimate in

(6.2.9) Ct 4 ||y || %

If ¢4 =09 =1, we use (A13.5.20) in order to bound ([6.2.7]) by
_3 N _ ~

(6.2.10) Ot 4 [ Ly iy g2 + i o] e

where o > 0 is as small as we want (if s is large enough). Plugging in these
estimates (6.1.3]), we obtain a bound in

(6.2.11) Cet=1+7+011 (2 /1)
which gives (6.2.3]).

Consider next (6.2.6) and decompose Ly = x + tp/(D;). The action of
tp'(Dz) on Qj (@i, 0i,) has L* norm bounded from above, according to

(AT3.4.1T), by
1 ~ ~
(6.2.12) t3 || Ky, (Lo, , L2 0,) | o

H,i1,i9
When ¢; = ¢, = 0 (resp. (¢1,¢2) = (1,0) or (0,1)), we apply (A13.5.9) with
s =0 (resp. (A13.5.13)), (A13.5.14))) to bound this by

_3 _ _ _
Ct=2% [[la || s + | Lt || 2] s e

for any o > 0, so by (6.2.11)), which is better that what we want.
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On the other hand, if 1 = ¢ = 1 in (6.2.12), we apply (A13.5.13)) or
(A13.5.14)) with fs or fi replaced by L. We obtain for (6.2.12)) an estimate

m

3 _ _ 2
(6.2.13) Ct=i% | Lyt e + [|as ] ms]™.
Using (6.1.3), we obtain a better bound than (6.2.4). We are left with studying
3 01,0 0~ plon
(6.2.14) 2| e Ky 2, (L Gy, L g )| 2

We noticed at the end of the proof of Proposition [A13.5.1] that an operator
K may be written as an operator K of the same type as K, up to the

loss of a factor ¥ (here t%) It follows that (6.2.14) will be bounded by ¢tz
times (6.2.12f), which is better than the estimate already obtained for the other
contribution to (6.2.6)). This concludes the proof. O

Proof of Proposition [6.2.1} We remark first that the conclusion of
Lemma [6.2.2] holds for the three terms in the right hand side of the sec-
ond formula that defines M,. We have seen it for the last one. It
holds for the other two terms as, by the end of the statement in Proposi-
tion u/SPP 1 satisfies the same estimates as u/*PP. Since these

bounds are better than the inequalities (6.1.3) satisfied by @ (for t < ¢=%),
i) 2.33))

the proof of Lemma thus applies as well to M'Q, M'3 in (5.2.
Consequently, (6.2.1)), (6.2.2) hold. O

We want next to study quadratic terms in the right hand side of ([5.2.34])
i.e. terms of the form ([5.2.36|).

Proposition 6.2.3. — Let M}, be given by and denote by e(t,€) a
function satisfying . We have bounds

(6.2.15) 1(C(t) — Id) M}y (@, u'*PP V|| s < tLetde(t, €)

(6.2.16) IL(C(t) — Id)Mb(a,w™PL)|| 2 < ¢ 1% (2V4) e(t, ).

Proof. — We write the proof for the component of M} that is quadratic in .
This implies the general case, as uw/?PP! satisfies better estimates than those

holding true for .
Recall that by (5.1.10)), the components of M}, are of the form Op(my ;) (i)

with mg ; in 5'{70(]_1521 <§j>71MO,2). If we apply estimate (A11.2.39) with
¢ =0 =1, n=2, we obtain

M@, @) s < O (|| Lal 2 + Nl ) 1l s
Plugging there (6.1.3]), we get a bound in
(6.2.17) Oty (VD).
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Since [|C(t) — Id||z(z2) = O(ebt_m”,‘*‘i) by (A12.1.17), we obtain an estimate

in
’ 0
Ceto™! [ebté_m'Hs (V) ].
Since m may be taken as close to % as we want (see the example following
Definition [A12.1.1{ where m is introduced), and since §’, o may also be taken

as small as wanted (in function of the fixed parameters c, 6, '), for t < e=4+¢,
the factor between brackets is of the form e(t,€) in (6.2.15]).

To prove ([6.2.16]), we write by (A12.1.18]

(6.2.18) L(C(t) — Id)MYy = (C(t) — Id) LM, + Cy(t) M.
Since || MY (@, )| 2 is estimated by (6.2.17)), and since ||C} (t)ll £(z2) is bounded
by (A12.1.20) with m close to %, we see that the L? norm of the last term in
(6.2.18)) is smaller than the right hand side of (6.2.16) (for t < e~%).

On the other hand, by definition of L, | LMY (1, @)]| 2 is bounded from above

by tHOp(m()J)(ﬂ[)HLz, with mfu in 5'{,0 (H§:1 <§j>_1, 2). Using (A11.2.37)), we
estimate this by

—140 ~ ~ 4o/t 0
CtY | Lyg |2 + [y |las]* < O (45 (2VE))

Since ||C(t) — Id||zz2) = O(e‘t‘m+5’+i) with m close to 1 by (A12.1.19), we
see that the L? norm of the first term in the right hand side of (6.2.18) is
bounded from above by

A (VD) [( VD) o oe]

and again, if % —m, ¢, 0 have been taken small enough, the bracket is of the
form e(t, €), whence a bound by the right hand side of (6.2.16|). This concludes
the proof. ]

6.3. Higher order terms

In this section, we shall bound expressions of the form (5.2.37), (5.2.38)
that appear as contributions of higher order of homogeneity if one replaces
(Dy — Py)u by its expression coming from ([5.1.13]). We study first the first line

in (5.2.37).

Proposition 6.3.1. — Denote
(6.3.1)
F(t) = Ct)MS (@, ..., (Dy — Po)ii,..., 0, u™P, ... u®P) 1 < (< j,j=3,4.

Then under a priori assumptions , , one has the following bounds
(6.3.2) |F#) ||l gs <t tet’e(t, €)
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(6.3.3) HLF(t)HLz < 3 (VD) el €)
with e satisfying (4

To prove the proposition, we first re-express F'(t) replacing in the right hand
side (Dy — Py)u by its value.

Lemma 6.3.2. — The components of
ME(@,...,(Dy — Po)it,..., G, u™P, ... u®P)
may be written as sums of terms of the following form:
(6.3.4) £ 20p! () (s, ), G = | + 17| = 3
where m' is in S} 5(M§ TTj—y (€)™ 5),
(6.3.5) Opt(m)(ﬁpaﬂgp)’ j=+1I"=5
where m is in Sy g(Mg [Ty—q (§e)~ ,j),
(6.3.6) Op'(m) (Rj/(u,u PRy ap,up?), o= I’ + 1"
where j' > 3, ] > 2 m is in Sy g(Mg ]_[j+1 &)+ 1) and R satisfies

FZZ) and (239)

(6.3.7) Opt( N(ap, PP R, =0+ |+ 7] > 4
where m' is in Sy 5(My Hezl &9,

(6.3.8) Op'(m) (Ra(@, w'*PP1), iy, uhP), j = |I'| + |I”|

with j > 2, m is in Sy g(My HJ+1 (fg) .j+1), Ry satisfying (5.2.39),
(6.3.9) Op'(m)(R, iy, u??p) jg=+|1">2

where R satisfies estimates , and where m is in the class
Sus(MYTHE (&) +1).

Proof. — Recall that by (5.1.13])
(D — Py)u = V(t)a + Ms(t, u*P) + My(a, u*PP)
+ M (@, u/*PP) 4 R,

Recall that Mf is an operator of the form || so that its components

(6.3.10)

computed at (@, ..., a,u?PP ... u*PP) may be written
(6.3.11) Op' (M) (i s -+ gyl ufr ™)

with i; = &+ and m element of Sy g(M{ szl (fg)fl,j) for some § > 0. We
have to compute (6.3.11)) when one of its 4 arguments, say the first one, is
replaced by (D; — Py)u, so by the right hand side of (6.3.10). If we replace
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(D¢ — Py)u by V(t)a and use that V(t) is constructed from operators Op(b’,)
1

in (5.1.4) that satisfy (4.2.63)), (4.2.64) i.e. are such that t2b/, = ¢/, is in
,’%ﬁ((ﬂfl, 1), (for any &, 3), we get a contribution

_1

te 20p!(m) (Op(cél)uil,ub, e 7”%:“?2)17 . ’UZPP)'
By the composition result of Corollary we get a term of the form
(6.3.4)).

Let us study next (6.3.11]) with the first argument replaced by M3z (u, u®PP)+
My(t, u*PP) coming from (6.3.10]). According to definition (5.1.11)) of M; and
to (5.2.26]), we shall get contributions
(6.3.12) Op'(m) (Op(mj)(ap, WY, Gy, gy U u?pp)

AN 77
with [I] = 3 or 4 and /i in S1,5(Mo(€)” T}, (€)% 111), with 8 > 0 and
(6.3.13) Op'(m) (R + (@, u™), sy, . . ., usP)

)

for Rj/ = [Zj/’+} satisfying (5.2.27), (5.2.28) with 7/ = 3 or 4. By Corol-
i =

lary (A9.2.2)), (6.3.12)) may be written as a term homogeneous of degree larger

or equal to 5 that has the structure (6.3.5). Moreover, (6.3.13)) provides terms

of the form ([6.3.6)).
We have to study then (6.3.11)) where the first argument is replaced by the

M (@, u'#PP ) term in (6.3.10). By (5.2.31) and (5.2.30]), we get contributions
of the form

(6314) Opt(m) [Op(m&p’p/)(ﬂp, u/?gp’l), fLiQ, ey ’aiw Uu
with [I'| +[I"] =2, j = 3, and
(6.3.15) Op' (m) [Ra,+ (@, u/*PY), s, ..., uf™P].

) 7'j

Again by Corollary [A9.2.6 (6.3.14) brings a contribution of the form (6.3.7)

and ((6.3.15)) an expression of type (6.3.8]).
Finally, we have to replace one argument of (6.3.11]) by the last term R in

(6.3.10). This brings (6.3.9). This concludes the proof of the lemma. O

Proof of Proposition [6.3.1; Let us prove (6.3.2), (6.3.3). We have to esti-
mate all contributions from (6.3.4) to (6.3.9)). As already seen, (A12.1.17) to
A12.1.20) allow us to ignore the action of operator C(t) on the definition
6.3.1)) of F(t), so that we need to study only the Sobolev norm of to
6.3.9)), and the L? norm of the action of L on these two quantities.

e Term (/6.3.4): This term is of the form and has already been
estimated by the wanted quantities.

app app
Z‘[+1,-.u7ui‘j ]
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e Term (|6.3.5)): The Sobolev norm of this term may be bounded from

above, according to (A11.1.30)), by
_ 4~
Clllallweoee + [u*PP|[weo-oe | [llal| s + [P [| ]

Using (6.1.1)), (6.1.3), we bound this by
(6.3.16) Ot2(2VD) " et
which is better than the right hand side of (6.3.2)). If we make act L.
on (6.3.5) and compute the L? norm, we get on the one hand the product
of (6.3.16)) by ¢, which is smaller than the right hand side of (6.3.3) and

lzOp*(m) (@, u7h?)||g2. This is a quantity of the same form as the second

term in (6.1.11f), except that j > 5. We thus obtain a bound by '6.1.13‘, when

at least one of the arguments in is equal to 4. By (6.1.1)-(6.1.3) and
j > 5, this is controlled by the right hand side of . If all the arguments
are equal to u?*PP, we get instead a bound by (6.1.14]) with 5 > 5, so by (6.1.15))
multiplied by [[u®PP[|3,55,0c < Ct~! when t < ¢*7¢ by (6.1.1), (6.1.2). Since
(6.1.15]) was controlled by (6.1.12f), we get again a bound of the form (|6.3.3)).

e Term (6.3.6]): By (A11.1.30)), the H* norm of (6.3.6) is bounded by
(63.17)  Cl[ Ry (@ u™™)l|szs [dllwoos + |uPPllwro<]*
+ R (@, u™P) [[wreo oo (||l woooe + [[u™PP | yweo o]
x [llall s + [|w™P]| prs]

since j > 2 in (6.3.6). Using Sobolev injection, we may bound ||R;||weo.

from H?iijHs. By (5.2.27) and 1)1 , we largely get an estimate of
the form (|6.3.2]).

If we make act Ly on (6.3.6]), and use that
2O (m) (o1, ., ) — Op'(m) (wv1, ..., 03)

is of the form Op’(m1)(v1,...,v,) for a new symbol m; of the same form as
m, we reduce the estimate of the L? norm of the action of Ly on (6.3.6) to
bounding

t||Opt(m) (,ﬁ’j’,:l: (fL, uapp)’ fL[/, U?Bp) HLZ
HOpt (m) (Lﬁj/7i(ﬂ, Uapp), 7:‘1,]/7 U?Ep) ”L2 .
By (A11.1.31)), we get an estimate in
(6.3.18)  (t|Ry (@, u™™)| L2 + [ LRy (@, u*PP)]| 2 )
. 2
X [[@llweoe + [u™Pllweoe] ~.
By (5.2.27)), (5.2.28)), (6.1.1)-(6.1.3), this is largely estimated by the right hand

side of (6.3.3]).
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e Term (6.3.7]): This term is of the form (6.1.18)), except that there is no
1

te 2 factor, that we may have an argument u/PP! instead of u*PP, and that
the number of arguments is larger or equal to 4. By (6.1.19)), the H® norm of

(6.3.7) is bounded from above by
O [P fwo e + ™ llwso o + [[@]wro<]”
[P llgs + llall s + lu'PP | 1zs].

Using (6.1.1] we get a better estimate than ( - If we make act
Ly on (6. 3 D and compute the L? norm, we obtain a quantity of the form
1

6.1.20)), without the pre-factor t. >. We obtain thus an upper bound given by

l
6.1.22 6.1.24]) without the tc ? factor, but with 7 > 4 and an argument

u/2PP 1 replacmg eventually an u*PP. By (6.1.1] - -,

[l o oo + [uP fwsoce + [[@llwooe]” [l 2 + | L] 2]

is smaller than the right hand side of (6.3.2)). On the other hand, the contri-
bution of the form (6.1.24)) is bounded from above by

C'Hu//appH%Vpo,oo ”u//appHL2 [Hu//appHWﬂom + HLU//appHWpO,oo]

< Cé(log(1 +1))°

by 1' As t < e74¢ we estimate this by %ee(t, €), so by the right hand

side of (6.3.3).

e Term (6.3.8)): This is a term of form (6.3.6). The H® norm may be
bounded by (6.3.17)), with R replaced by Ro. It follows from (5.2.32)), Sobolev

injection and (6.1.1)-(6.1.4) that we largely get a bound of the form ([6.3.2).

If we make act L4 and estimate the L? norm, we get a bound of the form
, with 7~€j/ replaced by Ro. Again, by (]5.2.32[), (]6.1.1[)—(]6.1.4[), we
obtain the conclusion. ‘

e Term (/6.3.9)): This is a term of the form @ with R i replaced by R
Again, we may apply (6.3.17) to bound the HS norm. Accordlng to ,
we obtain a bound by the right hand side of . To study the L2 norm
of the action of Ly on , we use that we have again a bound of the

form ([6.3.18)) with 7~2j/ replaced by R. As the last factor in (6.3.18)) is O(¢~!)
by (6.1.1)-(6.1.3]), we conclude that we get an upper bound by (6.3.3) using
(4.2.6), (4.2.7). This concludes the proof of Proposition O

Our next task is to study the second line in (5.2.37)).

Proposition 6.3.3. — Denote now

(6.3.19)  F(t) = C(OOME(d,. .., @, u™, ..., (Dy — Po)u™, ... uP).
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Then under assumptions -

(6.3.20) |F#)|| s <t tet’e(t, €)

(6.3.21) ILE®) e < 15 (VD) e(t, o).

Proof. — Recall that (D; — p(D,))u’™ is given by (3.1.37). Together with
the definition (1.2.14) of F}, F3, Wlth the fact that by (3.1.3), (3.1.6), (3.1.8)),
1

a®®P is O(t. ?), and with estimates (3.1.38)), this implies that

(6.3.22) (Dy — p(D2))u?? = Z(t,x) + a®P(t) Y Op(mf ;)(u™®)
|I|=1

where m/ ; is in 5’{70(@) ,1) and Z(t, z) satisfies for any o, N

(6.3.23) 0%Z(t,x)| < ContHa) ™.

Notice that we may consider as well m’L ; as an element of Si,ﬁ(<€>_1’ 1) for
5 > 0, since for symbols depending only on one frequency variable, this does
not make any difference. We plug (6.3.22) inside (6.3.19). Using the form

1) of Mﬁ and the composition result of Corollary[A9.2.6, we write (6.3.19)),
where we forget factor C(t) that does not affect the estimates, as a sum of
terms (up to permutations of the arguments)

_1
(6.3.24) te 20p!'(m/) (G, . .., u’PP)

(6.3.25) Op'(m)(Z, i+, . .., u’"P)

where the number of arguments (@4, ...,u5"") in (6.3.24) (resp. (6.3.25))) is

j (vesp. j — 1) with j > 3, and m/ belongs to S} 5(M¥ [T/, &)1 5), m to
6 )

Sag(My H%Zl (§g>_1,j) for some v. Expression (6.3.24)) is of the form 1)
so satisfies the Wanted bounds ((6.3.20)), (6.3.21) by the first point in the proof

of Proposition The H?® norm of (6.3.25) is bounded by (A11.1.30) by
(IIUIIHs + PP =) ([[allweooe + [[u*PP[[weo.oe ) [|Z]wreo .o
- 2
+C (lllweoe + [[wP oo ) "1 Z]| e

so by the right hand side of (6.3.20)), by (6.1.1])-(6.1.3) and (6.3.23).
Let us bound next the L? norm of the action of L4 on (6.3.25)). We decom-

pose each factor ui*? = v/5PP + 4P, Consider first the case of the resulting
expression where at least one of the last j — 1 arguments in (6.3.25)) is equal

to @4 or u'4PP) say the last one. We have to estimate

t|Op"(m)(Z, i, . .., uZPP, w)| 2

(6.3.26) ] :
|2Op" (m)(Z, tit, . . ., uf®, w)|| 2
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with w = @+ or w/{"?. Up to commuting  to Op’(m) in order to put it agains
Z, it is enough to bound the first expression. We use 1’ with the
special index j equal to the last one. Recalling the t-! factor in (6.3.23), we
get a bound in

(6.3.27)  Ct= ([[@]|weoe + [[u?PP[|prooee )’ 2

x (llllzz + I Lall g2 + [|w/*PP[l gz + ([ LeuPP|| 2)
which by (6.1.1)-(6.1.3]) is smaller than the right hand side of (6.3.21]) (as
j — 2 > 1). On the other hand, if we consider (6.3.26)) with all arguments
(s, ..., uiP w) replaced by u”app, we use (A11.2.35) and get instead of
E320, by (1)
Ot |6 Fympuee (| 6" PP [0 + [[u”"*PP[[o0.oo ) [[u"*PP]| 2
< Ot telog(1 + t) log(1 + t€®).
This is much better than ((6.3.21)). This concludes the proof. O
Let us move now to the study of ([5.2.3§]).

Proposition 6.3.4. — Denote
(6.3.28)
F(t) = C()M((Dy — PoJu ™1l *PP) 1 C(1) XY (™, (D; — Pyl

+ C(M'S((Dy — Po)a, u*PPY) + C () M3 (@0, (Dy — Po)u/*PP1)
+ C()M'3((Dy — Po)a, @) + C(t)M'3(a, (Dy — Po)a).

Then

(6.3.29) |F ()| s <t Let’e(t, €)

(6.3.30) ILLF (1) g2 <t [t3 (VD) et €).

Before starting the proof, we recall some estimates for (Dy — Py).

Lemma 6.3.5. — Under a priori assumptions (u (-) we have the
following estimates:

(6.3.31) (D — Po)il| g < Cet’2
(6.3.32) LDy — Py)a = fi +afs

with

(6.3.33) 1 fillze < Ct3 [t (VD))

(6.3.34) el 2 < Ct L2V et
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Proof. — Recall that (D; — Py)u is given by (6.3.10) and that V(t) may
1

be expressed, according to (5.1.4)), from operators t. 20p’(c¢,) with ¢, in
;,B(<§>_1’ 1). By boundedness of these operators on H® and (6.1.3]), we get
for [|[V(t)]| s a bound by the right hand side of (6.3.31]).

The action of L on V(t)& will have L? norm bounded from above by

1 1
te *|lzOp' (c)all 2 + tte > Op' (¢ )@l o

By 1} with n = 1 and , we get a bound by the right hand
side of

Con51der next the M(@,u*PP) terms, j = 3,4, in the right hand side
of (6.3.10). By (5.2.26)), these terms are given by the contributions R],
which by (5.2.27) are largely bounded in H® by the right hand side of
(6.3.31), and by (5.2.28)) contribute to f; in f we apply L on
them. On the other hand, the main terms in (5.2.26) are of the form
Op' () (ap,uih?). By (A11.1.30), (6.1.1)-(6.1.3), they satisfy (6.3.31)).
Let us study LyOp'(myp pv)(Gp,u7’). We apply Proposition and
Corollary (translated in the non semiclassical framework). This
allows us to re-express this quantity from

(6.3.35) Op' (i) (L1, v2, - .., vj)
(6.3.36) Op'(7) (v1, - -, v5)
(6.3.37) tOp' (7') (v, - ., v5)
(6.3.38) zOp'(7)(v1, ..., v5)

where vy = Uy or vy = w/*PP 4+ 4//?PP where m, 7 are in Sy g(M§ szl <§g)_1,j)
and 7 is in S} 5(Mg TTj—y (€)', )-
We estimate the L? norm of (6.3.35)) using (A11.1.31)) with the special index

equal to the first one, when v; is replaced either by @i+ or v/3*P. We largely get

a bound by (6.3.33) as j > 3 using (6.1.1)-(6.1.3)). If v; is replaced by w2,
(A11.1.31]

we still use 1.1.31)), but make play the special role to the second argument.
We obtain a bound in

(6.3.39) 14w {PP lwrooe [P lweooe + l[@llweooe] [Pl 2 + [l [ 2]

which is largely controlled by (6.3.33)) by (6.1.1))-(6.1.3)).
The L? norm of (6.3.36) (or of the coefficient of x in (6.3.38)) is bounded
from above by the right hand side of (6.3.33)) (or (6.3.34))) again by (A11.1.31]),

(6.1.1)-(6.1.3)) and the fact that j > 3.
Consider (6.3.37). If at least one vy is replaced by a4 or w3, we use

(A11.2.32)), with the special index equal to this £. By (6.1.1)-(6.1.3|) we largely
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get an estimate (6.3.33)). If all v, are equal to u”5"P, we use instead (A11.2.33)),
(6.3.33

from which ((6.3.33]) largely follows.

To finish the proof of the lemma, we still have to study the last two
terms in the right hand side of (6.3.10)). Contribution M’ (%, u/PP) has struc-
ture (5.2.31). The remainders R largely satisfy bounds (6.3.31), (6.3.33]).
The other terms are, by (5.2.30)), of the form Op’(m/)(vy,v2) with m/ in
St 5(Mo (&) TT—y (&;)7",2) and vy, vy equal to G or w3, By (A11.1.30) and
[6.1.3), (6.1.4]), the Sobolev estimate (6.3.31)) holds. On the other hand, by
A11.2.37) (and the rapid decay in z of symbols in 7 5(Mo(§) ?:1 <£j>_1, 2)),
we have

IZ+0p" (1) (01, v2) | 2 < O [|| Ly | g2 + || L

L2

1 2
I+

if so is large enough. Using (6.1.3]), (6.1.4) and taking o < i, we estimate this

by the right hand side of

(6.3.33)).
Finally, the last term R in (6.3.10)) satisfies (4.2.6)), (4.2.7]), so also (6.3.31))
and ((6.3.33|) for the action of L on it. This concludes the proof of the lemma.

O]

Proof of Proposition We shall prove successively (6.3.29)) and (6.3.30)).
Step 1: Proof of (6.3.29)

Since C(t) is bounded on H?®, we may ignore it. We thus need to study
[ M5 (v1,v2)|| iy Where (up to symmetries)

+ |G s + [Ju/5PP

(6.3.40) vy = (Dy — Py)ii or (Dy — Po)u/app,l’ vy = i or u/*PP!,

Recall that M is given by (5.2.20) in term of operators Qi i, of the form
(A13.4.11)). We have thus to bound

3
(6.3.41) 2K, (Lo, L2vs )| s

Hiy g 1

with operators Kf}’ﬁzm in the class IC’1 1(1,41,i2) introduced in Defini-
b b 75

tion [AT3.4.1]
e Consider first the case v = (D; — Py)u/#P!. We apply Corollary [A13.5.4

when ¢ or £y is non zero and (A13.5.9)) if /1 = ¢5 = 0. We obtain for ¢ > 0
small and so large enough a bound of (6.3.41)) by
(6.3.42) Cct—i [t"HL(Dt — Po)u’app’l|]L2(HﬁHHs + Hu’app’lﬂHs)

+17 (| Lal g2 + | LY p2) | (De — Po)u'*™ | s
+ (D = Po)u'™H [ gzs ([l g+ + Ju'*P> || 17+)]
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By end of the statement of Proposition [3.1.2 u’ipp’l satisfies estimates of
the form (3.1.46), (3.1.47) and also (3.1.39) Moreover, @ satisfies
(6.1.3). Plugging these estimates in (6.3.42)), we get a better upper bound
than .

e Consider next the case v = (D; — Py)a, ¢1 = 1 in (6.3.41)). Decompose

01,0
Kyl = K<+ K>
where K. (resp. K~) is defined by the same formula (A13.4.1) as Ké},’i 27i2, but

with the function k cut-off for |&1] < 2(&) (resp. |&2] < 2(€1)). We need to
bound

_3 . -
(6.3.43) t72|| K< (Li, (Dy — i1p(Dg)) s, Lf§v2,i2)u I

3 . ~
(6.3.44) t72 | K (Liy (De — ivp(Da)) iy, LiZvay) | e

where /o = 0 or 1 and vy = % or «/*PP!. Consider first expression (6.3.43)).
We decompose the first argument in K. under the form g1 + g2, where, for
x € C5°(R), equal to one close to zero,

(6.3.45) g1 =1 —x)(t""D,)[Li, (D — i1p(Dy) )iz, |

(6.3.46) g2 = X(t 7" Da)[fr4, + 2 f2,i,]

where we used decomposition ((6.3.32)). Using the definition of L;, and (6.3.31]),
we may rewrite g, as a sum gy = tg] + xg; with according to (6.3.31)), for any
g < s

(6.3.47) gt llzze0 + g} oo < t=PCDet?=3,

Applying (A13.5.1)-(A13.5.3) (with the roles of fi, fo interchanged), we see
that (6.3.43)) with the first argument of K. replaced by ¢; has Sobolev norm
bounded from above by

Ot Pl et 3 |l = + [P ]

If sB is large enough, we get an estimate by the right hand side of ((6.3.29)).
On the other hand, if we replace the first argument of K. in (6.3.43)) by g2,
we reduce ourselves to

§ - _ ~
(6.3.48) 2| K< (X(tPDy) friys LE2v2) | s

§ - _ -~
(6.3.49) 2| Ko (zx(t ﬂDx)f27i1,Lf§v2) Il iz

for new functions fi, fo satisfying the same estimates (6.3.33), (6.3.34) as
f1, f2 and x in C§°(R). Decomposing L;, = x +iatp’(D,) and using (A13.5.1)),
(A13.5.2) with the roles of fi, fo interchanged, we bound (6.3.48) by

B I =
t5(|X(t 7 Da) fri |l oo vzl s
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By (6.3.33)) and (6.1.3), (6.1.4)), this is smaller than
5803 13 (2D et?

so than the right hand side of (6.3.29) if ¢t < e %*¢ and 3 is small enough.

To study (6.3.49), we decompose again L;, as above and use (A13.5.2) and
(A13.5.3)), to obtain a bound in

1 - _ ~
t 12X (P Do) foll oo || v2 | s

By (6.3.34)) for f; and (6.1.3), (6.1.4)), we obtain a bound by the right hand

side of (6.3.29)).

Let us study next (6.3.44). If f5 = 1, we use (A13.5.15) (with f; and fo
interchanged) and if /5 = 0 we use (A13.5.21). We bound thus (6.3.44) by

CE 3 (D = Poyila [#97 (1Ll 2 + | L™ 2) + e + P> 2]

If we use (6.3.31)), (6.1.3), (6.1.4), we bound this by the right hand side of
(6.3.29), using again t < e~*7¢, and taking 3 small enough.

e To conclude Step 1, we still have to consider with vy = (Dy— Py)a
and ¢; = 0 i.e. to bound

_3 ¢ . .
t2 ||K21’,i7i2 (Dy — ZlP(Dx))Uil,ijvz,iQ) || s
Expressing L;, and using (A13.5.17) and (A13.5.9)), we obtain abound in
3 ~ .
3 [(De = Po)all s [l s + [l PP || ]

Using (6.3.31)), (6.1.3]), (6.1.4]), we obtain a bound of the form (6.3.29)). This
concludes the proof of Step 1.

Step 2: Proof of (6.3.30)

Again, properties (A12.1.18]), (A12.1.19)), (A12.1.20) of operator C(t) allow
us to ignore it in the proof of the estimates. We shall have thus to bound
| LMY (v1,v9)|| 2 where M} has structure and v1,vy are given by
:6.3.40|). If we express Ly = z + tp/(D,), we are reduced to studying

R ¢ ‘
(6.3.50) t 2| K2, (Litvriy, LiZva, ) |l 2
6.3.51 3 e K (L0, Lo,
( t ) Hx H,il,ig( 11’1)1721, 22v27"2)HL2'

By definition |[A13.4.1| of the class K' , (i), xKg’ffig may be written as
72 k) k)

t%f{%’ffiz for another operator in the class K 1 (i). It is thus enough to
201y ’2

bound ([6.3.50)).
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e We consider first the case v; = (Dy—Py)u/*PP1. By (A13.5.13), (A13.5.10)),

we bound ([6.3.50]) by
Ct1 [1(Dy — Po)w'®P || s + t7||L(Dy — Po)u'*PP!|| 2]

X [ L2 o+ || L] 2+ [|u/ PP 2 4 (|| 2]

for any ¢ > 0 (if so is large enough). Since by Proposition u/app1
satisfies (3.1.46)), (3.1.47)), we deduce from (6.1.3)), (6.1.4]) an estimate better

than (§6.3.30)).
e Consider next the case vy = (D; — Py)@, ¢4 = 1 in (6.3.50). We replace

L(D;— Py)u by the right hand side of (6.3.32)). By (A13.5.10)), (A13.5.14]), the
f1 contribution to (6.3.50) is bounded from above by

O Al [# (V2™ o + 1Ll g2) + ™™ e + [
Using (6.3.33)), (6.1.3)), (6.1.4), we get an estimate in
ct! [ti(ezx/i)g] [(62\/i)9t" + et‘s*i].
If o is small enough, and since ¢ < ¢4+, we get a bound of the form .
On the other hand, if we replace (Dy — Py)u by x fa, is reduced to
(6.3.52) K @ Lvas) e

A O, integration by parts in (A13.4.1)) using (A13.4.3), shows that ([6.3.52)) is

reduced to
01,0 )
HKh},if,iQ (fQ,il > Li; 0271'2) HL2

for a new operator in the same class. Using (A13.5.10)), (A13.5.14)), we get a
bound in

1 ~ ~
Ct=1| follpa [(ILu/™™™ [ g2 + | Laall 12) 7 + [Ju'*PPH| s + [[@l] 112 -

Using (6.3.34]), (6.1.3]), (6.1.4]), we obtain a bound of the form (6.3.30)).
e Consider finally the case v; = (D¢ — Pp)u, ¢1 = 0 in (6.3.50). By

(A13.5.10)), we get a bound of (6.3.50)) by
3 ~ ~
Ct™1(|(Dy — Po)allsrs [||1La| 2 + || La"*PPH| L2 + [[al| g2 + /PP | 2]

If we plug there (6.3.31]) and (6.1.3), (6.1.4), we get an estimate of the form
(6.3.30)). This concludes the proof. O

This concludes the study of terms of the form (5.2.38)). It remains to study
(5.2.39)), (5.2.40) and ([5.2.41)).
Proposition 6.3.6. — (i) Denote
(6.3.53) F(t) =C(t)R;(u,...,a,u*P, ... u*P), j=3,4, 0<0<j

)4
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with R; of the form , . Then there is a function e satisfying
such that

(6.3.54) IF®) |l gs <t 'et’e(t, €)

(6.3.55) ILLF(t)| g2 <t [t3 (VD) e(t, €).
(ii) Denote
F(t) = C(t)Ro(i, . .., @, u/*PL .. /2Pl
14
with 0 < £ < 2 and Ry = [gj’j given by (5.2.29). Then (6.3.54), (6.8.55

hold.
(iii) Let F(t) = C(t)[R(t,-) + Ra(t, ) + Ra(t,-)] + Ra(t, ) with R, R; as in

. Then and hold.

Proof. — (i) By (5.2.8)) and (A11.1.30) (and the boundedness of C(t) on H?),
we bound ||F(t)| s by

~ =1~
C|lallweoce + [uPPlweos ] [[al s + [u™P] =]

Asj >3, imply (5351).

To prove (6.3.55), we use once again that by (A12.1.18)), (A12.1.19),
(A12.1.20), we may ignore the factor C(t), and have to estimate LR; in L?.
This expression is a sum of quantities of the form (5.2.9), (5.2.10), (5.2.11)),

so of the form (6.3.35)), (6.3.36), (6.3.37) with vy = @y or vy = /5P + PP,

When v in (6.3.35)) is replaced by 44 or /5, we use (A11.1.31)) to estimate

the L? norm of these terms by
C|allweoe + [[u?PP|weoee ]’ [I[ L 2 + | Lu/®P]| 2]

so by the right hand side of (6.3.55)) by (6.1.1))-(6.1.3), since 7 > 3. If v; =
6.3.39

u”"?PP we have a bound by (6.3.39) so by
g
(6.3.56) VD [ @V log(1 + 1) log(1 + 1)

which is bounded by the right hand side of for ¢ > 0 small, 0,6 close
to 3 if t < e it

Expression (|6 is controlled as ((6.3.35)). For (6.3.37)), we use
if at least one of the v ’s is equal to 4+ or %P, which brings the wanted
estimate (6.3.55) by 1 If all arguments v; are equal to u" PP,
we use All 2.33)), that brlngs agaln an estimate of the form . ThlS
concludes the proof of (i

(ii) Again, we may forget operator C(t). We have to study

(6.3.57) 2K (Lo gy, L2vag, )| e

L,iq,i2
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(6.3.58) Lo K2, (L, L2va g, )| 2

L,iq,io

with Kﬁlfz’m in K ( ) and v1, v2 equal to @ or u/PP-1. Since estimates (6.1.4

are better than , we may argue just in the case vi = v9 = 4. Then
6.3.57)) is just 6.2.7 multiplied by t~2. Tt is then estimated by ,
%I% (6.2.10) multiplied by =% and thus by multiplied by ¢~ 2, so
by et5*1t“(62\/f)0. For t < e~4%¢, this is of the form of the right hand side of
(6.3.54]) if o is small enough. Let us bound next . Using the expression
Ly =2z +1tp/(D,), we have to estimate

_ .
(6.3.59) KR (L v, L2, e
(6.3.60) 2 e K7, (L vy, L2va,) | e

By (A13.5.10), (A13.5.13), (A13.5.14), we bound (6.3.59) by

_5 ~ ~ 2
Ct™a[||La| 217 + ||l a+] "

Using (6.1.3), we obtain
ot (VD) 1)1 (VD)

which is smaller than the right hand side of (6.3.55)) for t < e=4*¢ if ¢ is small
enough.

Finally, to study (6.3.60), we notice, as after , that this expression
may be bounded by 72 times (6.3.59)), so has the wanted bounds.

(iii) The contributions C(t)R3, C(t)R4, R2 are estimated by (5.2.32),
(5.2.27), (5.2.28)), so largely by the right hand side of (6.3.54), (6.3.55)),
using (6.1.1))-(6.1.3)). The fact that C(¢)R satisfies these estimates follows
from inequalities (4.2.6]), (4.2.7)) satisfied by R (or (5.1.22)), (5.1.23])). This
concludes the proof. O

We conclude this chapter summarizing the estimates we have obtained.

Proposition 6.3.7. — Let ¢ > 0 (small) be given, 0 < 0 < 0 < 1 with

0" close to 5. Let T € [1,e 7] and assume that we are given on [1 T]

R functions u+,u’ipp,u”ipp,u’ipp’ that satisfy estimates (“) for

some small § > 0, some constants C(A,A’), D, any € in an mterva ]0 €0},
and such that @ solves (5.2.34)). Then there are Dy > 0, €, €]0,€o] such that
if D > Dq and € €]0, €], for any t € [1,T), the L? estimates in may

be improved to

(6.3.61) s (8, s < Zet
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(6.3.62) ILyiig (b, )2 < S5 (2VE).

2|

Proof. — By Corollary we know that
(6.3.63) (Dy— P))a=TR
if we define
4
(6.3.64) a=C(t)]a— ZM],({L’ utPP)] - M (@, u/PP1).
7=3

By Proposition [6.1.1] Proposition [6.2.1] and the boundedness properties

(AT2.1.17) to (A12.1.20) of C(t), we have

(6.3.65) | — C(t)a|| s < etdelt,e)
(6.3.66) IL(i — C(1)a)|| 2 < t1(2VD) e(t, €)
where e satisfies (4.2.8)).

The right hand side R of is the sum of terms (5.2.35) to (]5.2.41[).
These terms have been estimated in Proposition [6.1.2] Proposition [6.2.3
Proposition [6.3.1} Proposition [6.3.3] Proposition Proposition [6.3.6
which imply that

IR(t, |z < et e(t,e)
LR, )2 < 5 (VD) et €).
By the fact that L commutes to (D; — Fp), it follows from the energy inequality

applied to (6.3.63]) that

(6.3.67)

(6.3.68) it Y|rs < a1, )| ms + ete(t, €)

(6.3.69) L, e < LA,z + 5 (V) et o)

and then, by (6.3.65)), (6.3.66]) and (A12.1.12), (A12.1.17)-(A12.1.20) that
(6.3.70) la(t, Y|mzs < Cla(1, )| zs + et’e(t, €)

(6371)  |La(t, gz < ClILa(, Yo + a1, 2] + ¢ (VD) e(t, o

for some constant C, some new factors e(t, €). Recall that @4 has been defined
from wy in (4.2.1)), and that since this function is O(e) at time ¢ = 1 in the
space {f € H°, zf € L*} by (1.2.10)), (1.2.8), we may take D so large that the
first term in the right hand side of (16.3.70[), (16.3.71[) is smaller than %e. If €
is small enough, we thus get (6.3.61)), (6.3.62) using (4.2.8]). O







CHAPTER 7

L>* ESTIMATES AND END OF BOOTSTRAP

The goal of this chapter is to conclude the bootstrap argument that gives
our main theorem. At the end of the preceding chapter, we have seen that
assuming a priori estimates , we could prove that the first and last ones
hold with a better constant. Here, we shall bootstrap the W#* bound in
. Once this is done, we still have to go back to the original unknowns
of the statement of our main Theorem [[L1.1] and to deduce from estimates of
4 and from the study made in section the bounds of the quantities that
appear in that theorem.

