
HAL Id: hal-02862369
https://hal.science/hal-02862369v1

Submitted on 22 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simulation-based framework for functional testing of
automated driving controllers

Adel Djoudi, Loic Coquelin, Rémi Regnier

To cite this version:
Adel Djoudi, Loic Coquelin, Rémi Regnier. A simulation-based framework for functional testing of
automated driving controllers. The 23rd IEEE International Conference on Intelligent Transportation
Systems, Sep 2020, Virtual Conference, Greece. �hal-02862369�

https://hal.science/hal-02862369v1
https://hal.archives-ouvertes.fr

A simulation-based framework for functional testing of automated
driving controllers

Adel Djoudi1, Loic Coquelin12, and Rémi Régnier12

Abstract— Motion planning is a major component of any
automated driving system. The safety assessment of such com-
ponents requires a formal characterization of the perception
and control mechanisms. This requires dedicated tools and
models for the environment, sensors and vehicles that are highly
representative of the real world. Simulation is a method to
virtually investigate the behavior of systems under study. It has
a key role to play in demonstrating the safety of autonomous
vehicles. In this context, we consider a control module as a
black-box and try to determine a reference which represents
the ’right decision’, if it exists. An optimization-based reference
model is created for the control function. This model allows
each scene in the environment to be mapped to the desired
decision regardless of the black-box. The black-box and the
reference model are run on several critical scenarios. In output,
an assessment of decision making is performed along with
systematic criticality characterization of targeted scenarios.

I. INTRODUCTION

Several Automated Driving Systems (ADS) aim to ensure
driver safety and comfort. Testing is required to gain con-
fidence that the ADS can operate effectively across the full
range of situations it is likely to encounter. However, it is
not realistic to physically test every combination of sensor
input and driving situation. Currently, physical testing of
Autonomous Vehicles (AVs) would require to accumulate
an incalculable number of miles (likely billions of miles)
without offering means to rigorously control the ADS eval-
uation, neither to repeat test cases on critical situations at
reasonable cost. A secure test site is required, and changing
the test setup and the subsequent repeated test drives in that
site requires a lot of effort and time. On the other hand,
simulation, modeling and testing has the potential to fill this
gap and to enable rigorous, controlled and timely evaluation
of ADS. The 3SA (Simulation for the Safety of Systems in
Autonomous Vehicles) project, which is part of the French
automotive platform PFA, aims to go further in the use of
digital simulation to demonstrate the safety of ADS.

a) Safety evaluation: The topic of “safety” must have
a paramount priority. In the case of ADS, human interven-
tion may take place too late in a dangerous situation or
(for systems with a high autonomy level) is not planned
at all. Thus, a highly or fully automated driving system
must have appropriate capabilities and strategies in order to

*This work is part of the Simulation for the Safety of Systems in
Autonomous Vehicles (3SA) and is supported by Institute of Research and
Technology SystemX, France

1 Institute of Research and Technology SystemX, France
name.surname@irt-systemx.fr

2 National laboratory for metrology and testing (LNE), France
name.surname@lne.fr

be functionally safe. It must identify potentially dangerous
situations and then respond appropriately to the situations
in order to avoid imminent danger or minimize damage as
far as possible. The intended system functionality and the
necessary safety functions cannot be implemented separately,
but are two sides of the same coin.

b) Challenges: The major challenge here is to ensure
that ADSs are designed in such a way that they can be ap-
proved to be (sufficiently) safe for use in public spaces (e.g.
road traffic). With conventional, non-autonomous safety-
critical systems, many standards use Safety Integrity Levels
SIL as a measure of reliability and/or risk reduction. The
associated SILs for automotive industry (of human-driven
vehicles) are defined in the series of standards [1], [2]. A
non-autonomous safety-critical system is designed in such a
way that in the event of a technical fault, immediate danger
is greatly reduced or eliminated by switching the system off
or stopping its operation. This approach is not sufficient for
automated driving systems! A self-driving car would increase
the danger it poses instead of reducing it if it would stop
“in the middle of the road” in the event of a sensor’s failure.
Autonomous systems should therefore have appropriate “fail-
operational” capabilities [3], [4]. Consensus must be reached
on suitable approval criteria. Existing approval procedures
must be supplemented or new ones developed and adopted.
Manufacturers will have to prove that their own products
meet the approval criteria. The systematic testing of such
products will play a major role in this context.

