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This work investigates the application of topology optimisation by means of the SIMP method into the challenging field of nonlinear electromechanics for the specific case of actuation applications. In particular, it focuses on two types of materials, namely, piezoelectric polymers and dielectric elastomers, capable of undergoing moderate or large electrically induced displacements, respectively, where, therefore, the hypothesis of linearised electromechanics are not appropriate for their numerical analysis. This paper puts forward an energy interpolation scheme for the electromechanical energy functional of solid and void regions. Regarding the latter (void regions), it recommends the use of an unconditionally stable definition which defers the development of artificial electrically induced numerical instabilities in low and intermediate density regions. The paper also investigates from a numerical standpoint the convenience of the selection of mechanical and electromechanical penalising exponents featuring in the energy interpolation scheme proposed for both dielectric elastomer and piezoelectric polymer type materials. Crucially, the numerical experiments reveal that the choice of judicious penalising exponents depends upon the underlying physics of the material, hence, yielding different recommendations for either dielectric or piezoelectric materials. Finally, this paper reveals that, in contrast to the simpler context of linear piezoelectricity [36], a choice of penalising exponents satisfying p e < p m must be avoided in the context of nonlinear electromechanics, as this choice fosters the sudden development of artificial instabilities and therefore, compromises the robustness of the TO algorithm.

Introduction

Electro-Active Polymers (EAPs) [START_REF] Pelrine | Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation[END_REF][START_REF] Pelrine | High-speed electrically actuated elastomers with strain greater than 100 %[END_REF][START_REF] Kofod | Actuation response of polyacrylate dielectric elastomers[END_REF][START_REF] Skov | Dielectric Elastomers (DEs) as EAPs: Materials[END_REF] represent an important family of Electro Active materials within the consolited whilst constantly expanding field of smart materials. Among them, dielectric elastomers and piezoelectric polymers are some of their most relevant integrants. Since their irruption, dielectric elastomers have demonstrated outstanding actuation capabilities. This, in conjunction with their low stiffness properties, has led to their identification as ideal candidates for their use as soft robots [START_REF] Pelrine | Dielectric elastomer artificial muscle actuators: toward biomimetic motion[END_REF]. However, the applications of dielectric elastomers do not restrict to the field of electrically induced actuation, as these has been successfully applied as Braille displays, deformable lenses, haptic devices and energy generators, to name but a few ( [START_REF] O'halloran | A review on dielectric elastomer actuators, technology, applications, and challenges[END_REF]). On the other hand, piezoelectric polymers have similar dielectric properties to dielectric elastomers, whilst possessing much larger stiffness. Hence, their applicability as actuators is restricted to scenarios characterised by moderate electrically induced deformations. On the other side of the spectrum of applications, it is worth mentioning that these materials have been successfully applied as tactile sensors, energy harvesters, acoustic transducers and inertial sensors [START_REF] Chiba | Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators[END_REF][START_REF] Townsend | Topology optimization of vibrational piezoelectric energy harvesters for structural health monitoring applications[END_REF].

Topology Optimisation (TO) of smart materials opens up for the possibility of exploring and exploiting the unconventional properties of these materials by conceiving designs beyond human intuition or scientific expertise. There is a wide spectrum of robust approaches available for TO, ranging from [START_REF] Zhou | The coc algorithm, part II: topological, geometrical and generalized shape optimization[END_REF][START_REF] Aage | Giga-voxel computational morphogenesis for structural design[END_REF] density-based methods, with the Solid Isotropic Material with Penalisation (SIMP) method as their maximum representative [START_REF] Bendsøe | Topology optimization[END_REF], level-set methods [START_REF] Wang | A level-set method for structural topology optimization[END_REF][START_REF] Allaire | Structural optimization using sensitivity analysis and a level-set method[END_REF], phase-field methods [START_REF] Burger | Phase-field relaxation of topology optimization with local stress constraints[END_REF], topological derivative methods [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF] and evolutionary methods [START_REF] Munk | Topology and shape optimization methods using evolutionary algorithms: a review[END_REF]. All of them can in principle be applied to TO of smart materials. We provide a non exhaustive list of scientific works where TO has been applied with the aforementioned aim: Kang and Wang [START_REF] Kang | Topology optimization of bending actuators with multilayer piezoelectric material[END_REF] used the SIMP method for the topology optimisation of piezoelectric ceramics, an electro-active material which unlike EAPs, is restricted to scenarios characterised by very small deformations/displacements. Specifically, they carried out a comparison between bimorph and multilayered configurations in order to improve the action properties of the resulting device. Zhang et. al. [START_REF] Zhang | Topology optimization of piezoelectric smart structures for minimum energy consumption under active control[END_REF] also investigated the TO of piezoelectric sensors with active vibration control purposes. Other works [START_REF] Kögl | Topology optimization of smart structures: Design of piezoelectric plate and shell actuators[END_REF][START_REF] Donoso | Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile[END_REF][START_REF] Donoso | Numerical and analytical method for the design of piezoelectric modal sensors/actuators for shell-type structures[END_REF][START_REF] Sánchez-Rojas | Modal optimization and filtering in piezoelectric microplate resonators[END_REF] have investigated the simultaneous optimisation of polarisation and layout of piezoelectric ceramics over a fixed host (passive) material, and when the host structure is also included in the optimisation process [START_REF] Ruiz | Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile[END_REF][START_REF] Ruiz | Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile[END_REF][START_REF] Ruiz | Optimal design of robust piezoelectric unimorph microgrippers[END_REF][START_REF] Ruiz | Optimal design of robust piezoelectric microgrippers undergoing large displacements[END_REF]. More recently, some works have ventured in the TO of dielectric elastomers. For instance, the work in [START_REF] Wang | Design of a rotary dielectric elastomer actuator using topology optimization method[END_REF] delves into the TO of these materials with the aim of maximasing the electrically induced rotation of a rotary device. Extremely interesting is the work in [START_REF] Bortot | Topology optimization of dielectric elastomers for wide tunable band gaps[END_REF], where the TO is applied with the objective of conceiving intelligent microstructures for the design of wide tunable band gaps.

The present manuscript explores the TO of dielectric elastomers and piezoelectric polymers. These EAPs can in principle undergo large or moderate electrically induced deformations, and hence, the hypothesis of linearised elasticity (or more appropriately in this context, linearised electromechanics) are no longer appropriate for their numerical analysis. Therefore, both system of PDEs describing the governing equations of the EAP need to be solved simultaneously. This is in clear contrast to the design of piezoceramic actuators [START_REF] Ruiz | Optimal design of piezoelectric modal transducers[END_REF], where the hypothesis of small deformations/displacements permit to consider that both the direction and magnitude of the electric field applied between some electrodes is not affected by the change in the deformed configuration.

