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Computational Models for Cumulative Prospect
Theory: Application to the Knapsack Problem

Under Risk

Hugo Martin and Patrice Perny

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
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Abstract. Cumulative Prospect Theory (CPT) is a well known model
introduced by Kahneman and Tversky in the context of decision making
under risk to overcome some descriptive limitations of Expected Utility.
In particular CPT makes it possible to account for the framing effect
(outcomes are assessed positively or negatively relatively to a reference
point) and the fact that people often exhibit different risk attitudes to-
wards gains and losses. We study here computational aspects related to
the implementation of CPT for decision making in combinatorial do-
mains. More precisely, we consider the Knapsack Problem under Risk
that consists of selecting the “best” subset of alternatives (investments,
projects, candidates) subject to a budget constraint. The alternatives’
outcomes may be positive or negative (gains or losses) and are uncertain
due to the existence of several possible scenarios of known probability.
Preferences over admissible subsets are based on the CPT model and
we want to determine the CPT-optimal subset for a risk-averse Decision
Maker (DM). The problem requires to optimize a non-linear function over
a combinatorial domain. In the paper we introduce two distinct compu-
tational models based on mixed-integer linear programming to solve the
problem. These models are implemented and tested on randomly gen-
erated instances of different sizes to show the practical efficiency of the
proposed approach.

Keywords: Cumulative Prospect Theory · Knapsack Problem · Risk
Aversion · Mixed-integer Linear Programming.

1 Introduction

The increasing use of intelligent systems to support human decision-making or
to drive the actions of autonomous artificial agents shows the importance of de-
veloping expressive and adaptable models to support decision making activities
in complex environments. One of the major challenges is to improve our under-
standing and control over AI-based decisions, and also their relevance, fairness,
and alignment with the organisation’s values and risk proneness. In the field of
decision under risk, the main problem to overcome is to compare alternatives
the outcomes of which are known in probabilities, and to provide a control of
risk in the selection of optimal actions.
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Various mathematical models have been developed in Economics to account
from observed human behaviors in decision making under risk, since the seminal
works of von Neumann and Morgenstern [24] and Savage [19] on the foundations
of Expected Utility Theory (EU). Despite the intuitive appeal of EU theory, sev-
eral experiments have shown that sophisticated rational human behaviors are not
always explainable by EU theory. In particular the experiments conducted by
Kahneman and Tversky [7] have shown that violations of the Von Neumann and
Morgenstern independence axiom or violations of Savage’s Sure Thing Principle
are frequently observed, making it impossible to explain or simulate the observed
behaviors using EU. This has led to alternative models, relying on a deformation
of cumulative probabilities allowing to account for violations of the above men-
tionned independence axioms. For example, Yaari [25] proposed a dual model
to EU, based on a weighting function transforming probabilities rather than
a utility function transforming payoffs. A second example is Rank-dependent
Utility Theory (RDU) where both transformations (probabilities and payoff)
co-exist, thus providing a more general model including EU and Yaari as special
cases. Although these models provide more flexibility to model preferences and
decisions, they are more complex to handle for optimization purposes due to
their non-linearity (w.r.t probabilities and/or payoffs) and their parameters are
more complex to elicit. This issue has been considered in AI, in various topics
such as sequential decision making [5, 6], state space search under risk [14], and
incremental preference elicitation [4, 15].

Another aspect that is worth considering is that, in the field of decision under
risk, decision makers tend to think of outcomes relative to a certain reference
point (often the status quo). They care generally more about negative outcomes
(i.e. outcomes below the reference point) than positive ones (i.e. outcomes above
the reference point) and may exhibit different attitudes towards gains and losses.
This observation has motivated the development of Prospect Theory [7] and
Cumulative Prospect Theory (CPT) [23] that provide decision models able to
account for this phenomenon. CPT theory includes a sophistication where the
overall utility of a risky prospect is decomposed as the difference between an
aggregate of utilities of positive outcomes and an aggregate of utilities of negative
outcomes. The aggregation operation used for the positive side can be different
from the one used for the negative side, thus letting the possibility to describe
more sophisticated behaviors. Although the theory is well established, the use
of such models for optimization tasks under risk received less attention.

The aim of this paper is to contribute to fill the gap by proposing compu-
tational models based on CPT for the effective computation of CPT-optimal
solutions on combinatorial domains. For the sake of illustration we will con-
sider the problem of selecting projects under a budget constraint and under risk
(knapsack problem with multiple scenarios).