c) ADS architecture: Automated driving relies upon
several sub-tasks which form the overall architecture of an
autonomous vehicle. These sub-tasks can be formulated as
test tasks [5]:

• Sensing: Capturing relevant environment data.
• Perceiving: Recognizing patterns or situations.
• Analyzing: Identifying options for appropriate action.
• Planning: Selecting appropriate or best action.
• Acting: Implementing chosen action correctly.

d) Functional testing: The purpose of functional tests
is to test each function of the System Under Test (SUT), by
providing appropriate input and verifying the output against
the functional requirements. Functional testing mainly in-
volves black-box testing and it is not concerned about the
inner structure of the SUT. The testing can be done either
manually or using automation. In order to functionally test
an application, the following steps must be observed:

• Understand System Requirements & identify test input;
• Compute expected results with selected test input;

• Compute actual results by executing test cases;
• Compare actual and expected results.

Functionality-based testing approaches categorize the com-
ponents of driving intelligence for autonomous vehicles
into three parts: sensing/recognition functionality, decision
functionality according to the recognized information, and
action functionality with respect to the decision. The most
important benefit of functionality-based testing is that we
could quantitatively evaluate a part of driving intelligence
through a reduced number of designed tests. In this work, we
focus on functional testing of the ”decision” functionality”
that encompasses ”analyzing” and ”Planning” functionalities.

e) Scenario-based testing: The systematic testing of
ADS requires a catalogue of relevant situations that is as
comprehensive as possible. These situations must be able
to be varied in many parameters. It must also be possible to
link the situations into scenarios (successive situations) [6] in
order to bring about specific situations in a targeted manner.
Hence, it is possible to examine the development over time
from or through a specific situation and the timely, forward-
looking behavior of the autonomous system. ”Scenario-based
Testing” refers to such testing of the behavior of a system in a
sequence of situations. Relevant scenarios may be gathered in
a central scenario catalogue for a neutral authority in order to
create corresponding generally valid specifications, including
any ”acceptance tests”. The standardization of formats for
the exchange of such scenarios is being worked on. ASAM
OpenSCENARIO defines a file format for the description of
the dynamic content of driving and traffic simulators [7].

f) Testing strategy: Scenario-based testing requires the
same test procedure to be repeated in a large number of vari-
ations of the driving environment. The systematic variation
of the test environment is an essential and decisive part of the
test strategy [8]. However, the combination of ADS and its
mission complexity along with the environmental complexity
lead to an astronomical number of potentially testable sce-
narios. Furthermore, it is difficult to reduce testing effort
by prioritizing scenarios at the risk of omitting relevant
ones. Testing only one such scenario in reality can require
enormous effort (a secure test site is required, and changing
the test setup and the subsequent repeated test drives in that
site requires a lot of effort and time). A very large proportion
of the necessary tests must and will therefore be carried out
in the form of simulations. In order to be able to identify
gaps in the test coverage and reduce redundancies, the test
management must continuously monitor, evaluate and check
the test data and results.

g) Contributions: Our work focuses on the evaluation
of a control module of an automated driving system. Our
main contributions are:

• Optimization-based reference behavior;
• Simulation framework for functional tests;
• Systematic classification of scenarios.

The rest of the paper is organized as follows: in sec-
tion II we position our work in relation with existing ap-
proaches of simulation-based testing of automated vehicles

and optimization-based trajectory planification. Section III
presents our optimization-based computation of a reference
behavior for a control module of an automated driving sys-
tem. For the sake of clarity, we focus on longitudinal control
behavior. Section IV describes the simulation framework
and results computed on an application example. Finally,
conclusions and future works are given in section V.

II. RELATED WORK

Simulations provide an omniscient observer model, which
means that the past and all future evolutions are known
in every time step. Another relevant aspect is the ability
to easily combine multiple simulation models and thus
reuse existing work. [9] propose a complete framework for
automated driving testing with different controllers and path
planning algorithms in urban scenarios.