With regards to the definition of constitutive laws in nonlinear electromechanics, we must emphasise that we restrict ourselves to the simplified scenario where irreversible effects are neglected (viscoelasticity for the case of dielectric elastomers and ferroelectricity for piezoelectric polymers). With that in mind, the constitutive law of an EAP can be typically defined through the introduction of two possible energy density functionals per unit undeformed volume. These are the Helmhotlz functional and the internal energy functional, both depending upon the deformation. The difference between them resides in the dependance with respect to the electric field for the Helmholtz functional and on the electric displacement field for the internal energy. Crucially, irrespectively of the choice of the thermodynamic functional, their coupled nature fosters their eventual loss of convexity with respect to the deformation gradient tensor at a given electrical excitation, leading to physically-based electromechanical instabilities. Beyond the onset of these instabilities, the constitutive model can potentially exhibit loss of ellipticity, intrinsically related to nonphysical material instabilities, which will reflect in spurious numerical results. Under these extreme scenarios, special care needs to be taken for the definition of the electromechanical constitutive law of an EAP. For instance, inspired from the field of polyconvexity in nonlinear elasticity, the authors in [START_REF] Gil | A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation[END_REF] postulate sufficient convexity conditions that preclude ab initio the loss of ellipticity of the internal energy functional for the entire range of deformations and electric fields. In this paper, we do not contemplate these extreme scenarios. Hence, commonly used Helmholtz and internal energy-based functionals (not guaranteeing ab initio the ellipcity condition for the entire range of deformations and electric fields) will be accepted and used for the characterisation of the constitutive response of EAPs and subsequently used for their TO optimisation.

In addition, numerical instabilities can emerge when using density-based TO in the context of large deformations, posing a serious challenge for its robust application in this context. Specifically, areas associated with low and intermediate densities are prone to develop these nonphysical instabilities. Fortunately, some strategies have been put forward to overcome this drawback. For instance, the additive hyperelasticity technique presented in [START_REF] Liu | Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyperelasticity technique[END_REF]; the combination of a polyconvex strain energy density in conjunction with an ad-hoc relaxation introduced in [START_REF] Lahuerta | Towards the stabilization of the low density elements in topology optimization with large deformation[END_REF] to stabilise those excessively distorted elements of an underlying Finite Element mesh, or an original interpolation scheme for the strain energy density as proposed in [START_REF] Wang | Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems[END_REF]. We also mention the very recent work [START_REF] Chung | Level-set topology optimization considering nonlinear thermoelasticity[END_REF] on the optimal design of hyperelastic structures in the context of thermoelasticity. Very recently, some of the authors of this manuscript have put forward in [START_REF] Ortigosa | A new stabilisation approach for level-set based topology optimisation of hyperelastic materials[END_REF] a novel computational approach for the level-set based TO of hyperelastic materials at large strains, extended also for SIMP-based TO [START_REF] Ortigosa | A stabilisation approach for topology optimisation of hyperelastic structures with the simp method[END_REF]. If needed, these techniques can also be applied with the context of interest of this paper, namely, nonlinear electromechanics.

The present paper examines aspects inherent to TO in the context of nonlinear electromechanics which have not been previously explored. Specifically, it puts forward a energy interpolation technique for the electromechanical energy functional of the solid and void regions. With regards to the latter, it recommends the use of an unconditionally stable definition which defers the development of (electrically induced) numerical instabilities associated with low and intermediate density regions. The paper also investigates from a numerical standpoint the convenience for the selection of mechanical and electromechanical penalising exponents featuring in the energy interpolation scheme proposed for both dielectric elastomer and piezoelectric polymer type materials.

The layout of this paper is as follows: Section 2 introduces some elements of nonlinear continuum electromechanics. Section 3 describes the optimisation problem with the SIMP method and the novelties of this work. Finally, Section 4 shows some numerical examples where TO of dielectric elastomer-based and piezoelectric polymer-based materials is carried out. Finally, Section 5 provides some concluding remarks.

Nonlinear continuum electromechanics

A brief introduction into nonlinear continuum electromechanics and the relevant governing equations will be presented in this section.

Kinematics: motion and deformation

Let us consider the motion of an EAP with reference configuration B 0 ⊂ R 3 and boundary ∂B 0 with unit outward normal N (refer to Figure 1). After the motion, the EAP occupies a deformed configuration B ⊂ R 3 with boundary ∂B and unit outward normal n. The motion of the EAP is defined by the deformation mapping φ (X, t), which links a material particle from the reference configuration X ∈ B 0 to the deformed configuration x ∈ B according to x = φ (X, t). Associated with the mapping φ (X, t) the deformation gradient tensor F [START_REF] Bathe | Finite Element Procedures[END_REF][START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis: Statics[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] González | A first course in Continuum Mechanics[END_REF] is defined as

F = ∇ 0 φ (X, t) , (1) 
where ∇ 0 represents the material gradient operator, namely ∇ 0 (•) = ∂(•) ∂X . Associated with F , its co-factor and the Jacobian J are defined as

H = (detF ) F -T ; J = detF . (2) 
As it will be shown in Section 2.4, the three kinematic elements described, namely, {F , H, J} are essential in the definition of the constitutive model of an EAP. 

Governing equations: conservation of linear momentum and angular momentum

In the absence of inertia effects, the local form of the conservation of linear momentum [START_REF] González | A first course in Continuum Mechanics[END_REF] in the EAP B 0 can be written as

DIVP + f 0 = 0; in B 0 ; P N = t 0 ; on ∂ t B 0 ; φ = φ; on ∂ φ B 0 , (3) 
where f 0 represents a body force per unit undeformed volume B 0 and t 0 , the traction force per unit undeformed area on ∂ t B 0 ⊂ ∂B 0 . Furthermore, φ represents the value of the Dirichlet boundary condition on

∂ φ B 0 ⊂ ∂B 0 , with ∂ t B 0 ∪ ∂ φ B 0 = ∂B 0 and ∂ t B 0 ∩ ∂ φ B 0 = ∅.
Finally, P represents the first Piola-Kirchhoff stress tensor and the local conservation of angular momentum leads to the tensor condition P F T = F P T .

Governing equations: Gauss's and Faraday's laws

In the absence of magnetic and time dependant effects, the Maxwell equations on the EAP B 0 reduce to Gauss's and Faraday's laws. The local form of the Gauss's law [START_REF] Skatulla | A multiplicative approach for nonlinear electroelasticity[END_REF][START_REF] Miehe | Computational structural and material stability analysis in finite electro-elasto-statics of electro-active materials[END_REF] can be written in a Lagrangian formalism as

DIVD 0 -ρ 0 = 0; in B 0 ; D 0 • N = -ω 0 ; on ∂ ω B 0 , (4) 
where D 0 is the Lagrangian electric displacement vector, ρ 0 represents an electric volume charge per unit of undeformed volume B 0 and ω 0 , an electric surface charge per unit of undeformed area ∂ ω B 0 ⊂ ∂B 0 . Furthermore, under the same hypothesis, the local form of the Faraday's law can be written in a Lagrangian setting as

E 0 = -∇ 0 ϕ; in B 0 ; ϕ = φ; on ∂ ϕ B 0 , (5) 
where E 0 is the Lagrangian electric field vector and ϕ, the scalar electric potential. In [START_REF] Bendsøe | Material interpolation schemes in topology optimization[END_REF], ∂ ϕ B 0 represents the part of the boundary ∂B 0 where essential electric potential boundary conditions are applied such that

∂ ω B 0 ∪ ∂ ϕ B 0 = ∂B 0 and ∂ ω B 0 ∩ ∂ ϕ B 0 = ∅ 2 .