The paper is organized as follows: In Section 2, we briefly survey some related
work. Then, in Section 3, we recall some background on CPT and some important
results on modeling strong risk-aversion in CPT. In Section 4 we propose a first
linearization for the CPT model, relying on the notion of core of a capacity.
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This leads us to propose a MIP formulation for the Knapsack problem under
risk. This model is tested on families of instances of different sizes. In Section 5
we consider a special case where the probability weighting functions used in CPT
are piecewise linear with a bounded number of pieces. Under this assumption,
we propose another MIP formulation, more compact and easier to solve, for the
same problem.

2 Related Work

CPT was already used in AI, e.g., for developing a risk sensitive reinforcement
learning in a traffic signal control application [16]. CPT has also been used in a
number of decision support applications. For example, an application of CPT for
the multi-objective optimization of a bus network is proposed in [9]. However, in
this case study, the set of alternatives is explicitly defined and does not require
optimization techniques.

The Knapsack Problem (KP) under consideration in this paper consists in
selecting a subset of items under a budget constraint. This problem has some
links with the portfolio selection problem that can be seen as the continuous
relaxation of KP under risk. The application of CPT to portfolio selection and
insurance demand have been studied in finance (see e.g. [3]) with a compu-
tational model solvable under some specific assumptions (S-Shaped functions,
risk free reference point and/or linear utility functions). Beside CPT, several
LP-computational measures of dispersion are introduced to control the risk at-
tached to portfolios: let us mention the mean absolute deviation, the Gini’s mean
difference (GMD) as basic LP computable risk measures, the worst realization
(Minimax) and the Conditional Value-at-Risk (CVaR) as basic LP computable
safety measures [10, 11]. Moreover, in the latter reference, computational issues
related to the solution of portfolio models with integrity constraints are investi-
gated and a matheuristic called Kernel Search is proposed. These contributions
do not consider the use of bipolar valuation scales as in CPT.

In multicriteria analysis there is also an increasing interest for modeling dif-
ferent attitudes in the aggregation depending on whether evaluations are on the
positive or negative side. For example, the Choquet integral has been extended
to the bipolar case in [8, 2] but optimization aspects attached to general bipo-
lar Choquet integral have not been investigated. Very recently, some LP-solvable
models have been proposed [12] for a subclass of bipolar Choquet integrals named
biOWA (for bipolar ordered weighted average). However, biOWA are symmetric
functions of their argument and do not allow to account for decision under risk
when scenarios have different probabilities. Finally an LP-solvable model was
proposed for a weighted extension of OWA operators [13] but does not consider
the case of bipolar scales. In this paper, we are going to introduce computational
models solvable by mixed-integer linear programming to determine CPT-optimal
solutions in implicit decision spaces.
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3 CPT and Strong Risk Aversion

Let us consider a problem of decision making under risk with a finite set of states
of nature N = {s1, . . . , sn}. The states represent possible scenarios under con-
sideration, impacting differently the outcomes of the alternatives. Let pi denote
the probability of state si. Any feasible alternative is seen as an act in the sense
of Savage. It is therefore characterized by a vector x = (x1, . . . , xn) where xi ∈ R
denotes the outcome of x in state si. In this context, the Rank-Dependent Utility
(RDU) model introduced in [17] is defined as follows:

Definition 1. Let x ∈ R
n be the outcome vector of an alternative, the RDU

model is defined by the following rank-dependent expected value:

fuϕ(x) =

n∑
i=1

[
ϕ(

n∑
k=i

p(k))− ϕ(

n∑
k=i+1

p(k))
]
u(x(i)) (1)

=

n∑
i=1

[
u(x(i))− u(x(i−1))

]
ϕ(

n∑
k=i

p(k)) (2)

where ϕ : [0, 1] → [0, 1] is a non-decreasing probability weighting function, u :
R→ R is a non-decreasing real-valued utility function, and (.) is a permutation
defined on N and such that x(1) ≤ x(2) ≤ . . . ≤ x(n).

Example 1. We consider three different scenarios s = (s1, s2, s3) of probability
p = ( 1

2 ,
1
3 ,

1
6 ) and we want to select the best solution in the set of alternatives

composed of x = (9, 4, 1), y = (4, 4, 4) and z = (1, 16, 1). We assume that
the preferences of the DM can be represented by RDU with ϕ(p) = p2 and
u(x) =

√
(x). We have the following RDU value for the three alternatives:

– fuϕ(x) = 1 + (u(4)− u(1))× ϕ( 5
6 ) + (u(9)− u(4))× ϕ( 1

2 ) = 1 + 25
36 + 1

4 = 70
36

– fuϕ(y) = u(4) + (u(4)− u(4))× ϕ( 5
6 ) + (u(4)− u(4))× ϕ( 1

2 ) = u(4) + 0 = 2

– fuϕ(z) = u(1) + (u(1)−u(1))×ϕ( 1
2 ) + (u(16)−u(1))×ϕ( 1

3 ) = 1 + 3× 1
9 = 4

3

Thus, we have the following ranking of alternatives y � x � z where � is the
preference relation induced by fuϕ .

