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Abstract. Current Automatic Speech Recognition (ASR) systems mainly
take into account acoustic, lexical and local syntactic information. Long
term semantic relations are not used. ASR systems significantly decrease
performance when the training conditions and the testing conditions dif-
fer due to the noise, etc. In this case the acoustic information can be
less reliable. To help noisy ASR system, we propose to supplement ASR
system with a semantic module. This module re-evaluates the N-best
speech recognition hypothesis list and can be seen as a form of adapta-
tion in the context of noise. For the words in the processed sentence that
could have been poorly recognized, this module chooses words that cor-
respond better to the semantic context of the sentence. To achieve this,
we introduced the notions of a context part and possibility zones that
measure the similarity between the semantic context of the document
and the corresponding possible hypothesis. The proposed methodology
uses two continuous representations of words: word2vec and FastText. We
conduct experiments on the publicly available TED conferences dataset
(TED-LIUM) mixed with real noise. The proposed method achieves a
significant improvement of the word error rate (WER) over the ASR
system without semantic information.

Keywords: Automatic speech recognition · Semantic context · Embed-
dings

1 Introduction

Despite constant efforts and some spectacular advances, the ability of a com-
puter to recognize speech is still far from equaling that of humans. Current ASR
systems significantly deteriorate performance when the conditions in which they
are trained and those in which they are used differ. The causes of variability
between these conditions can be the acoustic environment and / or the acquisi-
tion of the signal. Even if many approaches to compensate this variability have
been proposed [18], the performance of an ASR system on a given word always
depends on the distortion at the precise moment when this word was spoken.

Current ASR systems mainly take into account only acoustic (acoustic model),
lexical and syntactic information (local n-gram language models). We suggest
moving towards a contextualization of the ASR system. Indeed, lexical and se-
mantic information is important for an ASR system to be efficient. Recently,
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several researchers have proposed to use semantic information to improve the
ASR performance. For example, exploring the topic and semantic context to en-
able the recovery of proper names [14], using a semantic language model based
on the theory of frame semantics [2], assigning semantic category labels to entire
utterances and re-ranking the N-best list of ASR [11]. [7] learns semantic gram-
mar for the ASR system. In [5] authors combine information from the semantic
parser and ASR’s language model for re-ranking. In [4], a method for re-ranking
black-box ASR hypotheses using an in-domain language model and semantic
parser trained for a particular task is investigated.

In this article, we propose to complete the noisy ASR step by adding the
semantic information in order to detect the words in the processed sentence that
could have been poorly recognized and to investigate words of similar pronuncia-
tions that correspond better to the context. This semantic analysis re-evaluates
(rescores) the N-best transcription hypotheses (N-best) and can be seen as a
form of dynamic adaptation in the specific context of noisy data. Reevaluation
is performed through a definition of context part and possibility zones. Seman-
tic information is introduced using predictive continuous representations [3], [9].
These representations have proven to be effective for a series of natural lan-
guage processing tasks [1]. The efficiency and the semantic properties of these
representations motivate us to explore them for our task of ASR in mismatched
conditions. We hope that in very noisy parts, the language model and the seman-
tic model could remove the acoustic ambiguities in order to find the words spoken
by the speaker. All our models are based on high-performance DNN technolo-
gies. Compared to the previous works using the rescoring of N-best list [12], [15],
[16], we don’t use several features, and we only rely on semantic information.
Furthermore, the specificity of our approach is the use of the context part and
the possibility zones of N-hypotheses list: semantic part represents the semantic
information of the topic context of the document to recognize and possibility
zone corresponds to the area where we want to find the words to be corrected.
This allows us to give less importance to the words in the possibility zone which
do not correspond to the context of the document, and to give low semantic
score to the corresponding hypothesis.

2 Proposed methodology

2.1 Semantic model

An effective way to take into account semantic information is to re-evaluate
(rescore) the best hypotheses of the ASR system. This system provides an acous-
tic score Pac(w) and a linguistic score Plm(w) for each word of the hypothesis
sentence. The best sentence is the one that maximizes the probability of the
word sequence:

Ŵ = arg max
hi∈H

∏

w∈hi

Pac(w)
α · Plm(w)β (1)

Ŵ is the recognized sentence (the end result); H is the set of N -best sentence
hypotheses; hi is the i-th sentence hypothesis; w is a hypothetical word. α and β
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represent the weights of the acoustic and the language models. These weights are
essential because acoustic scores and linguistic scores are not always normalized
(they are often likelihoods and not probabilities).

We want to add semantic information to guide the recognition process. The
most natural approach to integrating this information is to modify the calcula-
tion of the probability of the sequence of words in the following way:

Ŵ = arg max
hi∈H

∏

w∈hi

Pac(w)
α · Plm(w)β · Psem(w)γ (2)

We added the semantic probability of each word: Psem(w). To have a good
balance between the different models, we introduce a third weight γ to weigh
the semantic information. It will be adjusted on a development corpus.