7.1. L*° estimates

One cannot deduce an L™ estimate of the form of the second inequality in
from the Sobolev estimates satisfied by w4, L4ty through Klainerman-
Sobolev inequalities: the fact that || Ly | ;2 admits only a O(ti) bound would
be too rough in order to do so. Instead, we deduce from the equation satisfied
by 4 an ODE, that will allow us to get the wanted L* bound.

We shall reduce ourselves to the semiclassical framework, defining from the

solution @ = [@ﬂ of (5.2.34)) a function @ = [%ﬂ by

U—

1 x

7.1.1 Uy = —=0 (t,—) = (0a)(t, x

(7.1.1) L= ie(t]) = @) ()
using notation (A9.1.7). We set h = ¢t~! and decompose for a given p > 0,
(7.1.2) (hDy) iy = @l + 4l s
with according to notation (A11.3.13))

N rEp'(§ _
(713) i = onl! (7 (“=E) Yol (6))
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where v € C§°(R) has small enough support and is equal to 1 close to zero. We
denote by &i’ A ﬂi’ Ac the functions corresponding to Q’i’ A Q’i’ Ac by a change

of variables of the form (7.1.1)).

The contribution Qgc Ac has nice L bounds by Klainerman-Sobolev esti-
mates:

Proposition 7.1.1. — For any o > 0, any s with so large enough, one has
the estimate

- _3 . .
(7.1.4) Hui,ACHLC’O < Ct 4+U[HLj:UiHL2 + HuiHHS]
Proof. — Translating that on @/} ,., this means

~ 1_ ~ ~
1@ pellzoe < CRAT7 [ Latipllpe + |G|l z] -

This is just statement (A11.3.9)) in Proposition |A11.3.4 ]

We study from now on @ ,. We first prove some bounds for expressions

(4.2.10)-(4.2.16), whose sum is equal to (D; — p(Dy))t. If W(t, ) is some
function and W is defined from W by (7.1.1), i.e. W(t,:) = 6 W(t,-), we
denote by W/ the function defined by ith sign + and @, replaced by
W, and we shall call W} the function W§ = ©,W 4.

Lemma 7.1.2. — Let

o) = L) — o). () = L @) - (),

where a_ = —ay., a®” = —aP?, and where ay, a’? satisfy by , ,

1 —
(7.1.5) [aZPP(t)| < Cte 2, |ay(t) — a5PP(¢)] < Cte

for t in the interval [1,T), T < e *¢, where these functions are defined.

Assume moreover that on that interval, the functions iy, u PP, u"PP satisfy

G11)-[GL3).

Then the quantities (4.2.10) to (4.2.16}) satisfy the following estimates, with
a constant C' depending on the constants A, A', D in -(6.1.9):

(7.1.6) I{e2.10) woe < Ct73 (V)
(7.1.7) 1(.2.11) o < Ct=3 (VD)
(7.1.8) (@212 lweee < Ct3(2VD)

1.2.13)) || < Ot 317 (2V1)°

[S]Ie]

(7.1.9) |
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(7.1.10) 1@2.14) [woee < CE 5 (2V0)
(7.1.11) 1@2.15) [woee < CE 5 (2V0)"
(7.1.12) |{a2.16) o < Ct3H7 (V)

where o > 0 may be taken as small as one wants if so is large enough (s being

the index of Sobolev estimates -(6.1.3)) relatively to p, and where in
one uses the notation WK defined before the statement of the lemma.

1
Proof. — e Inequality ((7.1.6) follows from (4.2.25)) and the fact that t. 2 < e.
e We have seen in the proof of Proposition [4.2.1] that (#.2.11) is a sum of
terms of the form (4.2.27) or (4.2.28)), with conditions (4.2.29)) or (4.2.30) i.e.
may be written from

(7.1.13) Op(m)(v1,...,vp)

where m is in 5’170( T (&) tmy, n), with n > 3 and v; equal to @+ or u/*PP+
or v or R (with R satisfying (4.1.25)), (4.1.26)). In particular, by Sobolev
estimates, one has

€2 0o\ 4
(7.1.14) |R(t, ) [[weee < C(N\zt> et®.

If we apply (A11.1.37)), we obtain for the W norm of (7.1.13]) a bound in

~ 2
it llweee + [P llwee + [[u"SPP[lweee + [[Rllwooe]
 [t7 [llasllwese + WS lwoce + 0" P lwese + IRl woe]

T Nl + 0l + " s + [ Rl as]]-

By (6.1.1)-(6.1.3) and (4.1.25), (7.1.14]), this is smaller than the right hand
side of 1) (if we use that (62\/5)39/_915" < C for t < e4F¢),

e The expression (4.2.12)) to estimate has been seen to be of the form (4.2.38
or (4.2.39), with either (4.2.40) or (4.2.41)). Terms corresponding to (4.2.40
are of the form (7.1.13)) and, as we have just seen, satisfy the wanted bound.
We have just to consider expressions (4.2.38) or (4.2.39)) under ie.
quantities of the form

(7.1.15) Op(m')(v1,v2)

where m/ is in S, (HJQ‘:1 <§j>_1M6’,2), and vy, vy taken among 4, u'{Y,

u”%PP) R. If both vy, vy are different from u”"P, we use (A11.2.38)) with r = 2,
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n=2,¢=0. We get a bound in

(7.1.16) ¢ 25 [/ + |l || s + | R] s
- 2
1 Lu PPl g2 + ([ Lttt [l g2 + | L+ Rl 2]
estimating the WP norm from the H?® one). It follows from (4.1.25)),

|| that ||L+ Rz < C[t%(€2\/%)9]. Using also (6.1.1]), (6.1.3) we esti-
mate (7.1.16) by the right hand side of , when t < ¢4+ if ¢ is small
enough. Consider next the case when vy or vs is equal to u” Efp. If for instance
vy = u"%PP and vy = G4 or w'5P or R, we apply withn =2, ¢ =1.
The first term in the right hand side of this expression is largely estimated by
(7.1.8)) if r is taken large enough. The second one is smaller than

Ct 7 [Jlu" PP lwece + | Ly PP [ weee ]
X w5 s + ||y || s + || Rl s
+ | Ly’ PPl 2 + || Ly tig | 2 + | L4 Rl 2]

By (6.1.1)-(6.1.3) and (4.1.25)), (4.1.26]), this is largely bounded by the right
hand side of (7.1.8).

If v; and vy are both equal to ©”%"P, we use (A11.2.38) with £ =n = 2. We
+

obtain a bound in ¢t =27 (log(1 +1t))?(log(1 +te?))? for the second contribution
to the right hand side of . If o is small enough, this is better than
since 0 < %

e It follows from (with a large enough r) translated in the non
semiclassical framework, that for any function W

(7.1.17) Wl < CLE T+ W |2 + ¢ 2 Wl ae].

To estimate (|7.1.9)), we decompose expression (4.2.13) as the sum of (4.2.47))
to (4.2.50). Consider first the nonlinear quantity (4.2.49)), that may be written
1

as (4.2.52). By (A11.3.10) and the fact that a(t) = O(te ?), its contribution
to (7.1.9)) is bounded from above by

iy
(7.1.18)  t% * _||Op(m’)(vl, oo svp) lwese +t77|Op(m) (v, . . -, 'Un)HHs]

for any r, if ¢ > 0 and so is large enough, m’ being in 5’1’0 (ITh—, (§j>_lM6’, n),
2 < n < 4, v; being equal to @t or «'PP or v”4PP. Since involves
expressions of the form or , we already know that the first
term is estimated by the right hand side of . The second term is easily
bounded, as r is arbitrary.

We have thus just to consider the linear expressions (4.2.47), (4.2.48)),

_1 _3
4.2.50). As a(t) = O(te ), a(t) —a®PP(t) = O(te ?) by (7.1.5)), the expressions
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to study are of the form

(7.1.19)

3
te 20p(m/)u/3PP
(7.1.20) \ (s
te 20p(m/)u”"PP

where m’ is in §{ ((€) !, 1). We replace in (7.1.17) W by (7.1.19) or (7.1.20).
It follows from (A11.2.32)), (A11.1.30) with » = 1 that the contribution of
(7.1.19) to the right hand side of (|7.1.17)) is bounded from above by

Y-S -
7177t 2 [||ax s + | Rllms + | Latisll g2 + | LeRl| 2]

Combined with (6.1.1)), (6.1.3)) and (4.1.25)), (4.1.26)), this gives an estimate in
t7%+0(62\/i)0 as wanted.

To study the contribution of (7.1.20)) to the right hand side of (7.1.17)), we
just apply the Sobolev boundedness of Op(m’) to get

_3 1
te 2t [/ grs + ([0 s ]

Combining with (6.1.1)), , we get again the wanted bound. This con-
cludes the study of (7.1.9)).

e Expression (4.2.14)) is made of terms of the form (4.2.12)) or (4.2.11]) mul-
tiplied by the decaying factor a(t). It is thus estimated by better quantities

than the right hand side of (7.1.7)), (7.1.8).

e To estimate (4.2.15]), we notice first that terms in that expression corre-

sponding to || > 2 have already been treated in the proof of (7.1.7)), (7.1.8).
It remains thus to study the linear terms, that are of the form

a(t)jOp(m')ui, j>2

with m’ in S} ,((€)~',1). By expression (4.2.26)) of uy, we shall get terms of
the form (4.2.49) with a(t) replaced by a(t)®. These terms have already been
considered in the study of (7.1.7), (7.1.8) (see (7.1.13)), (7.1.15)). We obtain

also linear terms in
(7.1.21) ' ‘ ' ‘
a(t)?Op(m')ix, a(t)’Op(m )u's?, a(t)?’Op(m)u"¥FP, a(t)’Op(m’)R

with j > 2. To study those terms in (7.1.21)) of the form a(t)’Op(m/)w with
w = Gt or v'PP or R, we use (A11.2.38) with n = 1, £ = 0. We obtain an
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estimate of the W norm in

Ct7 W PP | s + ||y || ms + || Ryl s
+ | Lyt g2 + | L8P 2 + || L4 Rl 2]

Combined with (6.1.1)), (6.1.2)), (4.1.25]), (4.1.26)) this largely implies a bound
by the right hand side of (7.1.11)). Finally, the W#** norm of the terms in

(7.1.21)) involving u"%? is estimated using (A11.2.38) when n = 1,¢/ = 1. One

obtains

Ot [P g+ " PP o + 1| Lt PP e

which by (6.1.2) is also largely estimated by ([7.1.11]).
e Finally, (7.1.12) follows from the fact that (4.2.16|) satisfies bounds

(13.1.38)), that largely imply ([7.1.12]). O

We may deduce from the above lemma a L* bound for (D; — p(Dy))t.

Proposition 7.1.3. — Denote fi = (D; — p(Dy))u+ and define i+ by

(7.1.22) filt,z) = \}ih (15) = euf, t.2)
using notation . According to , define
(7.1.23) 77 =00l (o () Y ont 91 .

Then, under a priori assumption on Uy, for any o > 0, any s such
that so is large enough, one has

(7.1.21) £ 56l < OR'=7 (VD).

Proof. — Recall that fi = (Dy —p(D,))tu4 is given by the sum of expressions
({4.2.10) to (4.2.16). Call fi o contribution (4.2.13) and f} ; the sum of all

o P o !
other contributions. Define i+7j7A, j = 1,2 from Lﬁj as in ([7.1.23)). Then

[7.1.9) shows that iﬁ-,QA satisfies (7.1.24]). To obtain the same estimates for

S :’_ 1 > We apply (A11.3.10) in order to bound the different contributions to
71,1,/\ in L* from —".1.8 and ([7.1.10))-(7.1.12f), using moreover (6.3.31))
in order to estimate the H® norm in (A11.3.10) (taking the power N in the
pre-factor hY large enough). This concludes the proof. O

We shall now write an ODE satisfied by function ([7.1.3)).
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Proposition 7.1.4. — Assume a priori assumptions -(6.1.3). There
is a real valued function 6, supported in | — 1,1[ such that @iA defined by

7.1.5) satisfies
(7.1.25) (Dt — O (2)V/1— xZ)giA = Op (71 (2V8)")

where o > 0 is as small as one wants (if s in estimate is large enough
relatively to 1/0).

Proof. — Denote as in the preceding proposition f, = (Dy — p(Dy))t4, so
that
(Dt - p(Dm))(<Da¢>pa+) = <D:L“>pf+-

If f L8 given by |i and @, by || this is equivalent to
(71.26) Dy - Op}Y (at + V1 +€2) )Opi¥ (1)) = OpY ()]

We make act Op)¥ (7(M>) on (7.1.26)). By (A11.3.16) and the definition

vh

of Q’fﬁA, we obtain
(7.1.27) (Dt —opY (zt + 1+ \§|))gi,A = /% \+Ri+ R
with
(7.1.28) Ry = hopY (7_1 (x +\/PE(§)) (x +\/P%(€)>>OPXV(<5>p)a+
(7.1.29) Ry = h20p) (r)Op} ((6)")is
where |82y_1(2)| < Ca(z) """ and r satisfies

a1 Qo2 k —@ JU—l-p,(f) -
(7.1.30) 1021022 (hd)*r(x, €, h)| < Ch <T>

By Lemma 4.2 in [82], R; may be replaced by

LW z +p'(§) / poBe)
(7.1.31) n20pl (v () G+ P @) X (9) )
modulo a quantity estimated in L by
5_4 N N
(7.1.32) Ot (L5 2 + s ]

for some o > 0, o going to zero with 5. By a priori assumption (6.1.3)

(translated on @) this is estimated by the right hand side of (7.1.25). By
estimate (4.25) of Lemma 4.3 of [82], the L*° norm of ([7.1.31]) is also controlled
by , so by the right hand side of .

Let us check that Ry given by is also bounded by the same quantity.
This follows from semiclassical Sobolev injection together with the a priori
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Sobolev estimate in 1| Moreover, by (7.1.24)), the fi , contribution in

(7.1.27)) is also bounded by the right hand side of 7.1.25 7
It remains to write the left hand side of ([7.1.27)) as the left hand side of

(7.1.25)), up to some new contributions to the right hand side of the latter.
This follows from Proposition [A11.3.6, where the right hand side of the second

inequality (A11.3.15)) is again estimated using (6.1.3). This concludes the
proof. O

7.2. Bootstrap of L™ estimates

We have shown in Proposition that under a priori assumptions (6.1.1
(6.1.4), we could improve the Sobolev estimates in (6.1.3)) to (6.3.61]), (6.3.62).
Our first goal here will be to improve also the L* estimate.

Proposition 7.2.1. — Assume that hold true on an interval
[1,T]. Let ¢ > 0 be given. Then if D in has been taken large enough,
there is g €]0,1] such that, for all € €]0,¢q], all 1 <t < T < e~ 4%¢, one has
the bound

0/
D (e2V/1)

2.1 U oo < ——rF—,
(721) fslhwee < D

Proof. — We have to bound (D,)’uy in L*°. By (7.1.1) and the notation
introduced after l) for ﬂf}h A ai e 1t suffices to show

_ D, 1 0
(7.2.2) @ 5l < 7t 2(2V/)

. D, 1 0
(7.2.3) \|u'j_7Ac|]Loo < Zt 2(e2V/1) .

By (7.1.4) and a priori estimate (6.1.3), one may bound (7.2.3) by

C't_%“’(ez\/f)e. Since # < 6 and t < e *+¢, we bound this by the quantity

Ct2 (€2 \/f)e e(t, €) where e satisfies 1| if o has been taken small enough
relatively to ¢(0 — 6').

We are left with estimating (7.2.2). It is equivalent to show that [|@/] ||z <
%(62\/i)0/ if € is small enough. Computing 9| , (t, ) from (7.1.25) and

integrating in time, we get

t
@\ (t2)] < |20 ,(1,2)| + 0/ o2 ) dr.
’ ’ 1

If D has been taken large enough so that HQ’_OhA(l, N < %e, we get the

wanted estimate, using again that t < e 4+¢ and that ¢ may be taken small

relatively to ¢(6 — 6"). This concludes the proof. O
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Propositions [6.3.7| and [7.2.1] allowed us to bootstrap estimates (6.1.3). To
be able to finish the proof of the main theorem, we shall have to bootstrap as
well the inequalities satisfied by g. We prove first some technical lemmas.

Proposition 7.2.2. — Let Z be a function in S(R). Assume that i satisfies
estimate . For any neighborhood W of {—1,1} in R, there is ¢¢ > 0
(depending only on W and on the constants in ) such that for any A
in R — W, there are functions @+(\,t), ¥+ (A t) defined for t € [1,e 4],
e €]0, €], satisfying the estimates

(7.2.4) (0 8)] <t (VD)

(7.25) a0 1) < HEVD

and solving the equation

(7.2.6) (D = N+ (A1) =(Z, tx) + £ (A1)

Moreover, denoting (Z,a) for the vector [ggfi], one has the bound

(7.2.7) (z,a) <t~ HevD)”.

Proof. — We shall use the following notation: we set f = o(g) when we may

write |f| < |gle(t,€) for some e(t,€) satisfying (4.2.8). In particular, for any
given N, taking e small enough, we may bound |f| by %| gl.

We prove the proposition in the case of sign +. Let us show first that in
the right hand side of (7.2.6)), we may replace (Z, @) by (Z(C(t)@)+), up to
a contribution to ¢. Since ((Id — C(t))a), is odd, and Z is in S, we may
use (3.1.79) to write

+

@, (- o) ) =1 [ (2 (L - CO)a) (o) da

1/t .

5 [ (22 (Ud = C)a) (wa))

for new functions in S(R), Z!, Z2. By (6.1.3)) and L? boundedness of C(t), the

last term is O(et’~!) = 0((62\/%)0 t=1). It may thus be integrated to ¥4 (A, t).

In the first term in the right hand side of (7.2.8]) we write using (A12.1.18)
L(Id - C(t))i = (Id — C(t)) Li + C1(t)a.

By (A12.1.19), (A12.1.20) and (6.1.3)), we get

(7.2.9)

||L(Id - C(t))’aHL2 < 0(62\/£)6 [ELt_m+%+5/(62\/7E)0_0 + €1+L—20’t%—m+6—%] )

As 0,0 are fixed with 0’ < 0 < % and @' close to %, and as 5’,% — m may be

taken as small as we want, the bracket above is o(1) when t < ¢ 4¢ and ¢

(7.2.8)
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goes to zero. Thus ([7.2.9) plugged in the first term in the right hand side of
7.2.8) shows that this term is o(t‘1(62\/7§)0 ), so satisfies 1) We are thus
reduced to studying equation
(7.2.10) (Dy = Ns (A1) = (Z,(C)) 1) + 11 (A, ).
Recall the function % defined in (6.3.64). We may write

(Z,(C(H)a)1) = (Z,iy) + 11 (t)
(7211) 41 (~ . lapp,l : (7 .. lapp,l

¢1(t) = <Z7 (MZ(U)U ’ ))+> + Z <Zv (C(t)M](u7 u ’ ))+>

j=3
By (6.1.5), we may bound the last sum by
Ct’l(EQ\/Z)G [té(GQ\/E)@ - 65729't17%+5+o‘].

As t < e=4¢ this is smaller than the right hand side of (7.2.5)) (for 6, o small).
Let us show that the first term in the right hand side of the expression
of 1 satisfies also (7.2.5). It suffices to show that [|M)(a,w*PPl)| 2 =

0(t‘1(62\/f)6 ). Recall that M (@, u/*P!) is given by (5.2.33) in terms of
expressions M’Zz, that have structure (5.2.20) i.e. that may be written from
expressions

(7.2.12) IR (L g L fo )
where 0 < £y, 05 < 1, K2 is in [C’l 1 (1,4, +) and fi, f2 equal to @ or u/@PP:!
02

(see (A13.4.11). If we apply (A13.5.10), (A13.5.13)), (A13.5.14]), we obtain a
bound for the L? norm of (7.2.12) in

_3_1 ~ 1 ~ 1 2
Ct=2 1 [ Loy || g2 + [ Lo | 2+ gl are + (|07 ]
so according to (6.13), (6.14) by
o3+ 2V i (Vi)

which is better than (7.2.5). In the right hand side of (7.2.10]), up to incorpo-
rating 1 to 14, we thus may replace (Z, (C(t)a)+) by (Z,04), i.e. we reduced

equation (|7.2.10)) to
(7.2.13) (Dt = N (A1) = (Z,tiy) + s
for a new . Since 14 is odd and Z in S(R), we may write using (3.1.79))

again

. 1y .
(Zis) = 1 [ (2 (Lyies) () d
(7.2.14) .
5 [ (2 d
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for new functions in S(R), Z', Z2. By (6.3.68), the last term is O(et’~!) =

0((62\/f)0/t_1). It may thus be incorporated to 14 (A, t). We decompose the
first integral in the right hand side of ((7.2.14)) as Iy + I5, with

b= [ (2% (((VEO~ T4 D)) (L)) ()
_ /_11 (x(Vi( =1+ D2)) [Zl(;)},L+a+> ‘if

where x € C§°(R) is real valued, equal to one close to zero. By Cauchy-
Schwarz,

(7.2.15)

1216)  Ibi< [ (v V1 02)) [2 )]s LU

Since A € W, [x(VEA = V/1+ &)l r2ae) = O(t_Z), so that the L? norm

inside the above integral is bounded by

oz (- )HD = O(uCt ).

satisfies

29,

. 1
(7.2.17) (Z, ) = “hi+ Pl

where w}r satisfies the same estimates as 1 (with an arbitrary small multi-
plicative constant in the right hand side) and

1
(72.18) I = [1 <Zl, ((1 - X)(\/Z(A 1+ Dg))(L+a+)> (u-)> dpi.
We thus reduced ([7.2.13)) to
(7.2.19) (De = Nps ) = 3T+ (A1)
for a new 1. We define

i (1-x0)(VIA-1+D2) .\,
(7.2.20) P =g [1 <Z1’ ( V1+D2 - L+“+>(M )> dp

_ \2 /11 (a (Vi = /1+ D)) |2 [EH Lyi) Cz‘
where x1(z) = (21 Arguing as in and using , we obtain
t

that ¢y (A1) satlszﬁes (7.2.4). If we compute (D — N4 (A, t), we get the
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following terms:

(7.2.21) §¢+(A,t)
(7.2.22)
L (1-x)(VI(r -1+ D2)) Q
; /_1 <Z17 ( \/@ Y (Dt _p(Dac))L+U+> (M)> d/j,
(7.2.23) %Il(t)
i , o
(7224 o8 /_1 <Zl’ (X (Vi - m))hm) (u-)> dps.

According to (7.2.19)), we shall have proved (7.2.6]) (in the case of sign +) if
we show that 27.2.21 , (7.2.22), (7.2.24) satisfy estimates (7.2.5)), with a small
constant in front of the right hand side of this inequality. For , this
follows from (7.2.20) and ((7.2.4). We may rewrite as

[ oo T B[]0 i B %
Arguing as in , we estimate that by

Ct~1|(Dy — \/1+ D2) Lty | 2.

Since L, commutes to (Dy — /1 + D2), it follows from (6.3.63), (6.3.67)) that
this is bounded by

R EVD et ) = ot (VD))
which implies an estimate of the form (7.2.5)). Finally, (7.2.24)) is bounded by

_3 1 i dM
et [ I (VO = Y1 D) (2 ]| i 2
< o3 (62\/£)0
according to (6.3.69). This is again better than needed.

Finally, estimate (7.2.7)) follows from ([7.2.8]) (that is bounded by (7.2.5))),

7.2.11)), the fact that v is o(t*1(62ﬁ)ol), 7.2.14]) were we plug (6.3.68)),
6.3.69). This concludes the proof. O

Our next task will be to show that a priori assumptions (6.1.1)-(6.1.3) imply

that the inequalities (3.2.1)), (3.2.2)) that we assume in section in order to
get estimates for the solution of the ODE ([3.2.3)), hold.
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Lemma 7.2.3. — Assume that estimates -(6.1.3) hold. Then inequal-
ity is true, with a constant B’ depending only on the constants A, A’, D

Proof. — e Consider first the contribution ®5 in the left hand side of ([3.2.1)).
Recall that ®y is given by (1.2.22)), (1.2.24) so may be written as a sum of
terms

(7.2.25) / / GO D (2,61, )04 (€)1 (E2) dEr dEada

with

m/ (2,61, &) = K(2)Y (2)b(z, €)b(w, &2)p(€1) ' p(€2)
By estimates satisfied by b, and the fact that Y is in S(R), we have
that m’ belongs to 5’(’)70 (H?:l (§j>_1, 2) and @, is thus a sum of expressions
J Op(m/)(us,us)dz. On the other hand, recall that uy is related to a4 by

(4.2.26)), with a remainder R satisfying (4.1.25)), (4.1.26]). By Corollary|A9.2.6
we get that ([7.2.25) may be written as a sum of expressions

(7.2.26) /Op(r’h')(vl, ey ) dx

where n > 2 and v; is equal to v'5*" or v”5PP, or @y or R, with a symbol 7/

in 5'170 (H?:l (&) tmy, 2) for some v.

Consider first the case when at least one of the arguments v;, say the last
one, is not equal to u”4"?. Since /' is rapidly decaying an <Mg(§)_1|y|>_N,
we may estimate (7.2.26) from the L? norm of the integrand. If n = 2, we use

(A11.2.37) when v is different from «”%*" and (A11.2.36) if v; = «”9PP. We

obtain for ([7.2.26)) a bound in
(7.2.27)

Ct Y (| Ly tis || 2 + (| L4 w TP || 2 + (| L Rl 2 + [ [[ars + /5P| s
IR s + 1L [weoee + [[u”5PP[[weo o]
X [1Lqtip g2 + 1L+ PPN g2 + 1L4-Rll g2 + lat s + [P s + | Rllas]-
We plug there (6.1.1))-(6.1.3) and (4.1.25)), (4.1.26). We obtain a bound in

t_%+”(e2\/f)20. As 0 > 0 and t < e*t¢, we see that if o is small enough, this
is smaller than the right hand side of (3.2.1)).

If n > 3 in ([7.2.26)), and again at least one v;, say the last one, is different
from u"4PP | we use Corollary|A11.2.8] By (A11.2.32), we estimate then (7.2.26))
by

_ ~ —1
Ot [P oo + 3PP [l + g oo + | R [l ]

X (Lt llpe + [ L4w' Sl 2 + 1L Rl 2 + Nl [l 22 + [0/l 2 + 1Rl 2]
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Using (6.1.1)-(6.1.3) and (4.1.25) (together with Sobolev injection), (4.1.26]),

we get a bound in t‘2(62\/f)20/ (62\/75625%, which is better than what we want.

It remains to study when all arguments v; are equal to u”5"”. Again
by the rapid decay in z of the symbol 77/, it is enough to control the L> norm
of the integrand (up to changing the definition of /). We may use then
(A11.2.38) with n = ¢ > 2. We obtain a bound in

(7.2.28) £ 20 [P 00 + (| Ly 3PP |l oce + 73 |[ul"3PP| 5rs] .

Using (6.1.2) and the fact that 6’ < 1, o < 1, one controls that by =3 (eQﬁ)%
for t < e~*t¢, This concludes the pro_of of (3.2.1)) for contribution ®,.

344
e We study next the term te 2+2Fj(u+,u_) in (3.2.1), for 1 < 5 < 3.

Recall that I'; is given by (1.2.22)-(1.2.25). It has thus again the structure
(17.2.26)) with n = j, as it follows from the expression 4.2.26: of uy in terms

of uf’P, a4, R and the composition results of Appendix If j > 2, our
preceding reasoning implies the wanted bound. We thus just have to consider

(7.2.29) 1 / Op(')(v) dv

with 7/ in 5170(<£>_1, 1) and v = /5P, w”PP G4, R. When v is not equal to
u”%PP ) we use (A11.2.32)) in order to bound (7.2.29) by
Cto 1L PP |2 + | L@ [l g2 + | Dt Rl g2 + [0/ 5P g2 + @ || 2 + | Rl 2]
which by (6.1.1)-(6.1.3), (4.1.25), (4.1.26) is bounded from above by
t;lt_l(eg\/i)et%. One checks that this quantity is O(f%(EQ\/E)ze) using
0 <0< 3.

If v in (7.2.29) is equal to u”"P, we bound ((7.2.29)) by

CtH|Op(m')v]| o

(for a new symbol 7). We use ((A11.2.38) to get a bound in

—1,— _1
(7.2.30)  t7 T [[[u" P lwroce 4 || Ly PP weose + 72 || PP s ]

, 1
Using (6.1.2]), one bounds the bracket by t° t%(62\/1€) 2 for any o/ > 0. Ast <

e~4*¢ one concludes that if o, o’ are small enough, (7.2.30)) is O(t_% Ga \/7?)29/).
This concludes the proof of the lemma. O

Let us show next that a priori assumptions (6.1.1)-(6.1.3) imply as well
estimates (3.2.2)).

Lemma 7.2.4. — Assume that estimates -(6.1.3) hold true. Then
inequality (3.2.3) holds true with a constant B’ depending only on A, A', D in

(6.1.1)-(6.1.5).
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Proof. — Recall that ®1[uy,u_] is given by (1.2.22)) i.e. taking (1.2.23) into

account, by

V3 _
(7.2.31) (¥ Y (2)r(2)b(z, Do )p(Ds) Hugy —u)).
Expressing u4 using (4.2.26)), we get that, if we define
V3 - ;
Z =~ p(Da) '(z, Dy)*[r(2)Y (2)7]

the term inside the modulus in the left hand side of (3.2.2)) may be written as
the sum of an expression (Z, R) with R satisfying (4.1.25)) and of expressions

of the form ([7.2.26) with n > 2. We have seen that these last quantities may
be bounded by ([7.2.27)) or (7.2.28)), and thus by the right hand side of (3.2.2)).

On the other hand, by (4.1.25) (Z, R) is also O(f%(GQ\/i)Qel). This concludes
the proof. ]

Corollary 7.2.5. — Assume that estimates -(6.1.3) hold true. Then
Assumption (HY) of section holds.

Proof. — We have seen that by Lemmas [7.2.3 and [7.2.4] inequalities
and hold. It remains to check that for any A € R — {—1,1}, there are
functions ¢4 (A, t), 1+ (), t) as at the end of the statement of condition (H).
But this is exactly the statement of Proposition [7.2.2] O

7.3. End of bootstrap argument

We give here the proof of Theorem We shall have to gather all
estimates we proved in the preceding chapters. We first restate the main
estimates in Theorem [[.1.1]

Proposition 7.3.1. — There is po in N and for any p > po, any ¢ €]0,1],
any ' €]0, %[, close to %, any large enough N € N, there areeg > 0, C' > 0 such
that if 0 < € < €q, the solution @ of equation (1.1.11)) with odd initial conditions

with bounds (1.1.10)) satisfies for t € [1,e=4%¢] the following estimates (using
notation (L1.7), [I-1)

| Pacio(t, Y lwoee < CE 3 (V)
(7.3.1) ||<33>_2Npacg0(t, Miwese < Ct—%(egﬁ)e

_ _3 0’
() 72N Dy Pacp(t, ) lwo-1.00 < Ct73(2V1)
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and a(t) may be written as a(t) = eit§g+(t) - eiitgg_ (t) with
(7.3.2) gt = 06(11‘“562)_% 1
109+ (t)] < Cet™2(1 4 te?) 72
Proof. — Recall that we have defined in ,
(7.3.3) w = b(x, Dg)* Pacp, Pacp = b(x, Dy)w.
We have introduced in
(7.3.4) uy = (D + p(Dy))w.

We shall prove the following inequalities, where the last two ones are just the

restatement of (7.3.2)):
9/
s (£, Yoo < CE2(EVE)

(7.3.5) .
Jut(t, )| s < Cet

g (t)| < Ce(1 + te?) 2

|0hg (£)] < Cet™2 (1 + te?) 2.

We shall deduce these estimates from bounds on 44 that we establish by
bootstrap of . Actually, let us show that if holds on some interval
[1,T] with T < ¢ 4¢ with a constant D, then it still holds with D replaced
by %, as soon as D has been taken fixed enough , and e smaller than some
€0 (depending on D). Proposition shows that this statement holds for
the Sobolev and L? estimate as soon as bounds (6.1.1)), (6.1.2)), (6.1.4) hold
true (with constants A, A’ that may depend on D). By Proposition [7.2.1] the
WP estimate of 44 may also be bootstrapped.

Let us next show that we may bootstrap as well estimate on g.
According to Proposition we may do so as soon as Assumption (H])
holds true. By Corollary this follows under a priori conditions
to (6.1.3]). Property (6.1.3) is the bootstrap assumption. On the other hand,
(6.1.1), (6.1.2), (6.1.4) hold, for convenient constants C'(A, A") by Proposi-
tion [3.1.2 as soon as (3.1.3)-(3.1.7) hold. The first of these inequalities is the
bootstrap assumption on g. The other ones are —, that,
according to Proposition hold under the bootstrap assumption .

Let us now deduce from estimates (6.1.1)-(6.1.3) and (3.1.3)), that
hold on [1, 6_4+C] for € small, according to our bootstrap assumption. Recall

that uy is given by (4.2.26)) (or (4.1.24)) by

(7.3.7) up =P+ PP+ + Y Op(mg)(ap, ufP) + R
2<|1|<4
I:(I’,I”)

(7.3.6)
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where R satisfies (4.1.25]). This (and Sobolev injection) shows that R satisfies

better bounds than those given by (7.3.5). By (6.1.1)-(6.1.3), the first three
terms in (7.3.7) satisfy also the wanted bounds. Finally, the terms in the

sum are also estimated by these bounds using (6.1.1])-(6.1.3])) and (A11.1.30),
(A11.1.37).

Let us check next (7.3.6). Recall that a(t) = @(mr(t) — a_(t)), where

a_ = —ay and a4 is given by (3.2.5). We set then, using notation (3.2.6)),
B27),

3 43
(733) g1 (1) = LR [ (0) 1 5(0)

3
and g_(t) = —g+(t). It follows from the expressions of a®"?, S and 1}
1

_1 _1
3.2.10) that g4 (t) = O(t 2), Dug(t) = O(tc 2t 2).
It remains to prove (7.3.1)). By (1.2.5)), (1.2.10]),

(7.3.9) Py = b(z, Dy)w = %b(m, D )p(Dy) Muy —u_].

By Proposition the operator b(z, D;)p(D,) ' (D,)~* is bounded on
W' if o > 0. Tt follows that the first estimate (7.3.1)) follows from if
we modify the value of p in the left hand side of ((7.3.1]).

To obtain the weighted estimates in , let us write from and
(11.2.10)

(7.3.10) ()2 P — %@)‘2%@, Da)p(Dy) (s — )

(7.3.11) ()" Dy Pyep = %(x>_2Nb(a:, Dy)(uy +u_).

In the right hand side of ((7.3.10)), we replace u, by its expression ((7.3.7). We
have to bound the following quantities

1(z) " b(a, Da)p(D) ™ /P |roee

(7.3.12) B i
1{x) ">V b(2, Dy)p(Dy) i |weee
(7.3.13) 1(x) "N b(z, Dy)p(Dy) ™ %P2 || o
(7.3.14) ST K2y b2, Dy)p(Dy) Tt Op(my) (g, ufh®) oo
2<|I|<4
I=(I'.1")
(7.3.15) 1(z) "> b(2, Do) p(Da) ™" Rllweoe.

If N = 2, the assumptions of Proposition [A11.2.5|with n = 1 are satisfied. We
may thus apply Corollary [A11.2.11| with ¢ = 0. Taking into account (6.1.1),
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0/
6.1.3), we obtain for (7.3.12) a bound in tfgﬂr(ez\/f)e + t_l(GQ\‘g) . For

7.3.13), we apply also Corollary |[A11.2.11} but with £ = 1. We obtain by
6.1.2)

.1.2)) a bound in

t7 17 log(1 +t) log(1 + te*) = O(t 77”0( \[)é)

0/
modulo a bound in t_l(GQ‘/? To estimate (7.3.14), we use again Corol-
lary |A11.2. 11|, with n = |I| and ¢ equal to the number of arguments equal to

u"%PP n—f equal to the number of arguments equal to @iy or /5P, If N is taken
large enough, we get better estimates than those holding for (|7 3.12)), (7.3.13)).
Finally, Sobolev injection and (4.1.25)) provide for ([7.3. 15) a better upper

bound than the one in (7.3.1). We thus got estimates of || (z) ™~ Paco(t, -)||were

in t™ 4( Q\f) since o is as small as we want, t < e *t¢ and 6 < % This
implies the second inequality ([7.3.1]).

The proof of the last inequality (7.3.1]) is similar, starting from (7.3.11). [




APPENDIX AS8

SCATTERING FOR TIME INDEPENDENT
POTENTIAL

This appendix is devoted to the construction of wave operators for a
Schrodinger operator of the form A = —%% + V(z) where V is a real
valued potential in S(R). If W, stands for the wave operator defined by
below, one knows that W, W7 = P,., WiW, = Id;2 where P, is
the spectral projector associated to the absolutely continuous spectrum of A.
Moreover, one has the intertwining property WiAW, = —%%. Our main
result below is that, under convenient assumptions on V', operator W, acting
on odd functions may be represented from pseudo-differential operators (see
Proposition . Let us mention that, even if we give quite complete
proofs, our approach here is not original, and that we strongly rely on the
classical paper of Deift-Trubowitz [17] and on the work of Weder [85].

A8.1. Statement of main proposition

We consider V' : R — R a potential belonging to S(R). Then the operator
—%A +V = —%% + V' is a self-adjoint operator whose spectrum is made of
an absolutely continuous part, equal to [0, +oo[, and of finitely many negative
eigenvalues (see Deift-Trubowitz [17]). For £ in R, we define the Jost function
fi(x, &) (resp. fa(x,&)) as the unique solution to

that satisfies fi(z,£) ~ €& when x goes to +oo (resp. fa(z,£) ~ e~ when
x goes to —oo). We set

ml(xﬂ f) - eiingl (:L‘, f)

A8.1.2 ,
( ) mQ(xaé) :ezxfo(xjg)'
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We shall say that the potential V' is generic if

+oo
(A8.1.3) V(z)mq(z,0)dz # 0.

