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Optimal parameter estimation in a landslide motion model using the
adjoint method

Mohit Mishra1, Gildas Besançon1, Guillaume Chambon2, and Laurent Baillet 3

Abstract— This work proposes an optimal approach for
parameter estimation in a landslide motion, based on the
so-called adjoint method. The system is described by an
extended sliding-consolidation model composed of an ordinary
differential equation and 1D parabolic partial differential
equation that represents landslide motion and pore pressure
evolution respectively. The key feature of this model is pore
pressure feedback, which regulates landslide motion and leads
to coupling between both differential equations. Parameters to
be estimated include the friction and dilatancy angle of the
material. The objective functional for the optimal estimation
is composed of: i) a cost function defined as the least square
error between measurements and related simulated values, and
ii) a product of Lagrange variables and system dynamics. A
variational approach is applied to get the gradients of the
cost functional with respect to parameters to be estimated and
adjoint model. The cost functional is optimized, employing the
steepest descent method to estimate parameters. Finally, the
presented optimal estimation method is validated on a simulated
test case.

I. INTRODUCTION

Rapid urbanization [1] and climate change [2] have in-
creased the frequency of occurrence of landslides. Which, in
return, can have severe socio-economic consequences such
as substantial cost in life losses, infrastructure, economy, and
ecosystem of the region. Traditional strategies in landslide
risk management are mostly oriented at avoiding building
infrastructure at an exposed zone based on landslide haz-
ard maps or stabilizing unstable slopes (landslide geometry
corrections, water draining) or installing protecting structures
[3]. However, infrastructure is still being developed either on
or near massive landslides due to a lack of risk awareness. In
such cases, slope stabilization is unaffordable, while moving
the population to stable areas can pose considerable societal
problems. Under these circumstances, implementation of an
Early Warning System (EWS) can help to take timely actions
to reduce life and economic losses in advance of hazardous
events [4]. According to the United Nation’s International
Strategy for Disaster Reduction (ISDR) checklist [5], one of
the principal element of EWS is a monitoring and warning
service. An essential function of this service is to assess the
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current status of the environment and establish the trends in
environmental parameters to generate accurate warnings.

Some of the landslide EWS makes use of a rainfall
threshold approach to examine the relationship between the
movement and the triggering precipitation. The threshold is
defined as a critical value, above which the probability of
landslide occurrence is high. In most cases, the thresholds
are defined on statistical and experience bases, neglecting
physical criteria [6]. Another widely used and dependable
approach of landslide forecasting considers the use of mon-
itoring displacement (or velocity), pore pressure, and rain
for continuously active landslides. Such approaches generate
warnings based on a change in slope displacement rates over
time, e.g., inverse velocity criteria [7].

As a consequence, many developments are proposed
in the literature for slope displacement prediction mod-
els. The sliding-consolidation model [8] proposes a single
event behavior of flow slides in loose, cohesionless mate-
rials. This model was later revisited incorporating viscous
force [3], [9], [10] and termed as a viscoplastic sliding-
consolidation model. The extended sliding-consolidation
model [11] demonstrates diverse rates of landslide due to
mechanical feedback. Apart from the models mentioned
above, many more hydrological, hydrogeological, meteoro-
logical, and geotechnical models [12] are investigated. These
dynamical models are sensitive to the parameters of the
system. For known geometry and material properties of the
landslide, equations governing the dynamics of the landslide
can be solved to predict the displacement pattern knowing
rainfall input. However, in fact, not all the parameter values
are known.

This paper presents optimal parameter estimation in an
extended sliding-consolidation model (coupled ODE-PDE
system) of a landslide using the adjoint method. The adjoint
method scheme demonstrated its effectiveness in many stud-
ies and applications, for instance, air traffic flow management
[13], space shuttle reentry problem [14], state and parameter
estimation in switched 1D hyperbolic PDEs [15], traffic flow
[16], and overland flow [17]. Some authors [18], [19], [20],
[21] studied a similar approach to estimate the Manning
roughness coefficient or to stabilize and control the water
level in an open channel flow.