This model clearly generalizes the Expected Utility model that can be ob-
tained for ϕ(p) = p for all p ∈ [0, 1]. Moreover it also includes the dual model of
EU known as Yaari’s model [25] as special case (when u is linear). Nonetheless,
this model is not always sufficient to account for decision behaviors observed
when decision makers think of outcomes relative to a certain reference point.
The utility scale is treated as an interval scale and preferences are not impacted
by positive affine transformations. Thus, 0 has no specific status in the valuation
scale, nor any other constant. This may prevent to account for some sophisticated
decision behaviors as illustrated in the following:

Example 2. We look for an optimal path from a source node to a sink node in a
network represented by a directed graph. The arcs of the graph are endowed with
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vectors representing the algebraic payoff attached to the arc (which can represent
a gain or a loss) under two possible scenarios of equal probability. For example,
the valuation (-2, 3) means that the outcome will be a loss of 2 in scenario 1 and a
gain of 3 in scenario 2. Outcomes are assumed to be additive along a path and we
assume that u(z) = z. This problem can represent several situations (e.g., a path
planning problem or investment planning problem, both under uncertainty).
Let us consider two different instances of this problem, characterized by two
different graphs with nodes {s, a, b, t} and {s′, c, d, t′} respectively. The graphs
are presented below.

s

a

b

t s′

c

d

t′(0, 3) (9, 0)

(5, 0) (0, 5)

(−1, 0) (0,−7)

(−5, 0) (0,−5)

s

a

t s′

d

t′

Fig. 1: Graphs considered in Example 2

On the left handside, the upper and lower s-t-paths have utilities (9, 3) and
(5, 5) respectively. We assume here that the DM prefers the former path because
she maximizes the expected outcome when all evaluations are positive. In the
instance given on the right handside, the upper and lower s′-t′-paths respectively
have utilities (−1,−7) and (−5,−5). Here the DM may exhibit a more cautious
attitude towards risk due to the presence of negative outcomes. Let us assume
that she prefers the latter solution due to the fact that the outcome in the worst
case scenario is better. Hence, to model these preferences with RDU we must ful-
fill the following constraints: fϕ(9, 3) > fϕ(5, 5) and fϕ(−7,−1) < fϕ(−5,−5).
The former inequality implies that 3+ϕ( 1

2 )×(9−3) > 5 and therefore ϕ( 1
2 ) > 1

3 .
Moreover the latter inequality implies −7 +ϕ( 1

2 )× (−1 + 7) < −5 and therefore
ϕ( 1

2 ) < 1
3 which yields a contradiction. Hence RDU is not able to represent the

observed preferences.

To overcome the descriptive limitations illustrated in the above example,
we consider now the Cumulative Prospect Theory model (CPT for short), first
introduced in [7].

Definition 2. Let x ∈ Rn be the outcome vector such that x(1) ≤ . . . ≤ x(j−1) <
0 ≤ x(j) ≤ . . . ≤ x(n) with j ∈ {0, . . . , n}, the Cumulative Prospect Theory is
characterized by the following evaluation function:

guϕ,ψ(x) =

n∑
i=1

wiu(xi) with wi =


ϕ(

n∑
k=i

p(k))− ϕ(

n∑
k=i+1

p(k)) if (i) ≥ (j)

ψ(

i∑
k=1

p(k))− ψ(

i−1∑
k=1

p(k)) if (i) < (j)

(3)
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where ϕ and ψ are two real-valued increasing functions from [0, 1] to [0, 1] that
assign 0 to 0 and 1 to 1, and u is a continuous and increasing real-valued utility
function such that u(0) = 0 (hence u(x) and x have the same sign).