Motion planning techniques for autonomous driving
can be classified into three categories: graph-search-
based, sampling-based and optimization-based methods. The
optimization-based method formulates motion planning as
a mathematical optimization problem [10]. The planning is
spatiotemporal which can deal with dynamic obstacles. It
is performed in continuous space with infinitesimal resolu-
tion, which leads to better solutions than graph-search and
sampling. Moreover, it is easier to formulate the constraints
using a classic optimization framework. However, due to
the complex non-convex constraints and the limitation of
the existing numerical optimization techniques [11], the
optimization-based motion planners are usually inefficient
for real-time computation. In our case we propose to use
offline optimization-based techniques to build a reference
behavior of autonomous vehicles. Note that offline trajectory
planification benefits from the knowledge of the scenario in
advance (in this paper, a two-second advance knowledge of
the scenario).

III. OPTIMIZATION-BASED REFERENCE BEHAVIOR

In order to automatically evaluate a control module of
an ADS, it is necessary to systematically build the ”right
decision” if it exists. For this reason, we propose an
optimization-based model of ADS control module (aka.
test Oracle in functional testing literature) that is able to
map each perceived environment situation into the expected
decision. Once this baseline behavior computed, a numerical
comparison with ADS control module behavior serves as a
basis for the evaluation.

In the sequel, we show the application of our approach on
an Advanced driver-assistance systems (ADAS) that auto-
matically controls the longitudinal behavior of the equipped
vehicle (hereafter called Ego vehicle):

• Adaptive Cruise Control (ACC): an intelligent form of
cruise control that slows down and speeds up automat-
ically to keep pace with the car in front (lead vehicle);

The evaluation process of control decision is depicted in
Figure 1. The ADAS, while taking the control of the Ego
vehicle (orange vehicle), tries to keep a safe distance w.r.t.
the lead vehicle (blue vehicle). The expected behavior is

provided by our optimization-based model named Oracle
(gray vehicle).

Fig. 1: Evaluation of ADS decision.

A. Requirements (Constraints)

Requirements resulting from recommendations of ISO/CD
22179 [12] for longitudinal control (ACC) are considered
here to build our reference of longitudinal behavior. Require-
ments taken into consideration are:

• Under normal conditions, at speed V and given a
distance of regulation expressed in terms of Time Inter-
Vehicle constant TIV , the distance between the vehicle
and the lead vehicle D must be greater than or equal to
max(2m,TIV.V).

• The average deceleration over 2s shall not exceed
3m.s−2 when the speed is greater than or equal to
20m.s−1 and 5m.s−2 at a speed of 5m.s−1 or less.

• The average deceleration variation (jerk) over 1s must
not exceed 2.5m.s−3 when the speed is greater than or
equal to 20m.s−1 and 5m/s−3 at a speed of less than
or equal to 5m.−s.

• The average acceleration over 2s shall not exceed
2m/s−2 at a speed greater than or equal to 20m.s−1

and 4m/s−2 at a speed of less than or equal to 5m.s−1.
• The vehicle speed must comply with the speed com-

mand vc defined by the driver.

These requirements are expressed as mathematical con-
traints for our optimization-based reference computation.

B. Optimization-based reference computation

In this section, we propose a reference behavior model
formulation. The input of this model are data character-
izing targeted scenario. Note the reference computation is
performed offline. The position xlead of the lead vehicle
at each simulation step is known in advance. An acceler-
ation reference γ ref is computed in output. This acceleration
minimizes the difference between current distance D behind
the lead vehicle and the expected distance of regulation D∗

expressed in terms of a Time Inter-Vehicle (TIV). We use a
double integrator to model the vehicle dynamics but the same
approach may be instantiated with other kinematic models
[13], [14]. The discrete time model of the vehicle is given
by the following set of equations:

xi+1 = xi + vi∆t

vi+1 = vi + γi∆t (1)
γi = γ ref

i

Where xi, vi and γi are respectively the position, linear-
velocity and acceleration of the vehicle at time ti.