The contents of the paper are as follows: Section 2 defines
a landslide model depicting landslide behavior and the prob-
lem statement, while Section 3 presents the proposed method
to solve it. In Section 4, the simulation results demonstrate
the effectiveness of the solution. Finally, Section 5 provides
a conclusion and discusses future directions of the work.



II. PROBLEM FORMULATION

A. Extended sliding-consolidation model

In the extended sliding-consolidation model of a
landslide [11], a slide block is assumed to be placed on an
inclined surface, as shown in Fig. 1. The model proposes
a mechanism of opposition to slide block downslope
movement by basal Coulomb friction and regulation through
basal pore fluid pressure feedback. The model assumes two
components of total basal pore pressure: i) imposed pore
pressure pi due to rain infiltration and ii) development of
excess pore pressure pe in response to the contraction or
dilation of the basal shear zone. The motion of the slide
block and excess pore pressure evolution are described by
Eq. (1) and (2) respectively.

Momentum equation

d2ux

dt2 =
dv
dt

= gcosψ [sin(θ −ψ)− cos(θ −ψ)tanφ ]

+
cos2ψtanφ

ρZ
[pi(0, t)+ pe(0, t)] i.e.

v̇ = f (φ ,ψ, pe(0, t), pi(0, t)), v(0) = v0

(1)

Excess pore pressure diffusion equation

∂ pe(z, t)
∂ t

= D
∂ 2 pe(z, t)

∂ z2

∂ pe(0, t)
∂ z

=
ρwgψ

K
v,

pe(Z, t) = 0, pe(z,0) = pe0

(2)

where ux(t) and v(t) denote the displacement and velocity
of the slide block respectively, pi(0, t) is the imposed pore
pressure at the slide block base, pe(z, t) is the excess pore
pressure distribution, (z, t)∈ [0,Z]× [0,T ] with Z as a spatial
domain length (slide block thickness), and T is the length of
time horizon. A coordinate z translates with the base of the
slide block such that with dilation or contraction of shear
zone the base of the slide block is always located at z = 0. φ

is the friction angle characterizing the mechanical strength
of the material, ψ is the dilatancy angle representing
volume change of the material when they are subjected
to deformation, ρ is the soil density, ρw is the pore water
density, D is the diffusion coefficient (D > 0), K is the
hydraulic conductivity, g is the acceleration due to gravity
and θ is the sliding angle. In addition, v0 and pe0 are initial
values (assumed to be known) of the v and pe respectively.
Finally, f is the function characterizing the right hand side
of Eq. (1), depends on φ , ψ , pe(0, t), and pi(0, t).

Fig. 1. The coordinate systems, geometric variables and material property
of the slide block

B. Optimal estimation problem
On the basis of the formed model, the main goal in this

paper is to estimate friction and dilatancy angle (φ & ψ)
of the material in a landslide from a measured velocity
vmea(t) and known imposed pore pressure evolution pi(0, t).
Technically, we are interested in minimizing the cost function
J(φ ,ψ) defined as the least square error between velocity
measurement and simulated velocity profile in (3).

J(φ ,ψ) =
ε1

2
‖φ −φG‖2 +

ε2

2
‖ψ−ψG‖2

+
ε3

2

∫ T

0
[v(t)− vmea(t)]

2 dt
(3)

where ε1, ε2 and ε3 are weighting factors to calibrate the esti-
mated and guessed parameter values, and T is the simulation
time. The first guessed values of parameters φG and ψG are
introduced to improve the convergence of the optimization
problem, which are chosen in a reasonable range around the
expected real ones.

For cost function J in (3), continuous velocity measure-
ment is required, which is sometimes not feasible. Instead,
in many cases velocity measurements are only available at
particular sampling times (e.g., on an hourly basis) i.e., the
observation process is realized at some discrete points (tk)
on a time domain. In such a scenario, the cost function is
formulated as

J(φ ,ψ) =
ε1

2
‖φ −φG‖2 +

ε2

2
‖ψ−ψG‖2

+
ε3

2

N

∑
k=1

(∫ T

0
δA(t− tk)v(t)dt− vmea(tk)

)2 (4)



where N is the the number of observation values of vmea(tk)
and δA(t−tk) is an approximate Dirac-Delta function defined
as a Gaussian function with a very small variance σ2,

δA(t− tk) = e−
(t−tk)

2

σ2 .