It can easily be checked that whenever ϕ(p) = 1− ψ(1− p) for all p ∈ [0, 1]
(duality) then CPT boils down to RDU. The use of non-dual probability weight-
ing functions ϕ and ψ depending on the sign of the outcomes under consideration
enables to model shifts of behavior relatively to the reference point (here 0). Let
us come back to Example 2 under the assumption that u(z) = z for all z ∈ R,
we have: gϕ,ψ(9, 3) = [ϕ(1)−ϕ( 1

2 )]3 + [ϕ( 1
2 )−ϕ(0)]9 = 3 + 6ϕ( 1

2 ) since ϕ(0) = 0
and ϕ(1) = 1. Similarly gϕ,ψ(5, 5) = [ϕ(1)− ϕ( 1

2 )]5 + [ϕ( 1
2 )− ϕ(0)]5 = 5. Hence

gϕ,ψ(9, 3) > gϕ,ψ(5, 5) implies ϕ( 1
2 ) > 1

3 (*).
On the other hand we have gϕ,ψ(−7,−1) = [ψ( 1

2 ) − ψ(0)](−7) + [ψ(1) −
ψ( 1

2 )](−1) = −1−6ψ( 1
2 ) since ψ(0) = 0 and ψ(1) = 1. Similarly gϕ,ψ(−5,−5) =

−5. Hence gϕ,ψ(−7,−1) < gϕ,ψ(−5,−5) implies ψ( 1
2 ) > 2

3 , which does not yield
any contradiction. Thus, the DM’s preferences can be modeled with gϕ,ψ.

As CPT boils down to RDU when ϕ(p) = 1 − ψ(1 − p) for all p ∈ [0, 1] it
is interesting to note that under this additional constraint ψ( 1

2 ) > 2
3 implies

ϕ( 1
2 ) < 1

3 which is incompatible with the constraint denoted (*) above, derived
from gϕ,ψ(9, 3) > gϕ,ψ(5, 5). This again illustrates the fact that RDU is not able
to describe such preferences.

Strong Risk Aversion in CPT. In many situations decision makers are risk-
averse. It is therefore useful to further specify CPT for risk-averse agents. We
consider here strong risk-aversion that is standardly defined from second-order
stochastic dominance. For any random variable X, let GX be the tail distribution
defined by GX(x) = P (X > x), with P a probability function. Let X,Y be two
random variables, X stochastically dominates Y at the second order if and only
if for all x ∈ X,

∫ x
−∞GX(t)dt ≥

∫ x
−∞GY (t)dt. From this dominance relation, the

concept of mean-preserving spread standardly used to define risk aversion can
be introduced as follows. Y is said to derive from X using a mean preserving
spread if and only if E(X) = E(Y ) and X stochastically dominates Y at the
second order. We have then the following definition of strong risk aversion [18]:

Definition 3. Let % be a preference relation. Strong risk aversion holds for %
if and only if X % Y for all X and Y such that Y derives from X using a mean
preserving spread.

We recall now the set of conditions that CPT must fulfill to model strong
risk aversion. These conditions were first established in [21].

Theorem 1. Strong risk aversion holds in CPT if and only if ϕ is convex, ψ
is concave, u is concave for losses and also concave for gains, and the following
equation is satisfied:[
u(x)− u(x− δ

q
)
](
ψ(q + s)− ψ(s)

)
≥
[
u(y +

δ

q
)− u(y)

](
ϕ(p+ r)− ϕ(r)

)
(4)

for all x ≥ 0 ≥ y and p, q, r, s such as p+ q+ r+ s ≤ 1, p, q > 0 and r, s ≥ 0.
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We remark that, when u(z) = z for all z, condition (4) can be rewritten in

the following simpler form: ψ(q+s)−ψ(s)
q ≥ ϕ(p+r)−ϕ(r)

p for all p, q, r, s such as
p+ q + r + s ≤ 1, p, q > 0 and r, s ≥ 0. In terms of derivative, this means that
ψ′(s) ≥ ϕ′(r) for all r, s ≥ 0 such that r + s ≤ 1.

The above characterization of admissible forms of CPT for a risk-averse de-
cision maker will be used in the next section to propose computational models
for the determination of CPT-optimal solutions on implicit sets. We conclude
the present section by making explicit a link between CPT and RDU model.

Linking RDU and CPT. Interestingly, CPT can be expressed as a difference
of two RDU values respectively applied to the positive and negative part of
the outcome vector x, using the two distinct probability weighting functions ϕ
and ψ. This reformulation is well known in the literature on rank-dependent
aggregation functions (see e.g., [2]) and reads as follows:

guϕ,ψ(x) = fu
+

ϕ (x+)− fu
−

ψ (x−) (5)

where x+ = max(x, 0), x− = max(−x, 0), u+(z) = u(z) if z ≥ 0 and 0 otherwise,
u−(−z) = −u(z) if z ≤ 0 and 0 otherwise. This formulation will be useful in the
next sections to propose linear reformulations of the CPT model.

The next sections are dedicated to the effective computation of CPT-optimal
solutions on an implicit set of alternatives using linear programming techniques.