Constitutive equations

In order to close the system of equilibrium (state) equations in (3)-( 5) , a constitutive law is needed. In the case of reversible (nonlinear) elasticity, a possible approach to achieve this is through the Helmhotlz functional, which is typically written as Ψ = Ψ(X, F , E 0 ), and represents an energy functional per undeformed volume.

In this context, the first Piola-Kirchhoff stress tensor P and the electric displacement field D 0 emerge form the first derivatives of the Helmholtz functional as

P = ∂ F Ψ(X, F , E 0 ); D 0 = -∂ E 0 Ψ(X, F , E 0 ). (6) 
Furthermore, the second derivatives of the Helmholtz functional yield the constitutive tensors, namely the fourth order elasticity tensor C, the third order piezoelectric tensor P and the second order dielectric tensor ε, defined respectively as

C = ∂ 2 F F Ψ(X, F , E 0 ); P = -∂ 2 E 0 F Ψ(X, F , E 0 ); ε = -∂ 2 E 0 E 0 Ψ(X, F , E 0 ). (7) 
Typically, the Helmholtz functional is additively decomposed into a mechanical, Ψ(X, F ) m , and an electromechanical contribution, Ψ em (X,

F , E 0 ), i.e. Ψ(X, F , E 0 ) = Ψ m (X, F ) + Ψ em (X, F , E 0 ). ( 8 
)
In the simpler case where the material parameters are not spatially dependant (i.e. Ψ = Ψ(F , E 0 )), a commonly used model to define the mechanical contribution Ψ m is the (isotropic) Mooney-Rivlin model, defined as

Ψ m (F ) = Ψ M R m (F ) := µ 1 2 II F + µ 2 2 II H + f (J); f (J) = -(µ 1 + 2µ 2 ) ln(J) + λ 2 (J -1) 2 , (9) 
with the second invariant II A = A : A (for a vector v ∈ R 3 , II v is defined as

II v = v • v) and
where the material parameters {µ 1 , µ 2 , λ} are related to the Young's modulus E and Poisson ratio ν as

µ 1 + µ 2 = E 2(1 + ν) ; λ -2µ 2 = Eν (1 + ν)(1 -2ν) . ( 10 
)
For the case of dielectric elastomers, a commonly used model for the electromechanical contribution Ψ em is that of an (isotropic) ideal dielectric, defined as

Ψ em (F , E 0 ) = - ε r ε 0 2J II HE 0 , (11) 
where ε 0 represents the electric permittivity of vacuum, being ε 0 = 8.854 × 10 -12 Fm -1 , and ε r the relative electric permittivity.

For transversely isotropic piezoelectric polymers, a possible definition of the mechanical contribution of the Helmhotlz functional is

Ψ m (F ) = Ψ M R m (F ) + µ 3 2 (II F N + II HN ) + µ 4 4 II 2 F N + II 2 HN + g(J); g(J) = -(µ 3 + µ 4 ) ln(J) + λ 2 (J -1) 2 , (12) 
where N represents the polarisation direction of the polymer. Furthermore, in [START_REF] Chung | Level-set topology optimization considering nonlinear thermoelasticity[END_REF], {µ 3 , µ 4 } represent material parameters that, in conjunction with {µ 1 , µ 2 , λ}, permit a complete characterisation of the elasticity tensor C (see [START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis: Statics[END_REF]) in the origin, namely when F = I, with I the second order identity tensor, and E 0 = 0. A possible definition of the Helmholtz energy functional for the specific case of transversely isotropic piezoelectric polymers is

Ψ em (X, F , E 0 ) = - ε 1 2 II HE 0 - ε 2 2 (E 0 • N ) 2 -e 1 N • EE 0 -e 2 (E 0 • N ) tr( E) -e 3 (E 0 • N ) N • EN , (13) 
with E = 1 2 F T F -I , and {ε 1 , ε 2 } and {e 1 , e 2 , e 3 } represent the material parameters required to completely characterise the dielectric tensor, ε, and piezoelectric tensor, P, (see [START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis: Statics[END_REF]) respectively, in the origin. Remark 1. A well-known drawback of the Helmholtz functional approach as regarding to the definition of the constitutive model is that, due to its saddle point nature, it hampers the ab initio definition of invariant-based functionals ensuring the ellipticity condition. In order to overcome this undesirable feature, some authors [START_REF] Ortigosa | A new framework for large strain electromechanics based on convex multi-variable strain energies: Conservation laws, hyperbolicity and extension to electromagneto-mechanics[END_REF][START_REF] Ortigosa | A computational framework for large strain nearly and truly incompressible electromecahnics based on convex multi-variable strain energies[END_REF][START_REF] Ortigosa | A new framework for large strain electromechanics based on convex multi-variable strain energies: Finite element discretisation and computational implementation[END_REF][START_REF] Gil | A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation[END_REF] advocate for the internal energy functional e = e(X, F , D 0 ) for the definition of the constitutive model of an EAP, since it is a more amenable approach for the imposition of sufficient convexity conditions guaranteeing the ellipticity condition. Nevertheless, in this work we consider scenarios where the electric field and the deformation are not so extreme as to lead to loss of ellipticity. Hence, commonly used Helmholtz and internal energy-based functionals (not guaranteeing ab initio the ellipcity condition for the entire range of deformations and electric fields) as that in (13) will be considered.

It is worth mentioning that the Helmholtz functional Ψ(X, F , E 0 ) and the internal energy functional e(X, F , D 0 ) can be related through the following Legendre transformation (provided that e is convex with respect to D 0 ), i.e.

Ψ(X,

F , E 0 ) = -sup D 0 {E 0 • D 0 -e (X, F , D 0 )} , (14) 
which permits to obtain the electric displacement field D 0 implicitly from

E 0 := -∇ 0 ϕ = ∂ D 0 e(X, F , D 0 ). (15) 

Variational formulation in nonlinear electromechanics

In this section we will present the variational formulation associated with the nonlinear PDEs in equations ( 3) and ( 4), which stems from the classical two-field {φ, ϕ} variational principle with unknown fields {φ, ϕ} belonging to suitable functional spaces

V φ = φ : B 0 → R 3 , (φ) i ∈ H 1 (B 0 ) ; V ϕ = ϕ : B 0 → R, ϕ ∈ H 1 (B 0 ) , (16) 
where H 1 (B 0 ) stands for the Sobolev space of functions belonging to L 2 (B 0 ) (square sumable functions) and with gradient also in L 2 .