—00
Notice that the above integral is convergent as mq(z,§) is bounded when z
goes to +oo and has at most polynomial growth as = goes to —oo (see [17]
Lemma 1 and lemma [A8.1.1| below). We say that V' is very exceptional if

+o00o +oo
(A8.1.4) V(z)mi(z,0)dz =0 and V(z)zmi(z,0)dr = 0.
If one sets V(x) = —% cosh_Q(%), as for the potential of interest in this paper

(see (L.1.5)), it is proved in [13] Lemma 2.1 that the transmission coefficient
of this potential satisfies T'(0) = 1 (see [17] or below for the definition of the
transmission coefficient). This implies on the one hand that (A8.1.3) does not
hold (as is equivalent to T'(0) = 0 — see [17, [85] or (A8.2.22)) below)
and that moreover [xV(z)mi(x,0)dz = 0 i.e. that (A8.1.4]) holds, as follows
from ([A8.2.16|) and (A8.2.21)).

We denote by W, the wave operator associated to A = —%A + V', defined
as the strong limit

(A8.1.5) W, =s— lim e4eit4o

t—4o00
where Ag = —1A. One knows (see Weder [85] and references therein) that
(A8.1.6) WoW? = Pae, WIW, =1Ids

where P, is the orthogonal projector on the absolutely continuous spectrum
and, more generally, that if b is any Borel function on R
(A8.1.7) b(A)Pac = Wib(Ag)WZ, b(Ag) = Wib(A)W,.

Notice that since A and Ag preserve the space of odd functions, so do W, W7.
For odd w, we shall obtain an expression for W w given by the following
proposition.

Proposition A8.1.1. — Assume that V is an even potential that is either
generic or very exceptional. Let x+ be smooth functions, supported for +x >
—1, with values in [0,1], with x—(x) = x+(—x), x+(z) + x—-(z) = 1.

There are an odd smooth real valued function 6, and a smooth function
(x,§) — b(x, &) satisfying
|07b(x,€)| < C, VB EN

(A8.1.8) N
10207b(x,€)| < Capn(z)™, Ya € N*, VB €N,VN €N,

and

(A8.1.9) b(x,—¢&) = b(x,&),b(—x, =) = b(x, &)
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such that if we set c(€) = €O 1eug+e 1 g, then for any odd function w

(A8.1.10) Wiw = b(x, Dy) o ¢(Dy)w
with .
b(x,D)v = %/emgb(x,ﬁ)ﬁ)(&) de.

A8.2. Proof of main proposition

We shall give here the proof of Proposition [A8.1.1] relying on the results of
Deift-Trubowitz [17] and Weder [85].
If V is a real valued even potential, the Jost functions satisfy by uniqueness

fi(=z,&) = fa(x, &) so that (A8.1.2]) implies that

(A8.2.1) mi(—x,&) = ma(z, ).
By lemma 1 of [17], m; solves the Volterra equation
+oo
(A8.2.2) mi(x,§) =1+ De¢(2' — )2V (2" )ymq (2, €) da’
where
_ 2ix’€ 3.0 €
(A8.2.3) De(x) /0 ! =

If V is in S(R), (ii) of lemma 1 of [17] shows that
(4824 109007 [ma (2, €) — 1]] < Capn(x) N(€) T F, Vo > —M,VE € R
o yagag [ma(z, &) — 1) < Copn (2) M) 7177, Vo < M,VE €R,

holds for m; (and thus also for mg) when o = § = 0. To get also estimates for
the derivatives, we need to establish the following lemma, whose proof relies
on the same ideas as in [17]:

Lemma A8.2.1. — Denote for any 8,N in N by Qf\,(x) a smooth positive
function such that Q’]Bv(x) = ()N forz>1 and Q]ﬁv(az) = (z)? forz < —1.
Then for any N,«a, 3 in N, there is C' > 0 such that for any & with Im& > 0,
any

(A8.2.5) 10207 [ma (z,€) —1]| < COR (@) (6) 7.

Proof. — Following the proof of lemma 1 in [17], we write

+oo
(A8.2.6) mi(z,8) =14 ) ga(x,£)
n=1



178 APPENDIX A8. SCATTERING FOR TIME INDEPENDENT POTENTIAL
with

(A8.2.7) gn(l', f) = / H Dg(xj — xj_1)2V(xj) dl’l . d.%'n,
T j=1

using the convention g = z. Set Q(z) = Q}(z) and

Ke(y.y') = Dely — y')y) 2V (9)Qy)-
Then we may rewrite g, as

n

gn(x, &) = Q(a:)/ H Ke(wj,2j-1)Q(2y) Fdoy ... doy,
r<z1<--<zp j=1
or equivalently
(A8.2.8)
gula. ) = ) [ [T Kelw+ oo+ ypm g+ +y5)
y1207“'7yn20 .]:1

X Qz +y1 +--~+yn)_1dy1...dyn.
By (A8.2.3), we have

102 De(y)| < (€))7

Fix some integer m. The definition of K, implies that for o + 5 < m

(A8.2.9) 000 Ke(x+y1+ - +yjo+y+ - +yj-1)|
<CEOTUz Ay ry) ey ety P
X W(x+y1+ - +y)y) ',

where W is some smooth rapidly decaying function. When y; > 0,...,y; >0,
we may bound

W) Pzt y) T a e y) T < 0()”
Consequently, (A8.2.8)) implies that

(A8.2.10) 020 gu(z,€)|

< co@ g™ [ [T W+ g0+ ) don o dn
y1>0,..., ynZszl
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Define G(z) = [F® W(z) dz, so that the last integral above may be written

n—1

(—1)"1/y [[GE@+y+-+y))

120,...,Yn—-1>0 j=1
1
X G(l’ +y+---+ ynfl) dyl cee dynfl = ;G(x)n

As |G(z)| < CNQY () for any N, it follows from (A8.2.10)) that, for any N,

n+1

c
(A8.2.11) 020 ga(, )] < D) TR ().

If we sum for n > 8+ 1, we get a bound by the right hand side of (A8.2.5)).
We are thus left with studying

8
(A8.2.12) > 090, gn(x,€).
n=1

Notice that (A8.2.11)) summed for n = 1,..., 3 gives, when |£| < 1, the esti-
mate (A8.2.5)) for (A8.2.12) as well. Assume from now on that [¢| > 1 and let

)| is bounded by the

us prove by induction on n = 1,..., 3 that |8§8Bgn(x,§
right hand side of (A8.2.5). We may write from (A8.2.7))

gn(x,f) = < Df(xl - $)2V(I1)gn,1($1,§) dxq

(A8.2.13)

= De(y1)2V (y1 + ) gn—1(y1 + 2, &) din
y12>0

with go = 1. We use in (A8.2.13)) the last expression (A8.2.3) for D¢. We have

then to consider two kind of terms. The first one is

21
/ 2V (y1 + ) gn-1(y1 + =, &) di
y1>0 5
1

= —wﬂ/(x)gn—l(%f) - /

y>0 2062

Repeating the integrations by parts, we end up with contributions that, ac-
cording to the induction hypothesis (and the fact that go = 1), satisfy esti-

mates of the form (A8.2.5) (with Q%(ZL’) replaced by (z)~"), and an integral
term of the form

Ay, [2V (y1 + 2)gn-1(y1 + =, €)] dy1.

2y
(A8.2.14) / . §M+18§14 2V (y1 + 2)gn-1(y1 + 2,€)] dya
Y12



180 APPENDIX A8. SCATTERING FOR TIME INDEPENDENT POTENTIAL

for M as large as we want. If M = 3, we see that (A8.2.14]) satisfies (A8.2.5|).
The second type of terms coming from (A8.2.13)) to consider is

1

Z 2V (y1 + ) gn-1(y1 + 2, €) dy

§ Jyi>0
which trivially satisfies (A8.2.5) by the induction hypothesis applied to g,_1.
This concludes the proof. O

In order to obtain the representation (A8.1.10) for Wiw, when w is odd,
we recall first the definition of the transmission and reflection coeflicients.

The wronskian of (f1(x,&), fi(x,—=£)) (resp. (fa(z,&), fo(x, —=£))) is nonzero
for any ¢ in R* (see [17], page 144), so that, for real £ # 0, we may find unique

coefficients 77 (&), T2(§) non zero, Ry (), R2(&) such that
~ Ri(§) 1

(A8.2.15) fale,€) = T1(€) filz, &) + G fi(x, =)
2. ~ Ra(§) . .
fi(z, &) = () Ja( ’§)+T2(§)f2( ,—&).

By Theorem I in [I7], these functions extend as smooth functions on R, and
they satisfy the following properties

def

Ti(§) = Ta(§) = T(¢)

T(§)R2(8) + R (§T(§) =0
TEF +|R;(§ =1, j=1,2

T(&) =T(=¢), R;(§) = R;j(—¢).

If the potential V' is even, we have seen that fi(—xz,§) = fa(x,§), so that,
plugging this equality in the first relation (A8.2.15)), comparing to the second
one, and using that T7 = T5, we conclude that

(A8.2.17) Ri(§) = Ry(§).

We denote by R(§) this common value. The integral representations of the
scattering coefficients (see [17] page 145)

(A8.2.16)

RE) _ L[ sty (mym (a,€) de
(A8.2.18) T(f) #e /1 1
iG] —1— 22»5/2‘/(33)7711(33,5) dx

together with (A8.2.5) and the fact that V € S(R), show that for any N, 3
(A8.2.19) R =0(()™™), 2(T(§) —1) = 0((&) "),

We need the following lemma:
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Lemma A8.2.2. — The functions T, R satisfy
(A8.2.20) T(0) =1+ R(0)

in the following two cases:

e The generic case [V (x)mi(z,0)dx # 0.

o The very exceptional case [V (x)my(z,0)dz =0 and [V (z)xmi(x,0)dx =
0.

Proof. — Summing the two equalities (A8.2.18)) and making an expansion at
& = 0 using (AS8.2.5)), we get

1 +oo 1 too 1T
RE+1=T(¢) [1 7 /_OO V(z)mi(z, &) dx + 3 /_OO XV (2)ymy (x, €) da

=T(&) [1 + 2/:)0 2V (x)mq(z,0) dx + O(E)} , &E—0
so that
+oo
(A8.2.21) R(0) + 1 — T(0) = 27T(0) /_ 2V (@)mi (z, 0) dx.

In the generic case, by (A8.2.18)

+o0 -1
(A8.2.22) T(&) =& [— V(z)my(z,0)dz + O(E)} , &€= 0
so that T'(0) = 0. This shows that (A8.2.21)) vanishes in the two considered
cases. O

Proof of Proposition[A8.1.1; 'We have to prove that W acting on odd func-

tions is given by (A8.1.10]). Recall (see for instance Weder [85] formula (2.20),
Schechter [74]) that W w is given by

(A8.2.23) Wiw = Fid

where F is the adjoint of the distorted Fourier transform, given by
N 1

(A8.2.24) Fio = o [ (@.0(6) de

where

(A8.2.25) i (2,€) = 1e=0T() f1(2,€) + LecoT(—E) falw, —£).

Let x+ be the functions defined in the statement of Proposition and
write

Vi (2, 8) = x+ ()4 (2,8) + x— (@)Y (7, ).
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Replace in x4y (resp. x—t4) ¥4+ by (A8.2.25) where we express fa from

f1 (resp. fi for fa) using the first (resp. second) formula (A8.2.15). We get,
using notation (A8.1.2))

(A82.26) 4 () =
X+ () [emg (T(&)mi(z,&)leso + mi(z, §)leco) + e R(—E)my (z, —§)1§<0}

+x- () [ems (ma(z, =€) Les0+T(—E)ma(x, —€)Leco) +e " R(§ma(z, 5)1§>0} -
Using (A8.2.1)), we deduce from (A8.2.23), (A8.2.24) and that
(A8.2.27) Wiw = ;/eixfel(x,g)w(g) dé + ;T/e—ixﬁ@(m,g)w(g) d¢
with
(A8.2.28)

e1(x,§) = x4 (z)my(z,§) [T(f)1§>0 + 1£<0]

+ x—(x)mq(—z, =€) [1§>0 + T(_§)1£<0}

e2(,§) = x+ (@) R(=&ma(x, —§)1eco + X () R(§)m1(—=,§) Leso.

If w is odd, we may rewrite as

Wow = 5 [ e a(a, e)(€) de

with
(A8.2.29) a(x,&) =e1(x,§) — ea(x,—£)

= x+(@)ma (2, &) [(T(§) — R(€))Leso + Leco]

+ x—(z)mi(—z, —=§) [1£>0 +(T(=¢) — R(—f))l&o]-
By (A8.2.16), |T(¢) — R(¢)|* = 1 and by (A8.2.20), T(0) — R(0) = 1. We
may thus find a unique smooth real valued function (&), satisfying 0(0) = 0,
such that T'(&) — R(€) = (). Moreover, using (A8.2.16)), one gets that 6 is
odd, and by (A8.2.19) it satisfies 9°0(¢) = O((€) ' 7"). We define
(A8.2.30) (&) = @1 g+ e 001,
so that in (A8.2.29))
(T(§) = R(€))1es0 + Leco = €7@ (€)
Leso + (T(=€) = R(=8))1eco = € "e(¢)

and a(x, &) = b(x, &)c(§) where b is a smooth function satisfying (A8.1.8|) given
by

b(x,€) = X+ ()ma (2, €)e”® + y_(z)my(—z, —)e ).
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We thus got Wiw = b(x, D;) o ¢(D,)w for odd w. Moreover, the definition of
f1,m1 shows that fi(x,&) = fi(z,—&), mi(x,&) = my(z, —&), so that it follows
from the expression of b that equalities (A8.1.9)) hold.

g

Remarks: e The proof of the last result shows that b satisfies better esti-
mates than those written in : Actually, in the right hand side of these
inequalities, one could insert a factor (&) ~#. We wrote the estimates without
this factor because we shall have in any case to consider also more general
classes of symbols, for which only holds.

e The difference between generic or very exceptional potentials versus ex-
ceptional ones appears, as is well known, when considering the action of the
Fourier multiplier ¢(¢) on L based spaces. Since 8°0(¢) = O((¢) ' 77) when
|€] — 400, ¢(§) — 1 coincides with a symbol of order —1 outside a neigh-
borhood of zero. Consequently, if xo € C§°(R) is equal to one close to zero,
(1 — x0)(Dz)e(Dy) is bounded on L. On the other hand, xo(§)c(€) is Lips-
chitz at zero if the potential is generic or very exceptional, since #(0) = 0, so
that xo(Dz)c(Dz) is also bounded on L. In the exceptional potential case,
¢(€) has a jump at £ =0, and L> bounds for ¢(D,) do not hold.






APPENDIX A9

(SEMICLASSICAL) PSEUDO-DIFFERENTIAL
OPERATORS

This appendix is devoted to the definition and main properties of classes of
multilinear pseudo-differential operators and their semiclassical counterparts.
Recall that the symbol of a pseudo-differential operator of order m € R is in
general a smooth function (z,&) — a(z, &) defined on R? x RY, satisfying for
any multi-indices «, 8 estimates of the form

(A9.0.1) ‘8?8?@(.7},{)‘ < Caﬁ<§>m—9\ﬂ|+5|a\’

where 0 < § < p < 1 (see Hormander [42), [43]). One associates to such a
symbol an operator acting on test functions in S(R) by a quantization rule,
that may be given for instance by the usual quantization

1

Opa)u= /eméa(gc,g)a(g) 4 = 5 / eV Eq(x, )uly) dyde

or by the Weyl quantization

1 .
Opw(a)u = W / e’("”*y)'ga(x ;— y,ﬁ)u(y) dyd§.

We shall be here more interested in the semiclassical version of this calculus,
namely smooth symbols (z,&,h) — a(x,£, h) that depend on a parameter
h €]0,1], and that satisfy bounds of the form

(A9.0.2) 10529 (hoh)Fa(x, &, h)| < CoprM(,€)
with a fixed “weight function” M(x,&) (see Dimassi-Sjostrand [24]). For in-

stance, a function satisfying (A9.0.1)) with p = é = 0 obeys these inequalities
with M = 1. One defines then the semiclassical quantization of a by the
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formulas
1 i N
Opy(a)u = ala. hD, hu = o [ o Sa(a he, myi(e) de
(A9.0.3) 1 "
= Gy | €V Fata, € mu(y) dyie
or for the Weyl quantization by
1 i(z—y) & T4y

One has then a symbolic calculus. Assume for instance that we are given two
symbols a, b satisfying with M = 1. Then, there is a symbol ¢ in the
same class such that Opy,(a) o Opy,(b) = Opy,(c). Moreover, one may get an
asymptotic expansion of ¢ in terms of powers of the semiclassical parameter
h, whose first terms are given by

d
(A9.0.5) c(x,& h) = al(z,& h)b(x, &, h) + % Z@gja(x,f, h)0g;b(x,&,h) + -+

i=1

It turns out that we shall be interested only in the case of one variable d =1,
but with more general classes of symbols. In Appendix [A] we have used sym-
bols b(z, £) satisfying inequalities . It turns out that, if one translates
in the semiclassical framework the operators b(x, D) (see (A9.1.7), (A9.1.8))
below), one is led to consider instead of the more general operator

(A9.0.6) b(%,th)u - ;ﬂ/eixﬁb(z, hg)a(g) de.

Of course, the function (z,&) — b(%,f) does not satisfy the estimates in
(A9.0.2)), since 0, derivatives make lose powers of h~!. On the other hand,
because of (A8.1.8), taking a 8, derivatives makes gain a weight in (z/h) "
for any V. We shall thus consider symbols depending on two space variables,
y,x,&) — a(y,z, &, h), such that at fixed y, (z,£,h) — a(y,x,&, h) satisfies
(A9.0.2), and that for any £ > 0, (z,&,h) — Oba(y, =, &, h) satisfies
with in the right hand side of these inequalities an arbitrarily decaying factor
in (x/h) . We shall quantify such symbols as

(A9.0.7)  Opp(a)u = a(%,x, hD,, h)u = ;T/eizga<i,az, hé, h)ﬂ(f) dg.

In that way, instead of getting for the composition of two such symbols an
expansion of the form (A9.0.5), we shall obtain

(A908) C(ya Z, 57 h) = a(yv x, fa h)b(y7 x, f, h) + hry + ’r‘ll
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where 71 is in the same class as a,b and where 7 is rapidly decaying in z/h
i.e. satisfies (A9.0.2) with in the right hand side an extra arbitrary factor in
(x/ h>_N :

It turns out that we shall not just need linear, but also multilinear opera-
tors, defined instead of by formula below. The goal of this
chapter is thus to define such operators and study their composition proper-
ties, establishing the generalization of formulas of the form to this
multilinear framework.

A9.1. Classes of symbols and their quantization

We shall use classes of semiclassical multilinear pseudo-differential opera-
tors, analogous to those introduced in [20]. We shall use also the non semi-
classical counterparts of these operators that are deduced from the former
by conjugation through dilations. We refer to Dimassi-Sjostrand [24] for a
reference text on semiclassical calculus. Recall first:

Definition A9.1.1. — An order function on R x RP is a function M from
R x RP to Ry, (x,&1,...,&) = M(x,&,...,&p), such that there is No in N,
C >0 and for any (v,&1,...,&), (¢/,€1,...,§,) in R x RP

p

(A9.L1)  M(.&,....§) < Cla =) [T (G - )" M., &),
j=1

An example of an order function that we use several times is

(A9.1.2) Mo(gl,...,gp):< > <§i>2<§j>2>%(i<§i>2>_'

N =

1<i<j<p i=1
Actually, this function is smooth and is equivalent to 1 + maxa(|&1,. .., [&p]),
where maxy(|&1], ..., |€p|) is the second largest among |1, .., |&p].

We shall introduce several classes of semiclassical symbols, depending on a
semiclassical parameter h €]0, 1]:

Definition A9.1.2. — Let p be in N*, M be an order function on R x RP,
My the function defined in . Let (B,k) be in [0, +oo[xN. We denote
by Sk 3(M,p) the space of smooth functions

(y7$a§17---,§p,h) _>a(y7$7§17--'7£p’h)

A9.1.
(49.1.3) R xR x RPx]0,1] - C

satisfying for any ap € N, a € NP, k € N, N € N, af, € N* the bounds
(A9.1.4)

|0209¢ (how)Faly, =, &, h)| < CM (x,€) Mo(€)=o+1eD (1 4 8rP Mo(€)) ™
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and

(A9.1.5) |a§‘58§08§(hah)ka(y,x,g,h)| < CM(z, €) M (£)r(@o+laD
X (L+ 807 Mo(€)) " (14 Mo(&) ~"[yl) ™

where & stands for (&1,...,&p).
We denote by S;,ﬁ(M,p) the subspace of Sy, 3(M,p) of those symbols that

satisfy including for af = 0.
We shall set S’HN’%(M,p) for the space of functions satisfying in-

cluding for ag = 0, but with the last factor (1 + Mo(&’)*”|y|)7N replaced by
(1+ Mo(f)*“]y\)le, for a fized power N’ instead of for all N.

Remarks: o If p = 1, then My(£) = 1 and symbols of the class S, g(M, 1)
that do not depend on y are just usual symbols of pseudo-differential operators
as defined in [24] for instance. For symbols depending on y, we impose that
if we take at least one J,-derivative, we get a rapid decay in |y| in the case of
the class Sy g(M, 1). For elements of S} 5(M, 1), this rapid decay has to hold
including without taking any ay—derlvatlve Notice also that when p = 1, the
classes we define do not depend on the parameters x, 5.

e The parameter k in the definition of the classes of symbols measures the
power of My (&) that we lose when taking 0, or J¢ derivatives. As these losses
involve only “small frequencies”, they will be affordable.

e When § > 0, we have an extra gain in <h5M0(§)>7N for any N, that
allows to trade off the loss Mj(£)" for h=Pr. If B is small, this reduces these
losses to those ones used usually in definitions of semiclassical symbols as in
[24]. Moreover, an element of Sy, o(M, p) may be always reduced to an element
of S, 5(M,p) multiplying it by x(h?My(¢)) for some x in C§°(R).

We shall quantize symbols in Sy 5(M,p) as p-linear operators acting a p-
tuple of functions by

(A9.1.6) Opy(a)(vy,... ,Up)

_ 1)/eim(fl+-~-+fp)a<27x,h§1,_”7h€p> H@ (&) dé ... dg,

(2m)P il

(27rh) / DY ha(% " gl,__.,gp)ﬁ L) da' de.

We shall call ( m ) the semiclassical quantization of a. We shall also use
a classical quantization, depending on the parameter ¢ = % > 1, related to
m A9.1.6) through conjugation by dilations: If ¢ > 1, and v is a test function
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on R, define the L? isometry ©; by

(A9.1.7) Ow(x) = \}iv(f)

We shall set for a an element of Sy, 3(M, p)
(A9.1.8) Op'(a)(vy,...,vp) = h%Gt 0 Opy(a)(O4-1v1,...,04-10p)
with h = t~1. Explicitly, we get from (A9.1.6)
(A9.1.9) Op‘(a)(v1,...,vp)
1 ; T P
_ ix(§1+-+ A~
_ W/e (& fp)a(x,t,gl,...,gp>j1;[lvj(gj)dgl...dgp.

Remark that if a(y, z, ) is independent of z, then Op'(a) is independent of ¢,
and if p = 1, Op'(a) is just the usual pseudo-differential operator of symbol
a(y,£). In this case, we shall just write Op(a) for Op’(a).

A9.2. Symbolic calculus
We prove first a proposition generalizing Proposition 1.5 of [20].
Proposition A9.2.1. — Let n’,n" be in N*, n=n'+n" — 1. Let
M'(z, &1, ... &), M" (2,60, ..., &)
be two order functions on R x R™ and R x R" respectively. In particular,
they satisfy and we shall denote by N{ an integer such that
(A9.2.1) M"(& €y En) < Cla — YN M (2, €, .. En).

Let (k,B) € Nx [0,1], a in S, g(M',n'), b in S, g(M",n"). Assume either
(k,8) = (0,0) or 0 < Bk < 1 or that symbol b is independent of z. Define
(A9.2.2)

M("Liaéla o agn) = M,(xagla R 7671/—1,671/ +ee +€n)M”(x7§n’; o agn)
Then there is v in N, that depends only on NY in (A9.2.1), and symbols
(A9.2.3) c1 € Sep(MMg",n),cy € S, 5(MM",n)
such that one may write
(A9.2.4)  Oppl(a)[vi,...,vn—1,0py(b)(vy, ..., vn)] = Opy(c)[vi, ..., vn]
where
(A9.2.5)

C(yvx)glv o agn) = a(yaxagla v 7£n’71a£’n’ + fn)b(y7w7§n/a o 7£n)

+hcl(y7xa§17 s 75“) +C/1(y,$,£1, cee 7671)
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Moreover, if b is independent of y, ¢} in vanishes and if b is in-
dependent of x, ¢ vanishes. In addition, if a is in S| z(M',n") or b is in
v p(M",n"), then ¢ and cy are in S (M M§™,n).

Let us prove first a lemma:

Lemma A9.2.2. — Let € = (1., &u1), € = (Gurv - s&), € = (€,6").
Then

(A9.2.6) Mo (&, 6 + -+ -+ &n) < CMo(§), Mo(€") < CMy(8).
Moreover, if ¢ is a real number and |C|/My(§) is small enough,
(49.2.7) max (Mo (€', €w + -+ &n — C), Mo(€")) > cMo(€)

for some ¢ > 0.

Proof. — Estimate follows from the fact that My (&1, . .., &) is equiv-
alent to 1 + maxo(|&1], ..., |€n])-

To prove ([A9.2.7), we may assume |&,| > |£o_1] > -++ > |&y] and [&] >
|&a| = -+ > |&w—1]- Moreover, if n = n/, is trivial, so that we may

assume n' < n.

Case 1: Assume [&,] > |&1]. If [€n] ~ |&n—1], then both My(£") and My(&)
are of the magnitude of (£,_1), so is trivial.

Let us assume that [£, 1| < |&,]

e If in addition |,| ~ [&1], then My(&) ~ (&,) ~ (£1) and

<§n/ +"'+§n_<> ~ <§n>>
so that
MO(glvgn’ +o & — C) ~ MO(";:/vgn) ~ <€n> ~ <§1>

and holds.

o If [&1] < &, then Mo(§) ~ max (1), (§n—1)) and My(£") ~ (§n-1), s0
that Mo(&', & + -+ & — () ~ Mp(&', &) ~ (&1) and holds again.

Case 2: Assume [&1] > |€,]. Then My(&) ~ max((&2), (&n)).

o If [£,] > |&2| and [&,] ~ [€n—1], then My(£") ~ (&), so that holds.

o If |&,] > |&2| and |&,| > |€n—1], then [y 4+ -+ + &, — (| ~ |&n|, so that
Mo(€, & + -+ & — () ~ (&) and holds.

o If |&o| > |&y|, then Mo(&, & + -+ &n — () ~ (&2), so that holds

as well. This concludes the proof. O

Proof of Proposition : Going back to the definition (A9.1.6|) of quan-
tization, we may write the composition as the right hand side of this
expression, with a symbol ¢ given by the oscillatory integral

(A9.2.8)

C(y, €, 5) - % /eiizca(?ﬁ xZ, §/7€n’ + -+ gn - C)b(y —Z,T — hZ, él/) dZdC
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We decompose
(A9.2.9)

a(ya xvgla §H’+' : +€TL_C) = a(yv xz, 5/7 fn’+' ' +’£n)_<&(y7 xz, 5,1 {n’""' : '+§n> C)
with

~ ! & Lro ! g
(49.2.10) aly,0.€.6.0) = [ (57) € 620 ar
It follows from that
(A9.2.11) Mo (&', & + -+ 4 & — XC) < C(Mp(§) +(())-

Using (A9.1.4)) and the definition of order functions, we get that a satisfies
< C(Mo(§) + ()<l a0l YN M (2, ¢, & + -+ + &)

X /1 (1 + BR Mo( & + -+ + n — )\C))iN d\
0

for any o, ag, v, k, N. If one takes at least one J,-derivative, the same estimate
holds, with an extra factor

-N
(A9.2.13) (1 + (Mo (§) + <C>)’”Iy\)

using (A9.1.5) and (A9.2.11)). If we plug (A9.2.9) in (A9.2.8), we get the
first term in the right hand side of (A9.2.5) and, by integration by parts, the

following two contributions

j - ob
(A9.2.14) — % / e a(y, x, & & + -+ - + &n, C)a—y(y — 2,0 — hz,&") dzd¢,

(A9.2.15) — % /e_izgd(y, 2, & &+ £, ()%(y — 2z, — hz,&")dzdC.

Ox
Let us show that (A9.2.14)) (resp. (A9.2.15))) provides the contribution ¢ (resp.

her) in (A9.2.5)).
Study of (A9.2.14
If we insert under integral (A9.2.14) a cut-off (1 — x0)(¢) for some C§°

function yg equal to one close to zero and make N; integrations by parts in
z, we gain a factor ¢~ up to making act on g—z(y — z,x — hz,£") at most
N; 0,-derivatives. By (A9.1.4), (A9.1.5)), each of these 0,-derivatives makes

lose (hMy (&)%) if it falls on the = argument of 8—3, and does not make lose

anything if it falls on the y argument. Consequently, if 8 = « = 0, or if
b is independent of x, we get no loss, while if k5 > 0, we get a loss that
may be compensated since, in this case, we get by (A9.1.4]), (A9.1.5)) a factor

-N . . . : :
(RPMy(€"))™" in the estimates, with an arbitrary N. Since we assume 8k < 1,
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(WP Mo (€)™ (hMo(€)") N = O((hWP My(€"))?) if N is large enough rela-
tively to N71. In other words, up to changing the definition of b, we may insert
under an extra factor decaying like (¢ >_N ! as well as its derivatives,
for a given Nj.

We perform next Ns integrations by parts using the operator

(A9.2.16) (2((C) + Mo()) ™) * [1 = ({C) + Mo(€)) " 2D¢).

By (A9.2.11)) and (A9.2.12), each of these integrations by parts makes gain
a factor (z((¢) +My(£))™") . Using dA9.2.12[), A9.1.5), the definition

of M and , we'bound the modulus of (A9.2.14)) by
(492.17) CM(,€) [ ()7 NO(=((0) + Mo(€) 7)™ ((0) + Mo(©)"

x (h2)M0 (14 Mo(&) ™" ly — =) "

1 —N
Basa (e e
x/o <1+ﬁh Mo, & + -+ & A()) A
< (1+ BRP Mo (&)™ dzd(

for arbitrary Ni, No, N and given Ny, N (coming from (A9.1.1), (A9.2.1))),
the factor in (1 + Mo(&)™"|y — z|)_N coming from the last factor in estimate

(A9.1.5) of g—z. If N1 — Ny is large enough, and if we integrate for || > ¢My(€),
the factor <C>7N1+N° provides a decay in Mo(ﬁ)_N/ for any given N’. On
the other hand, if we integrate for || < cMy(€), we may use (A9.2.7) that
shows that the product of the last two factors in (A9.2.17) is smaller than
C(1+ BhPMo(€))~™N. We thus get a bound in

(A9.2.18) CM(x,&)(1+ BhPMy(&))™N
x [ Q7NN (a((0) + Mo(€) )N + Mo(©)"
x (hz)No (1 + Mo(€) "y — z|)_N dzdC

< CM(2,€) (1+ BIP My (€)™ Mo(€)FHNODR (1 4 My (&) [y[) ™

if Ny > Ny > N+Nyp+Nj. We thus get an estimate of the form , with
ap =0, o =0, and the order function M replaced by M (z, g)Mo(f)”(“Né/).
If we make the same computation after taking a 07° and a ¢ derivative
of (A9.2.14)), we replace, according to (A9.2.12), the factor (My(£) + (¢))" in
(A9.2.17

) by (Mo(€) + (¢))rI+aotlal) g6 that we obtain again a bound of the
form (A9.1.5), with still M replaced by M (z,&)My(§)"" with v =2+ Ny.
Study of (A9.2.15)
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The difference with the preceding case is that the J, derivative acting on b
makes lose an extra factor My(£)”, and that we do not have in (A9.2.17)) the
| fctor M () " :
factor in (1 + Mo(§) "y — z|) . Instead of ({A9.2.18]), we thus get a bound
in

CM (2, €)Mo (€)™ (1 + BhP Mo(€)) ™

for some v depending only on N{. On the other hand, if one takes a J,
derivative of , either it falls on b, which reduces one to an expression
of the form , or on @, so that one gains a factor in the
estimates. In both cases, it shows that a bound of form holds. One
studies in the same way the derivatives, and shows that provides the
hep contribution in .

If b does not depend on y, than (A9.2.14) vanishes identically so that there
is no ¢} contribution in (A9.2.16)). If it is independent of x, the term hep given

by (A9.2.15)) vanishes.

Finally, if one assumes that b is in S} 5(M",n"), then estimates of the form

(A9.2.18), i.e. with the factor (14 My(€) "|y — 2| !_N hold also for the study

of term (A9.2.15), so that we get that c; in (A9.2.5)) is also in S} 5(M Mg, n).

In the same way, if a is in SAB(M’,n’), one gets in (A9.2.12)) an extra factor
of the form (A9.2.13)) in the right hand side, so that (A9.2.15)) is again in

;, B(M ,n). This concludes the proof. O

Let us write a special case of Proposition

Corollary A9.2.3. — Let p(§) = (&) and let b(y,&1,...,&) be a function
satisfying estimates

|0g0(y, §)| < C ﬁ (&) My (€)1

j=1
105°0¢b(y, )] < On T] (&) Mo ()1 i)~
j=1
for all o € N*, a« € N*, N € N. Then
Opy(p(€)) [Opp (b) (v1, -, vn)| = Oy (p(E)b(y, €)) (v1, - - ., vp)
+Opp(c)) (v, v,)

(A9.2.19)

(A9.2.20)

where ¢} satisfies

(A9.2.21) 950021 (9,€)| < On T 45) ™ Mo (€)' ey~

J=1

for all afy, e, N.
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Proof. — We may not directly apply the proposition, as the order function
it would provide in the right hand side of (A9.2.21)) would not be the right
one. Though, we may apply its proof that shows that the composed operator

(1A9.2.20) is given by (A9.2.14)) with a given by (A9.2.10) i.e.
(1 » 0b
(A9.2.22) — i/ /eﬂ%p’(gl bt 2O Ly =261, ) dzdCd.
2w Jo Jy

Performing integrations by parts in z,({, we may bound the modulus of

(1A9.2.22) by
¢ [Ny - 27 dadg [T (67 Mol€)
j=1
which gives (A9.2.21)) performing the same computations for the derivatives.

O
We shall use also the following corollary.

Corollary A9.2.4. — Let b be a symbol in S, g(M,n) for some order func-
tion M, some n in N*, with (k,[) satisfying the assumptions of Proposi-
tion . Assume moreover that b(y, x,&1,. .., &) is supported inside |1 |+
vt [&nm1| < C(&n). There is v > 0 such that for any s > 0, one may write
(A9.2.23) (hD)*Opy, (b(€) ") = Opy(c)

with a symbol ¢ in Sy, g(MM{ ,n). The result holds also if b (and then c) satisfy
with the last exponent N replaced by 2, i.e. if b is in S/iﬁ(M, n), then
¢ lies in S'% s(M Mg, n).

Proof. — We apply Proposition [A9.2.1] with a(§) = (£)° € Sk ()" 1)
(for any (k,3)) and for second symbol b(y,x,&1,...,&){(&) " °. Notice that,
because of the support assumption on b, this symbol belongs to the class

Sk (M(x,f)( ) <§j>>78,n). Then by (A9.2.3), ¢ in (A9.2.23)) belongs to
Sy p(M(z,&)My*,n), where v depends only on the exponent N/ in (A9.2.1]),
which is independent of s, and where M is given, according to (A9.2.2), by

M(@, &1, 6n) = (G + -+ £n>SM(:v,€)(zn: (€))" < CM(z,8).
j=1

The conclusion follows, as the last statement of the corollary comes from the

fact that when taking a 0, derivative of ¢ given by (A9.2.8), it falls on the b
-2

factor as a(€) = (£)* and makes appear a gain (1 + Mo(§) "y —z]) ~ if we
assume that (A9.1.5)) holds with last exponent equal to 2. ]

Let us state a result on the adjoint. Since we shall need it only for linear
operators, we limit ourselves to that case.



A9.2. SYMBOLIC CALCULUS 195

Proposition A9.2.5. — Let M(x,§) be an order function on R x R, a an
element of Spo(M,1). Define

(A9.2.24) a*(y,r,&) = Qi / e Caly — z,x — hz, & — ¢) dzdC.
T
Then a* belongs to Soo(M,1) and (Opy(a))* = Opy(a*).

Proof. — By a direct computation (Opj(a))* is given by Op;,(a*) if a* is
defined by (A9.2.24). Making 0, and 0, integrations by parts, one checks that
a* belongs to the wanted class. ]

Remark: It follows from (A9.2.8), (A9.2.14)), (A9.2.15), that if a,b in the
statement of Proposition satisfy

a(=y, =, =&,y &) = (1) laly, 2,61, )
b(—y, =2, &1, =) = (1) by, 2,1, )
then symbol ¢ in satisfies

(A9.2.26) c(—y, —x, =&, .0 —&) = (=1)"a(y, x, &1, ..., &)
and a similar statement for ¢1,¢}. One has an analogous property for a*.

To conclude this appendix, let us translate Propositions [A9.2.1] and [A9.2.F
in the framework of the non semiclassical quantization introduced in (A9.1.8)),

(A9.1.9).
Corollary A9.2.6. — (i) Let n’,n" be in N*, n=n'+n" —1, M',M" two
order functions on Rx R" and RxR"™" respectively. Let (,3) be in Nx [0, 1],
ain Sy,g(M',n'), b in S,g(M",n"). Assume that either (k,5) = (0,0) or
0 < kB <1 or that b is independent of x. Then if M is defined in ,
there are v in N, symbols c1 in Sy s(MMg"®,n), ¢, in S| ;(MMg*,n) such
that if
(A9.2.27)

C(y733)£17 s agn) = a(y>$a£1> s 7£n’71a£n’ +oe gn)b(y7x7£n’a cee 7£n)

+t_101(y, l’,§1, cee 75”) + Cll(ywxvfla s 7611)7

then for any functions vi,...,v,
(A9.2.28)  Op'(a)[vy,...,v—1,0p (D) (v, ..., vn)] = OP' ()1, . .., V0.
Moreover, if b is independent of x, c1 vanishes in (A9.2.27). Finally, if a is
in Sy, g(M',n') orbis in Sy g(M",n"), then c is in S s(MM§"™,n).