4 A First Linearization for CPT Optimization

We present here a first mixed-integer program to maximize function guϕ,ψ(x)
under linear admissibility constraints for a risk-averse agent. By Theorem 1, we
know that ϕ must be convex and ψ must be concave to model risk aversion. These
properties will be useful to establish a linearization of the CPT model. For the
simplicity of presentation, we will also assume that u(x) = x and notations like
fuϕ and guϕ,ψ will be simplified into fϕ and gϕ,ψ. We will briefly explain later how
the proposed approach can be extended to the case of a piecewise linear utility
u. Let us first recall some notions linked to capacities and related concepts.

Capacities are set functions that are well known in decision theory for their
ability to describe non-additive representations of beliefs or importance in deci-
sion models. Let us recall the following:

Definition 4. A set function v : P(N)→ [0, 1] is said to be a capacity if it ver-
ifies: v(∅) = 0 and for all A,B ⊆ N,A ⊆ B ⇒ v(A) ≤ v(B). It is a normalized
capacity if v(N) = 1.

Among all existing capacities, some are of particular interest. In particular,
a capacity v is said to be:

– convex if v(A ∪B) + v(A ∩B) ≥ v(A) + v(B) ∀A,B ⊆ N
– additive if v(A ∪B) + v(A ∩B) = v(A) + v(B) ∀A,B ⊆ N
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When v is an additive capacity it can be simply characterized by a vector
(v1, . . . , vn) of non-negative weights such that v(S) =

∑
i∈S vi for all S ⊆ N . In

the sequel we will indifferently use the same notation v for the capacity and for
the weighting vector characterizing the capacity.

Let P be any probability measure on 2N (N being the set of scenarios) and
ϕ any probability weighting function (continuous, non-decreasing and such that
ϕ(0) = 0 and ϕ(1) = 1), then the set function defined by v(S) = (ϕ ◦ P )(S) =
ϕ(
∑
i∈S pi) is a capacity. It is well known that v is convex if and only if ϕ is

convex [1]. When v is convex, a useful property is that there exists an additive
measure λ(S) that dominates function v [22]. The set of all additive capacities
dominating v is known as the core of v, formally defined as follows:

Definition 5. The core of a capacity v is the set of all additive capacities domi-
nating v, defined by core(v) = {λ : 2N → [0, 1] additive | λ(S) ≥ v(S) ∀S ⊆ N}.

Hence when ϕ is convex, v = ϕ ◦ P has a non empty core and v(S) =
minλ∈core(v)(λ(S)). In this case, a useful result due to Schmeidler [20] that holds
for general Choquet integrals used with a convex capacity implies that they can
be rewritten as the minimum of a set of linear aggregation functions. When
applied to fϕ(x) (which is an instance of the Choquet integral) the result writes
as follows:

Proposition 1 If ϕ is convex we have fϕ(x) = min
λ∈core(ϕ◦P )

λ.x

where fϕ is the Yaari’s model obtained from fuϕ when u(z) = z for all z. Similarly,

for a concave weighting function ψ the dual defined by ψ̄(p) = 1− ψ(1− p) for
all p ∈ [0, 1] is convex and has a non-empty core. Hence Proposition 1 can be
used again to establish the following result:

Proposition 2 If ψ is concave we have fψ(x) = max
λ∈core(ψ̄◦P )

λ.x

Proof. fψ(x) = −fψ̄(−x) = − min
λ∈core(ψ̄◦P )

λ.(−x) = max
λ∈core(ψ̄◦P )

λ.x.

Using Propositions 1 and 2 and Equation (5) we obtain a new formulation
of CPT, when ϕ and ψ are convex and concave respectively.

Proposition 3 Let x ∈ Rn. If ϕ is convex and ψ is concave then we have:

gϕ,ψ(x) = min
λ∈core(ϕ◦P )

λ · x+ − max
λ∈core(ψ̄◦P )

λ · x−

Now, let us show that this new formulation can be used to optimize gϕ,ψ(x)
using linear programming. From Propositions 1 and 2 the values of fϕ(x) and
fψ(x) for any outcome vector x ∈ Rn can be obtained as the solutions of the two
following linear programs respectively:

min
n∑
i=1

λixi

ϕ(P (A)) ≤
∑
i∈A

λi ∀A ⊆ N

λi ≥ 0, i = 1, .., n

max
n∑
i=1

λixi

ψ(P (A)) ≥
∑
i∈A

λi ∀A ⊆ N

λi ≥ 0, i = 1, .., n
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The left LP given above directly derives from Proposition 1. The right LP
given above derives from Proposition 2 after observing that the constraints ∀B ⊆
N,
∑
i∈B λi ≥ ψ̄(P (B)) are equivalent to ∀A ⊆ N,