The classical two-field variational principle, denoted as Π(φ, ϕ), is defined as

Π(φ, ϕ) = inf φ sup ϕ B 0 Ψ (X, F , E 0 ) dV -Π m ext (φ) -Π em ext (ϕ)} , (17) 
where the external work due to mechanical and electrical actions are

Π m ext (φ) = B 0 f 0 • φ dV + ∂ t B 0 t 0 • φ dA; Π em ext (ϕ) = - B 0 ρ 0 ϕ dV - ∂ωB 0 ω 0 ϕ dA. (18) 
The space for the test functions is defined as

V φ 0 = φ ∈ V φ , φ = 0 on ∂ φ B 0 ; V ϕ 0 = {ϕ ∈ V ϕ , ϕ = 0 on ∂ ϕ B 0 } . (19) 
The first stationary condition of the functional Π(φ, ϕ) in ( 17), stemming from its directional derivative with respect to test functions δφ ∈ V φ 0 , yields the weak form of equation ( 3), namely

DΠ[δφ] = B 0 P : ∇ 0 δφ dV - B 0 f 0 • δφ dV - ∂ t B 0 t 0 • δφ dA = 0. ( 20 
)
Similarly, the directional derivative of Π(φ, ϕ) in ( 17) with respect to test functions δϕ ∈ V ϕ 0 yields the weak form of equation ( 4), namely

DΠ[δϕ] = B 0 D 0 • ∇ 0 δϕ dV + B 0 ρ 0 δϕ dV + ∂ωB 0 ω 0 δϕ dA = 0. (21) 
Both stationary conditions in [START_REF] Kofod | Actuation response of polyacrylate dielectric elastomers[END_REF] and ( 21) are coupled through the nonlinear constitutive relationship in [START_REF] Bendsøe | Topology optimization[END_REF]. It is customary to make use of a Newton-Raphson scheme where both weak forms can be linearised with respect to incremental fields ∆φ ∈ V φ 0 and ∆ϕ ∈ V ϕ 0 as 0

= DΠ[δφ] + DΠ[δϕ] + D 2 Π[δφ; ∆φ] + D 2 Π[δφ; ∆ϕ] + D 2 Π[δϕ; ∆φ] + D 2 Π[δϕ; ∆ϕ], (22) 
which permit the update of the solution fields φ ∈ V φ and ϕ ∈ V ϕ at a given Newton-Raphson iteration k + 1 as

φ k+1 = φ k + ∆φ; ϕ k+1 = ϕ k + ∆ϕ. ( 23 
)
In equation ( 22), the terms involving the second directional derivatives of the functional Π(φ, ϕ) are

D 2 Π[δφ; ∆φ] = B 0 ∇ 0 δφ : C : ∇ 0 ∆φ dV ; D 2 Π[δφ; ∆ϕ] = B 0 ∇ 0 δφ : P T • ∇ 0 ∆ϕ dV ; D 2 Π[δϕ; ∆φ] = - B 0 ∇ 0 δϕ • (P : ∇ 0 ∆φ) dV ; D 2 Π[δϕ; ∆ϕ] = - B 0 ∇ 0 δϕ • (ε∇ 0 ∆ϕ) dV, (24) 
with C, P and ε defined in [START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis: Statics[END_REF]. It is worth mentioning that, alternatively to the monolithic scheme described through equations ( 20),( 21), ( 6), a staggered approach can be used for their numerical solution.

Optimisation via SIMP approach in nonlinear electromechanics

In this work, we seek to obtain the optimal design of an EAP by maximising its actuation properties when subjected to a given configuration and to a prescribed volume constraint. Mathematically, this can be done through the minimisation of a suitable objective function J (φ). A possible example of J (φ) could be

J (φ) = - ∂B 0 l 0 • φ dV, (25) 
where l 0 represents a unit dummy force along which the displacement is maximised. As customary in the TO design of actuators [START_REF] Ruiz | Optimal design of robust piezoelectric unimorph microgrippers[END_REF], in addition to the boundary regions ∂ t B 0 and ∂ φ B 0 in the mechanical part, a third boundary region, denoted as ∂ R B 0 , is considered in order to incorporate Robin-type boundary conditions incorporating the effect of an external spring (with constant K)

interacting with the EAP B 0 on ∂ R B 0 (∂ t B 0 , ∂ φ B 0 , ∂ R B 0 pairwise disjoint and ∂ t B 0 ∪∂ φ B 0 ∪∂ R B 0 = ∂B 0 )
. This means that l 0 = 1 on ∂ R B 0 , and 0 elsewhere. As it is usual in this kind of problems, φ implicitly depends on the density parameter through the constitutive law. In our case, the constitutive law is defined through a Helmholtz energy functional as3 

Ψ(X, F , E 0 ) = Ψ χ (χ(X), F , E 0 ), (26) 
where the design discrete field χ(X) ∈ {0, 1} represents a discrete scalar field (i.e. characteristic function) introduced in order to differentiate solid from void regions. The optimisation problem is closed through the consideration of the following volume constraint g Ω 0 (χ)

g Ω 0 (χ) := Ω 0 χ(X) dV -c|Ω 0 | ≤ 0, ( 27 
)
where c is the volume fraction and |Ω 0 | the total volume of the background optimisation domain.

Unfortunately, a characteristic function-type formulation of the problem is not feasible because of its prohibitively high computational cost. Instead, the characteristic function χ(X) (with discrete values {0, 1}) is replaced by an alternative design density field ρ(X) taking values within the continuous interval [0, 1]. Furthermore, in order to minimise the presence of intermediate density values, we advocate in this paper for the use of the well-known solid isotropic material with penalisation (SIMP) method (see [START_REF] Bendsøe | Topology optimization[END_REF] and references therein). Furthermore, with the aim of circumventing mesh-dependence and chequerboard modes, we use a well-established filtering technique [START_REF] Bruns | Topology optimization of non-linear elastic structures and compliant mechanisms[END_REF][START_REF] Bourdin | Filters in topology optimization[END_REF], which can be mathematically stated as the convolution product

ρ(X) = (ρ * ∆)(X) = B 0 ρ(X )∆(||X -X ||) dV, (28) 
where ∆ : R + → R + is the so-called convolution kernel and ρ(X) is referred to as the filtered density field. An example of ∆ is that corresponding to the cone filter ∆(r) = max{0, 1 -r/R}, with R the filter radius. In addition, with the aim of reducing the appearance of intermediate densities, we use the classical smoothed Heaviside projection function proposed in [START_REF] Wang | On projection methods, convergence and robust formulations in topology optimization[END_REF] ρ(X) = tanh(βη

) + tanh(β(ρ(X) -η)) tanh(βη) + tanh(β(1 -η)) , (29) 
where ρ(X) is known as the physical density field and β and η are parameters carefully selected and updated throughout the optimisation process (for further details refer to [START_REF] Wang | On projection methods, convergence and robust formulations in topology optimization[END_REF]). Eventually, the interpolated strain energy density in ( 26) is replaced with

Ψ(X, F , E 0 ) = Ψ SIMP (ρ(X), F , E 0 ). ( 30 
)
Finally, the volume constraint g Ω 0 (χ) ( 27) is consistently replaced with g Ω 0 (ρ).