(i3) In the same way, if a is in Soo(M,1), then Op'(a)* = Op'(a*), for a
symbol a* in the same class. Moreover, if a satisfies (A9.2.25)), so does a*.

Proof. — Statement (i) is just the translation of Proposition [A9.2.1} State-
ment (ii) follows from Proposition |[A9.2.5 O

(A9.2.25)
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We get also translating Corollary
Corollary A9.2.7. — Under the assumptions and notation of Corol-
lary[A9.2.3, one has
Op(p(£))Op(b)(v1, ..., vn) = Op(p(&1 + - + &x)b) (v1, - - -, Un)
+ Op(cy)(v1,y. .., vn)
with ¢} in the class SLO( = (&) My (€), n) of Definition .
We shall use also

Corollary A9.2.8. — Let n > 2. Let M(&,...,&,) be an order function
on R™ (independent of x) and let a(y,&1,...,&,) be a symbol in Sy o(M,n),
independent of x, for some k in N. Let Z be a function in S(R). Denote
M(&y, ..., 60 1) = M(&1,...,60-1,0). There is a symbol a’ in S;,O(M,n —1),

independent of x, such that for any test functions vy,...,vp_1
(A9.2.29) Op(a)[v1, ..., vn-1,Z] = Op(d’)[v1,...,vn-1]
Moreover, if Z is odd and a(—y, —£1,...,—&) = (=1)"ta(y, &1, ..., &), then

a/(—y, _517 IR _gn—l) = (_1)n72a(y7 §17 SRR 7571—1)'
Proof. — By (A9.1.9)), we have that (A9.2.29)) holds if we define

1 . .
(A9230) a,(yv 517 s ’gnfl) = % /elyfna(y’ gl? s agnflv £n)Z(£n) d{n

If o = (a1,...,001) € NP7L & = (&,...,&,1), we deduce from (A9.1.4)
with 3 = 0 that

08 d (y, &1, &nor)] £ C / M€, &) Mo(€',6:)"1| Z(€,)] déy.

Using both for M and My, we obtain a bound in M (&) My(¢')<1*.
To check that actually our symbol a’ is in S;’O(M ,n—1), i.e. that it is rapidly
decaying in (1 + My(&)~"|y|)~", we just make in O¢, -integrations
by parts, and perform the same estimate. One bounds 9, derivatives in the
same way. Finally, the last statement of the corollary follows from (A9.2.30)
and the oddness of Z. d



APPENDIX A10

BOUNDS FOR FORCED LINEAR
KLEIN-GORDON EQUATIONS

The goal of this appendix is to obtain some Sobolev or L estimates of
solutions of half-Klein-Gordon equations with zero initial data and force term
that is time oscillating. The kind of equations we want to study is of the form

(A100.1) (Di— T+ DU = ¥ 1M (0)
- Uli=1 =0

where M is in S(R), t;* = l—i% and A is a real number different from one.
This restriction means that the right hand side of the equation oscillates at a
frequency which is non characteristic when one restricts the symbol /1 + £2
of the operator in the left hand side to frequency zero. Our goal is to prove

estimates for U or L, U = (aj—l—t%) U for large times. Actually, we shall split

the solution as U = U’'+U", where U’ is obtained writing the Duhamel formula
to express U and restricting the time integral to times that are O(v/t). It turns
out that, when time ¢ stays smaller than =40, L, U’(t,-) has L? estimates

that are o(ti), which is acceptable for our applications. On the other hand
L. U" would not enjoy such bounds, but it has good estimates in L*>°-like
spaces.

Equation is actually just a simplified model of the problem we
study in this Appendix. For the applications to our main problem, i.e. the
description of some approximate solutions (see section of Chapter , we
need more general right hand sides than in . Though, the method of
proof of our estimates is quite the same as for the model above. It relies on
the explicit writing of the solution using Duhamel formula and the stationary
phase formula.

We shall close this appendix with explicit computations that are used in
the main part of this text to check the Fermi Golden Rule.
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A10.1. Linear solutions to half-Klein-Gordon equations

We consider a function (¢t,7) — M(t,x) that is C! in time, with values in
S(R). If X is in R, A # 1, we denote by U(¢,x) the solution to

(Dy — p(D))U = MM (t, )

A10.1.1
( ) Ul = 0

where p(D,) = /1 + D2, and where we study the solution for ¢ in an interval
[1,T]. We write the solution by Duhamel formula as

t .
(A10.1.2) Ult,z) = z/ 6l(t77)p(Dz)+2)\7M(T’ N dr.
1

We fix some function x in C*(R), equal to one close to ] — oo, 1], supported
in ] — 0o, 3]. Then for ¢ larger than some constant (say t > 16), we may write

(A10.1.2) as U = U’ + U"” where

+oo | .
Ult.a) =i [ ez(t’T)p(Dz)JrMTx(\L/)M(m ) dr
(A10.1.3) . t

Ut z) = i / ei(t=TpDa)+iAT (1 _ ) (%)M(T, ) dr.

Our goal is to obtain Sobolev and L™ estimates for U’, U” and for the result
of the action on U’, U"” of the operator

D
(A10.1.4) Li=x+tp (D) =2 +t—"—,
(Dx)
under two sets of assumptions on M, that we describe now. We shall take ¢
in ]0,1] and for ¢t > 1, we recall that we defined in ((3.1.1])
(A10.1.5) te= e 2(te) = (74 +12)3.
For w in [1,4o00[, 8" €]0, %[, close to %, we introduce the following:

Assumption (H1),: For any a, N in N, any ¢ in [1,7],  in R, € in 0, 1],
one has bounds
05 M (t,7)| < Co vt ()™

(A10.1.6) il s .
090, M(t,z)| < Cante 2[5 + 173 (VD)2 () V.

The second type of assumption we shall make on M is more technical. If
A > 1, we denote by +¢&, the two roots of /1 + &2 = A (with &, > 0) and set
Wi, for a small open neighborhood of the set {£y, —&\}. We introduce:
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Assumption (H2): For any «, N, the z-Fourier transform of M (t,z) sat-
isfies bounds

08 NI (t,€)] < Cant™2t7(8)”
008 M (£,€)] < Cant™3.1(€)
Moreover, for £ in W), one may decompose
(A10.1.8) DM (t,€) = (Dy 4+ X — /1 + E2)B(t, &) + U(t,£)
where @, U satisfy the following bounds:

@(t,€) < Ot 3t
|O(t,€)] < Ot

and a similar decomposition holds for x M instead of M. Of course, conditions
(A10.1.8)), (A10.1.9) are void if A < 1.

N
(A10.1.7) N

(A10.1.9)

For future reference, let us state some elementary inequalities that hold if
0 < 5 is close enough to 2, eVt <1and w > 1:

Vit /
(A10.1.10) / T3 [r72 43 (EVT)? G}dT
1

1 3 3
2

t
(A10.1.11) /ﬂn—wz[rﬁ 2 (evr)? Jdr
2 y _1y 3¢y
< 062“}{ ! +e2? (V1) 2+49}

2 1
. ow—_1( €1 )2 2w
< C'min [e <<62t> , € } .

\/Z 2 1,a
(A10.1.12) / iV dr < Cetitz a > —1.
1

t 2t \1@ 2t \2 1
(A10.1.13) / Tl dr < 062‘1( € ) < Ce( € > - <a<l.
Vi (e%t)

1 3

(A10.1.14) /;T;wm[n S TN AN

<C 2w1[( et >§+ gax( e’ )39'} <0 2w1< %t )2
= @) T \en) 1= e/ o




200 APPENDIX A10. BOUNDS FOR FORCED LINEAR KLEIN-GORDON EQUATIONS

(A10.1.15) /t bl dr < OVEL
1. \/ZT Te dr < Ens

Let us state two propositions giving the bounds we shall get for U’, U” under
either assumption (H1),, or (H2). We denote below

(A10.1.16) [vllwece = [[{Dz) ]| Lo
for any p > 0.

Proposition A10.1.1. — (i) Assume that (H1),, holds for some w > 1.
Then for any r > 0, there is C, > 0 such that U’ given by (A10.1.3) satisfies
for any € €]0,1], t € [1,e7 4]

1
(A10.1.17) U (¢, ) |gr < Cre[e @D (2V/1)2]
(A10.1.18) U (t, )| wree < Cre®
(A10.1.19) ILLU'(t, ) e < Cpt1[2@ D (V)]

(i) Under Assumption (H2), there is, for any r > 1, a constant C, > 0 such
that U’ satisfies for any € €]0,1], t € [1,e 4]

1
(A10.1.20) U (&, ) || < Cre(€2V/1)?
(A10.1.21) U7 (¢, Yoo < Cret™1
7
(A10.1.22) 1L U (¢, )| e < Crti[es (22)7].

Let us state now the bounds she shall prove for U”.

Proposition A10.1.2. — (i) Under Assumption (H1),, withw > 1, one has
for any r > 0, the following bounds:

et 2
(A10.1.23) T (t, ) || < Cre%_l( >
(€°t)
(A10.1.24) 1T (t, )| wree < Cre® log(1 +t)
(A10.1.25) | L U"(t, )|l wres < Crlog(l+t)log(1 +€%t), ifw=1
2
A10.1.26 LoU"(t, ) |wree < Cre?@Dlog(1 + ¢ et . ifw> 1.
(e°t)
€

(i) Under Assumption (H2), one has for any r > 0, the following bounds

24\ 3
A10.1.2 "t M < C, (L>
( 0 7) HU (tv )HH < Cre <62t>
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(A10.1.28) U (t, )| wree < Cre(log(1 4+ t))?

(A10.1.29) | L U (t, )| wree < Cyplog(1 +t)log(1 4 €%t).

Remark: Notice that we obtain Sobolev estimates for L U’(t,-) in
A10.1.19), (A10.1.22), while we bound L U"(t,-) in W™ spaces in
A10.1.25), (A10.1.26), (A10.1.29). Actually, we could not obtain for
the LLU" contribution to LU as good Sobolev estimates as those that hold
for L, U’, and this is the reason for our splitting U = U’ + U".

Study of the U’ contribution
We shall prove Proposition |[A10.1.1] By (A10.1.3]), (A10.1.4)

(A10.1.30) U'(t,z) /+°°/ (=) 1+ AT+ag] <f> M (7, €) dédr

+0o0
/ [(t—7) \/1+§2+)\T+x§]

x [TéM(r, €) + zM(r, g)] dedr.

We shall estimate first the above integrals when either A\ < 1, so that the
coefficient of 7 in the phase A — \/1 + £2 never vanishes, or when A > 1 but
M(7,§) is supported outside a neighborhood of the two roots &, of that
expression.

(A10.1.31)

Lemma A10.1.3. — Assume that either X < 1 or X\ > 1 and there is a
neighborhood Wy, of {—&x, {0} such that M(, &) vanishes for & in Wy. Assume
alsot < ¢4
(i) Under assumption (H1),, estimates (A10.1.17) to (A10.1.19) hold true.
(ii) Under assumption (H2), estimates (A10.1.20}) to (A10.1.22) hold true.

Proof. — Let us prove first the Sobolev bounds (A10.1.17), (A10.1.19),

(A10.1.20), (A10.1.22). By (A10.1.30) U’(t,€) may be written as
) +oo .
(A10.1.32) e”v1+52/ OV (LN (€ dr
1 Vit

where N(7,¢&) satisfies for any N, any «, according to (A10.1.6|), (A10.1.7)
(A10.1.33)

i . . 3p/_
OEHIN(7,8)] < Cante T [r 2 + 7732y ()N, j=0,1
under (H1), and

(A10.1.34) O8OIN(7,6)| < Cont 27 7 5()7N, j=0,1
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under (H2). In the same way, by (A10.1.31]), ﬁ(t, ¢) may be written under
the form (A10.1.32)), where N satisfies according to (A10.1.6), (A10.1.7)

(A10.1.35) 0LOIN (1,)] < Cant' (&)™, j=0,1
under (H1), and
(A10.1.36) 02BN (,6)] < Conr2 ir. 1) ™N, j=0,1

under (H2).

Since N (T, &) is supported outside a neighborhood of the zeros of \/1 + £2 —
A, we may perform in one J; integration by parts. Taking moreover
a L2((£)"d¢) norm, we obtain quantities bounded in the following way:

o If N satisfies (A10.1.33), we obtain a control of (A10.1.32) in terms of
Ce* and of (A10.1.10)). This gives a €2 estimate, better than the right hand

side ((A10.1.17).
e If N satisfies (A10.1.34), we obtain an upper bound by the right hand

side of (A10.1.12), which is better than (A10.1.20)).

o If N satisfies (A10.1.35), the L2({¢)"d¢) norm of (A10.1.32) is bounded
by (A10.1.12)) with a = 0, so by (A10.1.19).

e If N satisfies (A10.1.36)), that same norm is bounded by , thus
by the right hand side of (A10.1.22]).

We have thus proved Lemma for Sobolev estimates. It remains
to establish and Since M is rapidly decaying in &, it
is sufficient to estimate the L® norm of U’. Notice that the dé-integral in
(A10.1.30) may be written as

(A10.1.37) /eitKlz) \/@+%4 M(7,€) d¢

and that on the support of x(7/v/t), |7/t| < 1, so that the stationary phase
formula implies that (A10.1.37)) is smaller in modulus than Ct_%T{WlT Vi

under conditions (A10.1.6]) and Ct_%T_%Te_llT<\/g under condition (A10.1.7)).

Integrating in 7, we get bounds in O(e*¥) and 0(62157%) respectively as in
(A10.1.18)), (A10.1.21). This concludes the proof. O

Lemma [AT0.1.3] provides Proposition [AT0.1.1] when either A < 1 or
A > 1and M in (A10.1.30), (A10.1.31) is cut-off outside a neighborhood of
V1+& = X. We have thus to study now the case when A > 1 and M is
supported in a small neighborhood of one of the roots £&£, of that equation.
More precisely, we have to study, in order to estimate the contribution to U’,
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the expressions
(A10.1.38)

Ui(t,z) = /:Oo/eit[(l_z)\/@JFAH%}X(\;%)]\&(T,&) drdg,

where N4 is supported close to £&, and satisfies (A10.1.33|) or (A10.1.34]),

and, in order to estimate the contribution to L, U’, an expression of the form

(A10.1.38)) with N satisfying (A10.1.35)) or (A10.1.36]). We shall show actu-
ally the more precise result:

Proposition A10.1.4. — For any « in N, we have the following bounds:

(A10.1.39) 02T, (t,2)| < Coe®™ (72 (Ax + t{A)>_1

if N+ satisfies ,

(A10.1.40) 00T (1, )| < Cact™ (™ Az + 162))
if N+ satisfies ,

(A10.1.41) 00U, (t, x)| < C’aeQ‘”t%@’%(Ax + t{A)>_1
if N1+ satisfies ,

(A10.1.42) 00T (t,2)| < Coe®ti (5 (A + t&))*l

if Ny satisfies (A10.1.536)).

It follows immediately from (A10.1.39) (resp. (A10.1.40)) that (A10.1.17)
and (A10.1.18) (resp. (A10.1.20) and (A10.1.21))) hold true. In the same way,
computing the L? norms of 1|A10.1.41|) (resp. (A10.1.42))) we obtain upper

bounds by (A10.1.19) (resp. (A10.1.22)). Consequently, Proposition [A10.1.1
will be proved if we establish Proposition

Lemma A10.1.5. — One may write the derivatives of Ul given by
(A10.1.38) under the form

- +oo
(A10.143)  0°TL(t,x) = / GG (4 7 2 ) (7ot 24) dT + RE
1
where X+ is supported for T </t and for |z+| < ¢, and where
(A10.1.44) we= T2 S 0, da = O D),

t A
where Yy (T,t, 21 ) satisfies

(A10.1.45) 011 (1,8, 24)| ~ |24, 02y =0
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on the support of the integrand, it t is large enough, and where J, satisfies the
bounds

(A10.1.46)
| Ja(7t, 22)| < Cut™27.7%

|0 Ja(T,t, 22)| < CatiéTeinr% [7'57% + tilTeié + 773(62 T)? ]
if Ny satisfies (A10.1.53),
1 1

| Ja(T,t, 21)| < Cot 27, 772

(A10.1.47)

|07 Jo (T, t, 24)| < Cat_%n_lr_%

if N+ satisfies (A10.1.54)).
In the same way, OSU is given by an integral of the form (A10.1.45) with
Jo satisfying

(A10.1.48)

if N+ satisfies (A10.1.585),

1 1

Jo(Tot,21)| < Cot ™27 12

(A10.1.49) ol )= Ca L
10r o (T, t, 22 )| < Cut ™27, 72

if Ny satisfies (A10.1.36). Finally, the remainder RE in [A10.1.49) satisfies
IRE| < Ca7N62wt7N<)\$ + tf,\fN, under (H1),,

(A10.1.50)
IRE| < Cone’t N (Az £ te) N, under (H2),

for any N in N.

Proof. — For t bounded, estimates of the form follow from
(A10.1.33), (A10.1.35) and O integration by parts. Assume ¢t > 1. We treat
the case of sign + and set z for zy in (A10.1.44]). We consider the d¢ integral
in , expressed in terms of z instead of x. The oscillatory phase may
be written as té(t, 7, z,£) with

d
(A10.1.51) 8?(@7,46) = (\/Ii—62 - %) - Zli_gz ta

Since we assume t > 1, T < % < 1 in (A10.1.51). If |z| > ¢ > 0, un-
der this condition on ¢, and for |{ — &)\ < 1, we see from (A10.1.51) that
‘%?(tﬂ', z,&)| ~ |z|, so that, performing d¢-integration by parts, we get again

estimates of the form (A10.1.50)).
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We may thus assume from now on that ¢ > 1, [2| < 1. For z =0, 7 =0,
(A10.1.51) vanishes at & = &), and since the Oc-derivative at this point is
A2 # 0, we have for t > 1, |z| < 1, a unique critical point £(t, 7, z) close to

&). Moreover, it follows from (A10.1.51)) that

(A10.1.52) %(m, 2) = O(%), gj";(t,a 2) = O(t%).

We rewrite the phase ¢ as

(A10.1.53) o(t,T,2,8) = ¢°(t,7,2) + %A(t,T, 2,6)2(6 —€(t, T, 2))?
where the critical value ¢(t, 7, z) satisfies

(A10.1.54) 10-0°(t, 7, 2)| = O(t™1), |0%¢°(t, 1, 2)| = O(t™?)

and where A is strictly positive for § < 1, |2| < 1, [£ — &\| < 1 and satisfies
for any y

(A10.1.55) 0-00 A(t,7,2,6)| = Ot ™).

We introduce the change of variables ¢ = A(¢, 7, 2,€)(§ — £€(t, 7, 2)) for £ close
to &y and its inverse £ = =(t, 7, 2,(). By (A10.1.52)), (A10.1.55), we have

¢ . OHiE 4

—==0(t =0(t

or (t7), o¢ror ()

for any v. Then the expression of 8:?0; may be written from (|A10.1.38))

(A10.1.56)

+o00
afy _ itgc(tm,2) (T
(A10.1.57) 0FU. (t,x) /1 e X(\/E>Ja(t’ T,z)dT
where
(A10.1.58) Tt 7,2) = / AT Nty 7, 2,C) dC

where N, is supported close to ¢ = 0 and satisfies when 7 < v/¢, by (A10.1.56]),

the following estimates for any v in N:

|82Na(t,7', z2,Q)| < Cr™%
(A10.1.59)

3
2

~ 3/
0,07 Na(t,7,2,Q)] < O3 [r 78 4773 (2y7)" 47 7507]
if N+ in (A10.1.38) satisfies (A10.1.33]),
(A10.1.60) |00 Nu(t,7,2,0)| < CT 377 Y, |0;0] Na(t,7,2,¢)| < O ir, !
if N1 satisfies (A10.1.34]),
(A10.1.61) |82]\~/'a(t,7',z,§)| <Cr7e %, |8782Na(t, 7,2,0)| < Cr. ¥
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if N4 satisfies (A10.1.35) and
- 1 - 1
(A10.1.62) |8ZNa(t,sz,C)| <Crzr.7 !, \aTagNa(th,z,Cﬂ < Crir, !

if Ny satisfies (A10.1.36)). If we apply the stationary phase formula to
(A10.1.58]), we gain a factor t_%, which, according to (|A10.1.59|)7(|A10.1.62|)
provides bounds of the form (A10.1.46) to (A10.1.49). To get expressions of

the form (A10.1.43), we still have to replace the phase t¢° of (A10.1.57) by
¥4+. By Taylor-Lagrange formula relatively to 7 and (A10.1.54))
2
Bt 7,2) = 0°(1,0,2) + 7(9,6°)(1,0,2) + O 55 )

Moreover, by definition of the phase ¢ of (A10.1.38]),
1
(8T¢C)(t707 Z) = E()\_ 1 +£(t,0,2)2)

and by (A10.1.51)), the critical point £(t, 0, z) satisfies
f(t,O,Z) _67/\_ _ f)\

€6,0,2) A (&)

so that

V14E(t,0,2)2 =)= X262+ 0(2%), z— 0.
We thus get

P°(t, 7, 2) = ¢°(t,0, 2) + %()\2@\3' + 0(22)) +r(t, T, 2)
(A10.1.63) - _

r(t,7,2z) = O(?) ,Orr(t, T, 2) = O(t—2>
We define
Yy(t,T,2) = t[gbc(t, T,2) —r(t, T, z)]

(A10.1.64)

T )eitr(t,‘r,z) )

)~(+(tv T, Z) = X(W

Plugging (A10.1.63)) in (A10.1.57)), we deduce from (A10.1.64) that for |z| < 1,
the properties of X,y in (A10.1.44)), (A10.1.45)) do hold. This concludes the
proof of the lemma. O

Proof of Proposition |A1().1.Z|: Since RE in (A10.1.43) satisfy better esti-

mates than those we want, by (A10.1.50), we just consider the integral in the
expansion of 95U

Under condition (A10.1.33), J, satisfies (A10.1.46). It follows from
(A10.1.12) that the modulus of the integral in (A10.1.43)) is O(¢2*). On the
other hand, if we multiply (A10.1.43) by zy, use (A10.1.45)), integrate by

parts in 7 in (A10.1.43) and use (A10.1.44), we deduce from (A10.1.10) and
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a bound in ¢t~ 2¢2 for the resulting expression. Together with the
definition of z, this brings (A10.1.39).

To prove , we proceed in the same way. Under estimates
A10.1.34), (A10.1.47) holds for J,. By , this provides for
A10.1.43) an estimate in €2t~1. On the other hand, if we multiply A10.1.43|)

by z:+ and integrate by parts, we get using (A10.1.47) and (A10.1.12) an
estimate in €2t~ 5. Together with the first one, this implies (|A10.1.40|).

One obtains :A10.1.41|) (resp. (A10.1.42)) in the same way from (A10.1.48))
(resp. (A10.1.49)) and (A10.1.12). O

Study of the U” contribution
According to (A10.1.3), (A10.1.4) we have

(A10.1. 65)
U (t / / (t T)\/@-H\T-&-wd (1-x) (%)M(T, €) dédr
" :L‘ i|(t— T)@—l—)\r—i—xf] T
(A10.1.66) b / / oy <ﬁ>

x [TéM(T, §) +aM(r,¢)| dedr.
We treat first the case when A < 1 or A > 1 and M is supported for £ outside
a neighborhood of +¢£,.

Lemma A10.1.6. — Assume A < 1 or A > 1 and M supported outside a
neighborhood of {—&x, &)}

(i) Under assumption (H1),, estimates (A10.1.23) to (A10.1.26) hold true.
(ii) Under assumption (H2), estimates (A10.1.27) to (A10.1.29) hold true.

Proof. — We write U”(t,€) as
t ) 2 . 2
(A10.1.67) [ eCVEE 1 ()N g dre

with N sat1sfy1ng (A10.1.33)) under (H1),, and (A10.1.34) under (H2). In the
same way, L+U” is given by (|A10.1.67|) with N satisfying 1|A10.1.35|) when

(H1),, holds and (A10.1.36|) under (H2).
We perform one 0, integration by parts in (A10.1.67) and compute the

L%((¢)") norm. When N satisfies (A10.1.33)), we obtain from (A10.1.11) (and
from (A10.1.12) if &, falls on (1 — x)(7/v/1)) a bound of the f.
If instead of computing the L2((£)"d¢) norm, we estimate the L' ((£)"d¢) one,
we get from (A10.1.11)), (A10.1.12).
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Under condition (A10.1.34) we get an estimate of the L?({¢)"d¢) norm of
(A10.1.67) by

t
C/ 76_17'_% dr + Cet2
Vit

which is smaller than the right hand side of (A10.1.27) by (A10.1.13]).

We are left with proving (A10.1.25), (A10.1.26|), (A10.1.28) and (A10.1.29).
Integrating by parts in 7 in (A10.1.65)) and (A10.1.66)), we have thus to bound
the integrals

(A10.1.68) / AT N (1 €Y de

(A10.1.69) /_t / (il =i+ earrag] g (N - x)(%)} dedr

where N satisfies (to get (A10.1.28)) or (A10.1.35) (to obtain
(A10.1.25), (A10.1.26)) or (to get (A10.1.29)). The W™ norm
of (A10.1.68) is bounded from above by the L' norm of (¢)"N(t,£), that has
immediately the wanted estimates. Let us study . Since the inte-
grand is in S(R) relatively to ¢, stationary phase shows that the d{-integral

is O(<t—7’>_%), with bounds given by the right hand side of ‘A10.1.34|),
A10.1.35), (A10.1.36). Consequently, the contribution of (A10.1.69)) to
A10.1.28)) will be estimated by

t 1 € 3

(A10.1.70) C /\/i (t—m7)" 2 mTfi dr,

its contribution to (A10.1.25)), (A10.1.26) will be bounded by
t 1w

(A10.1.71) C’/\/E (t—7)"2 (= dr,

and its contribution to (A10.1.29)) will be controlled by
t L2 )

(A10.1.72) c/ﬁ (t =) E i

One checks that (A10.1.70) (resp. (A10.1.71)), resp. (A10.1.72))) is bounded
from above by the right hand side of (A10.1.28) (resp. (A10.1.25]), (A10.1.26)),

resp. (A10.1.29)). This concludes the proof of the lemma. O

We have obtained estimates (A10.1.23)) to (A10.1.29) when M in (A10.1.65)),
(A10.1.66|) is supported away from the zeros of A — \/1 + &2. We shall next
obtain these bounds for M supported in a small neighborhood of this set.
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We prove first these estimates under assumption (H1),, i.e. those of (i) in the
statement of Proposition [A10.1.2] We have to study again the integral

(A10.1.73) /_t / el Ve e (g _ X)(%)N(T, £) dedr

where N will satisfy (A10.1.33)) or (A10.1.35)) and is supported close to £&).

Lemma A10.1.7. — Assume A > 1 and N supported in a small enough

neighborhood of {€x, —€\}. Then if N satisfies (A10.1.33) (resp. ),
estimates (A10.1.25) and (A10.1.24)) (resp. (A10.1.25), (A10.1.26))) hold true.

iTC _

Proof. — Introduce Q(7,() = % L and write (A10.1.73), after making a
Or-integration by parts, as the sum of the following quantities:

(A10.1.74) /ei“\/@”@ﬁ(n A= V/T+€)N(t

(A10.1.75)
i /_too [ V0 (r A - VTE )0, (1= 0 () N ()] deir

Assume for instance that £ stays in a small neighborhood of &) on the support
of N, and make the change of variables ( = A — /1 + £2 in the integrals, with
¢ staying close to zero.

Consider first the case when N satisfies (A10.1.33) and let us prove
(A10.1.24)). We estimate the modulus of (A10.1.74) by
€2w CEZUJ
Q(t, d¢ < logt
o 1000 O € < (7 gy o

which is controlled by the right hand side of (A10.1.24)). In the same way, we
bound the modulus of (A10.1.75|) by

o [t fnte i@Vt v Znmn ) [ ool

AS [« U7, Q)] d¢ = O(log ) = O(logt), we obtain using (A10.1.11)) and
(A10.1.12) a bound in €**log(l + t) as wanted. Assume next that N sat-
isfies (A10.1.35), and let us show (A10.1.25)), (A10.1.26). We estimate then

(A10.1.74) by

Ce*t /
—_— Q(t, Q)| d
1+ te2) |<|<<1’ (t, Q) d¢
that is bounded by (A10.1.25)), (|A10 1.26). On the other hand, (A10.1.75
dr, that is bounded by (A10.1.25) if

may be controlled by [* VG logr(

W
w=1, (A10.1.26) if w > 1.
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To finish the proof of the lemma, we still need to get (A10.1.23). The H"
norm of (A10.1.74)), (A10.1.75) is bounded from above respectively by

(A10.1.76) 1962 = VI )Nt 6l z2(eyrae

(A10.1.77) /;EHQ(T, A— m) O, (1 - X)(%)N(ﬂ L2 (iyragydr-

We consider again the case when N is supported in a small neighbor-
hood of &, and use ( = A — /1 + &2 as the variable of integration. Since
1927, O)Li¢cj«tl 22(ac) = O(VT), we estimate, in view of (A10.1.33), (A10.1.76)
and (A10.1.77) by (A10.1.23) again using (A10.1.14), (A10.1.12)). This
concludes the proof. O

Lemma |A10.1.7| concludes the proof of (i) of Proposition |[A10.1.2] In order

to finish the proof of (ii), we need to show:

Lemma A10.1.8. — Consider (A10.1.65) (resp. (A10.1.66)) when M is

supported close to {—&x, &} and when assumption (H2) holds i.e. under con-
ditions (A10.1.7) to (A10.1.9). Then, estimates (A10.1.27), (A10.1.28) (resp.

(A10.1.29)) hold true.

Proof. — Notice first that the term zM under the integral 1|A10.1.66|i satis-
fies the same hypothesis as M under integral (A10.1.65) (see the lines below
A10.1.9))). Since the right hand side of (A10.1.29)) is larger than the one in
A10.1.28), it suffices to show (A10.1.27), (A10.1.28) for expression (A10.1.65)),

and (IA10.1.29|) for (IA10.1.66|) where one forgets the zM term. We thus have
to study an expression

(A10.1.78) /_t / il =i+ A Tag] (g _ X)(%)ﬂN(r,g) dedr

where, according to (A10.1.7) to (A10.1.9), N is supported in a small neigh-
borhood of {—&),&\} and there are functions ¢, such that the following
estimates hold:

IN( )|+ [o(t,€)] < o2t

O,N(t,€)] < Ct 1!

[W(t, &) < Ot et

DyN(t,€) = (Dy + X — 1+ E2)p(t, &) + (¢, €),

and where j = 0 in the case of bounds (A10.1.27)), (A10.1.28) and j = 1 for
(A10.1.29).

(A10.1.79)




A10.1. LINEAR SOLUTIONS TO HALF-KLEIN-GORDON EQUATIONS 211

Let xo be in C3°(R), equal to one close to zero, and write integral (A10.1.78)
as I} + I}, where

= [elenvigorsd (- viTav)

(A10.1.80) o
x(1 =) (%>T]N(T,§> drde.

Since A > 1, the df integral is O(f%), and using the estimate of N in

(A10.1.79), we get by (A10.1.13) and (A10.1.15)

1
e [ te? \2 te?
19 < (J(> I < O—-
| L| = \/i <t€2> | L| = <t€2>
which are better than the right hand side of (A10.1.28]), (A10.1.29) respec-

tively. To study I g%, we make a 0, integration by parts and write this term as
a sum of

(A10.1.81) - i\/i/ei()‘t+x§))(1<\/f(/\ ~ I+ E)) PN, 6) d

1-x0(2)

where y1(z) = , of

(A10.1.82) Vi /_t / o [V TR AT pae]
< (A= VI+E)VE)o (- X)(%)Tj}N(T, &) ddr

and of

(A10.1.83) — \/E/too/ei[(t—ﬂ\/ﬁwﬁﬁd
<xi (A= VI+E)VE)(1-x) (%)TJDTN(T, £) dédr.
We plug the last equality (AT0.1.70) in (A10.1.83). We get on the one hand
(A10.1.84) —+/t [ N / e[V T e
(= VIF@WE) (1= ) (7)ol ) dedr

and, after another integration by parts, the terms

(A10.1.85) z'\/i/ et tF8) 3 ) (\/E(A 1+ g?))tqu(t, €) d¢
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and

t .
(A10.1.86) _Z'\/g/ /ez[(t_f)\/@HTﬂﬂ
Vi

(= VIF @)WV, [ - ) (7)o ) dedr

Notice that since N and ¢ satisfy the same bound (AT0.1.79), a bound for
(A10.1.81)) will also provide a bound for (AT0.1.85). In the same way, an
estimate for (A10.1.82) will bring one for (A10.1.86). We are just reduced, in
order to get (A10.1.28), (A10.1.29)), to estimate the L norms of ,
(A10.1.82)) and (A10.1. 84

We estimate the modulus of (A10.1.81)) by

24 ¢ €213
C / <C log(1+t)
{te?) Jigi<e (VC) (te?)
which is better than the right hand side of (A10.1.28)) (resp. (A10.1.29)) if
J =0 (resp. j = 1). We bound (A10.1.82) by

t 1 €2 . T
ﬂ/|<<c <\dft<C> /ﬁTQHTeQ o[- X)(Wﬂ o

If j =0, we get a bound in log(1 + t)ezt_i, better than (A10.1.28)), and if
j =1, we obtain using (A10.1.12)), a bound in

2t log(1+1t)
which is better than (A10.1.29)) since t < e~
Finally, we estimate ((A10.1.84)) by, using (A10.1.79)),
¢ 2
log(1+t -1
og(l + )/\/ET 14 1€2

which is bounded by (A10.1.28) if j = 0 and by (A10.1.29) if j = 1. We have
thus established these two estimates. To get the remaining bound (A10.1.27)),
we just plug inside (A10.1.65) bound (A10.1.7) of M and use (A10.1.13). This

concludes the proof. O

dr

A10.2. Action of linear and bilinear operators

The goal of this section is to study the action of some operators on a func-
tion of the form (A10.1.2)), and on its decomposition U = U’ + U” given by
(A10.1.3). These operators will be of the form Op(m'), given by the non-
semiclassical quantization , for symbols m’(y, &) that do not depend
on x and belong to the class ;70(1,]'), j = 1,2 defined in Definition

We study first linear operators.
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Proposition A10.2.1. — Let (t,x) — M(t,z) be a function satisfying as-
sumption (H1), i.e. inequalities . Assume moreover that M is an
odd function of x.

Let m' be a symbol on the class 5’6,0(1, 1) of deﬁm’tz’on i.e. a function
m/(y,€) on R x R such that
(A102.1) 95008 m! (. )| < C(1+ [y~

for any N, o, o, and that m’ satisfies m'(—y, —&) = m'(y,§), so that Op(m')
will preserve odd functions. Then, for U" defined from M by (A10.1.5), we
have

(A10.2.2) Op(m" ) U" = eN M, (t, ) + r(t, z)
where My (t,x) is an odd function of x, satisfying for any a, N in N
|05 M (t,)| < Cont; ()~

(A10.2.3) il 3 3y
20 (£ )] < Cante ™2 (87 + 173 (EVD* ) (a) Y

and where r(t,x) is such that for any a, N,
(A10.2.4) 097(t, )| < Con [t og(1 + )] (z) .
Moreover, if Ly is the operator (A10.1.4)), for any o € N, k =0,1,

[ 105 0pm (L5 0) (0, e i < Cac
(A10.2.5) !

1
[ I920p(m) (5.07) ()12 da < Coc®

Proof. — The definition (A9.1.9) of Op(m’) and the expression (A10.1.3) of

U” imply that
Op(m/)U// _ % /too/ez [z§+(t—7—)w/1+52+)\’r] m'(m,f)
(1 - ) (%)M(T, €) dédr.

We decompose M (7, &) = M'(r,€) + M"(r,€), where M is supported for ¢ in
a small neighborhood of the two roots £y of /14 &2 = X\ and M” vanishes
close to that set when A > 1, and M’ = 0 if A < 1. Moreover M'(7,&), M" (1,§)
are odd in £, because M is odd in z. We define then

B'(x,7.€) = ¢""m'(z, €)M (7,€)

B (x,7,§) = ""*m’(z,§)M"(7,€).

(A10.2.6)

(A10.2.7)
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By the evenness of m’, we have
(A1028) B/(_:Cu T, _g) = —B/(LL‘, T, 6)’ B//(—LB, T, _5) = _B”(l‘7 7, 5)
Let us study first the contribution of M” to (A10.2.6), given by

(A10.2.9) % /_;/ei[(”)\/@“ﬂ B (z,7,6)(1 - x)(%) dedr.

We perform one O, integration by parts, that provides on the one hand
e M, (t, x), where

M(t,z) = % /(A V1t 52)713"(95,@5) de

satisfies (A10.2.3) by (A10.2.7), (A10.2.1) and (A10.1.6), and is odd in = by
(A10.2.8), and on the other hand a contribution

(A10.2.10) 217r/t /ei[(t_T)V 1+£2+>\T]N({L‘,T,f) dédr.

where

NG § = 0 [Bw .00 -0 (5)| (- viT )

satisfies by (A10.2.1), (A10.1.6)

(A10.2.11) [080¢ N(z,7,6)| < Clz) N (g) ™ Nr e
X [Tﬁ_l + T_llTN\/E + 76%7——%(62\5)%9']

By oddness of M in &, N(z,7,0) = 0. Consequently, if we apply the stationary
phase formula to the O¢-integral in (A10.2.10) at the unique (non degenerate)

1
critical point £ = 0, we gain a decaying factor in (t — T>_1 instead of (t — 1)~ 2.

Taking (A10.2.11]) into account, and using (A10.1.11|), we obtain for (A10.2.10))

and its 0,-derivatives a bound in

Cn(z)™ /

3p/
(t — 1) tr [7'571 + TﬁllTN\/z + TE%T*%(GQ\E) 2? | dr
< COn(z) N2t log(1 + t)
which is bounded by (A10.2.4]).
Let us study next the contribution of M’ to (A10.2.6). We get

(A10.2.12) /1 t / (=N g ey - x)(%) dedr.