∑
i∈A λi ≤ ψ(P (A)) (by

setting A = N \B). Now, if we consider x as a variable vector, we consider the
dual formulations of the above LPs to get rid of the quadratic terms:

max
∑
A⊆N

ϕ(P (A))× dA∑
A⊆N :i∈A

dA ≤ xi i = 1, .., n

dA ≥ 0 ∀A ⊆ N

min
∑
A⊆N

ψ(P (A))× dA∑
A⊆N :i∈A

dA ≥ xi i = 1, .., n

dA ≥ 0 ∀A ⊆ N
Finally, we obtain program P1 given below to optimize gϕ,ψ, with the as-

sumptions that ϕ is convex, ψ is concave and that u(x) = x for all x ∈ Rn.

max
∑
A⊆N

ϕ(P (A))× d+
A −

∑
A⊆N

ψ(P (A))× d−A

(P1)



∑
A⊆N :i∈A

d+
A ≤ x

+
i i = 1, . . . , n∑

A⊆N :i∈A
d−A ≥ x

−
i i = 1, . . . , n

xi = x+
i − x

−
i i = 1, . . . , n

0 ≤ x+
i ≤ zi ×M i = 1, . . . , n

0 ≤ x−i ≤ (1− zi)×M i = 1, . . . , n
x ∈ X

x−i , x
+
i , d

+
A, d

−
A ≥ 0 i = 1, .., n, ∀A ⊆ N

zi ∈ {0, 1} i = 1, . . . , n

The integer variables zi, i = 1, . . . , n are used to decide whether xi is positive or
not. The M constant is used as usual to model disjunctive constraints depending
on the sign of xi. P1 has 2n+1 continuous variables, n binary variables and 5n
constraints. It can be specialized to solve any CPT-optimization problem, by
inserting the needed variables and constraints to define the set X. For example,
to solve the knapsack problem under risk, we have to insert m boolean variables
yj (set to 1 iff object j is selected) subject to the constraint

∑m
j=1 wjyj ≤ C,

for weights wj , j = 1, . . . ,m and the knapsack capacity C. Then variables xi
are linked to variables yj by equations of type xi =

∑m
j=1 uijyj defining xi as a

linear utility over sets of objects for any scenario i ∈ {1, . . . , n}.
We implemented the above model using the Gurobi 7.5.2 solver on a com-

puter with 12GB of RAM, a Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz proces-
sor. Table 2 gives the results obtained for the CPT-knapsack problem modeled
as follows: m represents the number of objects, n the number of voters; utili-
ties uij and weights wj were randomly generated in the range J−10, 10K (resp.
J−100, 100K), the capacity is set to C = (

∑m
j=1 wj)/2, ϕ and ψ are randomly

drawn to satisfy the conditions of Proposition 1. Average times given in Table
2 are computed over 20 runs, with a timeout set to 1200 seconds. We observe
that this computational model is able to solve instances with a large number of
objects in a few seconds. Nonetheless, it has an exponential number of contin-
uous variables, which may limit its applicability when the number of scenarios
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Table 1: Times (s) obtained by MIP P1 for the CPT-knapsack
m n = 3 n = 5 n = 7

100 0.03 0.21 0.67
500 0.05 1.31 45.60
750 0.08 0.87 125.72

1000 0.13 3.28 150.48

becomes larger. To overcome this limitation, we will know present a second com-
putational model with a polynomial number of variables and constraints, which
optimizes gϕ,ψ(x) under some additional assumptions concerning ϕ and ψ.

5 The Case of Piecewise Linear Weighting Functions

From now on, we assume that ϕ and ψ are piecewise-linear functions with re-
spectively the breakpoints 0 = α0 ≤ α1 ≤ α2 ≤ . . . ≤ αt = 1 and 0 = β0 ≤ β1 ≤
β2 ≤ . . . ≤ βt = 1. This assumption is often made in different contexts of elici-
tation and optimization. For example, Ogryczack [13] uses a similar assumption
to propose an efficient linearization of the WOWA operator. We will follow a
similar idea to propose a linearization for CPT.

A piecewise-linear function has its derivative constant on each interval. Thus
we define ϕ′(u) = d+

i for all u ∈ [αi−1, αi] and ψ′(u) = d−i for all u ∈ [βi−1, βi].
Moreover we assume that d+

t+1 = 0 and d−t+1 = 0 for convenience. For any given
solution x, we define the cumulative function Fx, for all α ∈ [0, 1], by:

Fx(α) =

n∑
i=1

piδi(α) with δi(α) =

{
1 if xi ≤ α
0 otherwise

Then we have F
(−1)
x (u) = inf{y : Fx(y) ≥ u} returns the minimum perfor-

mance y such that the probability of scenarios whose performance is lower than
or equal to y is greater than or equal to u. Then, we define the tail function Gx,
for all α ∈ [0, 1], by:

Gx(α) =
n∑
i=1

piδi(α) with δi(α) =

{
1 if xi > α
0 otherwise

and G
(−1)
x (u) = inf{y : Gx(y) ≤ u} returns the minimum performance y such

that the probability of scenarios whose performance level is greater than y is
lower than or equal to u. First, we observe that the following relation holds

between G
(−1)
x and F

(−1)
x .