Energy interpolation scheme

As customary in TO by means of the SIMP method, the dependence of the homogenised Helmholtz energy functional Ψ SIMP (ρ(X), F , E 0 ) upon the density field ρ is dictated by the choice of the energy interpolation scheme, which must satisfy the following conditions

Ψ SIMP (ρ(X), F , E 0 ) ρ=1 = Ψ solid (F , E 0 ); Ψ SIMP (ρ(X), F , E 0 ) ρ=0 = Ψ void (F , E 0 ), (31) 
where Ψ solid (F , E 0 ) represents the (physical) Helmholtz functional of solid regions (ρ = 1) and Ψ void (F , E 0 ), that of void regions (ρ = 0). The Helmholtz functional Ψ solid (F , E 0 ) follows an additively decomposition into mechanical and electromechanical contributions as that in [START_REF] Bortot | Topology optimization of dielectric elastomers for wide tunable band gaps[END_REF], namely

Ψ solid (F , E 0 ) = Ψ solid m (F ) + Ψ solid em (F , E 0 ). ( 32 
)
Similarly, Ψ void (F , E 0 ) is decomposed as

Ψ void (F , E 0 ) = Ψ void m (F ) + Ψ void em (F , E 0 ). ( 33 
)
In order to prevent numerical instabilities, a careful definition of both mechanical and electromechanical components of void regions needs to be advocated for. Typically, the mechanical component Ψ void m (F ) is defined though the following convex strain energy functional

Ψ void m (F ) := αE 2 (F -I) : C| 0 : (F -I) , (34) 
where α is a dimensionless coefficient typically of the order of 10 -6 to 10 -5 , E the Young's modulus and C| 0 is a fourth order linear elasticity tensor (normally obtained from evaluating the elasticity tensor of the solid region in the origin, i.e. F = I). With regards to the electromechanical component, it might seem reasonable to consider the Helmholtz functional of the vacuum, namely

Ψ void em (F , E 0 ) = - ε 0 2J II HE 0 . (35) 
However, the energy functional in [START_REF] Ruiz | Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile[END_REF] compromises the numerical stability of low and intermediate density regions. Specifically, this functional is highly non convex with respect to the deformation gradient tensor F and leads to artificial electromechanically induced instabilities in these regions, posing serious difficulties from the numerical standpoint. In order to circumvent this drawback, we advocate for a stable version of Ψ void em (F , E 0 ) in [START_REF] Ruiz | Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile[END_REF] by eliminating its dependence upon the deformation, by simply evaluating the deformation gradient tensor in the origin of deformations, namely

Ψ void em (E 0 ) = - ε 0 2J II HE 0 H=I,J=1 = - ε 0 2 II E 0 . (36) 
The following section will describe a possible interpolation scheme complying with the ingredients described throughout this section.

Inspired from the field of elasticity, two convex combinations for both mechanical and electromechanical contributions in solid and void regions can be considered in order to define the resulting homogenised Helmholtz functional Ψ SIMP (ρ(X), F , E 0 ) for the EAP, namely

Ψ = Ψ SIMP (ρ(X), F , E 0 ) := (ρ(X)) pm Ψ solid m (F ) + [1 -(ρ(X)) pm ]Ψ void m (F ) Homogenised mechanical component + (ρ(X)) pe Ψ solid em (F , E 0 ) + [1 -(ρ(X)) pe ]Ψ void em (E 0 ) Homogenised electromechanical component , (37) 
Notice that different penalising parameters p m and p e have been used in both the homogenised mechanical and electromechanical components, respectively. In the case of linear elasticity, p m usually takes a value of 3, as this ensures that the resulting interpolated elastic constants lie always within the Hashin-Strikman bounds [START_REF] Bendsøe | Material interpolation schemes in topology optimization[END_REF]. To the best of authors' knowledge, analogous physical bounds for the case of nonlinear elasticity, or nonlinear electroelasticity are not known.

From [START_REF] Ruiz | Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile[END_REF] it is possible to obtain the first Piola-Kirchhoff stress tensor P according to (6) a as

P =∂ F Ψ SIMP (ρ(X), F , E 0 ) = (ρ(X)) pm ∂ F Ψ solid m (F ) + (ρ(X)) pe ∂ F Ψ solid em (F , E 0 ) + [1 -(ρ(X)) pm ]αµC 0 : (F -I) . (38) 
Similarly, the electric displacement vector field D 0 associated with the homogenised Helmholtz functional Ψ SIMP (ρ(X), F ) can be obtained according to [START_REF] Bendsøe | Topology optimization[END_REF] b as

D 0 = -∂ E 0 Ψ SIMP (ρ(X), F , E 0 ) = -(ρ(X)) pe ∂ E 0 Ψ solid em (F , E 0 ) -[1 -(ρ(X)) pe ]ε 0 E 0 , (39) 
Furthermore, the elasticity tensor C for the homogenised Helmholtz functional in (37) can be obtained according to equation [START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis: Statics[END_REF] as

C =∂ 2 F F Ψ SIMP (ρ(X), F , E 0 ) = (ρ(X)) pm ∂ 2 F F Ψ solid m (F ) + (ρ(X)) pe ∂ 2 F F Ψ solid em (F , E 0 ) + [1 -(ρ(X)) pm ]αµC 0 . (40) 
Similarly, the piezoelectric tensor P is obtained as

P = -∂ 2 E 0 F Ψ SIMP (ρ(X), F , E 0 ) = -(ρ(X)) pe ∂ 2 E 0 F Ψ solid em (F , E 0 ), (41) 
and finally, the dielectric tensor ε is

ε = -∂ 2 E 0 E 0 Ψ SIMP (ρ(X), F , E 0 ) = -(ρ(X)) pe ∂ 2 E 0 E 0 Ψ solid em (F , E 0 ) -[1 -(ρ(X)) pe ]ε 0 I. (42) 
3.2. The optimisation Lagrangian L: stationary conditions and descent direction At last, we are now in a position to state the TO optimisation problem at hand, which can be recast as follows

(P 1 )              min ρ(X) J (φ), s.t        State equations (1), (3) -(5); Constitutive model (30); Volume constraint g Ω 0 (ρ) (27); 0 ≤ ρ(X) ≤ 1; ρ(X) ∈ L 2 (B 0 ). ( 43 
)
Associated with the minimisation problem [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF], the following Lagrangian functional L is defined