Write for 1 <7 <t
(A10.2.13) B'(z,7,6) = B'(x,t,&) + (r — t)B'(x, 7,t,£)
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where B’ satisfies by (A10.1.6)), (A10.2.1)

0202 B (w,7,,€)| < Cr [  + 3™ 2(2\/) }<>

and is supported for £ close to {=&, 60} If we substitute in (A10.2.12)) ex-
pression (7 —t)B’ to B’, and use that, since &) # 0, B’ is supported far away

the critical point £ = 0 of the phase, we may gain a factor (t — T>7N for any
N by O¢-integration by parts. We thus get a contribution to (A10.2.12)) and
to its 0,-derivatives bounded by

C’N<1‘>_N/ (t— 1) Nl b VD ] dr

This again provides a contribution to (A10.2.4). We are left with studying
(A10.2.12) with B'(z,1,£) replaced by B'(x,t,&) according to (A10.2.13)) i.e.

/lt/ez‘ [(t-7)v/T+E2+ 7] (1—7) (%)B’(az,t,f) dedr
_ eiM/T(t, VIt A)B’(x,t,g) de

with T(t,¢) = Ty (¢, ¢) + Ts(t, ¢) and
=1 ¢
T1 (t, C) = /0 e dr

=1 t—T
To(t.C) = — i¢ dr.
0= [ (T o
Note that if ¢ € S(R)

t—1 +o00
T (¢, ¢)d T)dr = p(—T)dr + Ot~
o Jneoeac= [ | e ar o)
Ta(t, Qp(¢) dC = Ot ™).

Using that B’ is supported close to & = +£,, and that £, # 0, we may use in the
last integral in (A10.2.14)) ¢ = 1/1 + £2 — X as a variable of integration close to

this point. We express thus ((A10.2.14]) from integrals of the form (A10.2.15)),
with ¢ expressed from B’. The definition (A10.2.7) of B’ and (A10.2.1)),

[A10.1.6) imply that the principal term on the first line (A10.2.15) brings to
A10.2.14) a contribution in e M (t, ) with M, satisfying (A10.2.3). The

other contributions, as well as their ,-derivatives, are O(t;<t= (z)™) for

any N, so satisfy (A10.2.4]).
It remains to prove (A10.2.5). We express L U’ from (A10.1.31)), which

allows us to write Op(m/)[(L+U")(u-)] as the sum of two expressions

[T ieniTe ] (T g »_
(A10.2.16) 27T/1 /e X(\/i)Bj (@, 7,€6)drde, j=1,2

(A10.2.14)
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with
B (x,7,€) = 5/ (z, 1u€)a M (7, €)
(A10.2.17) : £ .
BY(z,7,8) = e”ﬁﬂm%x,uw@M(T,o.

When j = 1, we use the stationary phase formula in £ to make appear a
1
(t — )2 factor. Using also (A10.1.6) and (A10.2.1), we get for any 0,-
derivative of (A10.2.16)) with j = 1 a bound in
Vit
(A10.2.18) C/ (t— 1) 279 dr(z) N < 0¥ (z) V.
1

When j = 2, we notice that because M is odd in &, BY(x,7,£) vanishes at
second order at £ = 0. Consequently, stationary phase formula in (A10.2.16|)

makes gain a factor in (t — T>7%, so that ({A10.2.16)) is controlled, using again
(A10.1.12)), by

Vi
c/ (=7 3rr e dr(z) N < 02 @)V,
1

Bounds (A10.2.5)) follow from this inequality and (A10.2.18[). This concludes
A10.2.5)

the proof of when k£ = 1. If £ = 0, the estimate is similar to the one
with Bf" above. O

Let us prove a similar result to Proposition [A10.2.1] for some bilinear oper-
ators.

Proposition A10.2.2. — Let M and ~U// be as in the statement of Propo-
sition |A10.2.1. Let m' be a symbol in Sé,o(m:l (€)71,2) for some k > 0,
satisfying m'(—y, —&1, —&1) = —m/(y,&1,&2). Then for any function v

(A10.2.19) Op(m/)(U",v) = eMOp(by)v + Op(be)v

where by, be satisfy for any o, a, N the following estimates
05008 b1 (t,y,)| < Ot (y) ™M ()™
/ gl 3 P B

(A10.2.20) |8;°8§‘8tbl(t,y,f)] < Ct +3 [te 2 —|—t7%(62\/£)29}<y> N<€> 1
05008 ba(t,y, )| < Ce™ it og(1+ ) ()N (&)™,

Moreover bj(t, —y, —&) = b;(t,y,§).
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Proof. — By expression (A10.1.3]) of U”, we have
: ‘ '
Op(m')(U”,v) . 2)2 /700 // ol [z(£1+§)+(t—7)\/@+>\7']

— o
<o (2,6,€)(1 =077 M 60)o(e) dedeadr
= Op(b)v

if

) t
b(t,x, &) = o gilrr—n) /TrEE 7]
(A10.2.21) 2 /m //

(2, €1,€) (1 — ) (%)M(T, £1) dedr.

We notice that if we consider £ as a parameter, the function

(ya 51) - m/(y’ 517 f)M(T, 51)

satisfies estimates of the form for every 7, as the losses in
My(&1,8)" = O((&1)") appearing when one takes derivatives in the defi-
nition of symbol classes in are compensated by the rapid decay of
M(7,&1). We obtain thus an integral of the form (with & replaced
by &1), depending on an extra parameter . By (the proof of) Proposi-

tion [A10.2.1] we obtain thus that (A10.2.21)) has en expression of the form
A10.2.2), i.e. by + by, with by, (resp. by) satisfying bounds of the form

A10.2.3) (resp. (A10.2.4)), which gives (A10.2.20)), using also that m/(z, &1, €)
in (A10.2.21)) is O({¢)™"). The evenness of b; in (y,£) comes from the oddness

of m’ and M. This concludes the proof. O

Corollary A10.2.3. — Under the assumptions of Proposition[A10.2.9, one
has the following estimates for any o, N:

(A10.2.22)  [020p(m))(U",U")| < Cla) N [t72 + 2t 2(log(1 + ))?].

Proof. — By (A10.2.19)), we may write
Op(m')(U", U/l) — eiAtOp(bl)Uﬂ + Op(bg)U”

with b1, bs satisfying (A10.2.20). We may apply (A10.2.2)) to each term above,
using that by, by satisfy estimates of the form (A10.2.1f), with an extra pre-

factor given by the first and last estimates (A10.2.20f). Using the first bound
(A10.2.3) and (A10.2.4), we reach the conclusion. O]

We have obtained in the preceding results estimates under assumptions of

the form (A10.1.6) for the function M in (A10.1.3), i.e. under assumption

(H1),. We shall need also variants of the preceding results when assumption
(H2) i.e. (A10.1.7) holds instead. In this case, we shall split the function U
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defined in (A10.1.2) in a different way than in (A10.1.3)), cutting at time of
order 7 ~ ct instead of 7 ~ v/t. More precisely, we set

U=U]+Uf

+oo | )
Ul(t.z) = i /1 = (D) M (7,)

t
t
Ut z) = i /

—0o0

(A10.2.23)

ei(t*T)p(Dz)‘i‘i)\T(l B X) (%)M(T, ) dr

Proposition A10.2.4. — Let us assume that M is odd in x, satisfies the

first inequality (A10.1.7) and that m' satisfies (A10.2.1). We have then the

following estimates for any a, N in N:

_1
(A10.2.24) 1020p(m/)U| < Con (@) Nt 2t log(1 + 1)

and for £ =0,1
(A10.2.25)

[ (10500 (14 01) 6 )15 0B ) (U0 1 ) ] it < Ca

Estimate (A10.2.25) holds as soon as (A10.2.1]) is true for some large enough
N.

Proof. — We denote B(x,T,£1) = em! (z,& )M (7, £1), that satisfies by the
first inequality (A10.1.7), (A10.2.1))

05008, Bam.6)| < Cagale) N (61)™Vram
and that vanishes at £ = 0 as M is odd. Then as in (A10.2.6)), (A10.2.9)

o |
(A10.2.26) op(m/)U{/:i / / Jil=r)y /e +]

-

x(1- X)(g)B(%ﬂ&) d&idr.
Using stationary phase in & and the fact that B vanishes at & = 0, we get
for some a €]0,1]

t
20p(m!) U (1, 2)| < C / (=)l b dr(a) N
at

which is bounded by the right hand side of (A10.2.24]).
To prove (A10.2.25) with £ = 1, we express Op(m/)[(L+U") (p-)] under form

(A10.2.16)), except that the cut-off x(7/v/%) has to be replaced by x(7/t) i.e.
we have to study

; +oo .
(A10.2.27) %/1 /el[(“”v1+§f+”]x(%)B§’(x,r,f1)d&dT
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where BJ’.‘7 j = 1,2 is given by (A10.2.17). If 7 = 1, we get from the first
inequality (A10.1.7)), (A10.2.1) and stationary phase in & a bound of 0,-
derivatives of ((A10.2.27)) by

at
(A10.2.28) Cla)™ [* - bt
1

for some a €]0, 1], whence the O(e?) wanted bound for the L? and L> norms.
If j = 2, using stationary phase and the fact that Bj vanishes at order 2 at
& =0, we get an estimate in

at
(A10.2.29) Cla)™ [t n) i ar
1

which is also O(e?). This concludes the proof of when ¢ = 1. If
¢ =0, we may use directly (A10.2.28)) to get the estimate. Notice that to get
(A10.2.25)), we do not need that (A10.2.28), (A10.2.29) hold for any N, but
just for a large enough N (actually N = 1 suffices), so that has to
be assumed only for some large enough N. O

Let us write a version of Proposition [A10.2.2 under assumption (H2) as

well.

Proposition A10.2.5. — Let M be as in Proposition |A10.2.4] and m' in
ol ?:1 (€)71,2). Then Op(m/)(U},v) and Op(m')(U},v) may be written
as Op(b)v for symbols b(t,y,&) satisfying estimates

(A10.2.30) 02002b(t,y,€)] < Ct 2tV log(1+ £) ()N (&),

Proof. — Consider first Op(m/)(U{,v) that may be written using expression

(A10.2.23) of U{ as
1 .

(A10.2.31) Op(m/)(UY,v) = 2—/6”517(&:6,5)@(5) dg
s

with

. . ' '
b(t,:c,f) = i/ /ezx$1+z [(t_T)\/@-i-)\T]
—00

x (2, €1, €) M (r, €)1 =) (7 ) déadr.

Using again stationary phase with respect to £; and the fact that M (1,0) =0

to gain a decaying factor in (t — T>71, we obtain for the 9y °0¢" derivatives of
b an upper bound in

(A10.2.32) C/Gi (t — )t rn () N E) T (a €], 1))
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since, as seen at the beginning of the proof of Proposition |[A10.2.2] (y,&1) —
m'(y, &1, E)M(1,&1) and its derivatives have bounds in
N 1 _ _
Cly) Nrzr e TNV

according to (A10.1.7). As (A10.2.32) is bounded by the right hand side of
(A10.2.30)), we get the wanted conclusion for Op(m/) (U7, v).

Consider now the case of Op(m’)(Uj,v) i.e.

<271r>z / O (2, €1, )01 (€1)0(€) dEade.

We may rewrite it as

o [ ez, ©)0(€) de

with, for any N,
(410233 bt .8) = [ Kt =y, 2,6)(Dy) N Ul(9) dy
where .

Knlt .8 = 5 [ 6™V (2.6, dés

By assumption on m/, estimates of the form (A9.1.5)) hold (with y in the right
hand side of this inequality replaced by z) whence

0200208 (2,1, €)] < C(L+ fel (€))7 ()" () "4l
for any N’. We conclude that for any «, 3, N', N”, one has estimates
0207 K (t,2,2,€) < Cla) ™ ()N ()

if N is taken large enough relatively to N',N” «a,(. Plugging this in
(A10.2.33)), we conclude that for any N’, N”, «, 3, there is N such that

(A10.2.34)  [0207b(t,z,8)| < C(z) N up ()N (D) N Ul (y) (€)1
Since U] is odd, we may write

D01 =12 [ (DD 0D )

*@ _[(L+< 22N U (ny) — py((Da) N U7) ()] dpe

using the definition (A10.1.4) of L. We get finally

(A10.2.35) |(y) V" (D,)*N U] (y)]

C " 1
< = (1) ™Y T LD N U e + 1) (DY N U .
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We may apply (A10.2.25) with U] replaced by (D,)*N U} (since (D,)* M(r, ")
in (A10.2.23)) satisfies the same assumption as M(7,-)), and the pre-factor
(y) N <y)_N”+2 in the right hand side of satisfies estimates of
the form with some large fixed N (instead of for any V). By the last
statement in Proposition this is enough to apply . Plugging
this in , we get for that expression a bound in €2t (z) ™V (€)1,
which is controlled by the right hand side of since t < €4, This
concludes the proof. O

A10.3. An explicit computation

In this last section of this chapter, we make an explicit computation that
will be used in relation with Fermi Golden Rule.

Let x be in C§°(R), even, equal to one close to zero. If A > 1 and if £&)
are still the two roots of \/1 + &2 — X =0, set

(A10.3.1) XA(€) = x(§ = &)+ x(E+En).
If A <1, set xn=0.
Proposition A10.3.1. — Let M be a function satisfying (A10.1.6) with

w =1, that is odd in x. Let U be defined from M by (A10.1.4) ant let Z be
an odd function in S(R). Then

(A10.3.2)

JOwoz© = i i [ [Vl 611, 2(6) der
e [ A(l__ \;‘%M(t, €)2(€) dg + r(1)

where 1 satisfies

(A10.3.3) ) < o(@ 4 et*%(e%/%)%@').

Remark: It is clear that the limit in the right hand side of (A10.3.2)) exists

and may be computed from (\/ 1+&2 - X+ iO)_l. We keep it nevertheless
under the form (A10.3.2)) as this will be more convenient for us when using
the proposition.

To prove the proposition, we shall write the left hand side of (A10.3.2),
according to (A10.1.2)), under the form

(A10.3.4) i / t / GUTVIHERAT N (1 6) 5(¢) dedr.
1



222 APPENDIX A10. BOUNDS FOR FORCED LINEAR KLEIN-GORDON EQUATIONS

We decompose
M(7,€) = M'(1,€) + M"(7,€)
(A10.3.5) M'(7,€) = M(7,€)xx(6)
M"(7,€) = M(7,€)(1 = x2)(€).

We notice that M” vanishes at order one at & = 0 by the oddness assumption
on M.

Lemma A10.3.2. — Eaxpression (A10.3.4) with M replaced by M" may be

written as

(A10.3.6) ei’\t/ C \}(%M( t,£)Z(¢) d¢

modulo a remainder satisfying m
Proof. — The expression under study is the sum of (A10.3.6)) and of

(A10.3.7) / =DV IHEFA Ny (1, 5) a \;%Z(é) 3

and

(A10.3.8) //Z(t DVIHEHAT Y N (7 5)( \;Lﬁ; (&) dédr.

In (A10.3.7), (A10.3.8)), the integrand vanishes at order 2 at & = 0 by the
oddness of M and Z. The stationary phase formula in ¢ allows thus to gain

a factor £ 2 or (t — T>7%. Taking into account (A10.1.6) with w =1, we thus

bound by Ce2t~3 and from

t 4 1436/ ’
[e-n =+ =08 ar
1 (L+7€)? (14722
<Ot et (e 21’ ]
(using t < e=*). We thus get quantities controlled as in (A10.3.3). O
The lemma implies the proposition when A < 1. We shall assume from now
on that A > 1 and study (A10.3.4)) with M replaced by M’.

End of the proof of Proposition [A10.3.1 By Taylor formula, we write for
1<7<t¢

Njw

M(r,€) = M'(t,€) + (1 — ) H(t,7,€)
where according to (A10.1.6) with w = 1, H satisfies for any «

3p/
ORH (1,7, €)] < Care H[r 3 477 3(VDY ).
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Integral (A10.3.4) with M replaced by N may be written as the sum J; + J
where
3 ) N ~
n=i [ [V 2(¢) dedr
(A10.3.9) .
Jy =i / / IV IHEHAT (o NH (¢ 7,€) Z(€) dédr.
1

Since H is supported close to ££,, so far away from zero, we can make in J
any number of integrations by parts in £ in order to gain a decaying factor in
(t — 7)™ for any N, so that

t — _1 _3 9 3¢/
1 Jo| gc/ (=) V24 i3 (VD2 | dr
1
which is better than the right hand side of (A10.3.3). On the other hand, we

may write

Jp = ieM /t 1/ Ve M/(t §)Z(8) dédr
= lim e /+00/ Vi+e )‘—HU) M'(t,€)Z(8) dédr + Jj

o—0+

(A10.3.10)

where

J{ = —ie"™ lim / e /\+ZU)M,(75 §)Z (f) dédr.

o—0+

The first term in the right hand side of (A10.3.10] m provides the first term in
the right hand side of (A10.3.2 m Moreover, in the expression of J{, we can
make as many integrations by parts in £ as we want to get a decaying factor
in (7)™ for any N. This shows that J| is O(e2t~), so may be incorporated

to r in (A10.3.2)). This concludes the proof.






APPENDIX A11

ACTION OF MULTILINEAR OPERATORS ON
SOBOLEV AND HOLDER SPACES

In Appendix [A9] we have introduced multilinear operators that generalize
the linear operators . In this appendix, we want to discussed Sobolev
boundedness properties of such operators. For linear ones like (A9.0.3), given
in terms of symbols satisfying with M(z,&) = 1, such bounds are
well known: see for instance Dimassi and Sjostrand [24]. We generalize these
bounds to multilinear operators, under the form

n
(A1101) HOph<CL)(Q1, v 7271)“}[2 <C Z HHQZ”W;ZOOO HQ]‘HH,S”
=1 1A
where HQHW;L’ONX = [(hDz)"v| L and |[v]|a; = [[(hDy) ][> with s > 0 and

po a large enough number independent of s. Notice that such an estimate
is the natural generalization of the standard bound ||uv| gs < ||u||ze||v] s +
||we|| s ||v]| o= , that holds for any s > 0, to a framework of multilinear operators
more general than the product.

We give also, in the case when the symbol a(%, x, &1, ... ,fn) in (A11.0.1) is

rapidly decaying in 7, other estimates of the form

n—1

(A11.0.2) [|Opy(a)(ur,---,vn)llze < Ch [T Iy llweo< [1L2vpllz + lluallzz]
j=1

for any odd functions vy,...,v,, where L1 =z + £—i>. The important point

here is that the rapid decay in 2:/h of the symbol a allows one to gain in the
right hand side a small factor h. We have already explained in Chapter
where this gain comes from: The quantity inside the norm in the left hand

side of (A11.0.2) is h = ¢! times a generalization of expression (1.7.4). We

have seen that thanks to (1.7.5), one may express any of the functions v;,

say v, from Liv,, up to a loss of 7 that is compensated by the rapid decay
of a relatively to that variable. Such properties explain why terms like | in
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(A9.0.8)) may be considered somewhat as remainders: they do not involve a
factor h in their estimate, but the fact that they decay rapidly in # allows one
to use (A11.0.2]) and thus to recover in that way a O(h) bound.

Let us indicate more precisely what are the Sobolev bounds we shall get
with respect to the symbols defined in Appendix [A9] Recall that we in-
troduced classes of symbols Sy (M, p), 5,;0(M ,p) in Definition and
their (generalized) semiclassical counterparts Sy 5(M,p), Sy 5(M,p) in Def-
inition We shall study first the action of operators associated to the
g,.g,o(M, P), Sk.3(M, p) classes and then, in the second section of this appendix,
the case of operators associated to classes of decaying symbols S,Q}O(M ,D),

;,B(MJ))'

A11.1. Action of quantization of non space decaying symbols

We introduce the following notation. If v is a function depending on the
semiclassical parameter h €]0, 1], we set

(A11.1.1) o]l = [[(hDa)vl| 2
for any s € R. For p in N, we define
(A11.1.2) [ollywpe = [[{hDz) 0] oo

Proposition A11.1.1. — Let n be in N*, k in N, v > 0. There is pg
in N such that, for any f > 0, any symbol a in the class S, g(My,n) of

Definition|A9.1.9 (with My given by ), the following holds true, under
the restriction that, for (i) and (i), either (k,B3) = (0,0) or 0 < k5 <1 or

a(y,x,&1,...,&,) is independent of x:
(i) Assume moreover that a(y,x,&1,...,&,) is supported in the domain

|£1| + -+ |£n71| < K(l + |£n|)

for some constant K. Then, for any s > 0, there is C' > 0 such that, for any
test functions vy, ...,u,

n—1

(A11.1.3) 10pn (@) (wrs -, vl < € TNy llvyro< g
j=1

uniformly in h €]0,1].
(i) Without any support condition on the symbol, we have instead

n
(A1L.1.4) 10p(@) @i vl < O TT lellwoos oy ;.
J=10
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(iii) For any j = 1,...,n, we have also the estimate (without any restriction
on (k,B) ora)
(A11.1.5) 10ps(a)(wy,- - wa) 2 < C [ [ llwellyrroe flo] 2
i

Moreover, the above estimates hold true under a weaker assumption than in
Definition[A9.1.3 of the symbols: namely, it is enough to assume that bounds
hold with N = 2 (instead of for all N) for the last exponent in this

formula.
Before giving the proof, we establish a lemma.

Lemma A11.1.2. — Let a be in the class S; o(Mg,n) of Deﬁm’tion
(or more generally a symbol satisfying for any af, a9, k € Ny € NP,
with the last factor replaced by (1 + My "|y|)=2). There is po in N depending
only on v, and a family of functions ak, .k, ,(V1,-..,0,_1,Y,,§) indexed by
(k1,...,kn_1) € N*=1 satisfying bounds

(A11.1.6) |0902 apy,.. on_s (U1, V1, Y, 2, E))|

< 2~ max (k.. kn— 1) -2 I_IHUJHW’JOoo

for 0 < a, ' <2, such that if we set for any y
(A11.1.7) a(y,x,hD1,...,hDp) (v, . Vp_1,Up)

1 , no
= Gy / ) gy v ey, hEy) Hy (&) dé, ... dey

and use a similar notation for ax, . . ,(V1,...,0,_1,Y,%,hDy)v,, then

(A11.1.8) a(y,z,hD1,...,hDyp)(vy,...,0,_1,0,)

—+00 “+o00
- Z e Z ey rooin o (V15 -3 U1, Y, @, RDg)uy,

k1=0 kn_1=0

Proof. — We take a Littlewood-Paley decomposition of the identity, Id =
Sio Al where Al = Opy,(1¥(€)), Al = Opy, (p(275€)) for k > 0, with conve-
nient functions P € C°(R), ¢ € CF°(R — {0}). We also take ¢ in C§°(R), @

in Cge(R — {0}) with §) = ¥, G = o. We set G(€) = F(27%€) for k > 0,
@0(€) = 1(€). Plugging this decomposition on each factor v, j=1,...,n—1
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in (A11.1.7), we obtain an expression of the form (A11.1.8) if we define

(A11.1.9) apy,. ko (V1,00 1,9, 2,6)
_ (%)n_l/e (@t teng(y, 2, hér, .. ., hén1, €)

ﬁ ()AL 0;(€5) des ... €.

We may rewrite this as

(A11.1.10) ag,. gy o (V15 U1, Y, 3, €)

] x—a

- hi(nil) /Kkl,...,knfl (97 xZ, h sty hn_l ) 5)

XHA dxl...daf’

with
(A11.1.11) Kooy (v, 2,215 - -0 2021, )

1 , s
= (zﬂn_l/el(z1§1+ + n—lgn—l)a(y’x,gl, ceyén—1,8)

H (&) dér .. dE.

By definition of My (&1, ..., & 1,&n), on the support of ]} Pr; (&5), one has

Mo(&1y .o én—1,6n) = 0(2’;), if k= max(ky, ... ,kn,l). As a is in the class
w.0(M{',n), this implies that a in (A11.1.11)) is O(2"%). Moreover, if we per-

form two O, integrations by parts in (A11.1.11)), we gain a factor in <2*i“”6 j>_
under the integral, for j = 1,. -1, accordlng to m In addition, we

have also a decaying factor in <2 k"‘|y|> . Tt follows that for o,/ <1

(A11.1.12) 0208 Ky, gons (452, 21, -, 201, €)|
~ nil A~ —
< Cz[n(a+a’+2)+l/+nfl}k H (27nkzj> 2<y>72'
j=1
Plugging this estimate in (A11.1.10) and using
| Ak, u;(@))] < C2780 | (hDy)* ;| 1

we see that if pg has been taken large enough relatively to v, k, we get bounds

of the form (A11.1.6). This concludes the proof.
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Proof of Proposition|A11.1.1} (i) We reduce first to the case s = 0. Actually,
by Corollary that applies under the restrictions in the statement on
(k,B) or a, the operator

(Ql""’yn) - <th>SOph(a)(le"‘ Up— 17<hD > )
may be written as Opy,(@)(vy, .. .,v,) for some symbol @ in S, g(My',n) for
some v/ that does not depend on s. It is thus sufficient to show that
n—1
(A11.1.13) 104 (@) (w1, - - wa) 2 < C [T llyllypro oo llugll -
j=1

By expression (A9.1.6]), we have
(A11.1.14)
(T
Opy(a)(vy,...,v,) = a(E,x, hDq, .. .,th> (V1. 0y)
= a(—oo,x,hD1,...,hDy)(vy,...,v,)

/ (0ya)(y,z,hDx,...,hDy)(vy,...,v,)dy.

As 9ya is in S| o(M{,n) (for some v), we may apply at any fixed y expan-
sion (A11.1.8)) to dya. The symbols ag, ., , in the right hand side satisfy
hat we may apply to them the Calderén-Vaillancourt theorem [9]
in the version of Cordes [12], considering y,v;,...,v,_; as parameters. One

gets in that way for any y,vy,...,v,,

(A11.1.15) ||0ya(y,x,hD1,...,hDy)(vy,. .., v,) |12

n—1
— k1yeoskim— —2
< CZ Z ) max(k1,..., 1)<y> H||QjHW£O’°°”QnHL2'
k1 kn—1 j=1

The fact that the L? norm of the last term in is bounded from
above by the right hand side of (with s = 0) follows from that
inequality. If we apply the version of Lemma without parameter y
to a(—o0,x,&1,...,&,), we obtain also an inequality of the form
(without factor ()2 in the right hand side), which implies for the first term
in the right hand side of the wanted estimate. This concludes the
proof.

(ii) We just split a as a sum of symbols for which >Z,; [§| < K(1 + [&;]),
j=1,...,n and apply (i) to each of them.

(iii) It is enough to prove with j = n for instance. Remember that
in the proof of (i), we use that the support condition on a and the restrictions
on (k,3) or a only to reduce the case of Hi to L? estimates. Once this
has been done, inequality has been proved without any support
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condition on a, nor on (k,3), so that it implies . This concludes
the proof, the last statement of the Proposition coming from the fact that
Lemma has been proved for symbols satisfying the indicated property
and that Corollary used at the beginning of the proof holds also under
such a condition. O

It will be useful to be able to decompose a symbol belonging to the class
Sk,0(Mg,n) as a sum of a symbol in S, g(M{,n) for some small § > 0 and a
symbol whose quantization satisfies better estimates than (A11.1.4), (A11.1.5).
Define

1

(A11.1.16) Li=7

Opp(z £ p/(€))-

Corollary A11.1.3. — Let a(y,z,&1,...,&,) be in S.o(Mg,n) for some
k >0, somev >0, somen > 2. Let 8 > 0 (small), r € Ry. One may
decompose a = ay + az where ay is in S, g(My,n) and ay is such that if s
satisfies (s — po — 1)B > r+ 2L

(A11.1.17) 0Dy (a2) s, ) 11y < OB f[lnvjuH;
L
(A11.1.18) 1
140 (02)w1 )2 < OB Tl s+ 112

L

(A11.1.19) 1

120 (a2)on, - )i < O TL el + s, o).
L

(In the last two estimates, we could make play the special role devoted to n to
any other indez).
A similar statement holds replacing classes S (resp. Skp) by S o (resp.

Proof. — Take x in C§°(R) equal to one close to zero and define a; =
ax(h?My(€)), az = a(l — x)(RPMp(€)). Then a; is in S, s(M¥,n) as it
satisfies (A9.1.4), (A9.1.5). Let us show that ag obeys (A11.1.17), (A11.1.18).
Decomposing a9 in a sum of several symbols, we may assume for instance
that it is supported for ;| + -+ + |£n—1] < K(&,). Then, by definition of
as, there is at least one index j, 1 < j < n — 1, such that |£;| > ch™" on the
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support of as, for instance j =n — 1. Applying (A11.1.3]), we get

(A11.1.20) [|Opp(a2)(v,-- -, v,)|lm:
n—1

< C TT llejlweo 10pA (1 = %) (B2 w1 llypoe lm |
j=1

for some new function x equal to one close to zero. By semiclassical Sobolev
1
injection, HQ]'HWFTOQO < C'h_iHQjHH;L if s > po + % and
(A11.1.21)
- _1 N
1004 (1 = ) (7€)1 lpoe < Ch™2 Oy ((1 = ) (7)) 21 0
< ChiéJr(SipOil)ﬁHanlHH;‘;-

If s is as in the statement, we get (A11.1.17]).
To obtain (A11.1.18)), we notice that

£20p (@)1, 2) =+ 5 0p ((€)Opp(a) 2, - 2,)
(A11.1.22) +iOph<gZQ)(v1, e Up)

+ Opy,(az2) (Qp s Up 1, %Qn)

The L? norm of the first two terms in the right hand side is bounded from
above by Ch T3 oyl [0 2 if we use and (ALLL21), for s as
in the statement. On the other hand, in the third term, the last argument of
Opy,(a2) in may be written £1v,, F +Opy(p'(€)), so that we get an
upper bound by the right hand side of using again and
(EIT120).

We may also estimate the last term in using , but

putting the L? norm on v i.e. writing

n—1s
”Oph(a2)(ylv - Un1, E:ﬁ:Qn)”LQ
n—2
< C [T legllwro= 0P, (1 = %) (R7€))wn ]| 2l Lt lyrp0-o=.

j=1
Bounding the last but one factor by hﬂSHQn—lHHﬁla we get as well (A11.1.19).
The last statement of the corollary concerning classes S;,O, ;ﬁ holds in the
same way. ]

Let us state next a corollary of Proposition



232 APPENDIX All. ACTION OF MULTILINEAR OPERATORS

Corollary A11.1.4. — Let v > 0,n € N*. There is pg € N such that for
any k > 0, any B > 0, for anyj =1,...,n, any a in S, g(My,n), there is
C > 0 such that for any vq,...
(A11.1.23)

Opa(@)(wrs-- v,

TL7

< C [Tllwellyppoe (W Hlwgllzz + 1£2v;]l22)

H g =

and for any j# 35, 1<j4,7 <n

(A11.1.24) H%Oph(a)(yl,---;yn)‘

1 S O(TT leellwgo ) gl

#£35,5"
X (h_l”QjHW,’jO"’O + H[':tQjHW}fO“’O)'

Proof. — Let us prove (A11.1.23)) with j = n for instance. By definition of
the quantization

T T ) da
EOph(a)(ﬂh .., 0,) = Opp(a) (91, e Up g, Eyn) + zOph(a?n) (V15 Up).

If we write ¥ = L4 F h~'p'(D,), and apply (A11.1.5) with j = n, we obtain
(A11.1.23)). One obtains (|A11.1.24)) in the same way, applying (A11.1.5) with
j replaced by j’, and using that p’(hD,) is bounded from W,fo’oo to W[ if
p6 > po. This concludes the proof. O

We shall also use some L estimates.

Proposition A11.1.5. — Letv € [0 +oo[, k>0, neN* 5>0. Let g > 1
and let a be a symbol in Snﬁ(Mo 1(&) " n) (Tt is actually enough to
assume that in estimates the last exponent N is equal to 2). Assume
(k, ) = (0,0) or 0 < K < 1 or that a(y,x,§) is independent of x. Then,
there is po in N and for any integer p > po, a constant C' > 0 such that for
any vy, ..., v,

n
(A11.1.25) 10b4(@) (@1, - 2)lhwpee < € [Tl
j=1
If we have just a € Syp (Mo” [T <§j>71,n), we get for any r in N, any o > 0,
any s,p with (s —p—1)o > r+ % and p > po, the bound

n
10P(@) (w1, v )llwpee < CH= [Tl llwpee
j=1

n
+CR" Y T lwellwpoe gl

J=1e#5

(A11.1.26)
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Proof. — One may assume that a is supported for |§1 |+ - [§n—1] < K(1+]&,]).
One may use Corollary whose assumptions are satisfied, in order to
reduce (A11.1.25)) to estimate

n—1

(A11.1.27) 10ph (@) (wrs - -, wa)llzoe < C T gllyppo o Loe-
j=1

We apply (A11.1.14) to reduce (A11.1.27)) to bounds of the form
(A11.1.28)

n—1
Ha(—oo, z,hDy, ... 7th)(ylv ce 7Qn)HL°° <C H HQjHW}’:O’OO HQnHLO"
j=1
400 n—1
| 1oyaty, v, w01, D) @l < € TL L o<l
_ e

We may decompose dya(y,x,hD1,...,hD,) using equality (A11.1.8). Each
All.1.

contribution in the sum is given by a symbol satisfying (| 6), with an
extra factor (§,) 7 in the right hand side, coming from the fact that our
symbol a was in S, g(M§ 11 (§;)"%,n). The kernel of the corresponding
operator will then be bounded in modulus by

— r— — max — o
Ch 1G( - )2 (kl,...,kn_1)<y> 2 r{"yj‘|w}fo’m
‘7:

with some L! function G. The second estimate (A11.1.28) follows from that.

The first one is proved in the same way.

Finally, to get (A11.1.26]), we assume again a supported as above and de-
compose it as a = a1 +ag, with a; = ax(h?E,) for some o > 0 and x in C§°(R)

equal to one close to zero. Then ay is in h™7S.s (Mg [T, (§j>_2,n) (for a
new value of v), so that (A11.1.25) applies, with a loss h?, which provides
the first term in the right hand side of (A11.1.26)). On the other hand, we
estimate [|Opy(az) (i, - -, ) [wpos from Ch™2[|Opy(az) (v, - -, )| go+s by
semiclassical Sobolev injection, and then this quantity by the last term in the

right hand side of (A11.1.26) with r = o(s — p — 1) — 2. This concludes the
proof. O

Let us translate the preceding results in the non semiclassical case using the
transformation ©; defined in (A9.1.7) and (A9.1.8), (A9.1.9). We translate

first Proposition [ATT.1.1]
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Proposition A11.1.6. — Let a be a symbol satisfying the assumptions of

Pmposition and (k, B) satisfying also the assumptions of that propo-
sition in the case of statements (i) and (ii) below (in particular, if a is inde-
pendent of xz, these statements hold for any (k,8) with k > 0,8 >0).

(i) If moreover a is supported for |&1|+ -+ |§n—1] < K(1+|£n]), one has for
any s > 0 the bound

n—1

(A11.1.29) 10Dt (a)(v1, ..., v0)||gs < C H l[v;][wreo-o v || s
j=1

with some po independent of s, Op® being defined in .

(ii) Without any support assumption on the symbol of a, one has

n
(A11.1.30) 10p!(a)(v1, ..., v0)||gs < C Z H”WHW/’O*’O vl s -
J=14#]
(iii) For any j = 1,...,n, one has also
(A11.1.31) 10D (a)(v1, - . ., vn)llz2 < C []llvellwro [[vsl2-
i

Proof. — One combines Proposition |[A11.1.1} (A9.1.8) and the fact that by
1 . —
AL, ©:wl e = wlg, [cellwooe — A lellwrms it b=t 0

To get non semiclassical versions of Corollaries [A11.1.3|and [A11.1.4] let us

notice that by (A9.1.7)

1

LiOw= (L) (7)

is L4 is defined by (A11.1.16) and
(A11.1.32) Ly =z +tp(Dy).

‘We have then:

Corollary A11.1.7. — Let a(y,x,&1,...,&n) be a symbol in Sy, o(My,n) for
some k > 0, some v >0, somen > 2. Let § > 0 be small and r in Ry. One
may decompose a = ai + az, where ay is in S, g(My,n) and ay satisfies, if
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(s — po)B is large enough relatively to r,n,

(A11.1.33)
n
|0p*(az) (w1, - . svn) [l < Ct" [T vl s
7j=1
n—1
[IL+0p"(a)(v1, .., vn)l[ L2 < C T vjllms [[lonll 2 + | Lavnllz2]
j=1

n—1
120D (az) (v, on) 22 < € ([T logle) [lomllze + | Ecvnllwooe].
7j=1

Moreover, in the last two estimates, one may make play the special role devoted
to n to any other index.

Proof. — Again, we combine (A9.1.7)), (A9.1.8) and estimates (A11.1.17)),
(A11.1.18)), (A11.1.19) (up to a change of notation for r). O

In the same way, we get from Corollary
Corollary A11.1.8. — With the notation of Corollary we have

(A11.1.34) [2Op*(a)(vr, -, va)llz2 < O [T llvellweoss [tllvgll 2 + [ L] 2]
(4

for any 1 < j < n. Moreover, for any j # 35,1 <745 <n

(A11.1.35) [|zOp*(a)(v,...,vn)|| 12

< C I lvellweollvjll 2 [tlvsllweoss + | Lxvj|lweo].
L#£5,5

Finally, it follows from Proposition

Proposition A11.1.9. — Under the assumptions and with the notation of
Proposition [AT1.1.5, one has for p > pg

n
(A11.1.36) |0p (@) (v1, - . ., vn) [weee < C ] llvjllwe.s
j=1
if a is in Sk p(M§ T}=1 (&), n) for some ¢ > 1 and
(A11.1.37)
n n
10p! (@) (V1 - -, va) lwoee < O [T llvjllwoe +Ct Y [T Hvellweoo v | e
j=1 Py

ifq=1,0>0 and (s — p)o is large enough relatively to r.
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A11.2. Action of quantization of space decaying symbols

In this section we study the action of operators associated to symbols be-
longing to the classes S,'%B(M(’{ ,n) on Sobolev or Holder spaces of odd func-
tions. The oddness of the functions, together with the fact that elements in
the S’ class are symbols a(y, z,&) rapidly decaying in y, will allow us to re-
express the functions v on which acts the operator from hLyv (using notation
(A11.1.16)), thus gaining a power of h. Actually, it is not necessary that a be
rapidly decaying in y, and we shall give statements with less stringent decay
assumptions.