This Gaussian approximation guarantees the smoothness of
the observation function. In this paper, we thus consider the
minimization of the cost function (4).

III. SOLUTION METHOD

A. Cost functional
From the defined problem statement, the optimal values

of φ and ψ must minimize the cost function (4) subject to
the dynamics (1)-(2) as constraints. To solve this constrained
optimization problem, let us consider the Lagrange multipli-
ers λ (t) and Γ(z, t) combining both system equations and
cost function into a new cost functional L

L(v,pe,φ ,ψ) = J+
∫ T

0
λ (t) [v̇− f (ψ,φ , pe(0, t), pi(0, t))]dt

+
∫ T

0

∫ Z

0
Γ(z, t)

(
∂ pe

∂ t
−D

∂ 2 pe

∂ z2

)
dzdt.

(5)
Using integration by parts, the cost functional can be rede-
fined as

L(v, pe,φ ,ψ) =
ε1

2
‖φ −φG‖2 +

ε2

2
‖ψ−ψG‖2

+
ε3

2

N

∑
k=1

(∫ T

0
δA(t− tk)v(t)dt− vmea(tk)

)2

+[λv]T0 −
∫ T

0
vλ̇dt−

∫ T

0
λ (t) f (φ ,ψ, pe(0, t), pi(0, t))dt

+
∫ Z

0
[Γpe]

T
0 dz−

∫ T

0

∫ Z

0
pe

(
∂Γ

∂ t
+D

∂ 2Γ

∂ z2

)
dzdt

+D
∫ T

0

[
∂Γ

∂ z
pe

]Z

0
dt−D

∫ T

0
Γ(Z, t)

∂ pe(Z, t)
∂ z

dt

+
Dρwgψ

K

∫ T

0
Γ(0, t)v(t)dt

(6)

B. Adjoint-based approach
Based on the adjoint approach, the first derivatives of L

with respect to v and pe are set to zero, the gradients of the
cost functional with respect to φ and ψ are also computed.

• Variation of L w.r.t. v:

Lv = ε3

N

∑
k=1

(∫ T

0
δA(t− tk)v(t)dt− vmea(tk)

)
.
∫ T

0
δA(t− tk)dtδv

−
∫ T

0
λ̇dtδv+λ (T )δv(T )−λ (0)δv(0)

+
Dρwgψ

K

∫ T

0
Γ(0, t)dtδv

(Here, δv(0) = 0 since the initial value v0 is fixed)

Lv = 0⇔


λ̇ = ε3 ∑

N
k=1 δA(t− tk)

[∫ T
0 δA(t− tk)v(t)dt− vmea(tk)

]
+Dρwgψ

K Γ(0, t)
λ (T ) = 0

(7)

• Variation of L w.r.t. pe:

Lpe =−
∫ T

0
λ (t) fpe(0,t)(φ ,ψ, pe(0, t), pi(0, t))dtδ pe(0, t)

+
∫ Z

0
Γ(z,T )dzδ pe(z,T )−

∫ Z

0
Γ(z,0)dzδ pe(z,0)

+D
∫ T

0

∂Γ(Z, t)
∂ z

dtδ pe(Z, t)−D
∫ T

0

∂Γ(0, t)
∂ z

dtδ pe(0, t)

−
∫ T

0

∫ Z

0

(
∂Γ

∂ t
+D

∂ 2Γ

∂ z2

)
dzdtδ pe

−D
∫ T

0
Γ(Z, t)dtδ

∂ pe(Z, t)
∂ z

(δ pe(z,0) = δ pe(Z, t) = 0 because pe(z,0) and pe(Z, t) are
fixed)

Lpe = 0 ⇔


∂Γ

∂ t =−D ∂ 2Γ

∂ z2
∂Γ(0,t)

∂ z =− 1
D λ (t) fpe(0,t)

Γ(Z, t) = 0
Γ(z,T ) = 0

(8)

Equations (7) and (8) are the adjoint system equations where
fpe(0,t) is the differentiation of f (φ ,ψ, pe(0, t), pi(0, t)) w.r.t.
pe(0, t).