L(ρ, φ, p) = J (φ) -DΠ(ρ, φ, p φ )[p φ ] -DΠ(ρ, φ, p ϕ )[p ϕ ], (44) 
where DΠ(ρ, φ, p φ )[p φ ] and DΠ(ρ, φ, p φ )[p ϕ ] represent the stationary conditions in equations ( 20) and ( 21) with respect to the so-called mechanical and electric adjoint states p φ ∈ V φ 0 and

p ϕ ∈ V ϕ 0 , respectively, namely DΠ(ρ, φ, p φ )[p φ ] = B 0 P (ρ(X), F , E 0 ) : ∇ 0 p φ dV - B 0 f 0 • p φ dV - ∂ t B 0 t 0 • p φ dA + ∂ R B 0 Kφ • p φ dA; DΠ(ρ, φ, p ϕ )[p ϕ ] = B 0 D 0 (ρ(X), F , E 0 ) • ∇ 0 p ϕ dV + B 0 ρ 0 p ϕ dV + ∂ωB 0 ω 0 p ϕ dA. (45) 
Although not explicitly shown in the Lagrangian functional [START_REF] Svanberg | The method of moving asymptotes-a new method for structural optimization[END_REF], the volume constraint g Ω 0 (ρ) in ( 27) is enforced by means of the MMA method [START_REF] Svanberg | The method of moving asymptotes-a new method for structural optimization[END_REF]. The directional derivative of the Lagrangian (excluding the volume contribution g Ω 0 (ρ) in ( 27)) with respect to an increment in the design density field (∆ρ), namely the descent direction, yields

DL[∆ρ] = - B 0 ∇ 0 p φ : ∂ ρP (ρ(X), F , E 0 ) D ρ[∆ρ]dV - B 0 [∇ 0 p ϕ • ∂ ρD 0 (ρ(X), F , E 0 )] D ρ[∆ρ]dV ; D ρ[∆ρ] = ∂ ρ ∂ ρ ∂ ρ ∂ρ ∆ρ, (46) 
where ∂ ρ ∂ ρ and ∂ ρ ∂ρ are obtained from [START_REF] Ortigosa | A new framework for large strain electromechanics based on convex multi-variable strain energies: Finite element discretisation and computational implementation[END_REF] and [START_REF] Ortigosa | A computational framework for large strain nearly and truly incompressible electromecahnics based on convex multi-variable strain energies[END_REF], respectively. The terms ∂ ρP and ∂ ρD 0 depend upon the choice of energy interpolation scheme. For the scheme in Section 3.1, from equations [START_REF] Ruiz | Optimal design of robust piezoelectric unimorph microgrippers[END_REF] and [START_REF] Ruiz | Optimal design of robust piezoelectric microgrippers undergoing large displacements[END_REF], both terms are obtained as

∂ ρP = p m (ρ(X)) pm-1 ∂ F Ψ solid m (F ) + p e (ρ(X)) pe-1 ∂ F Ψ solid em (F , E 0 ) -p m (ρ(X)) pm-1 αµC 0 : (F -I) ; ∂ ρD 0 = -p e (ρ(X)) pe-1 ∂ E 0 Ψ solid em (F , E 0 ) + p e (ρ(X)) pe-1 ε 0 E 0 . (47) 
The solution fields {φ, ϕ} and the adjoint state fields {p φ , p ϕ } can de deduced from the optimality conditions of the Lagrangian functional L in [START_REF] Svanberg | The method of moving asymptotes-a new method for structural optimization[END_REF], namely DL[δp φ ] = 0, DL[δp ϕ ] = 0 and DL[δφ] = 0, DL[δϕ] = 0, with {δφ, δp φ } ∈ V φ 0 and {δϕ, δp ϕ } ∈ V ϕ 0 . The fields φ ∈ V φ and ϕ ∈ V ϕ are obtained from the first optimality condition as

DL(ρ, φ, p φ )[δp φ ] = -DΠ(ρ, φ, p φ )[δp φ ] = - B 0 P (ρ(X), F , E 0 ) : ∇ 0 δp φ dV + B 0 f 0 • δp φ dV + ∂ t B 0 t 0 • δp φ dA - ∂ R B 0 Kφ • δp φ dA = 0; DL(ρ, φ, p ϕ )[δp ϕ ] = DΠ(ρ, φ, p δϕ )[δp ϕ ] = - B 0 D 0 (ρ(X), F , E 0 ) • ∇ 0 δp ϕ dV - B 0 ρ 0 δp ϕ dV - ∂ωB 0 ω 0 δp ϕ dA = 0, (48) 
and the adjoint states p φ ∈ V φ and p ϕ ∈ V ϕ are obtained from the second optimality condition as

DL[δφ] = DJ (φ)[δφ] -D 2 Π[p φ ; δφ] -D 2 Π[p ϕ ; δφ] = 0; DL[δϕ] = -D 2 Π[p φ ; δϕ] -D 2 Π[p ϕ ; δϕ] = 0, ( 49 
)
with

D 2 Π[p φ ; δφ], D 2 Π[p φ ; δϕ],
and D 2 Π[p ϕ ; δφ] and D 2 Π[p ϕ ; δϕ] obtained as in equation ( 24), namely

D 2 Π[p φ ; δφ] = Ω 0 ∇ 0 p φ : C(ρ(X), F , E 0 ) : ∇ 0 δφ dV + ∂ R B 0 Kp φ • δφ dA; D 2 Π[p φ ; δϕ] = B 0 ∇ 0 p φ : P T (ρ(X), F , E 0 ) • ∇ 0 δϕ dV ; D 2 Π[p ϕ ; δφ] = - B 0 ∇ 0 p ϕ • (P(ρ(X), F , E 0 ) : ∇ 0 δφ) dV ; D 2 Π[p ϕ ; δϕ] = - B 0 ∇ 0 p ϕ • (ε(ρ(X), F , E 0 )∇ 0 δϕ) dV. ( 50 
)

Numerical examples

The objective of this section is to reveal the performance of Topology Optimisation in the context of nonlinear electromechanics, and specifically, examining the energy interpolation scheme in Section 3.1 in practical actuator applications both for dielectric elastomers and piezoelectric polymer materials.

The interpolation strategy presented throughout Section 3.1 makes use of penalisation exponents p m and p e for the mechanical and electromechanical contributions of the Helmholtz (or internal energy) functional of solid and void regions. In linear elasticity, it is typical to use p m = 3, as this ensures that the resulting interpolated elastic constants lie always within the Hashin-Strikman bounds [START_REF] Bendsøe | Material interpolation schemes in topology optimization[END_REF]. It is crucial to re-emphasise that, unlike in the latter case, there are no results for the Hashin-Strikman bounds in the context of nonlinear elasticity, yet alone in the far more complex case of nonlinear electromechanics. Hence, it is not possible to a priori propose values of p e and p m consistent the Hashin-Strikman bounds, yielding physically admissible interpolation strategies, as the latter are not known. Therefore, we will explore only from a numerical standpoint different values of both p e and p m and numerically asses their performance, hence, inferring their suitability based on a purely numerical criterion. In addition, we will explore the suitability of a combination of penalising exponents for both dielectric and piezoelectric materials. The different physical principles between both types of materials reflects mathematically in the fact the Helmholtz energy functional of dielectric elastomers is exclusively composed of quadratic invariants with respect to the electric field. On the contrary, piezoelectricity requires in addition linear invariants with respect to the electric field. This different underlying physical principles behind piezoelectric and dielectric materials, can in principle result in a different recommendation for the values of p e from our subsequent numerical investigations.