Proposition 4 For all x ∈ Rn and u ∈ [0, 1], G
(−1)
x (u) = F

(−1)
x (1− u)

Proof. According to the definition of F and G, we have Gx(u) = 1− Fx(u). We

have then the following result F
(−1)
x (1 − u) = inf{y : Fx(y) ≥ 1 − u} = inf{y :

1− Fx(y) ≤ u} = inf{y : Gx(y) ≤ u} = G
(−1)
x (u) ut
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Then, let us show that these notions allow a new formulation of gϕ,ψ:

Proposition 5

gϕ,ψ(x) =

t∑
i=1

[
(d+
i+1−d

+
i )

∫ 1−αi

0

F (−1)
x (v)dv−(d−i −d

−
i+1)

∫ βi

0

G(−1)
x (v)dv

]
(6)

Proof. Let () be a permutation of scenarios such that x(1) ≤ x(2) ≤ . . . ≤ x(n)

and πi =
∑n
k=i p(k). Let E(x) =

∫ 1

0

(
G

(−1)
x+ (u)ϕ′(u)−G(−1)

x− (u)ψ′(u)
)
du. First,

we show that E(x) = gϕ,ψ(x).

E(x) =

∫ 1

0

(
G

(−1)
x+ (u)ϕ′(u)−G(−1)

x− (u)ψ′(u)
)
du

=

n∑
i=1

∫ πi

πi+1

G
(−1)
x+ (u)ϕ′(u)du−

n∑
i=1

∫ πi

πi+1

G
(−1)
x− (u)ψ′(u)du

with πn+1 = 0. We notice that G
(−1)
x+ (u) = x+

(i) for all u ∈ [πi+1, πi]. We have:

=

n∑
i=1

x+
(i)

∫ πi

πi+1

ϕ′(u)du−
n∑
i=1

x−(i)

∫ πi

πi+1

ψ′(u)du

=

n∑
i=1

x+
(i)

(
ϕ(

n∑
k=i

p(k))− ϕ(

n∑
k=i+1

p(k))

)
−

n∑
i=1

x−(i)

(
ψ(

n∑
k=i

p(k))− ψ(

n∑
k=i+1

p(k))

)
= gϕ,ψ(x)

Then, the desired result can be obtained from another formulation of E(X):

E(x) =

∫ 1

0

(
G

(−1)
x+ (u)ϕ′(u)−G(−1)

x− (u)ψ′(u)
)
du

=

t∑
i=1

∫ αi

αi−1

G
(−1)
x+ (u)ϕ′(u)du−

∫ βi

βi−1

G
(−1)
x− (u)ψ′(u)du

We recall that ϕ′(u) = d+
i for all u ∈ [αi−1, αi] (and d+

t+1 = 0 for convenience)

and ψ′(u) = d−i for all u ∈ [βi−1, βi] (and d−t+1 = 0 for convenience). We have:

=

t∑
i=1

[
d+
i

∫ αi

αi−1

G
(−1)
x+ (u)du− d−i

∫ βi

βi−1

G
(−1)
x− (u)du

]

=

t∑
i=1

[
d+
i

∫ αi

αi−1

F
(−1)
x+ (1− u)du− d−i

∫ βi

βi−1

G
(−1)
x− (u)du

]
(see Prop. 4)

=

t∑
i=1

[
d+
i

∫ 1−αi−1

1−αi

F
(−1)
x+ (v)dv − d−i

∫ βi

βi−1

G
(−1)
x− (u)du

]
(with v = 1− u)
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=

t∑
i=1

[
d+
i

(∫ 1−αi−1

0

F
(−1)
x+ (v)dv −

∫ 1−αi

0

F
(−1)
x+ (v)dv

)
− d−i

∫ βi

βi−1

G
(−1)
x− (u)du

]

=

t∑
i=1

[
(d+
i+1 − d

+
i )

∫ 1−αi

0

F
(−1)
x+ (v)dv − d−i

(∫ βi

0

G
(−1)
x− (u)du−

∫ βi−1

0

G
(−1)
x− (u)du

)]