As some requirements of section III-A are expressed over
periods of 1s and 2s, we use vectors in Rn manipulate
sequences of n (n chosen so that n = 2

∆t) values (windows
of 2s). The underlying optimization over sequences of n
time-steps can be described as follows:

argmin
~γref

J = ‖ ~D − ~D∗‖2 + P (2)

P = λ1‖vr(~γ ref)‖2 + λ2‖∂~γ ref‖2 + λ3‖~γ ref‖2 (3)
~D∗ = TIV.~v (4)

~D = ~xlead − ~x (5)

(~x,~v) = ~f(~γ ref) (6)
~D ≥ max(~2, T IV.~v) (7)

1

n

n−1∑
i=0

γi

> −3 if(v0 > 20)

> −5 if(v0 < 5)

≤ 2
15v0 − 17

3 otherwise

(8)

2

n

n
2 −1∑
i=0

γi+1 − γi
∆t

< 2.5 if(v0 > 20)

< 5 if(v0 < 5)

≤ 1
6v0 − 35

6 otherwise

(9)

1

n

n−1∑
i=0

γi

< 2 if(v0 > 20)

< 4 if(v0 < 5)

≤ −2
15 v0 + 14

3 otherwise

(10)

~v ≤ ~vc (11)

Where the function ~f(.) is a compact representation of
equation (1) extended to sequences of n values: ~x =
(x0, ..., xn−1), ~v = (v0, ..., vn−1), ~γ = (γ0, ..., γn−1) and
~γ ref = (γ ref

0 , ..., γ
ref
n−1). The cost function at equation (2)

ensures that the obtained position (trajectory) terminates as
close as possible to the goal position at defined regulation
distance defined in equation (4). In order to obtain a realistic
control over the acceleration generated by the reference be-
havior model, the cost function is penalized with three terms:
‖vr(~γ ref)‖2, ‖∂~γ ref‖2 and ‖~γ ref‖2 which will minimize respec-
tively: the relative speed w.r.t. the lead vehicle, the difference
between two successive accelerations and the acceleration.
Parameters λ1, λ2 and λ3 ensure the weighting of each of
the components to be minimized. An empirical exploration
resulted in the following estimates: λ1 = 10−2, λ2 = 2.10−1

et λ3 = 10−3. Equation (5) exploits the fact that the position
of the lead vehicle ~xliead = (vlead0 , ..., vleadn−1) in known
in advance at each simulation step. This allows to calculate
the actual distance between the reference vehicle and the lead
vehicle and compute the whole optimization offline. The rest
of equations express the requirements described in section
III-A.

Fig. 2: Simulink model of a black-box control module and its interface with environment simulation.

IV. IMPLEMENTATION AND RESULTS

A. Simulation framework

Simulation relies on a virtual environment with virtual
agents to generate knowledge about an ADS’s behavior
without the need for a physical vehicle and actual testing
in the real world. The ADS and the virtual environment in
which the ADS will be operating are modeled to the desired
degree of fidelity. The higher the fidelity of these models, the
more closely they represent the actual nature of the vehicle
or environment, which results in more substantive data for
analysis.

There are several simulators developed in the academic,
industrial and commercial sectors. The main characteristics
required in this kind of simulators are:

• Presence of tools and components to model the envi-
ronment: road, lane markings, mobile objects, etc.;

• Wide range of sensor models: camera, radar, lidar,
ultrasound, odometer, etc.;

• Interfaceability (compatibility) with third party soft-
ware: Matlab/Simulink, etc.;

• Dynamic models of vehicles and ability to integrate
models and external components;

• Accessibility to all data and settings of environment,
sensors and vehicles.

In the following, we used SCANeR Studio [15] to imple-
ment our approach. The approach has a generic interface and
may work as well with other simulators such as Pro SiVIC,
PreScan, IPG CarMaker, etc.

Developed for automotive experts, SCANeR Studio is
designed to meet the specific needs of dynamic simulation
professionals. The use of the software was thought, initially,
around the process of using driving simulators and was
structured around five dedicated modules accessible from the
graphical interface:

• Terrain: RoadXML road network edition in manual or
automatic format via the import of different types of
road databases (GPX, XML, OSM, SHP, etc.);

• Vehicle: Tool for debugging and studying dynamic mod-
els. It has a non-linear dynamic model and can import
external models;

• Scenario: Driving simulation scenario editor that has
its own functions that allow you to define complex
simulation scenarios and also allows to import scenarios
developed under python.