Proposition A11.2.1. — Let n be in N*, k in N, v > 0. There is py in
N such that, for any 8 > 0, any symbol a(y,x,&1,...,&,), supported in the
domain || + -+ + [€n—1] < K(1 + (&) for some constant K, and such that
forsome £, 1 <0 <n—1, a belongs to the class S’i%rQ(M()’, n) introduced at the
end of Definition[A9.1.9, with k > 0 and either (k,3) = (0,0) or 0 < s < 1
or a is independent of x, the following holds true:

(i) For any s > 0, any odd test functions vy,...,v,, any choice of signs
€ € {—,-1—}, j=1,...,¢

¢
[0pA(@) (v, - - vl < OB TT (11Lesslhros + 1oz lpeo)

(A11.2.1) =

n—1

<1 yllwpoee llug ;.-
j=t+1

(i) Assume in addition to preceding assumptions that 5 > 0. Then, for any
0< ¥ <¥ one has

él
_lp_ o
104 (a) vy, -, vn) |y < CH 2 O TT (L0502 + 1wyl 2)

j=1
0
(A11.2.2) < T (1£quslwpo + llojllwpos)
J=0+1
n—1
< [] [[;lyyp0-2 [|w, |
j=t+1

where o(3) > 0 goes to zero when [ goes to zero (o(B) =1 <p0 + %)5 holds).

Proof. — We shall prove (i) and (ii) simultaneously. We notice first that, by
our support condition on (§1,...,&,), Mo(§) ~ 1+ |&1| + -+ + |€n—1], so that,
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up to changing v, we may study the Hj norm of

(A11.23)  Opy(@) (Opa(() e, 0P () Ners g, -, )

for a new symbol & satisfying the same assumptions as a. Moreover, when
B > 0, this symbol is rapidly decaying in h®My(¢) according to (A9.1.4)),

(A9.1.5)), so that, modifying again a, we rewrite (A11.2.3) as
(A11.2.4)  Opy(@)[Op,((6) " (BR°€) ur..... Op,u () (BIE) Muy,
Voy15--- ayn]

with v > 0 to be chosen. We use now that if f is an odd function, we may
write

f@) =5 [ @) ) de
?Xillsfa;g()antly, for j=1,...,¢
Opa (1671 61°6) oy = o _11 [Oph(whﬂf)”é))vj] (i) dss,
that we rewrite using
(A11.2.6)

. 1
G

Opn (618179 )y =TT [ 0w (181707 £y ()

., €5 x 1 B €T
—ih- 7 [Oph(<ﬁh 3 )*yj] (nj) dp.
hJ-1 h
We may thus write (A11.2.6) as a linear combination of expressions of the

form

xr\4 1 ’
(A11.2.7) n(5)" [ ud Vi) du

where ¢ =0,1,2, ¢ € N and Vj(z) is of the form
(A11.2.8)  Vj(z) = Opy,(b;(Bh°E)) Leju; or Vi(x) = Opy, (b;(Bh7€))u;

with |0%b; ()| = O((€)™"). We plug these expressions inside (A11.2.4). We

remark that when we commute each factor 7 with a, we get again an operator

given by a symbol similar to @, up to changing v. Moreover, the (M, “y>_%_2

decay of a(y,x, &) that we assume shows that for ¢ < 2/, (%)q&(%, x,g) may



238 APPENDIX All. ACTION OF MULTILINEAR OPERATORS

be written a; (%,x,é“) with ai(y,z,€) in S'zﬁ(M{)’,n) (for a new v). Conse-
quently, we may write (A11.2.4)) as a combination of quantities of the form

1 1
hf/_l‘--/_10ph(d1)[V1(u1-),---,W(ue-),u+1,--.,yn]

XP(p1y .-y pe) dpa - . dpg

where Vj are given by (A11.2.8)) and P is some polynomial.
If we apply (A11.1.3) (together with the remark at the end of the statement
of Proposition |A11.1.1)) and use that Opy,(b;(8h°¢)) is bounded from W/

to itself, uniformly in h, we obtain (A11.2.1). To prove (A11.2.2), we apply
again (A11.1.3)) and use that, for factors indexed by j = 1,...,¢, we may
write if v > po+ 1 and 5 >0
10D, (b (BR7E) ) wllyypo0e = 110Dy ((€)7°0;(BR7€) ) wl|
1 - 1 - 1
< Ch™z[|Op, () (8h7€) " )wl|2.110p, ((€)°€(BR7€) w72

1 +;)
< on |2

(A11.2.9)

if ¥ > po. This brings (A11.2.2)) with o(8) = ¢ <p0 + %)5 O

When we want to estimate only the L? norms, instead of the H® ones, we
have the following statement:

Proposition A11.2.2. — Letn be in N*, kK € N, 8 > 0,v > 0. There is
po € N such that, for any symbol a in S;’ﬂ(Méj 17 <£j>_1,n) and for any

odd functions vy,...,v,, one has the following estimate:
n—1

(A11.2.10) [Opy(a)(vi, .- va)llz2 < Ch [T llullyeo e lll£vn ]l r2 + [l 2],
j=1

Moreover, when n > 2, we have also the bound

(A11.2.11)
n—2
10pn (@) (w1 - -, wa)llzz <Ch [T Nl o
j=1

% (L llypooe + o lyroe] gl 2.

Estimate (A11.2.10) (resp. (A11.2.11)) holds as well for n (resp. (n —1,n))

replaced by any j € {1,...,n} (resp. 5,5’ € {1,...,n},j # j'). Moreover,
it suffices to assume that a is in S’iﬁ(M{)’ ) (&) n) instead of a €

Sl s (M TT—1 (&) ')



Al11.2. ACTION OF QUANTIZATION OF SPACE DECAYING SYMBOLS 239

Proof. — Because of the assumption on a, we may write

(A11-2-12) Oph(a)(yla e 7211) = Oph(a)(yh -y Un1, Oph(<§>_1)yn))

with @ in S}, 5(M¥ ;"‘:_11 <§j)71,n) (or @ in S’i’ﬁ (My ;‘:_11 €N, n)). We use
next (with 4 = 0) in order to express Opy,((£) v, as a combination
of terms of the form (A11.2.7) with j = n and V,, given by . We

obtain thus for 1.2.12)) an expression in terms of integrals

(A11.2.13) h/ll Opp(a)[vr, - - s Vo1, Valpn )1 P (ptn) dptn

for some polynomial P, some a; € S/iﬁ(M(’]’ ’;:_11 (§j>_1,n). Applying
m, we get m

To obtain (A11.2.11)), we make appear the Opy, ((€) ™) operator on argument
v,,—1 instead of v, in (A11.2.12)), use with 7 = n — 1, obtain an
expression of the form (A11.2.13)) with the roles of n and n — 1 interchanged,
and apply again (A11.1.5). ]

Let us also establish some corollaries and variants of the above results.

Corollary A11.2.3. — Let n,k,3,v be as in Proposition|A11.2.9. Let a be
in Sk g(Mg H;”;rll (&)t n41). Let Z be in S(R). Then for any odd functions
Uiy Uy

(A11.2.14)
n—1
10p4(a)[Z(w/h), vy, - w]lp2 < Ch [T lyllyeo = (1L2vnllz2 + lluallz2).
j=1
If n > 2, we have also
n—2
(A1L.2.15) [Opy(a)[Z(a/h). v u] |z < OB T loyllyoos
j=1

% (L llwrooe + [00illyoo) ol 2.

Proof. — We write a(y,z,€) = (y)*a(y,z,€¢). Then, according to the last
remark in the statement, Proposition [A11.2.2[applies to a. Moreover, we may

write Opy,(a)[Z(x/h),vy,...,v,] as a sum of expressions
x\4 x
2. — a — < g <A4.

The commutator
“oru@[2(2) 51 51] ~Oom@[22(2). 01

is again of the form Opy(a1)[Z(xz/h),vy,...,v,], a new symbol satisfying the
same assumptions as a, eventually with a different v. Finally, we express
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(A11.2.16) as a sum of expressions Opy,(@1)[Z1(z/h),vq,...,v,], for new sym-
bols @; and a new S(R) function Z;. If we apply (A11.2.10) (resp. (A11.2.11))),
we get (A11.2.14]) (resp. (A11.2.15)). O

We have also the following variant of Proposition [A11.2.2] that we state
only for bilinear operators.

Proposition A11.2.4. — Let v,k > 0. There is pg € N such that, for any
a € S o(My ?:1 <§j>_1,2), any odd functions vy,v,, one has the following
estimates
(A11.2.17)

104 (@) (u1, w2) 22 < CRA[[[Lavn Iy + [fvn llypro] [I£2vall 2 + ool 2]
for any choice of the signs £ in the right hand side. The symmetric inequality
holds as well.

If moreover s,o are positive with so > 2(py + 1), we get

2
3o
(A11.2.18) 10pp(a)(vy,v9)ll2 < Ch?2 H [I1£+vll 2 + HQjHH;]-

j=1
Proof. — To get , we write
Opy,(a)(v1,v5) = Opy (@) (Opy ((€) ™)1, Op4 (€)™ )ws)

with some @ in Sy o(My,2). We use next (A11.2.6) (with v = 0) for j = 1,2
in order to reduce ourselves to expressions of the form (A11.2.9) with ¢ = 2.

Applying (A11.1.5), we get the conclusion.
To obtain (A11.2.18)), we may assume that a is supported for |{1| < 2(1+[&2])
for instance. Let 5 > 0, x € C§°(R), equal to one close to zero and decompose
a(y? xz, 517 52) - a(yv xz, §17 52)X(h_ﬁ§1) + a(y7 xz, 517 52)(1 - X)(h_ﬁgl)

If we apply (A11.1.5) to the second symbol, we obtain an estimate to the
corresponding contribution to (A11.2.18]) by

CllOPA((1 = x)(R7€))u [lyyro< llva | 2.
By semiclassical Sobolev injection, this is bounded from above by
Ch™ P00 D oy g s 12,

so by the right hand side of (A11.2.18)) if (s — (po + 1)) > 2 — 0.
Consider next Opy,(a1)(vy,vs) with a1 = ax(h™P¢;), so that a; is in

s (My ?:1 (€;)71,2). Since B > 0, we may rewrite as in (A11.2.4),
Opp(a1)(vy,v2) as

O (a1) | Oy (1€) " (H7€) )1, Opy (1€))
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with @; in S%,B(M& 2), hence under form (A11.2.9) with £ =2, V; (resp. V2)
being given by (A11.2.8) with b; = O((£)™7) (resp. O(1)). Applying (A11.1.5),

we get, in view of the definition of the V; a bound in

Ch2[”Oph(bl(hﬁf))ﬁiﬂlwao’“ + \|Oph(bl(hﬁ§))ﬂ1||wfm°°]
x [1£2vall2 + llwall 2]

Using the semiclassical Sobolev injection, the first factor is bounded from
above by

Ch™2 P [ Ly g2 + 2]
We set 0 = B(pp + 1) and get the conclusion under the condition so > 2(pg +
1). O
We prove now an L estimate that is a counterpart of (A11.2.1]).

Proposition A11.2.5. — Let k € N, v > 0, n € N. There is pyg € N such
that, for any p > po, any a in S’2n+2(M(‘)’, n), any £ < n, one has for any odd
functions vy, ..., v,, any r >0, the estimate

(A11.2.19) [Ops(a)(uys .- -, vp) e

n
W TT (lgllwpooe + Nyl )
7=1

n

¢
+Ch2t H loillwpe + 1L0;llwp=) TT (lwgllzz + [£v;llz2)
j=1 j=t+1

for any o > 0, any s such that

1
(A11.2.20) s> s0(p, k) [1 LIt ]

(where so(p, k) is some explicit function of (p, k) ).

Proof. — Set \§|2 =&+ + €2 Take x € C5°(R) equal to one close to zero
and let 8 > 0 to be chosen. Decompose a = a1 4+ as with

al(yax7€17 ] )in) - a(y7x7§17 .. 7€n)X(h26|£‘2)
ag(y,l',él, s ,gn) = a(ya$a§13 s 7§n)(1 - X)(h26‘§|2)

Let us assume in addition that as is supported for instance for [&1| + --- +
|€n—1] < K(1+ |£,]). By semiclassical Sobolev injection, we have

_1
(A11.2.22) [[Opy(az)(vy, .- vp)llwpes < Ch72[|Opp(az)(vy - -, )| ot

(A11.2.21)
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If we use (A9.1.4]), (A9.1.5), we see that the action of a hD, derivative on
max(1,x) (

Op;,(a2)(vy, ..., v,) makes lose at most one power of (£,) since &, is
the largest frequency). Consequently, (A11.2.22)) is bounded from above by

_1 ~ max(l,x
Ch™2[|0py(@2) (V1 - - - s U1, (RD,)PTImaxLr)y )l

for a symbol as that has the same support properties as as. We apply next
(A11.1.5)) with j = n, and remember that, by definition of as, as is supported
for |¢j,] > ch™" for some jo. We thus get a bound either by

n—1
_1 max(1,x
(A11.223)  Ch™2 [ llyllweo]|Opy, ((©) )™ (7€), .2
j=1

if jo =mn, or

1
Chme I lllwgo=10P40a (7€), Iy =
(A11.2.24) 1<j<n—1,j#jo

x [0py (€)™ (W6) | 2

if jo < n, where x1 € C*°(R) is equal to one close to infinity and to zero close
to zero. Writing (using semiclassical embedding)

10p (()™ X1 (BP€)) v, |l 2 < CRPE™ |, || 1s
_1B(s
HOPh(Xl(hﬂf))Qjon;jW < Ch 28 (pOH))HﬂjoHHg

we obtain for (A11.2.23)), (A11.2.24) an estimate in

(A11.2.25) Ch" TT (e llweos + Nyl )
j=1
if
8(s — (p+ 1) max(L, %) > r+ &
(A11.2.26) (5= (p+ Dmax(l k) 2743
B(s—(po+1)) >r+1.

Consider next aj, which satisfies h%"a; € S22 (Mg TT5= (§j>_3,n). We
may write Opy,(a1)(vy,...,v,) under form (A11.2.9) with £ = n and a new
symbol a1, such that

h¥may € S2 (MY T (&) n)
j=1
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(for a new v). We apply (A11.1.25)) that implies

(A11.2.27) [Op,(a1)(vy,- - 2p)llwpes

1 1 "
<ow = [ [TV ) g di - dp
oLl

where V; is given by (A11.2.8) with v > p+ 1. For j = {4 1,...,n, we use
semiclassical Sobolev injection to estimate

1 1
S Vit e iy < OH A=A DI L 1+ 2]
whence finally a bound of (A11.2.27)) in

4
n(1—38)—n=t _ n—
CR1=30)=252 =8 000 ] [y e + €0 lwp]

j=1
n
< I [lvsllze + €425 2]
j=t+1
Combining this with (A11.2.25) and taking 8 = m, we get the
conclusion if s satisfies the inequality in the statement. O

The same type of reasoning as above may be used to remove the assumption

B > 0 in (ii) of Proposition [A11.2.1

Proposition A11.2.6. — Let a be a symbol in S, o(Mg,n) independent of
x, satisfying the assumptions of Proposition[A11.2.1. Then for any 8 > 0 with
kB < 1, one may decompose a = a1 + as with ay in S’iZEZ(MO”,n) and ag 18
such that ’

(A11.2.28)
n—1
|Opy(ag)(vy, . - v,) |l < Ch™ Y (Hllﬂij,fom) v g v || g
J=1 e

as soon as B(s —po—1) > 1+ 3.
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As a consequence, one has the estimate, for 1 <£<n—1,0< ¢ </,

z/
_Y_
(A11.2.29) |[Opy(a)(vy, .. v,) s < ChT 777 [T (€605l L2 + gl az)
j=1
0
< TT (1L willweoos + gl + llo;lus)
Jj=0'+1
n—1
< T (lugliwros + llogllmg ) lwallag
j=0+1

where o > 0 is any small number and s is such that (s — po — 1)o is large
enough.

Proof. — We decompose a = a1 + as as at the beginning of the proof of
Corollary By (A11.1.20), (A11.1.21)), estimate (A11.2.28) holds if
(s=po—1)B>r+ % On the other hand, applying (A11.2.2)) to Opy(a1), and
expressing o(f3) from f3, one gets a bound of ||Opj(a1)(vy, ..., v,)|[a; by the
right hand side of . Since, for r large enough, the right hand side
of may be estimated by (using semiclassical Sobolev
injection to bound some W/ norm by h™2 times an Hj one), we get the
conclusion. O

Let us translate the inequalities proved in this section in the non-
semiclassical framework, using (A9.1.7)), (A9.1.8), (A9.1.9).

Corollary A11.2.7. — Under the assumptions of Proposition[A11.2.1] one
has the following estimates:

(i) For any s > 0, any odd test functions vi,...,v,, any choice of signs
€ € {-,-i-}, j=1,...,¢

¢

10p (@) (v, - - -, va)llms < CE T [I1Le;villweoos + [[ojllweo.]
(A11.2.30) =

n—1

< T llvjllweo ol
j=0+1

with Ly defined in (A11.1.89).
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(i) If moreover B > 0, one has for any 0 < ¢ </

Z/
10p* (@) (w1, -, va)llirs < Ct=H7O [T (I1Lejvsllz2 + ozl 12)
j=1
L
(A11.2.31) < T [I1Ze;vsllweoce + [[vjllweoos]
j=0'+1
n—1

< IT lojllweoellvnll s
j=+1

with o(B) > 0 going to zero when 3 goes to zero.
This is just a restatement of Proposition[AT1.2.1] Proposition[ATI.2:2]gives:

Corollary A11.2.8. — Under the assumptions and with the notation of
Proposition one has the following estimates for any j, 1 <j<n
(A11.2.32)

10D (@) (vi, .. o)z < Ct™5 T Nlwellweoe [l vl 2 + [|vgl 2]
#£j1<0<n

and if n > 2, for any j 4§, 1< j,j' <n,
0P (a)(v1, -y on)llz <O I lvjllweoe
(A11.2.33) C£j,51<0<n
X [ Lxvj|lweoe + [|vje]lweoee ] [|vj]| 2.

Moreover, these estimates hold as soon as a € Sli,B(M(l)/ | &) tn).
In the same way, we have the bounds of Corollary [ATT.2.3}

Corollary A11.2.9. — With the notation of Corollary one has for

any j
(A11.2.34)

10p* (a)(Z,v1, ... ;vn)lzz < Ct1 T Ilvsllweos [|Lxvjllrz + [|vjll 2]
1<0<n b#]

and ifn>2,j5# 75 arein {1,...,n}

(A11.2.35) ||Op'(a)(Z,v1,...,v0)||p2 < Ct71 l|v; | weo-o0
J
#],5' 1<0<n

x [ Lsvyrllweoee + o llweooo]llvjll 2.

Next we restate Proposition
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Corollary A11.2.10. — With the notation and under the assumptions of

Proposition one has for any odd functions v, vo
(A11.2.36)

0P (a)(v1, v2)[| 2 < Ct2[|| Lvi||weoee + [villweoe | [|[Levallre + [Jv2]| 2]
and

2
(A11.2.37) 10D (a) (01, v2) |2 < Ct=47 [T [IILvjll L2 + vl ars]
j=1

if s,0 >0 are such that so > 2(pg +1).

Finally, we translate the estimates of Proposition [AT1.2.5 and [A11.2.6}

Corollary A11.2.11. — With the notation and under the assumptions of

Proposition[AT1.2.5, one has, for any odd functions vi,...,v,, any 0 < £ <mn,
any r >0,

n

1
(A11.2.38) ||Op'(a)(v1,- .., vn)[weee < CtT" [ (Ivsllweoee + 2 0]l as)

j=1
l n
+ Ct" 7 [T vsllweee + I Lxvjllwess] T [lvslize + [ Lxvjllz2]
j=1 j=t+1

if s > so(p, k) [1 + %] for some function so(p, k).

Corollary A11.2.12. — With the notation and under the assumption of
Proposition one has for any odd functions vi,...,v,, any £, 1 < £ <
n—1,any 0 <0 </

el
lop! (@) (w1, -, va)lls < CEF [T (ILe; 05l 2 + llvjllare)

7=1
¢ 1
(A11.2.39) x I (1Ze;villwenose + lvjllweose +t=2[vj] =)
j=0+1
n—1 N
< T (lvjliweose + 172 [[ojllas) [onll s
j=0+1

for any small o > 0, as soon as (s — po — 1)o is large enough. The same
estimate holds true if we apply in the right hand side any permutation on the
indices {1,...,n — 1}.



A11.3. WEYL CALCULUS 247

A11.3. Weyl calculus

In Chapter |7} we use a different quantization of symbols a(z,£) on R x R.
We give its definition and properties here. Our classes of symbols will be
variants of those introduced in Definition [A9.1.2l

Definition A11.8.1. — Let &' € [0,1], B8 > 0, and (z,£) — M(x,&) be
a weight function on R x R. One denotes by S},\fﬁ(M) the space of smooth
functions (h,x,&) — a(x, &, h) defined on ]0,1] x R x R satisfying estimates

(A113.1)  [9210¢ (hdn)Falz, &, h)| < OM(z, )b~ @te2) (14 grlle))=N
for any ay, a9, k, N in N.
Remark: Notice that for § > 0, we assume a rapid decay of the symbol

in (hﬂf)fN. This is not the same condition as in dA9.1.4I), dA9.1.5I) where the

rapid decay was in <hﬁM0(§)>_N, which, when there is only one £ variable,
is just O(1). Notice also that instead of having a loss in My(§)" for each
derivative acting on the symbol, we allow a h=9 loss. Finally, at the difference
of , we consider symbols that do not depend on the y variable.

For a in S}XB(M ), we define the Weyl quantization by

1 o r+y
N _ (z—y)¢ A
(A11.3.2) Opy,’ (a)v 27rh//€h a( 5 &, h)y(y) dydg

for any test function v. We recall some results of [82] that we use in Chapter [7}

Proposition A11.3.2. — Let p be in Ry, T'(z,&, h) a function satisfying
~1

(A11.3.3) |0519¢2 (hon)"T (2, €, b)| < Chw(;ffpf}%

for any a1, as,k in N. Then, for any o > 0, any r > 0, any s such that so is
large enough, we have

-i¢ r
(A11.3.4) 10pyY (D)0 ((€))ull L < C[A7177Jullz2 + A" )]

Proof. — Fix 8 > 0 small. Decompose I' = T'x(h?¢) + T'(1 — x)(h?) for x in
C°(R) equal to one close to zero. By Lemma 3.9 of [82], we may write

(A11.3.5) OpY (T'x(hP€)) = OpYY (r1)OpyY (X (hP€)) + KN OpYY (r2)

(A11.3.6) Opy' (T(1=x)(h7€)) = Opy! (r5)Opyy ((1=31) (7)) +h™ Opyy (ra)
where r; are in ngﬁ(l), N is arbitrary, x, X1 are in C5°(R) equal to one close
29

to zero. By semiclassical Sobolev injection and Proposition below,
the last term in (A11.3.5), (A11.3.6) acting on Op,¥((£)")v has L>® norm
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estimated by the last term in (A11.3.4). Moreover, r; satisfies estimates of
the form (A11.3.3), so that we may apply Proposition 3.11 of [82] to estimate

10Dy (r1)OpyY (X(WP€)(€)" ]| Lo

by the first term in the right hand side of (A11.3.4) with o linear in 5. Finally,
by semiclassical Sobolev injection and Proposition [A11.3.3] the L® norm of
the first term in the right hand side of (A11.3.6]) is bounded from above by

Ch™z]|0pyY (€ (1 = X)) () [l a2

which is estimated by A"||v|ms is sB is large enough. This concludes the
proof. O

One has also Sobolev estimates (see Dimassi-Sjostrand [24] or Proposi-
tion 3.10 in [82]):

Proposition A11.3.3. — Let 3 >0, § € [0,3], r € R, a in SVXB(@)T).
Then Op}Y (a) is bounded from Hj to H;™" for any s in R, with operator
norm bounded uniformly in h.

We state next Proposition 4.4 of [82].

Proposition A11.3.4. — Let v be in C§°(R), equal to one close to zero.
Let L be the operator (A11.1.16|) that may be written as well

1
Ly =30py (z +p'(€)-
For p in N, v a function, define
z+p'(§)
(A113.7) oo = Onl (=) (7)) opl (1))
Then for any o > 0, any s such that so is large enough, one has estimates
1o
(A11.3.8) [vRellze < CR277 [| L4l e + vl ;]
1o
(A11.3.9) [oRellLoe < ChAT[[[L1 0|2 + lullag]-

Let us prove next an L estimate for Op}iv (7(%\/%(5)»
Proposition A11.3.5. — Let v be in C§°(R), with small enough support.
Then for any o > 0, N > 0, we have as soon as so is large enough relatively
to N,

+p s
(A11.3.10) ||opXV(w(ﬂ”}jf9))va < Ch[Jlullzee + AV || ]
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Proof. — Let >0, x in C§°(R) equal to one close to zero. Decompose
v =0p} (x(h7€)u + Op} (1 = ) (h7))w.

By semiclassical Sobolev injection, Proposition [ATT.3.3] and the fact that
10D (1 = X)) gy = OB*~)

if s > s’, we have

ot (+(“2E) ) opl (1 = 0079

< Chbopl (V(W))Opml )

< Ch= 3P o s

which is estimated by the right hand side of (A11.3.10)) if sg3 is large enough.
On the other hand, by Lemma 3.9 in [82], we may write for any N

Opy <7<Lp’(€)))ova (x(h7€)) = Opy' (V(x,&,h)) + KN Op)Y ()

Vh
for some r in SWB( ) and a symbol I' in S\l’vﬁ(l) supported for [¢] < h™P,
I’ 27

lz+p' ()] < C\f h for some small ¢. According to Lemma 1.2.6 in [20], we
know that setting ¢(z) = v/1 — 22 for |z| < 1, if |z 4 p/(€)| < ¢(€) 2 for some
small enough ¢, then

€ — di(z)] < CE)* |z +p'(6)].
It follows that
F(x7 g? h) = F(x? 57 h)l

The kernel of Op,Y () is

1 .
|§—dp(x)|<chZ ™%

1 i z+y
_ (z—ylép (29
(A11.3.11) 27rh/eh F( 5 ,&h) dg
that may be written
1 z+y
A11.3.12 eh (e-v)do(*32)
( ) 2rvh

>

x/ @) x“’ d (x+y)+\f§ h)dg
L

The integral is of the form [ TR A ,Y,¢)d¢, with A supported for

(
|| < Ch™38 and satisfying oOfA = O(1). It follows that (A11.3.11)) is
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-2
O(h*%*35<x—\;ﬁy> ), which implies that operator (A11.3.11) has L(L*>)
norm that is O(h=53%).
On the other hand, |ANOp)Y (r)v||z= is bounded by the last term in the
right hand side of (A11.3.10) using again semiclassical Sobolev injection. [
We shall use also Proposition 4.11 of [82] that we reproduce below.

Proposition A11.3.6. — Define
p_ w( (TP () W /e\p
(A11.3.13) o =0nl (+( ) Jomi (60
where v € C§°(R) has small enough support. There is (O)nejo) @ family of

smooth functions, real valued, supported in an interval [—1 + ch?P 1 — chm]
for some small ¢ > 0, with 056y, = O(h=28%) for some small 3 > 0, such that,

still denoting (z) = V1 — 22 for |z| < 1,
(A11.3.14) Opy (x€ + p(€))ul = p(@)0n ()} + IR

where

1_0'

IRl 2 < Ch277 (L4l g2 + [[vlla:)
1 o

|R||Lee < Cha™7 ([ Lyullr2 + ||v]lms)

for any o > 0, any s such that so is large enough.

(A11.3.15)

Finally, let us reproduce Lemma 4.5 of [82].
Lemma A11.3.7. — Let « be as in Proposition[A11.3.6. One may write

(A11.3.16) [Dt — Opy) (€ + p(£)), Opy (’%W))}

x+ﬂ@5x+ﬂ@)
Vh Vh

where y_1(z) satisfies for any a, |0%y_1(2)| < Ca(2) ™% and where r satisfies

estimates (A11.3.5).

= 1hOp} (71 ) +niopl (r)



APPENDIX A12

WAVE OPERATORS FOR TIME DEPENDENT
POTENTIALS

The goal of this chapter is to construct wave operators for some time de-
pendent perturbations of a constant coefficients operator. We consider a ref-
erence operator Py independent of time, and a perturbation of Py of the form
P(t) = Py+V(t), given in terms of a time depending potential V(t). Our goal
is to construct a “wave operator” B(t) such that

(A12.0.1) (D; — P(t))B(t) = B(t)(D; — Py).

We did something similar in Appendix [A§|in the autonomous case, when V(t)
does not depend on time, and is given by a potential smooth and decaying in
space. Here, we shall have to consider a potential V() that depends on time.
As mentioned in the introduction of Chapter [b, a scalar model for the kind of
operators P(t) we want to consider is given by

-3 1 i3
(A12.0.2) Dy — p(Dg) — te 2Re [c(x)(Dy) " €2 ]

where p(§) = y/1+ &2 and ¢ is in S(R). The potential perturbing the au-
tonomous problem is given here in terms of

le

=

c(z)(Dy) "Lt E

As a function of x, this is still a smooth rapidly decaying function, but we
have now also ¢ dependence. On the one hand, this time dependence might be
considered as an advantage, since it makes the potential smaller and smaller
as time growth. On the other side, it makes impossible to use stationary
arguments in order to construct wave operators. Of course, there are well
known results concerning scattering by time dependent potentials. We refer for
instance to the book of Derezinski and Gérard [23], in particular sections 3.3
and 3.4. Though, these results would not apply to our problem, as they
demand better time decay of the potential and of its space derivatives as the
one we have in (A12.0.2)). We thus have to construct B(t) by hand, composing



252 APPENDIX Al12. WAVE OPERATORS FOR TIME DEPENDENT POTENTIALS

(A12.0.1) at the left with Fourier transform, at the right with inverse Fourier
transform and defining a wave operator through iterated integrals.

A12.1. Statement of the result

In order to state the result, we have to introduce some notation.

Definition A12.1.1. — Let a,b be in N, m >0, 1 > 0. We denote by gy
the space of functions (t,§,m) — q(t,&,n) defined on [1,+oo[xR x R, with
values in C, that are Lipschitz in time, smooth in (£,m), and satisfy for any
N inN, any j =0,1, any t > 1, any (£,1) € R?, any (o, o) € N?

(A12.1.1) 1070202 q(t,0,€)] < Cagrnet™™ 3 (|e] = ).

a b
L,m . _ £ n
We denote by X, the space of functions q of the form q = <<§)> (<n>) @1

with q1 in 26’,%1.

Example: Let us give an example of functions in the preceding class. Let
q = 4j k), Where g; (i ¢) is one of the functions defined in Lemma [5.1.1 As-
sume that these functions are defined and satisfy (5.1.14) or (5.1.15) for ¢ in
some interval [1,7T] with 4 < T < e~**¢. Extend this function to [1,+o0[ by

!
(A12.1.2) q(t,&,n) et + q(2T — t, &, 77)116>TX0<T)

where xo € C*°(R) is equal to one on | — 0o, 2] and to zero on [I, +oco[. If we

denote this extension still by ¢, we get a Lipschitz function of time on [1, +o00[
that satisfies (5.1.14)) or (5.1.15) for any ¢ > 1. Notice that these inequalities

imply estimates of the form (A12.1.1)) when we take T" in (A12.1.2)) smaller than
ﬁ

e~4%¢ for some ¢ > 0, so that (A12.1.2)) is supported for ¢t < Ce=?¢. Actually,

writing for any m 6]0,%[, te 2 < t7™mel72m it follows from (5.1.14) that ¢
belongs to 3G if © = min(1—2m, cf’) > 0. In the same way, under condition

Lm—i—%

5.1.15)), we obtain an element of X7, *. The matrix (); of Lemma [5.1.1 has

thus entries in X7}

We consider in this section an operator V defined in the following way.
Assume given matrices (); with entries en 26”781 form>0,0>0and —-2<j <

2. Let \; = j§ and define

2
(A12.1.3) V()= > MKy,
j=—2
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where, when ¢ is in 26’7761, and f is a scalar valued function, K, f is defined by

(A12.1.4) K f(¢) = /q(t,&n)f(n) dn,

and when @Q; is a 2 x 2 matrix, and f is C2?-valued, K, f is defined in the
natural way. We shall assume also that operator V satisfies

(A12.1.5) V(t)No = —NoV(t)

with Ny = [(1) (1)} (see ([5.1.5))) and that V(t) preserves the space of odd func-
tions. If Py = [p(lgz) —p(ODI) , we define

(A12.1.6) P(t) = Py + V(t).

We want to construct a family of operators B(t) so that, for any f in L?(R)
such that (D; — Py)f is in L?(R) for any ¢,

(A12.1.7) (D¢ — P(t))B(t)f = B(t)(Dy — Ro) f.
We shall prove:

Proposition A12.1.2. — For any t > 1, let V(t) be a bounded operator on
L?(R). Assume that t — V(t) is compactly supported and define for any t > 1,
n € N*

(A12.1.8) B,(t) = (—i)n/He_iTjPOV(t—I-Tj)eiTjP010<T1<...<Tn dry ...dr,,
j=1

where, for non commuting variables A1, ..., An, H?:l Aj denotes A1 As ... Ay.

Set also By(t) = Id. Assume that for any f in L*(R), one may find a sequence
() in €1 such that one has

(A12.1.9) sup||Bn(t) fll 12 < an.
t>1
Define
+oo
(A12.1.10) B(t)f =Y Bu(t)f,
n=0

that exists because of our assumptions. Then B(t) solves equation (A12.1.7).
Moreover, define Cy(t) = Id and for n in N*,

n
(A12.1.11)  Cy(t) = 2"/ [Te ™Vt + 7)™ er,concr, dry ... dry.
j=1

If we assume that the analogous of holds for Cy,, and define then
C(t) as in [(A12.1.10), one has
(A12.1.12) Bt)C(t) =C(t)B(t) = Id.
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Proof. — Let us denote A(t,s) = —ie V(¢ + s)e®*™. Then

(D, — Dy, A(t, s)] = [Py, A(t, 5)]

and by (A12.1.)
(A12.1.13) By(t) = / T] At 7)) Locr <cm, dy ...
j=1
so that
n
(D, — Py, By) = /(Dﬁ o+ D) [ [T Al )] o< <ocm, dmy - dy
j=1

- —/ LA T) Dy + -+ Dy Ylocrsconcr, dri .. dr

=1

J = 1A(t,0)Bp_1(t).
Using (A12.1.6), and making the convention B_1(t) = 0, we rewrite this as

(D — P(0)Ba(t) = Balt)(Dy — Po) — V() (Bult) — Bar (1),

If we denote by S, (t) = > n/—o Bu/(t) the partial sum, we get
(A12.1.14) (Dy — P(1))Sn(t) = Sp(t)(Dy — Py) — V(t)Bn(t).
If we make act this on a function f in L?(R) such that (D; — Pp)f is in L?, we
get when n goes to infinity, in view of (A12.1.9)), (A12.1.10)), the conclusion
(A12.1.7).

We still have to show that C(t) is the inverse of B(t). Let us denote for
j=0,...,n =1, ¢j(75,7j41) = L;,, >, and rewrite the definition of B,(t)

given in (A12.1.13)) as

n n—1
B,(t) = / H A(t,i)x (71, ..., ™) H i (Tjr, Tjr41) dri ... dTy,
j=1 j'=1

where x(71,...,7) = [[{=1 Lo<r,. In the same way, (A12.1.11]) may be written
as

n n—1

Cn(t) = (—1)”/ H A(t,i)x (71, ..., ™) H (1 — @) (1, Tjrg1) dry ... dTy,.

=1 j'=1
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We thus get for 1 < ¢ <mn

n /—1

Cf(t) o Bn_g(t) = (_1)5/ H A(t’ Tj)X(Tla cee 7Tn) H (1 - @j/)(Tj’a Tj/+1)
j=1 j'=1
n—1
X H ng/(Tj/,Tj/+1)dT1...dTn
j'=t+1
using the convention H?:1 = ;”:_71 = 1. This may be rewritten for ¢ =
1,....,.n—1
n ¢
Cu(t) o Bny(t) = (—1)Z/ [T AG )X ma) TT (= @) (7, m41)
j=1 j'=1
n—1
X H SOj/(Tj’,Tj’+1)d7-1-~-dTn
§'=0+1
n -1
(1) [ TLAG X - m) TLO = 03, 734)
j=1 J'=1
n—1
jr=t
It follows that ") Cy(t) Bp—¢(t) = 0 when n > 1, which implies C(¢)o B(t) =
Id. In the same way B(t) o C(t) = Id. O

In the rest of this chapter, we shall show that the preceding proposition
may be applied to an operator of the form , if one makes convenient
assumptions on the @;. Moreover, we shall obtain for the operator B(t),
C(t) estimates in other spaces than L?. More precisely, we shall prove the
proposition below, where we use the following notation. Set, according to

(A11.1.32)

(A12.1.15) L: =z +tp'(Dy), L= [LJ LO_]
so that

(A12.1.16) [Dy — Py, L] = 0.

In the following sections, we shall prove:

Proposition A12.1.8. — Let B,(t) and C,(t) be defined respectively by
(A12.1.8) and (A12.1.11), in terms of V given by (A12.1.5) with Qj a 2 x 2

matriz of elements of Ei’ﬁn, for some v > 0 small, some m €]0, %[, close to %

Then for e small enough, (A12.1.9) and the corresponding inequality for Cy(t)
holds, so that 3120 By, (t) = B(t) and 325 Cy(t) = C(t) are well defined as
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operators acting on L?(R). Moreover, the operators B(t), C(t) are bounded
on H*(R) for any s > 0 and satisfy for small &’ >0

IB(t) — Id|| (e < Cet™m 045
1C(t) = Id| pgre) < Cet ™5
One may also write for any f in L*(R;C2) such that Lf € L*(R;C?)

(A12.1.17)

(A12.1.18) LoC(t)f =C@t)Lf+Ci(t)f

where

(A12.1.19) IC(t) — Id|| p(p2) < Cettm+0+3
(A12.1.20) 1C1 () oz2y < Cettz™

Moreover, under condition , one has

(A12.1.21) B(t)Nyg = NoB(t), C(t)Ng = NoC(t)

and if V(t) preserves the space of odd functions, so do B(t) and C(t).