Finally, we must emphasise that, although the energy interpolation scheme in Section 3.1 can be applied for both the Helmholtz and internal energy functionals, in all the examples shown in the subsequent sections we have considered constitutive models based on the Helmholtz functional.

Numerical example 1

The objective of this example is:

O1 Study the influence of both energy interpolation strategies presented in Section 3.1 whilst considering different values of the penalising exponents p m and p e with respect to the final design and evolution of the TO algorithm for the case of dielectric elastomer-type materials.

The setting of the problem can be observed in Figure 2. A unimorph device comprised of an active dielectric layer and a passive (no electromechanical behaviour) host layer is displayed. The distribution of the active layer will be optimised subjected to a volume constrained (see Table 1). The mechanical contribution of constitutive law for both active and passive layers is that in equation ( 9). The electromechanical contribution of the constitutive law for the active layers is that in equation [START_REF] Chiba | Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators[END_REF]. The relevant material parameters in the model can be observed in Table 1. Quantitatively, the value of the dielectric and mechanical material parameters are accordance to those of VHB4910, a typical dielectric elastomer material. In this example, we aim at maximasing the displacement of point A (see Figure 2) along the negative OZ direction. In order for the device to exert a sufficient actuation force at point A, a spring with constant K (see Table 1) has been incorporated at that point. In order to address objective O1, we consider a combination of penalising exponents p m and p e for the mechanical and electromechanical contributions of the Helmholtz energy functional (see equation ( 37)). In particular, we consider three possible values for p m , namely p m = {3, 4, 5}. For each of them, we consider the following values for the electromechanical exponent p e = {1, 1.5, 2} × p m . The choice of p m = 3 is motivated by the classical selection of this value in the context of linear elasticity. The other choice of p m = 4 and p m = 5 is inspired from previous work in the context of linear piezoelectricity by Kang and Wang [START_REF] Kang | Topology optimization of bending actuators with multilayer piezoelectric material[END_REF].

Figure 3 shows the designs obtained for the various combinations of p m and p e considered, without using a continuation strategy for p m or p e . This motivates the presence of local minima with considerably different topological features. As customary, a continuation method can be Table 1: Numerical example 1. Geometrical parameters for experimental setting in Figure 2. Material parameters for the solid model with Helmholtz functional Ψ m (F ) in ( 9) and electromechanical contribution Ψ em (F , E 0 ) in [START_REF] Chiba | Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators[END_REF].

Geometry L X L Y /3 m L Y 0.05 m L Z L Y /40 m Mechanical parameters of µ 1 0.1 MPa Host and Active Layers µ 2 0 MPa λ 0.3 MPa Dielectric parameters ε 1 4.8ε 0 Fm -1 of Active Layer Optimisation parameters α 10 -8 N X 240 N Y 40 N Z 2 c 0.7 K 4 × 10 -3 Nm -1
used for the exponents p m and p e in order to remove the presence of multiple local minima. In particular, the continuation strategy followed is:

p m = 1 k ≤ 20 min(1.02 × p m , p * m ) k > 20 p e = 1 k ≤ 20 min(1.02 × p e , p * e ) k > 20 (51) 
where k refers to the current TO iteration and {p * m , p * e } to the target value of p m and p e . The results corresponding to the optimisation with continuation for p m and p e are illustrated in Figure 4, and it can be seen, all the combinations of p m and p e exhibit more similar topological features. It is worth noticing that for all the combinations of p m and p e , the results are devoid from intermediate density regions.

Finally, Figure 5 shows the evolution of the objective function for the various combinations of penalising exponents p m and p e considered when continuation is or is not considered. This figure is in agreement with both Figures 3 and4. Hence, from Figure 5 a we observe that when continuation is not considered, it seems that there are two distinct families of curves. However, when continuation is considered, Figure 5 b shows that all the curves follow a very similar pattern, due to the removal of local minima through the continuation method. Remark 2. An aspect of extreme relevance that we must emphasise is that in nonlinear electromechanics, we strongly advise against a choice of the electrical exponent p e where p e < p m . Notice that this is in contrast to the specific case of linear piezoelectricity, where some authors advocate for this choice, in particular for p m = 3, p e = 1 [START_REF] Ruiz | Optimal design of piezoelectric modal transducers[END_REF]. We have observed strong instabilities associated with intermediate and low densities for this choice of exponents. The underlying reason is that both p e and p m can be understood as parameters that control the degradation of electrical and mechanical properties of the solid material, respectively. Hence, a choice of p e < p m would entail a stronger degradation of mechanical properties with respect to the electrical properties. In the context of nonlinear electromechanics, where electrically induced instabilities can appear, due to loss of convexity of the electromechanical energy, this choice of exponents therefore fosters the sudden development of artificial instabilities, compromising the robustness of the TO algorithm.

Numerical example 2

The objective of this example is:

O1 Study the influence of both energy interpolation strategies presented in Section 3.1 whilst considering different values of the penalising exponents p m and p e with respect to the final design and evolution of the TO algorithm for the case of piezoelectric polymer-type materials.

The setting of the problem can be observed in Figure 6. A bimorph device comprised of two active piezoelectric layers and a passive (no electromechanical behaviour) host layer is displayed. The distribution of the active layers will be optimised subjected to a volume constrained (see Table 2). The mechanical contribution of constitutive law for both active and passive layers is that in equation [START_REF] Chung | Level-set topology optimization considering nonlinear thermoelasticity[END_REF]. The electromechanical contribution of the constitutive law for the active layers is that in equation [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. The relevant material parameters in the model can be observed in Table 2. Quantitatively, the value of the piezoelectric and dielectric constants of these material parameters are accordance to those of a PolyVinylidene DiFluoride (PVDF), whilst the mechanical properties are one order of magnitud more flexible. The preferred direction N (see equation 13) of the transversely isotropic actively layer is alined with the axis OX (see Figure 6). In this example, we aim at maximasing the displacement of point A (see Figure 6) along the negative OZ direction. In order for the device to exert a sufficient actuation force at point A, a spring with constant K (see Table 2) has been incorporated at that point. Furthermore, regarding the optimisation, it is symmetric with respect to the active layers, namely, we have imposed in the optimisation algorithm that the topology of both top and bottom layers must be exactly the same.

In order to address objective O1, we consider a combination of penalising exponents p m and p e for the mechanical and electromechanical contributions of the Helmholtz energy functional (see equation [START_REF] Ruiz | Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile[END_REF]). In particular, we consider three possible values for p m , namely p m = {3, 4, 5}. For each of them, we consider the following values for the electromechanical exponent p e = {1, 1.5, 2} × p m .