• Gradient of L w.r.t. φ :

Lφ =
∂L
∂φ

= ε1 (φ −φG)−
∫ T

0
λ (t) fφ (t)dt (9)

where fφ (t) is the differentiation of f (φ ,ψ, pe(0, t), pi(0, t))
w.r.t. φ .

• Gradient of L w.r.t. ψ:

Lψ =
∂L
∂ψ

= ε2 (ψ−ψG)−
∫ T

0
λ (t) fψ(t)dt

+
Dρwg

K

∫ T

0
Γ(0, t)v(t)dt

(10)

where fψ(t) is the differentiation of f (φ ,ψ, pe(0, t), pi(0, t))
w.r.t. ψ .

The gradients (9)-(10) describe sensitivity of the cost
function (4) to variation in parameters (φ , ψ) under the
constraints of system dynamics (1)-(2).

C. Steepest descent method

We solve the optimization problem with a steepest descent
method. The gradients Lφ and Lψ give the descent directions
to estimate optimal parameter values (φ ∗, ψ∗). We choose
constant step sizes γφ and γψ , which minimize the cost
functional in the descent direction. We use Algorithm 1
below to solve the optimization problem. The algorithm stops
when the norm of the gradient is smaller than the chosen
tolerance ξφ and ξψ . Notice that computing gradients require
solving system equations (1)-(2) along with the adjoint
system (7)-(8).



Algorithm 1: Optimal parameter estimation
Input: Initial values, v(0) & pe(z,0)

Imposed pore pressure time series, pi(0, t)
Measured velocity profile, vmea(tk)
Guessed parameter values, φG & ψG
Set initial parameter values, φ0 & ψ0
Step sizes, γφ & γψ

The gradient tolerances, ξφ & ξψ

Stop flag = false
Iteration index k=1
Set φ k = φ0 and ψk = ψ0

Output: φ ∗, ψ∗

while Stop flag = false do
Simulate system equations (1)-(2) with v(0),

pe(z,0), φ k, & ψk;
Simulate the adjoint system equation (7)-(8)

(backward in time);
Compute gradients Lk

φ
, Lk

ψ using (9)-(10);
if
∣∣Lφ

∣∣≤ ξφ &
∣∣Lψ

∣∣≤ ξψ then
Stop flag = true;

else
φ k+1 = φ k - γφ Lk

φ
;

ψk+1 = ψk - γψ Lk
ψ ;

k = k+1;
end
Display φ , ψ and J

end
Return φ ∗, ψ∗

IV. SIMULATION RESULTS

A. Synthetic Data

To validate the effectiveness of our approach, a measured
velocity profile vmea(t) is generated synthetically by solving
the system equations (1)-(2). The parameter values and initial
values used for the simulation are summarized in Table I. The
numerical solution is here obtained with a stepwise analytical
method for solving (1) and a Crank-Nicolson method for
solving (2). In the simulations, imposed pore pressure is
assumed to be sinusoidal in time, representing rainfall varia-
tions. The value of imposed pore pressure oscillates around
pcrit given as

pcrit =
gcosψ [cos(θ −ψ)tanφ − sin(θ −ψ)]

cos2ψtanφ/ρZ
,

which corresponds to the value of pore pressure above which
slide block starts to accelerate. At instances, when imposed
pressure is less than or equal to pcrit the slide block is at rest,
i.e., v0 = 0, and as excess pore pressure generates in response
to the motion of the slide block pe0 = 0. Simulated synthetic
velocity measurement (with noises) and pore pressure pro-
files are shown in Fig. 2 and Fig. 3 respectively. The study
is carried out for different noise levels in a measurement.
White Gaussian noises are added to simulated velocity profile
such that signal to noise ratios (SNR) are 10db and 20db
respectively.