A12.2. Technical lemmas

In this section, we prove some technical lemmas that will be used to obtain

Proposition [A12.1.3
Lemma A12.2.1. — For &,n, \ real, denote

(A12.2.1) ¢+(&,m,A) = (§) £ () + A
There is C' > 0 such that for any XA in R, any t > 1

(A12.2.2) / (t64(¢,m, \) " dn < O3
|6+ (EmN)|<1
(A12.2.3) / (tods(&,m, )\))_1m dn < Ct tlog(1 +1t).
|6+ (€, 0)|<1 (n)

Proof. — We compute first the integrals over the domain n > ¢ or n < —c for
some ¢ > 0. On these domains, 7 — ( = ¢+(&,m, A) is a change of variables,
whose jacobian has uniform lower and upper bounds. The corresponding in-
tegrals are thus bounded by

C ) td¢ < CtVlog(t + 1).
IS

We compute next the integrals for |n| < c. If ¢ is small enough, we may write
on this domain

b1 (&,m,0) = d+(£,0,)) + g(n)?
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where g(0) =0, ¢’(0) # 0, so that we may bound the two integrals (A12.2.2),
(A12.2.3) respectively by

C OH%@YJ%,C/ (p+t¢) | dC
[¢]<e! [¢]<e!

where ¢’ > 0 is some constant, and p is some real number depending on &, A, t.
These two integrals are smaller than the right hand side of (A12.2.2]), (A12.2.3)
respectively, uniformly in p. O

We study now composition of operators defined by (A12.1.4) from symbols
in the classes of Definition [A12.1.1] and we prove also Sobolev estimates for
such operators.

Lemma A12.2.2. — (i) If £ is in N, set p(€) = 1 if € = 0 and let p(l) be
strictly smaller than 1 if £ > 1. Let N > 2. There is a constant C' > 0 such
that if two functions q1,qo satisfy estimates

b
(&, m)] < Ka([¢] = |77|>_N<‘Z‘)

(A12.2.4) <‘§|> .
Ko (€] — [y ™M =t
(el < Kalel— b ()
where a,b are in {0,1}, then the function
(A12.25) (€ = [ a6 Qe tos(E ¢ A) " de
satisfies
(A12.2.6) 436, m)| < CK 1Kot #OF([¢] — () ™",

(ii) Let s be in Ry, &' >0, N > s+2. There is C > 0 such that if a function
(&n) — a(&,m) satisfies

(A12.2.7) la(&m)| < K{¢] - W_NQ?) i <‘Z|>)

then the operator K, defined by (A12.1.4) satisfies
(A12.2.8) 1Kyl ey < K3+,

(iii) If instead of , q satisfies
(A12:2.0 a€m)] < K¢l — )2 1

() ()
one gets instead of
(A12.2.10) 1Kl posy < CREHY
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Proof. — (i) If in (A12.2.5) we integrate for ¢4 (&,(,\) > 1, then (A12.2.6))
holds trivially, as a consequence of (A12.2.4)), with factor ¢t~! instead of

t=#(b+a) Tf we integrate for [¢4 (€, ¢, A)| < 1 the contribution to g3 is bounded
from above by

a+b
(b= (&,C, A>>1('<') dc.

R (€~ )™ [ (©)

lp£(&,¢A) <1

Applying Lemma [A12.2.1] we get (A12.2.6)).

(ii) Since N > s+ 2, the £(H?) estimate is reduced to a L£(L?) one for
N > 2 using the decay in (|¢| — |n|) in (A12.2.7). If the kernel of K|, is cut-off
for |¢+(&,m, )| > 1, then Schur’s lemma shows that (A12.2.8)) holds with ¢!

instead of = 1+%. We have thus to study

f—= /Q(f,n)@%(fﬂ?’A)>_11|¢i(§,n,A)|<1f("7) dn.

By Schur’s lemma and (A12.2.7)), the £(L?) norm of this operator is bounded
from above by

O (sup [ (1= )~ (062! )’

X<SL}7P/<|§! - In!>N(t¢i(5,n,A)>1d§>é

and by the symmetric quantity. Using (A12.2.2)), (A12.2.3)), we get (A12.2.8)).
(iii) We make the same reasoning as above, except that (A12.2.11)) is now
replaced by

(A12.2.11)

CK (sup [ {1l = Il {t6 (6 m20) 2 )

¢ (n)
N Y IJPAY:
<(sup [ {161 Iy~ o, m 0) !y )
We conclude by . O

Let us define a class that will contain functions obtained from those of
Definition [AT2.1.1] by introduction of an extra variable.

Definition A12.2.3. — We denote by ié):%l,mo the space of functions
(t,v,&,m) — q(t,v,&,n), defined fort > 1, v >0, {,n in R, that are Lipschitz
and compactly supported in v and satisfy for any N and j = 0,1

(A12.2.12) |03a(t,v,&,m)| < Cnet' ™ (1+v) ™07 (j¢] = [nl) .
For a,b in N, we denote by i:g@mo the space of functions that may be written

(&) (&) 0 with qu in 5.
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We shall also allow q to depend on extra parameters, estimates (A12.2.12
being uniform in these parameters.

Notice that if ¢ belongs to the class Zfl’fz,l of Definition and is com-
pactly supported in time, then §(¢,v,&,n) = tq(t(1 + v),&,n) is in ig’zl’mo if
m > myg.

We shall discuss some operators constructed from functions in E
the following discussion, we shall identify operators and their kernels

Let @ be in E;m 0@ Ma(R) (ie. a 2 X 2 matrix of elements of E;;)”’mo).

If ) is in R, we consider the operator from L?(R) to L?(R) given at fixed ¢, v
by the kernel in (£, 1)

(A12.2.13) S(t,v,Q,\) = e WEOQ(t, v, £, )t TN,

If we decompose

meo In

2 2
t’Ufn ZZ]ktvfn jk>

where
(A12.2.14) Eji = (67 0f Yi<jrwee,
we may write
2 2

(A12.2.15) S0, QN => > Sik(t,v,Q,\)

Jj=1k=1
with
(A12.2.16) Sik(t,v,Q,\) = qjk(t,v,§, n)e“”‘bﬂ"“(f’"’)‘)Ejk
where
(A12.2.17) ¢ik(€,m A) = (=1)7p(&) — (=1)"p(n) + X

We assume given functions Q¢ in 5 /br; b ® M2 (R) and real numbers A\, for
¢ in N*. We set

(A12.2.18) Q =(Q",...,QY, A=(\",...,Ah.

We define inductively a sequence of operators by their kernels, starting with

“+o0
(A12.2.19) M (t,u, QM) = / S(t,v, QY AN dv

and for n > 1
(A12.2.20)

+oo
Mysa(t0,Q,, Aui) = [ S(t0, Q7 X 0 My(t0,Q M) do
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Notice that the above integrals converge since S is compactly supported in v.
According to our convention of identification between kernels and operators,
we shall set for a function f

(A12.2.21) My (t,0,Q M) f(§) = /Mn(t,v,Qn,An)(Sm)f(n) dn.

We shall prove the following estimates:

Lemma A12.2.4. — Let m,my,mg,t,a,b satisfy
1
(A12.2.22) my,my > Z,a,b,eN,a+b2 1,0>0,m > 0.

Let Q be in f];’jbn’mé’ ® M2(R), X in R, and let Kn be the best constant Cn
in [A12.2.19) for the entries of Q. In the same way, denote by Ky the best
constant in (A12.2.19) for the entries of Q¢, £ =1,...,n.

There is for any N > 2, any &' > 0, a constant Cn that does not depend on
Ky, Kny and a symbol Q in

Sttin,mAm™

S TS o Ma(R)
ifd"+b=0, and in
Bt = o) My(R)
if a" +b > 1, whose N-th semi-norm is bounded from above by CNKNKp p,
such that if n > 1,
400
(A12.2.23) /u S(t,0,Q,N) 0 My(t,0,Q ,\,) dv

+o0 I
= / S(t,v,Q,\) o M,_1(t, U,Qn_l,gn,l) dv + Ry, (t,u)

where X = XA+ X\, and R, satisfies for any f in L*(R), any &' > 0
(A12.2.24)

1 !
Isup | R (t, ) fl| 2 < CEaet™™ a4 [lsup [Ma(t, 1, Qs An) fIIl 2
u u

Ifn =0, (A12.2.25) holds as well without the integral term in the right hand

side.

Proof. — In the left hand side of (A12.2.23)) we plug (A12.2.15)). Then the

kernel of that operator is the sum in j,k,1 < j, k < 2 of

+oo
(A12.2.25) / /Sjk(t,v,Q,A)(aC)Mn(t,v,Qn,An)(C,n)dCdv-
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Let us define for 1 < j, k < 2 the operator

(A12.2.26) Ljpr(&,€)
= (10 + 0)B(EC ) [+ + 0)d(6,C N1+ 0)Dy]

where we used notation (|A12.2.17). Then, by (A12.2.16)
(A12.2.27)

LjpnS;k(€,¢) = Sik(§,¢) + t(1+0)djk(& ¢ A)

(t(1+0)dk(€, ¢, N)°

(1 + U)qu]k(ta v, §7 C? )\)

We plug the expression of S, deduced from (A12.2.27) inside (A12.2.25)). We

obtain on the one hand

/*00/ (1+v)8k(&, ¢ N
(1+v)pk(& ¢, A)?
x O ECA) B M (8,0, Q. M) (¢, m) dCdv

(1 + U)D’quk'(t7 v, 57 Cv /\)
(A12.2.28)

and on the other hand
+o0o
(A12229) [T [ LinSi(t 0. Q) (6 OMalt,1,Q, A)(C ) did

Using the expression (A12.2.26]) of Ljix, we perform in (A12.2.29) one inte-
gration by parts in v. We get the following contributions

(A12.2.30)

R R )

X Sjk(t, 0, Q, A) (&, Q) Mn(t,v,Q, , A) (¢, n) dCdv,

“+o00
-/ / UF0OmEGN o i 0 QNE Q)

(A12.2.31) (1+ )&, ¢ A
X(1+v)DyMy(t,v,Q,,A,)(¢,n) dCdv,
1t w6 6N o
(A12.2.32) i / (t(1 +u)¢jk(5,g,A)>2Sj’“(t’”’Q’A)(§’Q

X Mo(t,u,Q A, (Cm) dC.

Let us show that (A12.2.28)), (A12.2.30)), (A12.2.31)), (A12.2.32)) may be writ-
ten as contributions to the right hand side of (A12.2.23]).

e Contributions of (A12.2.28)) and (A12.2.30))
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We make act (A12.2.28), (A12.2.30) on a function f. We shall get an
expression

(A12.2.33) /+OO/K 3 g Mo(t,0,Q )f)(() d¢ dv

meo

where, by the fact that g in (A12.2.16) is in X
kernel K satisfies the bound

and (A12.2.12)), the

(N Ky
K (0,€,0)] < CE>(t(1 + )£, €, ) 1((@) (@)

et (L4 v) (8] — [nl) 2
We bound the modulus of (A12.2.33|) by

(A12.2.34)

+oo
/0 / K (v, &, )l <81ul)p ’Mn(tvvan,An)f(C)l) d(dv.

Then the L? norm in ¢ of the supremum in v of (A12.2.33) is bounded from
above by

(A12.2.35) /0+00H/|K(v,€,()\(sgp|Mn(t,w,Qn,)\ Q) dc|

L2( dg

Asa+b>1, (A12.2.34) shows that we may apply to the d(-integral, which
is of the form of the right hand side of (A12.2.7), estimate (A12.2.8)), with ¢

replaced by ¢(1 + v). We obtain that (A12.2.35)) is smaller than

+OO ’ / !
C’Kg/ i (1+ v)_mo_%M dvl|sup \Mn(t,w,Qn,An)ﬂHLQ
0 w T

with ¢’ > 0 as small as we want. Since by assumption m| > 1, we obtain

a bound of the form (A12.2.24)); that shows that (A12.2.28]) and (A12.2.30)
contribute to R, in (A12.2.23)).
e Contribution of (A12.2.32)

This is an expression similar to (A12.2.30)), except that we no not have a
dv integral and have a factor (1 +u)? instead of (14 v). Consequently, for the

L? norm of that operator acting on f, we get a bound of the form (A12.2.35)
but without dv-integration and an extra factor (1 + u), and with K estimated

at u instead of v. This implies again that we obtain a contribution to R,.

e Contribution of (|A12.2.31]
By (A12.2.20)) at order n — 1

D’UMTL(t7/UaQn7An) = iS(tyannaAn) O Mp— 1(t v Q n 1)
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Plugging this in (A12.2.31)), we get the expression

+oo 1
(A12.2.36) 72/ // 1::53:55’)\)12 Sjr(t,v, @, A)(&,€)
J

X (L+0)S(t,v, Q" A")(¢, 1) Mp—1(t,v,Q, 1, Ay 1) (', m) dCdn'dv.
We write by
2

S(t,v, Q" \") = Zzsk/gtl}@n A™).

k'=1/4=1

By (A12.2.16) and the fact that E;,Epp = 5k e, we have

2
(A12.2.37) Y Sik(t,0,Q, N)(&,C) Sk o(t,v,Q", X")(C, 1)

k'=1

= q]k<t7 v, §7 C)ql’rclf(u v, <7 77/)
X eitv¢jk(&C:)\)+itv¢ké(Cﬂ?/:)\n)Eﬂ

where ¢}}, denote the entries of matrix Q™. By (A12.2.17)), the phase in the
exponential is @;¢(&, 7', A + A™). Define

2
(A12.2.38) Gje(t 0,6, A) = _i(l+v)/kzlq]'k(t,v,i,C)qu(t,v,C,n’)

xt(1+0)dk(€, ¢ N (L + ) (€, m,N)) "2 dC.

Since gji is in f];’b’ , (A12.2.12)) shows that we may write this function as

(%)a multiplied by a function that will satisfy the first estimate (A12.2.4)),

with K; bounded by e¢'="(1 4+ v)~™0. In the same way, since g is in
by an’?n mg, it may be written as (%)b” times a function satisfying the second
estlmate (A12.2.4), with a replaced by a™ and K3 bounded by ¢ ntl_m”(l +
v)~™0. By (i) of Lemma applied with ¢ replaced by (1 + v), we see

that (A12.2.38) may be written as a product of (@)a (<Z—:>)b times a quantity

bounded from above by
CENKN e ™" 0277 (14 0)2 77670 (g — )~
if b+ a™ = 0 and by
CEN Ky e ™m0 (1 0) 78t g — Jof )™

for any ¢’ > 0 if b+ a™ > 1, according to (A12.2.6]).
If one takes a O,-derivative of (A12.2.38), one gains an extra de-
cay factor in (1 4+ v)~!. Consequently, (A12.2.38) defines a symbol in
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"'L—&-Ln,m—f—m"—%,mg—&—mé—% St mAm™ =8 mi4+m{ —6
Ea,b" (resp. X, pn )

b+ a™ > 1). Since the phases in (A12.2.37) satisfy
¢]k(€7 gv )‘) + ¢k€(<7 77/7 )\n) = ¢]€(§7 77/7 A+ )\71)7

this shows that (A12.2.36) may be written under the form of the first integral
in the right hand side of (A12.2.23)), with a matrix function @, depending
on A, but with estimates uniform in A, whose entries are respectively in the
classes of the statement of the lemma. This concludes the proof as, in the
case n = 0, one has just to estimate terms of the form (A12.2.28), (A12.2.30)),

(1A12.2.32)). O
Our next goal will be to obtain bounds for (A12.2.20) iterating (A12.2.23]).

We introduce some notation.

Let p,n be in N*. Assume given for each (n,p) a sequence (X(jn’p))lgjgn7

if b+ a"™ = 0 (resp.

where X7 is an element
(n,p)
' j i i
(A12.2.39) Xty = Ep) ™) M0 Unp) V)

of |0, +00[x]%, +00[x] %, +00[xN x N satisfying the following conditions:

prgn,mgnp)0>§,j:1,...,n
(A12.2.40) ot 8

; 3
Ifp>n+1,m’ > 2, j=1,...,n—1and mf,

1
(n7p)70 8 70 > Z.

N j/ j// 3
(A12.2.41) For 1 <j',5" <mn, Wy T b(n,p) > 1 except eventually if
j' < 3" = p (This exception being void if p > n or p = 1).

J

(n,p) Of the form A12.2.39), we denote for short by (X7

For any X (n.p)

class

) the

, d mi i
iy = ) ™) )0
S(xE, ) = S
(n,p)*"(n,p)
of Definition [AT2.2.3]

If (XgnJrl p))léjénﬂ is a sequence of the form (A12.2.39), we define from

it the concatenated sequence (ngcp))lgjgn and the truncated sequence

(X g;LTp))lngn in the following way: We just set

P o
(A12.2.42) X o=x) =1 n

while we denote

3¢ _ (,5,C J,C 3,C 3,C 3,C
(np) — (%n,p)’ (n,p)? ¥ (n,p),0> Xn,p)’ b(n,p>)
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where the components of the preceding vector are defined in the following way:

C _ n+l c _J -
(A12.2.43) L?n’p) L?n+1 ot L(HH ) znﬁp) = L€n+17p),] =1,....,n—1.

Ifn#p—1, we set

(A12.2.44)
n,C _  nitl n ! 3,C J .
Mnp) = Mntip) T Mntp) ~ 05 Mgy = Mng1ppd = L-on—1
n,C _n+l ! 3,C —nd S
m( 2.0 m(nJrl 2.0 + m(nH,p) 0— 90, M0 = Ming1p),00d = 1,...,n—1

where §’ > 0 is as small as wanted (In partlcular ¢’ will be small enough so that

the lower bound (A12.2.40)) still holds with m(n 2,0 o replaced by m(n 20 5.
If n = p— 1, we define instead of (A12.2.44))
(A12.2.45)
p—1,C _ _p p—1 1 J,C | . B
Mp—1p) = M(pp) T " (p.p) 2> Mp-1.p) = "pp)d = L.op=2
p-1C  _  p -1 _ 1 jc _ _ _
Mp-10)0 = M0 T Mpp)0 ~ 50 Mpm1p)0 = Mpp0d =1p =2

Finally, we set for all (n,p)

an,c — gl an n )
(A12.2.46) (np) ~ “(nt1p)? (np) T Ot 1p)
a.]zc a] bj b] 1 n—1
( 7p) (n-‘rl,p)’ (n p) (TL-‘rl,p)’] ceey .
Let us check that if the sequence (X(jnJrl p))1§j§n+1 satisfies (A12.2.40)),

A12.2.41) (with n replaced by n + 1), then (X(j,’lcp))lgjgn satisfies also
A12.2.40), (A12.2.41).
Verification of condition (A12.2.40))

Case p < n. Asn # p—1, (A12.2.44) applies and shows that m

C
, (n,p),0 —
{m—l 2,0 for 5 = 1,...,n — 1. On the other hand, by (A12.2.40) with n

replaced by n+1, m(n H1p)0 8, so that the first condition (A12.2.40) holds

for m(np) oifj=1,...,n—1. To get it for m?ﬁ,cp),m we write by (A12.2.44
that
nc ] 3 3 , 3
using the first line in (A12.2.40) with n replaced by n+ 1. '
Case p = n + 1. By (A12.2.45), we have m{}’jc_lp)o = m%pp)o for j =

1,...,p—2, and by the first line in (A12.2.40)) (with n replaced by n+1 = p),
this is strictly larger than %, so that the second line of (A12.2.40) holds for
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m{;gl 2,00 j=1,...,p— 2. On the other hand, still by (A12.2.45

1 3 3 1 1

p—1,C _ —1 - 9 Q0 4 _ 2

Mp—1,p),0 = ( p)o T (p,p)O 2 - 8 T 8 92 4
so that the last condition (A12.2.40) holds for mfp__li(;) o- We thus got

A12.2.40)) for m{’cp) when n =p — 1.

Case p > n+2. Agam we may apply (A12.2.44) to writefor j = 1,...,n—1
m{ Cp) 0= m{nﬂ 20> 8 by the second condition (A12.2.40) with n replaced

by n + 1. On the other hand, still by (A12.2.44))

,C . +1 , 1 3 , 3

Mnp).0 = Mnp1)0 T Mo =0 > 7+ =0 > 2
using (A12.2.40) with n replaced by n 4+ 1. This is better than what we
need to ensure the last condition (A12.2.40) for m” . This concludes the
verification.

Verification of ((A12.2.41))

We assume that (A12.2.41)) holds at rank n + 1 i.e.

(nvp)

For1 <7, " <n+1, a(m_l nt b ) = 1 except eventually if j' < j” =

(n+1 P

Let us check (A12.2.41)) for afn’%, b{n’p). If both j’ and j” are strictly smaller

than n, then (A12.2.46) shows that the wanted property holds. On the other
hand, if 7 < n, j/ <n, then

%(n,p) T b(n,p)

by (A12.2.46)), and this expression is larger or equal to one, except eventually

if j/ < j” = p, whence again (A12.2.41)). It remains to study the case j' = n.
We have then

j/
Cn+1,p) + b(n+1,p)

n,C i".C _ n+l
a( + b’ =a —|— b7n+1,p

np) " 7 (n,p) (n+1,p)
The inequality n+1 < j” = p cannot hold, so that the above quantity is always
larger or equal to one. This shows that (A12.2.41)) is satisfied by (Xfﬁcp))lgjgn-

We may state our main proposition.
Proposition A12.2.5. — Let n be in N, p be in N* and assume given
a sequence (XgnJrl’p))lSjgnH of the form (A12.2.39), satisfying. A12.2.40),
A12.2.41), wz’th n replaced by n+1. For j =1,...,n+1, let Q{nJer) be an
element of (X7 (n+1 p)) ® M2 (R). Denote by K(n+1 p) the semi-norm provided

by the best constant in (A12.2.12), in the case N = 2. Set as in (A12.2.1§),

Q (Qnr;,:-llp ..,Q%M_Lp)). Then there is a universal constant Cy such
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that, for any f in L%, any Appqy = (A" 000N dn R one has when
p>n+1orp=1 the bounds
(A12.2.47)
Hili% ’MTH-l(tv u, Qn+1a An«kl)f‘ HL2 < Cg+1K(n+l,p)€£(n+l’p)tim(n-‘rl’p) HfHL2
where
n+l
Ln+1p) = Z L%n+1,p)v
j=1
(A12.2.48) nt! 1
Mnt1,p) = Z M1y — (0 +1) (5/ + 1)
_ +1
Kyip) = K(n+1,p) K(T'lrl—l-l,p)

while if 2 <p <n+1, one gets instead

(A12249) Hig% |Mn+1(tvqun_i_lvAn—‘rl)mez

1 71
1 M1, >+T<5 ﬁ)
< gt K1 p)e it ! £l z2-

The proposition will be deduced from the following lemma.

Lemma A12.2.6. — Let Qm—l be as in the statement of Proposi-
tion [A12.2.5. There are C > 0, a sequence Qz = ( Z;LTp))lﬁjS"’ with
Q{;}jp in E(XgnTp)) ® Ma(R) with semi-norms K{fp) satisfying
3,T J

(A12.2.50) Kb < K(n 1)
a sequence QC (Q(np Ji<j<n, with (n p) in E(Xgncp ) ® M2(R) and semi-
norms K&C satisfying

7,C i . n,C +1
(A12.2.51) K( o) < K(n+1,p) j=1...,n—-1 K( ) < CK&_H p)K(nn+1,p)

such that
(A12252) Hig%|Mn+1(tvqun+17An+1)f|HL2

< [lsup [Ma(t 0, QA1 1

n+1

+i40 o
4+ Ot Mt Ln+1p Krgjrllp ||sup\M (t, u, QT )\T f]||L2

for other sequences of real numbers )\C AT
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Proof. — We apply Lemma [A12.2.4 with @ = (Q?nﬂ’p), A anH,p ), Q =

an;:-llp Q= = ( ”7;_117) , .,Q%n_Hp ). The left hand side (A12.2.23
then, accordlng to (A12.2.20), equal to My 1(t,u, Q 1 Any1)- Let us check
that condition (A12.2.22)) holds. By A12.2.40]) with n replaced by n + 1, we
+1 1 1 +1
have m?nﬂ’p) 0> T Mipt1)0 > 7. We have to check that aZ:rH ) +b?n+1’p) >

1, that follows from (A12.2.41) at order n+ 1. Let us check that the first term
in the right hand side of (A12.2.23)) may be written as Mn(t,u,Q,AS), SO
that it will provide the first term in the right hand side of (A12.2.52)). We
shall define the sequence QC by

(A12.2.53) Q?;f; Q, ancp anﬂp), =1,...,n—1

where Q is introduced in the statement of Lemma [A12.2.4 L Let us check that
we get for the elements of (X7 n. p))lgggn expressions (A12.2.43)—(A12.2.46).

For j = 1,...,n — 1, this follows from the definition of Q{;lcp) in (A12.2.53).
Consider now Q. The class to which it belongs depends on the fact that

n+1 n
(A12.2.54) b1 p) T Angrp) =1

or not. By (A12.2.41)) at order n+1, (A12.2.54) holds except if n+1 =p > n.
Consequently, when n # p — 1, we shall have according to Lemma
that ¢ m™C are given by (A12.2.43), (A12.2.44) and af;, ), b( )

n.p) ™ n,p)> " (n,p),0
by (A12.2.46)). If n = p—1, then we know only that bz;:ll ) —i—a(nJrl - 0, and

in this case, the lemma shows that m?ncp) m?ﬁcp) o are given by (A12.2.45).

We thus obtain that the first term in the right hand side of (A12.2.23
is My,(t,u, QC /\C) for a convenient sequence )\C Moreover, again by

Lemma [A12.2.4] the semi-norm of Q = Q (corresponding to N = 2 in
(A12.2.12))) is controlled accordlng to the last inequality in (A12.2.51)), the

case of the semi-norms of Q(np zn 1) j=1,...,n—1 being trivial.

We have next to check that the remainder R, in A12.2.23 provides the last
contribution to (A12.2.52)). This follows from (A12.2.24)) and the fact that, by

definition, Q}; is the truncated sequence (Q?n p)re ’Q%n,p))' This concludes

the proof. ]

Proof of Proposition [A12.2.5; We proceed by induction on n. If n = 0, the
last statement in Lemma shows that we get (A12.2.47)). We assume
from now on that n > 1. Assume that (A12.2.47)), (A12.2.49) have been proved
at order n instead of n + 1.

e Case p>n—+2. We apply inequality (A12.2.52). In its right hand
side, we may apply the induction hypothesis to M,(t,u, QS, AS) and
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M, (t, u,Q}Q,AE). Since p > n, estimate (A12.2.47) (with n + 1 replaced by
n) for Mn(t,u,gs,gg) will hold, with v, 1) (vesp. M1 ), Tesp. K i1 p))

replaced by é?n,p) = L{’ncp) (resp. m?n 0 = ) m{’ncp) —nl(d + % , Tesp.
K, = ITj- 1Kgfp)). Using (A12.2.43), (A12.2.44), (A12.2.51), we get a
bound of the first term in the right hand 31de of (A12.2.52)) by

n+1
(A12.2.55) cpe H K, 4y ettt o[ £ o,

On the other hand, if we apply inequality (A12.2.47)) (with n+1 replaced by n
to My (t,u, @', A,) and use A12.2.5o[), we bound the last term in (A12.2.52)
by

/1 n+ T _ T
(A12.256) Ct Mnnptitd eb(n+1p>K?++11p)CSK?;L,p)e£(”’P>t Hn || £l 2

where we denoted

j=1 j=1
n ) 1 n ) 1
m(q;%p) = Z m%;IT’p) - n(Z + 5’) — Z m{n—l-l,p) - n(z + 5/)
jzl 7j=1
KT = 11 (n,p H K (n+1,p)
j=

according to the definition of X(J’ ) in (A12.2.42). Taking (A12.2.48) into
account, we bound again (A12.2.56)) by (A12.2.55]).

e Case p=n-+ 1. We apply again (A12.2.52)). In the right hand side, the
first term may be estimated again fro with n 4+ 1 replaced by
n = p—1, since we have p > p—1. The exponent mgl’p) of t in the right hand
side will be here

p—1

AR 1y 1
mfyoi = Ll — 0= D(0+3) = 2ol - 0= D+ ) - 5
J:

according to (A12.2.45). On the other hand, the last term in will
be estimated by at order n instead of n+ 1, and thus by .
We thus get a bound of the form .

e Case 2 < p <n. We apply again . The first term in the right
hand side may be estimated from the induction hypothesis , applied

with n + 1 replaced by n, to Mn(t,u,QS,AS). As n # p — 1, the exponent
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m{’c are given by (A12.2.44)), so that

n,p)

° ; 1 1
C _ 3,C /
=1

which largely allows to bound the first term by

1 141
(A12.2.57) CRCK (1 pyciotimt 0 "2 (#+) £l 2.
The second term in the right hand side of is estimated using
the induction assumption for M, (t,u, Qg, ALY ie. writing for this expression

A12.2.49: with n 4+ 1 replaced by n. One gets again a bound of the form
A12.2.57)).

e Case p=1. In this case, we proceed as when p > n + 1: We prove
(A12.2.47) by induction, using at each step , and the fact that the
condition n # p — 1 = 0 holding for all n > 1, we may use at each step
(A12.2.44)). This concludes the proof. O

A12.3. Proof of Proposition [A12.1.3

We shall prove first Sobolev estimates.

Lemma A12.3.1. — Let B,(t) (resp. Cy(t)) be given by (A12.1.8) (resp.
A12.1.11)) with V(-) of the form (A12.1.5), Q; being in Ei’ff for some v > 0,

some m €0, %[ close to % (as in the example following Definition |A12.1.1)).
There is K > 0, &' > 0 small, such that for any n in N*

1Br(t)ll c(msy < <Kebt_(m_5’—i)>n
(A12.3.1) e
1Cn (D)l cas) < (KeLt_(m‘5 7)) ,

The same conclusion holds true if Q; is in Eé’jg for all j or Q; is in 26’772” for
all 7.

Proof. — We shall estimate |[(D.)° B (t)(Dz) °[lz(z2)- By (A12.1.8)
(A123.2) (D) Ba(t)(Ds)~

:/He_iTjP0<Dx>s(—i)V(t+Tj)<Dx>_s€iTjP0
j=1

X 10<7'1<"'<7'n dTl .o Tn-
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By (A12.1.3)), this may be written as a sum of 5™ terms
2 2

Z Z /H —zT]PO >SKQin+1_j(t+7—j)

(A12.3.3) n=mzod
XelTJP0+l(t+Tj))\in+17j <Dx>78

X10<71<"‘<Tn dTl NN dTn

where by assumption Q;; is an element of X7} (resp. X5, resp. ¥g5) for all

j. We shall set (a,b) = (1,1) (resp. (2,0), resp. (0,2)). Composing (A12.3.3)
by Fourier transform on the left and inverse Fourier transform on the right,
as in (A12.1.4), we reduce ourselves to the £(L?) boundedness of an operator

that may be written, setting 7; = v;t in the integral, as the sum in 41,...,%,
of

n ~
(A1234) / H S(t, Vj, Qin+1—j’ >\7f'n+17j)10<v1<"'<vn d’Ul cen dvn,

j=1

where Q;,, +1; is defined from @Q;, ., ; by

(A12.3.5) Qin+1fj (t, vj, &, n) = eitkin+1_jt<f>sQin+1fj (t(1 + Uj)v £,n) <77>7s

and S(t, vy, Qinﬂﬂ. s Aipy1_;) 18 defined in . Since @, ,,_, belongs to
the class X.)}" of Definition Qip.1_,; is in the class i;?mo of Defini-
tion taking for mg any number mg < m. As m is taken close to %, we
may assume mqg > . In other words, is of the form M, (¢, O,Q”7An)7

with notation (A12.2.20) with Q = (Qips-- - Qll)
We shall apply Proposition [A12.2.5| with n+ 1 replaced by n and p = n+ 1.

This is possible since, if in condition (A12.2.41)), a; = b; = 1 for all j, or
aj = 2,b; = 0 for all j, or a; = 0,b; = 2 for all j, inequality a,s + b,» > 1 is

always satisfied. We deduce from (A12.2.47)) that the £(L?) norm of (A12.3.4)

is bounded from above by

(KELt—(m—é’—%))n
for some K > 0. Since we have 5" terms in the sum (A12.3.3), (A12.3.1)
follows for B, (t). Since according to (A12.1.11), C,(t) may be written as
B, (t)* for some By(t) of the form (A12.1.8]), we get also the first estimate
(A12.3.1).

This concludes the proof. O

We want next to obtain £(L?) bounds for L o C,(t), where L is defined in
(A12.1.15). We compute first the composition between L and an operator of
the form e~TH0V(t 4 7)™ where V is of the form (A12.1.3)).
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Lemma A12.3.2. — Let Q be a 2 x 2 matriz of functions in the class X7
of Definition |A12.1.1, Let X\ be in R and set Vg(t) = e Kg according to
notation (A12.1.5), (A12.1.4]). Then one may find 2 X 2 matrices Q" (resp.
Q") with entries in X5\ (resp. X5y or X¢'') such that

(A12.3.6) Lo (e*"TPOVQ(t + T)eiTP‘))

— (e—iTPOVQI (t + T)eiTP(J) oL+ (e—iTPOVQN (t + T)eiTP0>
Proof. — Using notation (A12.2.14)), we write

2 2
_ . &

with g in 26’,7(?- We have to compute the action of L on the operator with
kernel

IA(E+T .
e [ o0,
(A12.3.7) 1her 2T
xéHZ)qjk(Hr,g,n)dﬁdn.
One gets using expression (A12.1.15)) of L
i T )
AT L wemym)irl(= ) p(O)— (=) p()] 1.
(A12.3.8) > e Eijk
1<5,k<2 2m

X (z+ (_1)j+1tp/(€>)ii%k(t +7,&,m) dédn.

(A12.3.9) (m+(_1)j+1tp/(§))é><z>
RIS S IS S
= gl Y —vig Y
2
+ (—1)j+k<§>2 [Z/ + (—1)k+1tp'(77)].

We plug (A12.3.9) in (A12.3.8). The last term in ‘A12'3'9.: gives an expression
of the form of the first term in the right hand side of (A12.3.6)), where the
operator e~ "0V (t + 7)€’ is given by an expression of the form (A12.3.7)),
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k&

with éﬁ%qﬂf replaced by (—1)7+ 67 ik i.e. Q' is given by

2 2 2
€
Q'(t,&,m) = ZZ Gkt &) (=1 B ——.
ot ()
This is an element of ¥5)' as wanted.
On the other hand, if we plug the first term in the right hand side of
(A12.3.9) in (A12.3.8) and perform one integration by parts, we get

2 eiA(t+T)

2
J+1 i(@E—yn)+it[(—1)Ip(&)—(—1)*p(n)]
DRI =K
J=1k=1
13

Bl
x [(—wwpg + (—1)’@@1),7} [@qjk(t + 7.6 m)| dgd.

We get an operator of the form of the last term in (A12.3.6)), with a symbol
Q" that may be written as the sum of an element in X5 and an element in

%1 This concludes the proof of the lemma. O

We may prove now the following statement.

Lemma A12.3.3. — For any n in N*, one may find operators CP(t), 0 <
p < n such that

(A12.3.10) LoCy(t)=C%t)o L+ f:cg(t)
p=1

which have the following structure: Operator CO(t) is of the form
(A12.3.11) / [Te ™V (¢t + 7)™ loer,cocr, dry .. dry

where V'(t) = S7__, ei)‘ftKQz, with Q) matrices with entries in X5 . Opera-
tor CE(t) for 1 < p <n has structure

p—1
(A12.3.12) / H e_iTjPOiV’(t 4 Tj)eiTjPO > e_iTpPOZ‘V”(t + Tp)eipro

n
x [] e™Pivt+7)em P ler concr dry .. dry,
Jj=p+l1
where V is as in (A12.1.5), V' is as above and V" is a sum V'(t) =
2 26”‘“[(@; with QY matmces with entries in 2270 or 2071 Moreover,
one has the following estimates

(A12.3.13) IC2(H) | o2y < (Ked+a—m)",
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(A12.3.14) IC2 M) oy < (Ret?+i-mya=(0+3) 1< p <

Proof. — We start from expression (A12.1.11)) of Cy,(t). If we compose at the
left with L and use (A12.3.6]), we obtain the sum of an expression of the form

(A12.3.12)) with p = 1 and a quantity of the form (A12.1.11)), with the product
replaced by

n
(A12.3.15) e—iﬁPo,L'V/(t + Tl)einPo oL o H e—i'rjPoZ-V(t + Tj)eirjPo'
j=2
If we iterate, we obtain C2(t) o L with C(t) given by (A12.3.11)) and the sum

for p going from 1 to n of (A12.3.12)).
We have next to obtain (A12.3.13)), (A12.3.14). By duality, we may replace

(A12.3.11) by

n
(A12.3.16) (—1)"/ [[e V't + 7)™ loer cocr, dri ... dTy,
j=1

and (A12.3.12) by
(A12.3.17)

n—p
(71)71/ H e—iTjPo,L-V(t + Tj)*eiTjPoe—iTHJrl,pPg,L-V/l(t + TnJrlip)*eiTnJrl,pPO
7j=1

n
x ] eVt + 1) e 0 locr coar, dry - dTy
j=n+2—p
for1 <p<n.
Consider first (A12.3.16]). We have an operator of the form (A12.3.3) (with
s = 0) whose £(L*) boundedness reduces to the one of an expression of the

form (A12.3.4) in terms of symbols Qinﬂ,j given by (A12.3.5) from symbols
in the class Y% because of the definition of V'(t + 7;). It follows from the

last statement in Lemma |A12.3.1| that the same estimate as (A12.3.1)) holds,
which gives a bound of the £(L?) norm of (A12.3.16)) by the right hand side

of (A12.3.13).

Let us study (A12.3.17) and show that its £(L?) norm is bounded from

above by the right hand side of (A12.3.14)). Operator (A12.3.17)) is of the form
(A12.3.4), with a sequence of symbols (Qi,,..., Qi) with Q;, belonging to

the classes i;]mg)]m , where (aj, bj)1<;j<n has the following form

(A12.3.18)
(ana bn) = (L 1)7 SRR (ap+1> bp+1) = (17 1)7 (aIH bp) = (07 2) or (L 0)7
(apfl, bpfl) = (0, 2), ey (al, bl) = (0, 2).
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The only couples (5, 5”) such that a;s + bj» may be eventually equal to zero
are those with j/ < j” = pi.e. those for which condition (A12.2.41)) is satisfied.
We thus obtain that (A12.3.17) is of the form (A12.3.4) and has £(L?) norm
bounded from above by (A12.2.47), (A12.2.49)), so by the right hand side of
(A12.3.14). This concludes the proof. O

Proof of Proposition|{A12.1.3: Since m is taken close to % and ¢’ close to zero,
the exponent of ¢ in the right hand side of (A12.3.1)) is negative. As ¢ > 0, for

e small enough, we have

1 1
IBaB)llogar < g ICaOllcqar) < 5
In particular, (A12.1.9) and its counterpart for C,(¢) holds, so that B(t) and

C(t) are well defined, bounded on H*® and satisfy (A12.1.17)
Since by (A12.3.13)), |C5(t)| £(12) satisfies the same estimate as || By (t)]| £¢re),
|Cn ()| £(rs), the operator C(t) = Id+32 CY(t) is well defined and satisfies
A12.1.19). We notice next that if we set for n > 1, Cy,(t) = o1 Ch(t), we

have by (A12.3.14)
IC1 ()l 22y < Cn(ﬁ'eb)"t("’l)(‘5'%*’”)5*@

Since &' + 1 —m < 0, we get after summation estimate for Cy(t) =

90 C1.n(t). We still have to check the last assertions of the proposition.
To prove , it suffices to check that for any n, NoB,(t) = %Na
for any n, and the corresponding equality for C,(t). Because of ,
(A12.1.11]), it is enough to show that

Noe_”POV(t + T)@”PO = —eiTPOV(t + T)e_iTPUNO.