• Simulation: Simulation and simulator supervision tool,
coupled with Matlab/Simulink for co-simulation be-
tween the two environments;

• Analysis: Graphical tool for fine analysis.
Given a Simulink Model of an ADS controller, we use the

Simulink library of blocks provided by SCANeR studio to
put our ADS control module in realistic driving conditions as
depicted in Figure 2. Block 1 allows synchronization between
Environment simulation and Simulink model simulation.
Input data from environment simulation is provided by block
2. Input data for the ADS control module include identified
characteristics of environment static/dynamic objects (e.g.
road lanes, distances to surrounding vehicles, etc.) perceived
with idealistic sensor models. The ADS control module
(block 3) computes an acceleration and a steering commands
to keep the equipped vehicle (Ego vehicle) in its lane at a
safe distance behind the vehicles ahead in the same lane.
These commands are sent back to the environment simulator
to close the loop of simulation by updating the behavior of
the Ego vehicle (block 4).

B. Testing architecture

The test architecture is illustrated in Figure 3. An iteration
of three steps is performed in order to build our automatic
testing framework.

a) Step 1 (ADS simulation): Given a scenario specifica-
tion (e.g. cut-in), the first step is to implement the scenario in
the environment simulator. We use SCANeRexplore tool to
generate variability on parameters of implemented scenarios
in SCANeR studio. As described in section IV-A, the ADS
controller receives data from the environment simulator. The

Fig. 3: Testing architecture.

controller makes decision and provides an acceleration and
steering angle commands to control the Ego vehicle.

b) Step 2 (Reference computation): In this step we try
to build an expected ”right decision” if it exists. For this
we use the optimization-based model (Oracle) introduced
in section III-B. Each scenario is mapped, by two-second
sequences, to a reference behavior. The proposed model is
non-linear and provides dynamic solutions that simultane-
ously comply with comfort criteria (acceleration and jerk
limit) and safety criteria (ie. collision avoidance).

c) Step 3 (Test verdict): The test verdict is the last
but not least step in our test architecture. Unlike [9], we
introduce the notion of reference behavior to guide our
analyses. The reference behavior computed in step 2 (step-
wise acceleration and steering angle) is used in this step to
analyze the behavior of the Ego vehicle (equipped with the
controller) with respect to the reference behavior.

C. Case study (Cut-in scenario)

In this section, we present a case study to illustrate the
method of quantifying the risk for a cut-in scenario. We will
first describe the cut-in scenario and the use case.

We want to characterize the risk for cut-in scenarios that
are described as follows: while the Ego vehicle drives at
a moderate to high speed while staying in its lane and
following an initial lead vehicle at a safe distance, another
vehicle cuts into the lane of the Ego vehicle, such that this
vehicle becomes the Ego vehicle’s lead vehicle. The Ego
vehicle needs to brake to prevent a collision.

Figure 4 depicts the evolution over 45s of the distance
between the Ego vehicle and the current lead vehicle as well
as the distance between the reference vehicle (parameterized
with TIV = 2s) and the current lead vehicle. Note that the
distance to the lead vehicle drops instantly when the cut-in
occurs. A simple comparison between the two curves shows
that, in this case, the Ego vehicle leaves, in general, less
distance behind the lead vehicle than the recommended TIV
of 2s.

Figure 5 shows the visualization of this comparison in
SCANeR studio. A simple visual comparison may give a
first insight on whether the Ego vehicle behaves as expected
(i.e. satisfying the requirements for the targeted scenario)
by comparing its position to the position of the reference
vehicle.

Fig. 4: Distance to lead vehicle in cut-in scenario for Ego
vehicle and Reference vehicle at TIV=2s.

Fig. 5: Verdict visualization with SCANeR studio (left:
before cut-in (at 3s), right: after cut-in (at 34s)): Ego (black
vehicle), Reference at TIV = 2s (white vehicle), Initial lead
vehicle (blue vehicle) and Cut-in vehicle (red vehicle).