2.2 Definition of context part and possibility zones

To estimate the semantic probability, we propose to introduce the concepts of
context part and possibility zone. A context part consists of words which are
common to all the N -best hypotheses generated by the ASR. We assume that
they are correct. This context part allows to extract semantic information of
the topic context of the document or of the current part of the document to be
recognized. The context part can contain several parts. A zone of possibilities is
an area between the context parts. It is in this area that we want to find the
words to be corrected. From the N-best hypotheses of a sentence, we extract
only one context part and one or more possibility zones. Each zone can contain
several words. Figure 1 illustrates these concepts on an example. Here, the 2-best
hypotheses list is the following:

H1: the cat eats the big fat mouse

H2: the cat bits the bigfoot mouse

Fig. 1. Illustration of the context part and the possibility zones, as an example.
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In this example, the context part Zcont is composed of four words: Zcont =
{the, cat, the,mouse}. These are the words which are common to all the hy-
potheses and we assume that they are correct. Between these words, we de-
fine two possibility zones: the first is made up of two alternatives, eats and
bits: Zpos,1 = {eats, bits}. The second is also made up of two alternatives:
Zpos,2 = {bigfat, bigfoot}. One alternative corresponds to a choice in the possi-
bility zone. We assume that the possibility zones correspond to the zones where
the ASR hesitates between different solutions.

To obtain the context part, we use a dynamic programming algorithm which
allows us to pair the hypotheses two by two in order to determine the words
common to all the hypotheses. If the context part is empty, we don’t study this
sentence.

2.3 Semantic representation of the context part and the possibility

zones

To take into account the semantics of the document, we propose to represent
each word of the N-best hypotheses by an embedding vector. In our approach, we
used word2vec [9] and FastText [3]. We compute an average embedding Econt

for the context part which is equal to the average of the embedding vectors of
all the words in the context part. In the same way, we calculate an average
embedding Epos(i, ah) for i-th possibility zone of alternative ah of hypothesis
h as the average of the embedding vectors of all the words in this alternative
of possibility zone. We use the angular similarity to estimate a semantic score
between each possibility zone and the context part:

Ssem(Econt, Epos(i, ah)) = 1−
cos−1 cos(Econt, Epos(i, ah))

π
(3)

From the semantic representations of the context part and the possibility
zones, we compute a semantic probability of a hypothesis h. A semantic prob-

ability of a hypothesis h Psem(h) is computed as follows:

Psem(h) =

Np∏

i=1

Ssem(Econt, Epos(i, ah)) (4)

where Np is the number of possibility zones. We assume that the equation (2)
can be approximated as follow:

Ĥ = argmax
h∈H

Pac(h)
α · Plm(h)β · Psem(h)γ (5)

where Ĥ is the N -best list. The equation (5) is used to re-rank the N -best
hypothesis list. For each hypothesis we compute the semantic score and associate
it with acoustic and linguistic scores according to (5). The hypothesis obtaining
the best score is considered as the recognized sentence.
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3 Experiments

3.1 Corpus description

We used the publicly available TED-LIUM corpus [6], containing the recordings
of the TED conferences. This corpus is well suited to our study because each
conference is focused on a particular subject. We want to add the semantic
module to improve the performance of our recognition system.

We used the partition of the TED corpus into a train, a development and
a test corpus proposed in the TED-LIUM distribution: 452 hours for training,
8 conferences (496 sentences, 17926 words) for development and 11 conferences
(1091 sentences, 27021 words) for testing.

3.2 Recognition system

Our recognition system is based on the Kaldi voice recognition toolbox [13].
We used TDNN triphone acoustic models, trained on the training part of TED-
LIUM. The lexicon and language model was provided in the TED-LIUM distri-
bution. The lexicon contains 150k words and the language model has 2 million
4-grams, learned from a textual corpus of 250 million words. We also performed
the recognition using the RNNLM model [10]. We want to see if using more pow-
erful language model (LM), the proposed semantic module can improve the ASR.
As usual, we used the development set to choose the best parameter configuration
and the test set to evaluate the proposed methods with this best configuration.
We used the word error rate (WER) to measure the ASR performance.

The performance of our ASR system on TED-LIUM using n-gram LM is
around 8 % of WER. We are not interested in noise-free conditions because in
this case the acoustics allow to properly guide the recognition. This research
work was carried out as part of an industrial project. This project concerns the
recognition of speech in noisy condition, more precisely, in a fighter aircraft.
To get closer to actual conditions, we added noise to the development and test
sets: additive noise at 10 dB and 5dB SNR (noise of F16 from the NOISEX-92
corpus [17]).

3.3 Embeddings

We trained word2vec model on a text corpus of a billion words extracted from
the OpenWebText corpus. The generated models have the size of 300 and model
700K words. As FastText model, we used the same embedding dimension. The
advantage of FastText compared to word2vec is the taking into account of all
possible words.

4 Experimental results

4.1 Overall results

Before performing the speech recognition evaluation, we wanted to investigate
the impact of the semantic module alone on the search for the best sentence,
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without using the acoustic and linguistic scores. For this, for a reference sentence
text, we simulated the recognition errors by replacing a random word (or two
successive words) of the reference sentence by one (or two) acoustically close
word(s). This can be easily performed using a phonetic dictionary. In this way,
we generated N -best hypotheses for the given sentence (N = 10). We performed
this generation for every 496 sentences of the development set.