TABLE I
PARAMETER VALUES

Parameters Value Unit
Initial velocity, v0 0 m/s
Initial excess pore pressure distribution, pe0 0 Pa
Simulation time, T 2000 s
Time step, ∆t 0.01 s
Space step, ∆z 0.0066 m
Diffusion coefficient, D 3×10−3 m2/s
Acceleration due to gravity, g 9.8 m/s2

Slide block thickness, Z 0.65 m
Hydraulic conductivity, K 2×10−5 m/s
Plane inclination angle, θ 31 deg
Slide block mass density, ρ 2000 kg/m3

Pore water density, ρw 1000 kg/m3

Friction angle, φ 35 deg
Dilatancy angle, ψ 6 deg
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Fig. 2. Synthetic velocity measurement (vmea)
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Fig. 3. Critical (pcrit), imposed (pi), and excess pore pressure (pe)

B. Parameter estimation

The simulation for Parameter estimation is performed,
following Algorithm 1, with the parameter values given



in Table II. Though the generated synthetic measurement
is continuous, for the optimization problem only N = 101
observation values are taken into consideration i.e., at each
tk = {0,20,40, ...,2000} ∀k ∈ (0,N). For the sake of simplic-
ity, all the velocity measurements are considered in mm/sec
without any loss of generality.

TABLE II
PARAMETER VALUES FOR THE ALGORITHM

Parameters Value Unit
Number of observation values, N 101 -
Guessed friction angle, φG 31 deg
Guessed dilatancy angle, ψG 4 deg
Initial friction angle, φ0 25, 29, 32 deg
Initial dilatancy angle, ψ0 3, 4, 5 deg
Step size, γφ 2.5×10−4 -
Step size, γψ 7×10−5 -
Weighting factor, ε1 2.5×10−3 -
Weighting factor, ε2 5×10−3 -
Weighting factor, ε3 30 -
Stop condition1, ξφ 10−2 -
Stop condition2, ξψ 10−2 -

A convergence of the parameter estimates for two different
noise levels and distinct initial parameter values can be
seen in Fig. 4, Fig. 5, Fig. 6 and Fig. 7. We also observe
a decrease in cost function and gradients in Fig. 8, and
Fig. 9. For all these simulations step sizes (γφ ,γψ ) and
tolerance for gradients (ξφ ,ξψ ) are kept the same. From
the simulation results, the following observations can be
made: i) for similar initial parameter values, the algorithm
takes few more iterations to estimate parameters in case of a
higher noise level in measurements, with some less accuracy
(e.g., for φ0 = 29, with 20 dB SNR measurement estimated
φ is 34.95 after k=128 iterations, while with 10 dB SNR
measurement estimated φ is 34.90 after 130 iterations) and
ii) for same measurements but initial parameter values farther
from actual ones, the algorithm requires few more iterations
to estimate parameters (e.g., for 10 dB SNR measurement,
parameter estimation took k=126 iterations with ψ0 = 5,
whereas 130 iterations with ψ0 = 3).
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V. CONCLUSION AND FUTURE WORK

An optimal approach for parameter estimation in a land-
slide motion based on the adjoint method and the steepest
descent approach has been proposed and validated in this
paper. Firstly, an extended sliding-consolidation model of a
landslide has been presented, which is an ODE-PDE coupled
system. Secondly, the parameter estimation problem has
been formulated as an optimization problem using Lagrange
multiplier approach. Then the adjoint method has been
introduced to obtain gradients of the cost functional and the
adjoint equations. These gradients are then utilized as descent
directions for the steepest descent method to get optimal
parameter values. Lastly, the proposed solution method has
been validated for synthetically generated noisy data. The
optimal values of friction and dilatancy angle of the material
have finally been well estimated.

Based on this result, a future direction for work will be
to include estimation of the initial states of the system along
with the parameters of interest for synthetically generated
data and actual field measurements to relax the assumption
on imposed pore pressure. Finally, this approach could be
extended to more complex landslide models.
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