D. Test case classification

The magnitude of the number of scenarios an ADS could
encounter, along with the magnitude and variability of the
parameters that make up a scenario (e.g. vehicle speeds,
distance between vehicles, etc.), likely present an impractical
set of test cases. Our computation of reference behavior
offers a systematic approach to classify test cases derived
from the variability of scenario parameters. For instance,
given the cut-in scenario described in section IV-C, 30
test cases were generated with the SCANeRexplore tool by
varying the speed of vehicles around the Ego vehicle and
the time of occurrence of the cut-in. Table I shows the
resulting test cases and the corresponding behavior resulting
from the Ego vehicle along with computed references at TIV
= 1s, 2s and 3s respectively. A test case is characterized
by the distance between the initial lead vehicle and the
cut-in vehicle at the time of the cut-in (∆d). A vehicle
behavior is characterized by the minimum and mean distance
to lead vehicle resulting from vehicle’s behavior. The results
show that in average the behavior of Ego vehicle is close
to the reference at TIV = 2s. This gives a hint that the
Ego controller is parameterized with a TIV around 2s. In
addition, the computed references are conservative and have
a minimum distance to lead vehicle larger than the minimum
distance resulting from Ego behavior. For each test case, the
reference vehicle and the Ego vehicle have the same initial
distance to the lead vehicle (10m). (i.e. the two vehicles are
superposed initially).

Reference computation may fail when the optimization
constraints can not be satisfied. Note that the bigger the
distance between the initial lead vehicle and the cut-in
vehicle at the time of the cut-in (∆d), the bigger safety
distance is needed to compute a reference. This property

Cut-in Ego(m) [Ref:TIV=1s](m) [Ref:TIV=2s](m) [Ref:TIV=3s](m)
∆d(m) min mean min mean min mean min mean

12 10.1 21.2 9.4 15.7 10 21.9 10 28.6
11.8 9.5 19.2 9 14.8 10 19.3 10 24.3
10.3 10.1 23 10 14.9 10 22.5 10 30.2
13.3 10.2 21.7 10 17 10 22.6 10 29.2

15.6 9.9 21.9 - - 10 25.9 10 33.3
19.5 10 20.7 - - 10 25.4 10 32.3
18.7 8.4 19.2 - - 9.7 24.3 9.7 29.3
22.1 9.3 19.8 - - 10 26 10 32.4
15.3 10.2 24.4 - - 10 28.5 10 37.4
11.1 9.2 19 - - 10 18.6 10 23.3
17.7 10.2 21.7 - - 10 25.6 10 32.9
22.3 8.7 19.7 - - 10 25.7 10 32.1
19.3 7.9 18.6 - - 10 24.5 10 29.4
14.1 10 19.9 - - 10 20.7 10 26.9
14.7 8.5 19.1 - - 10 21 10 26.2
17.9 9.9 22.1 - - 10 26.8 10 34.4
14 10 20.9 - - 9.9 23 9.9 29.6

28.1 9.9 21.6 - - 10 33.1 10 40.9
25.3 7.6 19.5 - - 9.9 28 9.9 34.3

23.7 8.8 20.5 - - - - 10 36.4
26.3 10 21.7 - - - - 10 40.8
24.9 6.8 19.5 - - - - 10 33
29.4 7.5 19.2 - - - - 10 37.8
36.5 5.6 20.1 - - - - 10 37.3

38.6 9.9 23.9 - - - - - -
35.5 10 24.9 - - - - - -
38.2 9.9 25.4 - - - - - -
40.1 4.7 18.6 - - - - - -
38.1 9.94 23.8 - - - - - -
38.6 10 26 - - - - - -

TABLE I: Cut-in scenario classification.

can be used to classify and sort the test cases according to
their criticality from low to high as shown in the table II.
The Ego vehicle regulates its speed according to the speed
of the lead vehicle and the distance left behind this vehicle.
A sudden drop in the latter at the time of the cut-in (change
of lead) can put the vehicle in a situation all the more critical
as this drop is significant. If no reference can be computed,
no definite conclusion can be drawn but this likely means
that no cut-in has occurred or that the vehicle, supposed to
perform the cut-in, has changed lane behind the Ego vehicle
(parameterized with TIV=2s).