But this equality follows from and the fact that Noe' ™10 = e 710 V.

Moreover, if V preserves the space of odd functions, so do By(t), Cn(t)
because of their definition, and of the fact that Py preserves such spaces. This
concludes the proof. O







APPENDIX A13

DIVISION LEMMAS AND NORMAL FORMS

We have discussed in section normal forms for an equation of the form
(D¢ — p(Dg))u = N(u) where p(§) = /14 &? and N(u) is some polynomial
in u,u. We distinguish among the monomials of u the characteristic ones,
that are those of the form uP*'u? = |u|*’u and the non-characteristics ones,
of the form wPu? with p — ¢ # 1. We have seen that if L, = x + ¢p/(D,), a
characteristic monomial will satisfy essentially an equality of the form

(A13.0.1) Ly (|u|*u) = (p+ 1)(Lyu)|u|* — puP aP 'L u + remainders,

that allows one to obtain for the L? norm of the left hand side a bound in
| 72 || L ] 2

Our first goal in this appendix is to give a proof of inequalities of that form
for more general characteristic nonlinearities, given in terms of the kind of
nonlocal multilinear operators that we have to use in the proof of the main
theorem of the book. Section below is devoted to that, except that we
put ourselves in the semiclassical framework that is very convenient for the
proofs.

For non-characteristic nonlinearities, non longer works, and as ex-
plained in section one has then to eliminate such nonlinearities by space-
time normal forms. We perform in section these space-time normal
forms in the semiclassical framework, for general non-characteristic nonlinear-
ities given by the multilinear pseudo-differential operators introduced in Ap-
pendix [A9] The method is the one outlined in section extended to these
general multilinear expressions. We make also normal forms for quadratic con-
tributions given in terms of symbols with space decaying symbols, along the
lines of the end of section
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A13.1. Division lemmas

We establish here some division lemmas, which are variants of similar results
obtained in [20].

Definition A13.1.1. — For n in N*, denote by I',, the set of multi-indices
I =(i1,...,ip) withi; = £1 for j = 1,...,n. Denote by TS" the subset of T,
made by those I = (i1, ...,i,) such that 3°7_;i; =1 and roeh = 1, — Teh,

Let us fix some notation. If I = (i1,...,i,) is in T';, and as above p(§) =
/14 &2, we define
(A13.1.1) GrE - E) = (et E) S ()
j=1

Set also p(z) = v1 —2? for |z| < 1, so that by Lemma 1.8 of [20], if v €
C§°(R) has small enough support

_ 7 +p'(§) 20, ,
(A13.1.2) () £ﬂchp(:c)’7(<£> (z£p'(€)))
bae§) = SEU (020 £2/(€)

satisfy estimates
070 a (x,6)] < Cap(¢) 717

(A13.1.3) _
10207 b (2,€)] < Caple)* 27171,

Proposition A13.1.2. — Recall notation for the function
Moy(&1,...,&,) and the class of symbols introduced in Definition
for 8>0,xk>0. Let v > 0.

(i) Let I be a multi-index in (i1,...,17) be in T'y, and let my be a symbol in
S1,5(IT5=1 <§j>_1MO(§)”,n). Then we may find symbols

n

(A13.1.4) mpp € Sap(J] (&) " Mo(&)*™(z)""\n),£=1,...,n
j=1

such that if v is in C3°(R) and has small enough support, one may write

(A13.1.5)
m[(yvx7§17 s 75”) - m[(y,x,fl, s 7571) H ’Y<M0(€)4(w + zép,(gf)))

/=1
n

) @+ i (&))mre(y, @, &1, En)-

(=1
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(ii) Assume that I is in T2, Then we may find a symbol

n

(A13.1.6) ar € 5473(1—[ <§j>_1M0(§)V<$>_OO,TL)
j=1

and symbols mrj as in (A13.1.4) such that

(A1317) m[(yvxa§17 cee 7£n) = g[(gla cee 7£n)al(y7x7£17 s 75%)

+> (w+ig (&))mre(y, x, &1, ... &n).

(=1

Proof. — Define

(1 =) (Mo()(x + ' (1))
r+i1p/'(§1)
mi (g, €0, 6n) =y, 3,60, E)Y(Mo()H (@ +iap (1))

and write

ml(ya$a§13 o 7§n) = mgl)(ya $,§1, o agn)+ml,l(y7x7£17 s 7§n)(x+llp/(§l))

Then my satisfies (A13.1.4), and repeating the process with m; replaced by
my 1, successively with respect to &a,...,&,, we get (A13.1.5)).

(ii) Equality (A13.1.7) is obtained from (A13.1.5)) defining

le(y,x,fl,. : ’én) = m[(y7x7€17' . '7€n

(A13.1.8) ar =mrgy* ﬁ ’Y<MO(€)4($ + izP’(&)))
j=1

and showing that a; belongs to Sy g ([T, (&))" Mo (€)1 (x) ">, n). This is
done in the proof of (i) of Proposition 2.2 in [20] (with the parameter £ in
that reference set to 2). O

A13.2. Commutation results

We study now the action of the operator £ = 3+Opy,(z + p/(€)) introduced

in (A11.1.6)) on characteristic terms.

Proposition A13.2.1. — Let I be in T'" for some (odd) n > 3 and
v be mnonnegative. Let my be an element of Sip([]j— (&) Mo (€)Y, n)
with B > 0. Then, for some new value of v, there are symbols mr; in

Sup(Th=y (&) "My n), § = 1,...,n, v in Syp(ITl=y (&) ' M¥,n), v in
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(=1 <§j>_1M5,n), such that for any function vy, ..., v,

(A13.2.1) L,0py(mi)(wr, - 1) = S0 Opy(mr)un, . Loy ,)
j=1

1
+ Oph(’r)(yl? s 7yn) + Eoph(rl)(yla v 7Qn)'

Proof. — We write decomposition (A13.1.5) of my, denoting the first term

in the right hand side by mgl). This is an element of Sy g(I[7—; <£j>71MO”, n)
supported in

(A1322) {(y’ €T, 51, cee 7511); |'T + iﬂp,(gf)’ < O‘Mo(gla s 7571)_4}

~
T =

for some small o > 0. It is proved in the proof of Proposition 2.2 in [20] that

on domain (A13.2.2)), one has |§| < CMy(&) for any ¢ = 1,...,n and that
(dp(x)) ~ Mo(€) (see formulas (2.10) to (2.13) in [20], and the lines following

them as well as Lemma 1.8). Let us show that

(A13.2.3) mgl)(y, &1, L&) (& + -+ &) — Zp/(fj)]
j=1
= Zml,j(y7$7§17 s 7511)(1: + Z]p,(gj))
j=1

for symbols my ; in Sy 5(ITj=; (&) Mo (€)3+ ()™, n). Actually, expanding
the bracket in the left hand side of (A13.2.3) on & = ijdp(x), j =1,...,n
and using > %_; i; = 1, one may write the left hand side of (A13.2.3)) as

(A13.2.4) S mM (g, 61, 60 — ijdp(2))E;(x, €)
j=1

with

(A13.2.5)

&j(z,6) = /01 [p”((l—u)dw(w)w(ﬁﬁ- )= p”((l_ﬂ)ijd@(ff)+ﬂfj)} dp.
j=1

Notice that on the set (A13.2.2) containing the support of mgl), x stays for
any £ in a compact subset of | — 1, 1[ and that for any a in N*

(0%dp(@)) = O((dp(x))T2%) = O(My(€)'+?*) = O(Mo(£)*),
so that each 9% derivative of &;(z, £) is O (Mo (£)**) on that support. Moreover,
we may write using
(& — ijdp(2))éj(z, &) = (z +i;p'(§))b+ (2, )€ (2, €)
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if (z,€) stays in (A13.2.2) and the function « in (A13.1.2) is conveniently
chosen. Plugging this in (A13.2.4) and defining

mr (Y, 2,6, &) = mi (g, 2,60, )by (2, €5)E5 (3, €)

we get (A13.2.3)), with a symbol m; ; in the wanted class because of (A13.1.3))
and of the fact that |£| = O(Mp(€)) on (A13.2.2). We use now Proposi-
tion [A9.2.7] to write

(A13.2.6) Opy,(p'(€)) o Opy(mP (g, 2,61, ., &)
= Oph (p/(£1 +- gn)mgl)(yawvgla v agn)>
+ hoph(rl(y7x7§17 cee 75’/1)) + Oph(ri(y7x7£17 cee 7€n))

with r1 in Sy (117, (&) 'MY,n), r; in Sh sl (&) MY, n) for some v.
Using (A13.2.3]), we may rewrite the first term in the right hand side as

(A13.27) 32 0 (miV (.61, £ (6))

j=1
+ 32 Opy (3,60, ) + i (&)
j=1
Using that 37 ,4; = 1, and that £, = %Oph@ + 9/ (€)), it follows from

(A13.1.5), (A13.2.6), (A13.2.7) and Proposition |A9.2.1| that £.Op;(my) is
the sum of terms of the following form:

%Oph(mgl)(yax)gla e 7§n)(‘r + Z]pl(é.])))ﬂ ] = ]-7 e, n
(A13.2.8) %OMGWA%L&,”@QQ+QN@»»jzl,”m
Oph(rl(yamvgla s )gn)) + %Oph (rll(yvx7£17 s agn)>

with my; in Syg(I1j=y (&) Mo(€)Y(x) ", n) coming from (A13.1.5) or

(A13.2.7). To conclude the proof, we just have to apply again Proposi-

tion [A9.2.1] to the first two lines of (A13.2.8]), in order to rewrite them as
A13.2.

the sum in the right hand side of (| 1)), up to new contributions to the
remainders. O

In the non-characteristic case, we cannot expect an equality of the form

(A13.2.1). Instead, we shall have:

Corollary A13.2.2. — Let I be in T2, Then there are symbols my;,
r, v’ as in the statement of Proposition |A13.2.1 and a symbol r1 in
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Sap(IT5=1 (&) MY, n) for some v, such that

L10pp(mr)(vy, ... ,0,) = Z Oph(m[,j)(yh s ’Eijyj7 s 7Qn)
=1

=+ Oph(T’)(Ql, ce )Qn)

(A13.2.9) 1
+ 20D () vy, )

T
+ Eoph(rl)(ﬂlv“'7yn)'

Proof. — We may reproduce the proof of Proposition [A13.2.1] except that,
when Taylor expanding the bracket in the left hand side of (A13.2.3)) on &; =
ijdp(x), we shall get the right hand side of this equality and the extra term

(A132.10)  mW(y.z,6,....&) [p’ (Enj ijdso(w)) - En:p/(ijd@(x))]
=1 j=1

which does not vanish if »7_;i; # 1. Since p'(§) = % and do(z) =

—z(dp(z)), with (de(x)) = O(Mp(€)) on the support of m(ll), we see that
(A13.2.10) may be written as xr; for some r1 as in the statement. This gives
the last contribution to (A13.2.9)), the preceding ones being those furnished

by the proof of Proposition O

The last term in (A13.2.9) does not enjoy nice estimates. Because of that,
non-characteristic terms have to be eliminated by normal forms. We describe
such normal forms in next section.

A13.3. Normal forms for non-characteristic terms

Proposition A13.3.1. — With the notation and under the assumptions of
(ii) of Proposition|A13.1.2, one may write for any vy, ...,v,

(A133.1) (D1~ Opy (o€ +p(€) ~ iny ) )Opu(an) (v, - v,)

= Opp,(mr)(vy, ..., v,) + Z Oph(af)[yb oy (D= Oph()‘ij))ij s 7271]
j=1

+E(Ql7 cee 7Qn)
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where \i;(x,§) = € +i;p(§) — %h, and where R is the sum of terms of the
following form

hoph(mlyj)(yla s wcijij s ’yn)’ 1 < .7 <n
(A13.3.2) Opy (r7) (v, - - - up)

hoph(rf)(glv cee 7yn)

where my; is in Sy p([1j— <§j)_1M6’<x>_l,n), rr (resp. 7 ) belongs to
Saa( ?:1 <fj>_1M5<x>_oo7”) (resp. Szll,ﬁ( ?:1 <fj>_1M57”)) for some v.
The first line in may also be written as

(A13.3.3) Opy,(r)(vy, - .., v,)

for a symbol r} in Sa (1521 <§j>_1MOV, n).

Proof. — Notice first that by the definition (A9.1.6) of Op;, and the fact that
h =1 one has
t )

(A13.3.4) (Dt — Oph(xf))Oph(af)(yl, CeU)

= Z Oph(aI)(yl, ceoy (De — Oph(x§))yj, e ,yn)

j=1
=+ Zhoph((xaxal)(yv z, 5)) (le s 7Qn)'
Moreover, by Proposition [A9.2.1| and the definition (A13.1.1) of g;

(A13.3.5)  — Opy(p(€))Opp(ar)(vr, - - v,)

= Opy(argr) (v, - -,v,) — > i;0pp(ar) (v1, - -, Opu(P(€)y), - -, uy)
j=1

+ hoph(T[)<Ql, s 7Qn) + Oph(rll)(yh s 7%1)

where 17 is in Sy (1) (&) Mg ()", n), v} in S} 515 (&) ME,n).
Notice that p(¢) is in S, g((£),1) (for any &, since, this symbol depend-
ing only on one variable & My(§) = 1), so that, to get from Proposi-
tion symbols r7, 7} in the indicated classes, we would need that a; be
in Sy p(Mg 11—y (&) 3(x)">,n) instead of . But by , as
is supported in , and we have seen just after this formula that this
implies that [£| < CMy(§) for any £. Consequently, the above property for ay
does hold, for large enough v. If we make the sum of and ,
we get that the left hand side of is given by the sum in the right
hand side of (A13.3.1)), contributions to R of the form of the last two lines in

(A13.3.2) and the term Opy(argr)(vy,.-.,v,). By (A13.1.7), we thus get the
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first term in the right hand side of (A13.3.1]) and expressions

—Opy, (mre(y, z, &1, - .- &n) (@ +iep"(€0))) (L1, - - - 5 0)-

Using again Proposition we write these terms as contributions to R
given by (A13.3.2)). This concludes the proof. O

A13.4. Quadratic normal forms for space decaying symbols

In section [2.2] we have performed an easy quadratic normal form, that al-
lowed us to get rid of the quadratic term in the right hand side of ,
given by Opy,(mo 1)[us], with || = 2 and mq ; in Sp o ?:1 (&;)71,2). This
procedure made appear a new quadratic term Oph(mf), 7)[ur] in the right hand

side of 1) given in terms of a symbol mg ; in 5’6’0(1_[?:1 (§j>_1,2). We
shall have to perform also a normal form to eliminate such terms. We define
a new class of operators.

Definition A13.4.1. — Letw € [0,1], i = (i1,42,13) in {—1,1}3. We denote
by K (resp. K, ,(i)) the space of operators of the form
(A13.4.1)

1 1 , S
(f1, f2) — 217r/_1/_1/emfok(ty50751752,M17M2)f(§1)f(§2)d§0d§1d§2dmdu2

where k is a smooth function of (t,&o,&1,&2, p1, p2) that satisfies for some v
in Ny any N?’)/Ov')/la’)/?a.ula/‘??j in N

(A1342) lagaggagllagik(tvé-Oa517527/’“7,“’2)’
< CMy(&y, &)V HO0tMF72)8 (60 111 €) — poly) N wlotmt2) =g

(resp. that satisfies
(A13.4.3) [0]00 0 0L k(t, &, &1, 2, pin, pi2)]

< O My (&1, &) 0TI (e — &y — po) ™ Vb0t
x (t¥(io{€o) — i1 (€1) — i2(&2))) ™

in the case of KCy, (1)), where Mo(&1,&2) still denoted the second largest among

(&), (&2)-
If k satisfies

(A1344) k(t’ _£0a _517 _52) = _k(t7 gOa 517 62)

then (A13.4.1) sends a couple of two odd functions or two even functions to
an odd function. If k satisfies

(A13.4.5) k(t, —&o, &1, —&2) = k(t, &0, 61, &2)
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then (A13.4.1) sends a couple (f1, f2) with f1 odd, fo even or fi even, fa odd

to an odd function.

Let us check first that we may express operators of the form Op(m/)(v1,v2)
with m/ in S (Mo(fl, &9) H?:l <£j>_1, 2) in terms of operators K .

Lemma A18.4.2. — Let m' be in Si’o(MQ H§:1 (§j>71,2). Let i1,i9 €

{—1,1}2 be any choice of signs. Then if L+ is defined by (A10.1.4)), one may
find operators Ky, g, in K10, 0 < 41,05 <1 such that the action of Op(m’) on
any couple of odd functions (v1,v2) (as defined in ) may be written as

1 1
(A13.4.6) 23 Ky (Lt Litvs).
01=042=0

Moreover, if m satisfies (12.1.71), Ky, 0, is given by a symbol k satisfying
[A13.4.4) if b4 + 0o =0 or 2 and (A13.4.5) if {1 + {1 = 1.
Proof. — We may rewrite

Op(m’)(v1, v2) = Op(m}) ((Dy) ™ o1, (Da) ™ v2)

with m/ in Sy o(Mo,2). Using the oddness of v;, we write

: 1
(De) oy = 2a [ (Do(D2) " 05) () dps
(A13.4.7) b2 /*1 DR

iz 1
=570 /_1[(Lijvj)(ﬂj$) — pwvs(piz)] dpy;

for any choice of the signs i; = +. By definition of the quantization and
inequalities satisfied by elements of the class S’, one may rewrite expres-
sions like Op(m})(xf1, f2) as sums of expressions of the form Op(m])(f1, f2),
for new symbols 7} in Sy o(M},2) for some v. Using , we thus see
that Op(m')(v1, v2) may be rewritten as a sum of terms

11
2 [ s op ) [(Lh o) (), (Lf2vo) ()] dprdes
for some symbols 7' in S o(Mg,2). By (2.1.6), we have
Op(i) [ f1(u1-), f2(p2-)]

1

= Gy / e 1282) ! (111 €1 o) f1(€1) fo(E2) dE1dEs

= o [ k(6. 61,6, i) i€ o(62) derd
with X
k8o, &1, €2, 11, 12) = Wm,(fo — &1 — p282, 11, p2ba).
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It follows from estimates that hold for any «,«f, that inequalities
are true for some v, Kk = 1, w = 0, which implies the conclusion
as the last statement follows from the transfer of property to k by
inspection. O

Proposition A18.4.3. — Let K be in Kyo. Let i = (ig,i1,i2) € {—,+}5.
One may find operators Ky, Ky in IC; 1 (2) such that for any fi, fa
)

(Dy — iop(Dy)) VK u (f1, f2)] = K(f1, f2)
+ VtKy ((Dy — i1p(Da)) f1, f2)
+ VtKy (fi, (Dt — i9p(Dy)) f2)
+ KL(f1, f2)-

If K satisfies (A13.4.4) (resp. ), so do Kp, K.

Proof. — Take x in C§°(R) equal to one close to zero and set xi(z) = 1_%(2)
Define from the function k associated to K by (A13.4.1)) a new function

(A13.4.8)

(A13.4.9) ku(t,&,&1, &, p1, p2) = k(&o, &1, &2, pa, p12)
X X1 (\/5(—2'0<€o> +i1(61) + i2<§2>)>-

Then kg satisfies (A13.4.3) with w = % Call Ky the associated operator. If
we make act Dy —iop(Dy) on VtKg(f1, f2), we get the second and third terms
in the right hand side of (A13.4.8)), an operator associated to the function

(A13.4.10) k(0,15 &2, 15 2) (1 — x) (ﬂ(—i0<§o> +i1(§1) + i2<§2>))

and contributions coming from the action of D; on kg7, that may be written
1

as contributions to K in (A13.4.8]) (with even an extra factor ¢t~ 2). Finally,

we see that (A13.4.10) provides K in the right hand side of (A13.4.8]), modulo

another contribution to K. This concludes the proof as the last statement

follows from (A13.4.10)). O

Corollary A13.4.4. — Let m' be in S o( ? <§j>71 2). One may find for
any i1,42 in {—,+}, any £1,42 in {0, 1} operators K}}’ffm, Kﬁ;ﬁ-g in the class
K 1 (1,i1,12) such that for any odd functions v1,va, if one sets

2

1

1
3 Z V4
(A13.4.11) Qirin(v1,v2) =172 > S Kpii2, (Litoy, Li2vg)
¢1=0/¢5=0
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then
(Dt — p(Dg))Qiy in (v1,v2) = Op(m/) (v1, v2)
(A134 12) +Qi17i2((Dt - ilp(Dx))U17U2)
+ Qiyia (v1, (Dy — iap(Dy))v2)
+ Ry iy (v1,02)
where
R“’” UI’UQ =t Z Z Kilﬁzzz Leivle%vQ)
(A13.4.13) ”2 0
12it~3 Z Z K2, (Lo, L2w,).
£1=0/¢2=0

Moreover, if m’ satisfies (2.1. Kﬁ}’ffm,Kﬁfig satisfy (A13.4.4) if {1+ 0o =
0 or2 and (A15.4.9) if {1 + Lo = 1. In particular, Q;, ;, sends a couple of odd
functions to an odd function.

Proof. — By Lemma [A13.4.2) we may write Op(m’)(v1,v2) under the form
(A13.4.6). We apply to each Ky, 4, in (A13.4.6) Proposition |A13.4.3] If we
define Kﬁ},’fih (resp. Kﬁf?m) from the operator Ky (resp. K1) in (A13.4.8),
and use that L;, commutes to D; — ip’(D,), we obtain (A13.4.12)) for the
Qi i, defined in (A13.4.11)). The last statement of the corollary follows from

the last statement in Proposition |[A13.4.3| and Lemma [A13.4.2 ]

A13.5. Sobolev estimates

We shall prove Sobolev estimates for operators introduced in Defini-

tion [AT3.4.11

Proposition A13.5.1. — Let w € [0,1], kK > 0, K be an operator in the
class K., (i) (for a triple i = (i1,i2,i3) € {—,+}*). Assume moreover that

the function k in (A13.4.1) is supported for |&o| < 2(&1). There is o9 € Ry
(depending on the exponent v in (A13.4.5)) such that the following estimates
hold true for any s in Ry, any test functions f1, fo

(A13.5.1) K (f1, fo)llms < Ct~2 || fall oo || £l 2rs-

(A13.5.2) [|K(f1,zf2)llms + | K (xfr, fo)las + 2K (f1, f2)llare
< Ct% || fall oo | fil e

(A13.5.3) |K @ fr 2 fo)llms < CEZ | fallmeo | fullre-
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Proof. — By (A13.4.1)), we have to prove, in order to establish (A13.5.1)), that

the operator

11
(91,92) —>/_1 /_1/<50>8k(t7§0,51752,M17M2)<§1>_8<§2>_UO
% g1(&1)92(8§2) d§1dSadprdps

is bounded from L? x L? to L?, with operator norm O(t~2). Because of our
support assumptions, My(£1,&2) < C(&2), so that we may control the factor

My(&1,€2) in by C(&2), i.e. M} will be bounded using (£2)”7° if og
is taken large enough. Moreover, as s > 0, (£0)* (€0 — &1 — pa&a) N (&)™ =
O(1) when |&] < 2(&) if N is large enough relatively to s. The proof of
is thus reduced to the proof that operators of the form

(A13.5.5)
1o
(91,92)—>/ / /k(tfo,fl,&,M17M2)91(§1)92(§2)d§1d§2d,u1d,u2
1/

(A13.5.4)

are bounded from L? x L? to L?, with operator norm O(t_%), if k& satisfies

(A13.5.6) |k(t, &0, &1, & p1, p2)| < Cléo — pn&r — pobo) (&) 7
(t (i0(€o) — i1(&1) —inlé2))) 7
The operator norm of (A13.5.5)) is bounded from above by

(a1357) ¢ [ 11 / 11 [S?Op / |/~€(t,§o,§1,§2,u1,u2)!d€1d§2};

1
~ 2
S |:Sup/|k(t7£0)€17§27ula”’2)d§0:| d,uld,UIQ

1,82
Notice that there is C' > 0 such that for any «, 5 in R, any p € [—1,1]
_ _ 1l _w
(A13.5.8) [+ )7 B + u) ™ de < Ol He s

uniformly in «, 5. Actually, if we integrate for |{| > 1, we bound (A13.5.8)) by

Ol ([ e+ ) de)’

If one takes in the above integral computed either on domain £ > 1 or £ < —1,
n = (£) as a new variable of integration, we get a bound by the right hand side

of (A13.5.8)). If one integrates for [£| < 1 in the left hand side of (A13.5.8)), we

bound the corresponding quantity by

/§|<1 <tw(a+ 1+§2)>*1d£§ C/<0/+t“C2)_1dc§ o2
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which is better than the bound we want. We use (A13.5.6)), (A13.5.8) with
€ = & to estimate the second factor in (A13.5.7) by ¢t~ 7 and (A13.5.8) with

o, 1 X
& = & to estimate the first integral factor by ¢t~ 2|ui| 2. We obtain that

(A13.5.7) is O(¢t~ %) from which (A13.5.1) follows.

To get (A13.5.2)), we notice that, by (A13.4.1), K(xf1, f2) (resp. K(f1,xf2),
resp. K (f1, f2)) may be written as K (f1, f2) for an operator K; of the form

), obtained replacing k by D¢ k (resp. Dg,k, resp. —Dg k). Since
by (A13.4.3)) these D¢, derivatives make lose t“ (and change the value of the
exponent v), we get (A13.5.2)) from (A13.5.1)) (with a new value of o).

One obtains ((A13.5.3]) in a same way. O
Corollary A13.5.2. — Let K be an element of Ky, (i) forw € [0,1], kK > 0,

i € {—,+}3. The following estimates hold true for any s > 0 and some oy
independent of s:

(A13.5.9) K (1 f2)llmre < O L fallzoo | foll s + I full e | f2ll 1]
1K (f1, f2)llze < O 2| full 2 foll oo
1K (1, f2)llz2 < C 2 [ fullzoo | fo o2

(A13.5.10)

(A13.5.11)
1K (@1, f2)ll2 + 1K (fr, 2 fo)ll 2 + @K (fr, f2)ll22 < O3 || fil g2l foll oo
1K (@1, f2)ll2 + 1K (fr, 2 fo)ll 2 + @K (fr, f2)ll2 < O3 || fill oo | fo| 2

(A13.5.12) [|K(zf1, fo)lms + K (fr, 2 f2) s + |2 K (f1, f2)l s
< Ct2 (| fillgeoll foll s + I fillzs |l f2ll oo ).

Proof. — We may split K = K. + K-, where K~ (resp. K.) is given by
an expression of the form with k supported for [€2| < 2(&1) (resp.
|€1] < 2(&2)). If we apply (A13.5.1) to K and the symmetric inequality to
K., we obtain

(A13.5.9)
Let us prove (A13.5.10). It suffices to show that the two estimates hold
for K< for instance. The first one follows from (A13.5.1)) with s = 0. To get

the second one, we notice that it is enough to establish the L? x L? — L2
boundedness of

11
(91,92) —>/71 [1 k(t, &0, &1, &2, p1, p2)(€1) 70 g1(61)92(&2) d€rdéadpurdpnn

with operator norm O(¢t~2). Since €] < 2(&1) on the support, if oy has been
taken large enough, we see that we may rewrite this under the form ,
with some % fulfilling so that the conclusion follows.

Finally, estimates (A13.5.11)) follow from , noticing that, as in the
proof of (A13.5.2), we may reduce ourselves to operator Ki(f1, f2) satisfying
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the same assumptions as K, up to the loss of a factor ¢*. This concludes

the proof, as (A13.5.12)) follows from (A13.5.2)) and the above decomposition
K = K< + K>. D

Corollary A13.5.8. — Let 8 > 0, K, 0¢ as in Corollary[A15.5.3 and take
s large enough so that (s — og)B > 1. Then

(A13513)  |K(Lefi, H)llie < C % [P0\ Lo filla + L fill e |1 fol o

(A135.14)  [K(fi, Lefo)lle < CE I falla [P0 L foll g2 + | fo e .
Proof. — Let x be in C§°(R), x =1 close to zero. Decompose
Lafr =Xt Dp)(Lefr) + (1= x)(t " D) (Lt f1).

Write
(1 - X)(tiﬁDx)(L:l:fl) = x(l - X)(tiﬁDz)fl + itiﬁxl(tiﬁDw)fl
(1 - x)(t—ﬁDm>£i>f1.

If one applies the second estimate in (A13.5.10)), (A13.5.11)), one gets then

IK((1 = x)t "Da)Lifi, f2)| 12
< ClE3 (L =) (D) fullaeo
T E (I EPD2) Allen +HI (=) D2) fulleo ) [ 12l 2.
Since (s — 09)8 > 1, this is bounded by Ct~ || f1||zs || f2|| 2.
On the other hand, by the second estimate
1K (x(t° Do) Laf1, fo) |2 < Ct™2 |x(t™7 Do) L frll ool fo 2
< Ct 0 Lo fi 2| foll -

This concludes the proof of (A13.5.13), and thus of the corollary since
(IA13.5.14]) is just the symmetric estimate. O

Let us get next some Sobolev estimates for K (L4 f1, Ly fa).

Corollary A13.5.4. — Let K be in the class K, (7). Assume moreover
that k in (A13.4.1) is supported for |&1] < 2(&2). Let s,00, 8 be as in Corol-
lary|A13.5.5. Then, if (s — 09)p > 1,

(A13.5.15) | K (Lafi, Lefo)lms < CE72 || follas [t | Lafill 22 + || foll 1]

(A13.5.16)  [|K(Lxfi, fo)llas + | K (fr, Lefo)llms < CE 2| fill s | fol s
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1K (@ frs follms + 1K (Fry 2 fo)llas < CE2 || full e foll e
1K (2 fr, 2 fo)llrre < CEZ | full e || foll 1=

Proof. — Take x in C§°(R), equal to one close to zero and write K (L4 f1, L+ f2)
as a linear combination of the four terms

(A13.5.17)

I= tK(X(t_ﬁDx)Lifb (lD);fz)
_ (4B Da
(A13.5.18) 1= tK<(1 A TN f2>

111 = K (X(t77D,)Lefr,afo)
v = K((1 _ X)(t_BDx)Lifl,mfg).

We apply (A13.5.1) (with fi and fo exchanged since we assume here |£;] <
2(£2) on the support instead of |£2| < 2(£1)) in order to estimate the H® norm

of I by
(A13.5.19) Ct'=2||x(t P Do) Lt fil oo || fo| s
< CHT20N Ly fill 2| fol e

which is bounded by the right hand side of (A13.5.15)).
To study 1, we write it as a combination of terms

t2K<(1 - X)(t_ﬁDx)ul;;flv (ll;z)fz)
t (2(1 = )t 7 Da) i, é;fz)
it' PK (X'(t_ﬁDg;)fl, <g2>f2>

We estimate their H® norm using (A13.5.1) and (A13.5.2)) (with fi; and f»
interchanged) by

C 2| foll s [ (1 = %) (P Da) fall oo + IX (677 Do) fi]l 11|
< O 05 | o s | fo e
This implies a bound by the right hand side of (A13.5.15)) since (s —0¢)5 > 1.

By (A13.5.2) (with f; and fo exchanged), we estimate the H® norm of I17
by

Ct? ||x(t™"Dy) L fi1 || rroo || fol s
that we bound by the right hand side of (A13.5.15) as in (A13.5.19) since

w <1.
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We write IV as a combination of terms
D
tK(l— tP D)= f1, )
(1= D) s e
K(2(1 = x)(t7 D) fr, 2 f2)
’L't_BK(X/(t_ﬁDI)fl, .’Efg) .
We estimate the H® norm of these quantities using (A13.5.2) and (A13.5.3)
with f; and fy interchanged. We get
C(t+2 +£3) (1 = x) (¢ °Dx) fill oo | foll s
+ Ot P3| (¢ Dy) fill ool ol 1+
As (s — 09)8 > w, this implies a bound by the right hand side of (A13.5.15)).

This concludes the proof of (A13.5.15)
To prove (A13.5.16)), we decompose K(Ly f1, f2) (resp. K(f1,Lyf2)) as

the sum of +tK <g—§)f1, f2> (resp. £tK (fl, <g—z>f2)) and of K(zf1, f2) (resp.

K(f1,2f2)) and we apply (A13.5.1) and (A13.5.2) to get the conclusion.
Finally, (A13.5.17)) is just a consequence of (A13.5.2), (A13.5.3]). O

We translate finally the preceding corollary when one does not make any
assumption of support on the frequencies.

Corollary A13.5.5. — Let K be in the class K, ,(i). With the notation of
Corollary one has the following inequalities

(A13.5.20)
IK(Ls f1, Lafo)|ms < Ct' 7% [tﬁoo(”LiflnL?Hf?”HS + |l full s | Lx foll £2)

+ Wl ol e

(A13.5.21)  [|[K(f1, L fo)llms + 1K (L fr, fo)llms < CE 72 | fall s | foll s,
(with any choice of the signs & in the left and right hand side of these inequal-
ities).

Proof. — One decomposes K = K.+ K- as in the proof of Corollary [A13.5.2
and applies (A13.5.15)), (A13.5.16)). O




APPENDIX A14

VERIFICATION OF FERMI GOLDEN RULE

The goal of this Appendix is to check that the Fermi golden rule, used in
Chapter [3| (see Lemma and the proof of Proposition does hold. We
already know that from Kowalcyk, Martel and Mufioz, who gave a numerical
verification of the condition. We shall prove here that it may actually be
checked analytically.

A14.1. Reductions

We want to prove the following:

Proposition A14.1.1. — Let Y be the function defined in . Then
Ya(v/2) #0.

Let us prove here the following reduction:

Lemma A14.1.2. — Define the integral

. 1 : h3
(Al4.1.1) I= / e2ieV2 [cosh2 zt5+ iv/2sinh z cosh x] M dx.
R

cosh’ x

If I #0, then Ya(v/2) # 0.

Proof. — Recall that by , Y5 is given by
(A14.1.2) Ya(z) = b(z, Dy)*[k(2)Y ()]

where £,Y are defined in (I.1.5), and b(x, D) has been introduced
in Proposition Since b(z, D,)* preserves real valued functions and
odd functions, we see that Y5 is real valued and odd. By Proposition
Wi = ¢(Dg)* o b(x,D,)* (when acting on odd functions), where (&) has

modulus one. In order to show that Y3(y/2) # 0, it thus suffices, according to
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A14.1.2)), to prove that W7 [k(z)Y?2](V2) # 0. Recall that by (A8.2.23) and
A8.2.24),

(A14.1.3) Wiw = o [ (e, €)0(e) de
with, by ,
(A14.1.4) by (2,€) = Le0T(E) f1 (5, ) + LeoT(—E) folw, —E),

where f1, fo are the two Jost functions introduced at the beginning of Ap-

pendix and T'(§) is defined in . We thus get
Wn@Y?(V2) = [ o, VDR()Y (0)* do

(A14.1.5)

= T(V2) [ File V(@)Y ()" da.

Since the transmission coefficient 7'(1/2) is non zero, it remains to prove that
if I given by (A14.1.1) is different from zero, the same is true for the last
integral in (A14.1.5)), or since xy? is real valued, that

(A14.1.6) / Fi(@, V2)R(2)Y (2)? do £ 0.

One checks by a direct computation that the function

: 1
eirV2 [1 + B cosh™2 (g) + iv/2 tanh %} (1+iv2)~!

solves (A8.1.1) with € = v/2 and is equivalent to ¢i™V2 when goes to +00, 50
that is the Jost function fi(z,/2). If one plugs that value in (A14.1.6) and
uses the definition (1.1.5)), (L.1.6]) of k, Y, one obtains that (A14.1.6) is just a
nonzero multiple of ((A14.1.1)). This concludes the proof. O

A14.2. Proof of the non vanishing of Y5(1/2)

In order to prove Proposition |A14.1.1] it remains to show that I given by
(A14.1.1) is non zero. We compute explicitly this integral by residues.

Lemma A14.2.1. — One has

29m
Al4.2.1 ==
| : sinh(m/2)
Proof. — Denote
. 1 : h3
(A14.2.2) F(z) = ¢2ieV? [cosh2 2+ = +14v2sinh z cosh z Smij
2 cosh’ z
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This is a meromorphic function on C with poles z;, = i5(2k + 1), k € Z. Let
R be the rectangle in the complex plane with vertices at +£kw, +km 4 ikw for
k in N*. In order to show that

+oo
(A14.2.3) I =2ir > Res(F,z)

k=0
we have to check that

1
/ Ptk + ithm) |k dt — 0
0

1
/ \F(thr + ikm)|k dt — 0
~1

when k goes to +00. As F(—Zz) = —F(z), we just have to prove
1
(A14.2.4) k/ (|F(km + itkm)| + |F (tkm + ikm)|) dt — 0
0

when k — +00. As F(z) is a sum of expressions of the form 2izV2shl 2 (il

cosh? z
p,q in N, p < ¢, and bounding
sinh? z (1—e 22)P

< o(P—@)Rez
¢ (14 e22)1

cosh? z| —
we obtain when 0 <t <1, k € N*

|F(thr + ikm)| < e 2bmV2thr

—2kn/2t—km (1 + 672kﬂ)p
(1 _ ef2k7r)q

|F (kT +itkm)| <e

from which (A14.2.4)) follows.
Using cosh(zy, + w) = i(—1)¥ sinh w, sinh(z; + w) = i(—1)* coshw, we may
write

Fzp +w) = e‘”ﬁ(QkH)G(w)

cosh?® w

, 1
G(w) = e2iVIw [— sinh?w + =~ — iv/2sinh w cosh w | — :
2 sinh’ w
so that Res (F, zx) = e~ ™V2(2k+1)Reg (G, 0). One checks by direct computation
that Res (G,0) = —2. It follows that (A14.2.3) is given by

I 4i —W\/if —27k\/2 2w
= —4ire e =—

b sinh(7v/2)
whence (A14.2.1)).
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