After N -best hypotheses generation, we used our semantic module to rank
the 11 hypotheses (the 10 generated sentences plus the correct sentence) and we
evaluated the number of errors corrected on the top hypothesis. Here, we did not
use the acoustic and the language scores. For 496 sentences of the development
set, the word2vec-based semantic module corrects about 67 % of simulated errors
and the FastText semantic module corrects about 61 % of errors. We see that the
long context embeddings alone succeed to correct the large number of errors. This
shows that the proposed semantic module captures well the semantic information
of a sentence.

Table 1 presents the WER for the development and the test sets for two noise
condition (10dB and 5dB) and two language models (n-gram and RNNLM). The
first line of results (method Random), corresponds to the random selection of
the recognition result from the N-best hypotheses without using the semantic
module. The second line, Baseline, corresponds to the speech recognition sys-
tem without using the semantic module (standard ASR). The last line, Oracle,
represents the maximum performance that can be obtained by searching in the
N -best hypotheses: selection of the hypothesis which minimizes the WER for
each sentence. The other lines of the table give the performance of the proposed
approaches. At each case of the table, value between the parentheses corresponds
to the recognition result using the RNNLM. From this table we can make the
following observations.

Table 1. Recognition results in terms of WER (%). N -best hypotheses list of 50
hypotheses. TED-LIUM development and test sets, SNR of 10 dB and of 5 dB. n-gram
LM and RNNLM (between the parentheses).

Method SNR 10dB SNR 5dB
Dev Test Dev Test

Random 17.9 (14.8) 24.1 (21.5) 34.2 (29.8) 42.1 (39.3)
Baseline system 15.7 (12.3) 21.1 ( 17.7) 32.7 (28.2) 40.3 (37.1)

word2vec embedding 15.3 (12.0) 20.7 (17.6) 31.9 (27.4) 39.4 (36.4)
FastText 15.2 (11.8) 20.5 (17.5) 31.8 (27.4) 39.2 (36.1)

Oracle 9.6 (6.9) 12.8 (10.3) 25.4 (21.1) 30.5 (27.6)

The proposed semantic module outperforms the baseline system for all con-
ditions and all evaluated embeddings. For example, on the test set, the seman-
tic module with the FastText obtained an absolute improvement of 0.6 % for
10dB and n-gram LM (21.1 % WER versus 20.5 % WER) and 1.1 % for 5dB
and n-gram LM (40.3 % versus 39.2 %) compared to the baseline system. This
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represents 8 % of relative improvement for 10dB and about 11 % for 5dB in
the reduction of the gap between the baseline and the oracle systems. For all
datasets, noise levels and two language models the obtained improvements are
significant (confidence interval is computed according to matched-pairs test [8]).
This shows that the proposed semantic module is able to capture a significant
proportion of the semantic information in the data.

The proposed embeddings give similar performances with a slight superiority
of the FastText embedding. All these observation are valid for two experimented
language models: n-gram and RNNLM.

4.2 Impact of hyperparameters

Figure 2 (left) shows the evolution of the WER according to the parameter γ

(cf. equation (2)) for the development set, SNR of 5dB and n-gram LM. We
observe that this parameter plays an important role. For too large values of γ
(bigger than 300), the semantic information becomes dominant compared to the
acoustic and linguistic information and the WER begins to increase. Therefore,
the value of γ between 100 and 300 seems to be optimal. Figure 2 (right) reports
the WER as a function of the N -best list size. We can see that 5 or 10 hypotheses
are not enough. Using more than 25 hypotheses shows no further improvement.

Fig. 2. Semantic module with word2vec embedding, TED-LIUM development set, SNR
of 5dB. WER as a function of the semantic weight γ (left figure) and the N -best
hypothesis number (right figure). The dotted line corresponds to the baseline result.
n-gram LM.

5 Conclusion and discussion

In this article, we proposed a new approach of introducing semantic informa-
tion for the performance improvement of a noisy ASR system. We investigated
a new methodology for taking into account semantics through predictive repre-
sentations that capture the semantic characteristics of words and their context.
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The efficiency and the semantic properties of these representations motivate us
to explore these representations for our task of speech recognition. We used
word2vec and FastText embeddings. The semantic information is taken into ac-
count through the rescoring module of the N -best hypotheses of the recognition
system. Semantic representations are applied to the context part and possibility
zones. We evaluated our methodology on the corpus of TED-LIUM conferences
with added real noise. The proposed methodology shows a better WER com-
pared to the baseline system. This represents 8 % of relative im-provement for
10dB and about 10 % for 5dB in the reduction of the gap between the baseline
and the oracle systems. These improvements are statistically significant. This
observation is valid for the ASR with n-gram and with RNNLM.

It is important to note that in word2vec and FastText the word embedding
is static and the words with multiple meanings are conflated into a single rep-
resentation. In future work, we would like to investigate the dynamic BERT
embedding. We will conduct a deep analysis of the performance of semantic
module as a function of the noise characteristics (e.g., nonstationarity) and the
uncertainty propagation in noisy environment to guide the rescoring.
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