Ref(TIV=1s) Ref(TIV=2s) Ref(TIV=3s) Criticality level
X X X low
× X X medium
× × X high
× × × !

TABLE II: Senario classification according to references.

V. CONCLUSION AND FUTURE WORKS

A central question is how functional safety of autonomous
systems can be guaranteed and tested. The intended system
functionality and the necessary safety functions cannot be
implemented separately, but are two sides of the same coin.
Accordingly, it is not possible to separate the aspects of
functionality and safety during testing.

Manufacturers of autonomous systems need procedures
and tools by means of which they can test the functionality
and safety of such products seamlessly and efficiently and
prove them to the approval authorities.

In our work, we propose a scenario-based testing approach
of ADS controllers. Scenarios are used to model and describe
usage situations. These scenarios are then used as test
instructions for testing in simulations.

We described an application of our approach to testing an
ACC controller in the case of cut-in scenarios considering

related safety requirements and goals. An optimization-based
control model is devised according to these requirements.
This allows an offline automatic computation of the expected
outcome behaviors with the selected test input values.

We implemented our approach in a tool chain including an
environment simulation tool, an automatic expected outcome
reference generation tool and test analysis tool. This tool
chain helps to classify scenario variants systematically and
to evaluate scenarios and tests automatically with regard to
safety relevance.

Currently, we are planning to use a more realistic vehicle
model in our optimization-based reference computation and
plug our tool chain with data-bases of a wider range of
scenarios to retrieve input test data. This will allow to
contribute to the overall effort of safety evaluation of ADS.
Moreover, our current work aims to automatically synthesize
ADS controller reference models. This will allow to provide
reference behavior for more scenarios but require to find ap-
propriate abstraction level to describe the safety requirements
and goals associated to a wider range of scenarios.

REFERENCES

[1] IEC 61508: 2010, “Functional safety of electri-
cal/electronic/programmable electronic safety-related systems
(part 1–7).”

[2] ISO 26262:2018, “Road vehicles – functional safety.”
[3] ISO/PAS 21448:2019, “Road vehicles – safety of the intended func-

tionality (sotif).”
[4] M. Wood, “Safety first for automated driving,” tech. rep., 2019.
[5] T. Linz, “Testing Autonomous Systems,” in Futur. Softw. Qual. Assur.

(S. Goericke, ed.), pp. 61–75, Cham: Springer International Publishing,
2020.

[6] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defin-
ing and Substantiating the Terms Scene, Situation, and Scenario for
Automated Driving,” in IEEE Conf. Intell. Transp. Syst. Proceedings,
ITSC, vol. 2015-Octob, pp. 982–988, IEEE, 2015.

[7] ASAM OpenSCENARIO, 2020. https://www.asam.net/
standards/detail/openscenario/.

[8] W. Chen and L. Kloul, “Stochastic modelling of autonomous vehicles
driving scenarios using PEPA,” in Model-Based Safety and Assessment
- 6th International Symposium, IMBSA 2019, Thessaloniki, Greece,
October 16-18, 2019, Proceedings, vol. 11842 of Lecture Notes in
Computer Science, pp. 317–331, Springer, 2019.

[9] R. Lattarulo, J. Pérez, and M. Dendaluce, “A complete framework
for developing and testing automated driving controllers,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 258–263, 2017.

[10] J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming, vol. 19. Siam, 2010.

[11] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[12] ISO 22179:2009, “Intelligent transport systems - full speed range
adaptive cruise control (fsra) systems - performance requirements and
test procedures.”

[13] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible tra-
jectories for autonomous vehicles?,” in 2017 IEEE Intelligent Vehicles
Symposium (IV), pp. 812–818, IEEE, 2017.

[14] M. Babu, R. R. Theerthala, A. K. Singh, B. Gopalakrishnan, K. M.
Krishna, et al., “Model predictive control for autonomous driving
considering actuator dynamics,” arXiv preprint arXiv:1803.03478,
2018.

[15] SCANeR studio, 2020. https://www.avsimulation.fr/
solutions/#studio.