=

t∑
i=1

[
(d+
i+1 − d

+
i )

∫ 1−αi

0

F
(−1)
x+ (v)dv − (d−i − d

−
i+1)

∫ βi

0

G
(−1)
x− (v)dv

]
�

Now we introduce the two following linear programs to optimize
∫ 1−αk

0
F

(−1)
x (v)dv

and
∫ αk

0
G

(−1)
x (v)dv, for a fixed x and k. The linearization of

∫ p
0
F

(−1)
x (v)dv has

been first proposed in [13] and is here extended to
∫ p

0
G

(−1)
x (v)dv:

min
n∑
i=1

ximi
n∑
i=1

mi = (1− αk)

mi ≤ pi i = 1, . . . , n
mi ≥ 0, i = 1, . . . , n

max
n∑
i=1

ximi
n∑
i=1

mi = αk

mi ≤ pi i = 1, . . . , n
mi ≥ 0, i = 1, . . . , n

Then we consider their respective dual formulations:

max(1− αk)r −
n∑
i=1

pibi

r − bi ≤ xi i = 1, . . . , n
bi ≥ 0, i = 1, . . . , n

minαkr +
n∑
i=1

pibi

r + bi ≥ xi i = 1, . . . , n
bi ≥ 0, i = 1, . . . , n

Using these formulations, we propose a mixed integer program (P2) to max-
imize gϕ,ψ(x) for any x belonging to a set X:

max
t∑

k=1

d
′+
k ((1− αk)× r+

k −
n∑
l=1

p+
l b

+
lk)−

t∑
k=1

d
′−
k (αk × r−k +

n∑
l=1

p−l b
−
lk)

(P2)



r+
k − b

+
ik ≤ x

+
i i = 1, . . . , n, k = 1, . . . , t

r−k + b−ik ≥ x
−
i i = 1, . . . , n, k = 1, . . . , t

xi = x+
i − x

−
i i = 1, . . . , n

0 ≤ x+
i ≤ zi ×M i = 1, . . . , n

0 ≤ x−i ≤ (1− zi)×M i = 1, . . . , n
x ∈ X

x+
i , x

−
i , bik ≥ 0, i = 1, . . . , n, k = 1, . . . , t

zi ∈ {0, 1}, i = 1, . . . , n

with d
′+
k = d+

k+1 − d
+
k and d

′−
k = d−k − d

−
k+1 for all k = 1, . . . , t. The integer

variables zi, i = 1, . . . , n are used to decide whether xi is positive or not. The
M constant is used as usual to model disjunctive constraints depending on the
sign of xi. P2 contains 2nt+ 3n constraints, n binary variables and 2nt+ 2n+ 2t
continuous variables. It can be specialized to solve any CPT-optimal problem, by
inserting the needed variables and constraints to define the set X, as shown for
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P1. Table 2 gives the results obtained for the CPT-optimal knapsack problem.
Functions ϕ and ψ are chosen piecewise linear with n breakpoints; these functions
are randomly drawn to satisfy the conditions of Proposition 1. Average times
given in Table 2 are computed over 20 runs, with a timeout set to 1200 seconds.

Table 2: Times (s) obtained by MIP P2 for the CPT-knapsack
m n = 3 n = 5 n = 7 n = 10

100 0.01 0.03 0.07 0.12
500 0.04 0.13 0.19 28.22
750 0.03 0.18 2.76 107.36

1000 0.04 0.27 9.027 191.84

The linearization presented here for the case where u(z) = z for all z can
easily be extended to deal with piecewise linear concave utility functions u for
gains and for losses (admitting a bounded number of pieces). In this case, the
utility function can indeed be defined on gains as the minimum of a finite set of
linear utilities which enables a linear reformulation (the same holds for losses).
Note also that having a concave utility over gains and over losses is consistent
with the risk-averse attitude under consideration in the paper.

6 Conclusion

CPT is a well known model in the context of decision making under risk used
to overcome some descriptive limitations of both EU and RDU. In this paper,
we have proposed two mixed integer programs for the search of CPT-optimal
solutions on implicit sets of alternatives. We tested these computational mod-
els on randomly generated instances of the Knapsack problem involving up to
1000 objects and 10 scenarios. The second MIP formulation proposed performs
significantly better due to the additional restriction to piecewise linear utility
functions.

A natural extension of this work could be to address the exponential aspect of
our first formulation with a Branch&Price approach. Another natural extension
of this work could be to propose a similar approach for a general bipolar Choquet
integral where the capacity is not necessarily defined as a weighted probability.
It can easily be shown that the first linearization proposed in the paper still
applies to bi-polar Choquet integrals.
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