Figure 7 shows the designs obtained for the various combinations of p m and p e considered. Crucially, this Figure illustrates that for piezoelectric materials, a choice of p e = p m yields designs 6. Material parameters for the solid model with Helmholtz functional m (F ) in [START_REF] Chung | Level-set topology optimization considering nonlinear thermoelasticity[END_REF] and electromechanical contribution Ψ em (F , E 0 ) in [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. characterised by intermediate densities. This is a similar effect as that inherent to linear elasticity when the mechanical exponent is set to low values, i.e. p m = 1. In that context, using higher values of p m (typically p m = 3) help circumventing this drawback. Notice also that for the same value of the ratio p e /p m = 1, the area associated with intermediate densities tend to decrease as the value of p m grows. A more judicious choice of the electromechanical exponent p e seems to require the ratio p e /p m to be larger than one, as it can be clearly observed in that figure . Clearly, for a given value of p m , the areas associated with intermediate densities vanish with an increasing value of the ratio p e /p m . Notice that the appearance of designs characterised with intermediate density regions has not materialised in the previous example, where a dielectric elastomer material has been considered. In that case, the physics of the material is completely different to that of a piezoelectric material. We believe that their distinct physical behaviour could be the underlying reason for this discrepancy for a judicous choice of combination of penalising exponents between dielectric materials and piezoelectric materials.

Geometry L X L Y /3 m L Y 0.05 m L Z L Y /
Furthermore, Figure 7 shows the designs in their deformed configuration and Figure 9, the evolution of the objective function for the various combinations of penalising exponents p m and p e considered. The first aspect that transpires from this figure is the smooth evolution of the objective function. The second aspect, equality important, illustrates that the final value of the objective function is extremely close irrespectively of the choice of p m and p e .

Finally, Figure 9 provides insightful information. In particular, it can be observed that the evolution of the objective function J is very similar for all the cases where p e > p m . In addition, the remaining cases where p e = p m , associated with designs exhibiting intermediate density regions, follow an alternative evolution but similar between them. It is logical that the latter, as expected, exhibit a smaller value of objective function, as designs characterised by intermediate densities, although undesired for practical reasons, are closer to the mathematical optimum.

Numerical example 3

The objective of this example is:

O1 Based on the conclusions of the numerical study carried in Section 4.2 for piezoelectric polymers, to optimise the distribution of piezoelectric active layers on more complex configurations than the bimorph configuration illustrated in Section 4.2, in both bending and torsional type deformation scenarios.

The setting of the problem can be observed in Figures 10 and11. A multilayered device comprised of six active piezoelectric layers and a passive (no electromechanical behaviour) host layer is displayed. The layers layout in Figure 10 and the polarisation profile, in conjunction with the electrode distribution shown (red and blue wires in the figure), are compatible with a bending device. On the other hand, in order to achieve a torsional deformation, the polarisation profile in Figure 11 has been reversed across the two halves in which the device is subdivided along the direction OX. For the bending device, the objective is to maximise the displacement of point A (see Figure 10) along the negative OZ direction. For the torsional device, the objective is to maximise the difference in the displacement along OZ direction between points A and B (see Figure 11). See Table 3 for the value of the spring constants K in Figures 10 and11 at the relevant points.

The distribution of the active layers will be optimised subjected to a volume constrained (see Table 3). The mechanical contribution of constitutive law for both active and passive layers is that in equation [START_REF] Chung | Level-set topology optimization considering nonlinear thermoelasticity[END_REF]. The constitutive law is the same as that in the previous example. The preferred direction N (see equation 13) of the transversely isotropic actively layer is aligned with the axis OX (see polarisation profile in Figures 10 and11). Furthermore, we have imposed in the topology optimisation algorithm that the topology of the active layers must not change with respect to the OZ axis, thus avoiding penetration between layers.

Based on the study carried out in the previous example, we select the following judicious choice of penalising exponents, p m = 3, p e = 5, for both bending and torsional configurations. The design obtained for the bending and torsional configurations are displayed in Figures 12 and13. 

Conclusions

This work investigates the application of topology optimisation by means of the SIMP method into the challenging field of nonlinear electromechanics for the specific case of actuation applications. The paper puts forward an energy interpolation scheme for the electromechanical energy functional of the solid and void regions, recommending the use of an unconditionally stable definition which defers the development of artificial electrically induced numerical instabilities associated with low and intermediate density regions. Section 4 investigates from a numerical standpoint the convenience of the selection of mechanical and electromechanical penalising exponents featuring in the energy interpolation scheme proposed for both dielectric elastomer and piezoelectric polymer type materials. Specifically, the numerical experiments reveal that the choice of judicious penalising exponents depends upon the underlying physics of the material, hence, yielding different recommendations for types of materials. In addition, the numerical experiments evidence that for equal values of penalising mechanical and electromechanical exponents, piezoelectric materials are more prone to develop areas characterised by intermediate densities. This does not seem to occur for dielectric elastomers. On the other hand, the lack of a suitable continuation strategy for the mechanical and electromechanical exponents yields several local minima characterised by considerably different topological features for the case dielectric elastomers. This has not been evidenced for the case of piezoelectric polymers. Finally, in contrast to the simpler context of linear piezoelectricity [START_REF] Ruiz | Optimal design of piezoelectric modal transducers[END_REF], this paper advises against the choice of penalising exponents such that p e < p m , as this choice entails a stronger degradation of mechanical properties with respect to the electrical properties, hence, fostering the sudden development of artificial instabilities and therefore, compromising the robustness of the TO algorithm.
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 1 Figure 1: Deformation mapping φ (X, t). The EAP in its material and deformed configurations, B 0 and B, respectively. Boundary regions ∂ φ B 0 and ∂ ϕ B 0 where Dirichlet boundary conditions are imposed, and their deformed counterparts ∂ φ B and ∂ ϕ B.
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 2 Figure 2: Example 1. Unimorph dielectric elastomer-based device.
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 32 Figure 3: Example 1. Designs in the deformed configuration for the piezoelectric polymer-based bimorph device for the interpolation scheme in Section 3.1 for a selection of penalising exponents p m and p e . A continuation strategy for the exponents p e and p m has not been applied.
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 4 Figure 4: Example 1. Designs in the deformed configuration for the piezoelectric polymer-based bimorph device for the interpolation scheme in Section 3.1 for a selection of penalising exponents p m and p e . A continuation strategy for the exponents p e and p m has been applied.

Figure 5 :

 5 Figure 5: Example 1. Evolution of the objective function for the various combinations of penalising exponents p m and p e : (a) with no continuation for the penalising exponents; (b) with continuation for the penalising exponents.
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 6 Figure 6: Example 2. Bimorph piezoelectric polymer-based device.
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 23457 Figure 7: Example 2. Density distribution for the piezoelectric polymer-based bimorph device for the interpolation scheme in Section 3.1 for a selection of penalising exponents p m and p e .
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 8 Figure 8: Example 2. Designs in the deformed configuration for the piezoelectric polymer-based bimorph device for the interpolation scheme in Section 3.1 for a selection of penalising exponents p m and p e .
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 9 Figure 9: Example 2. Evolution of the objective function for the various combination of penalising exponents p m and p e considered.
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 10 Figure 10: Example 3. Piezoelectric multilayered bending device. Configuration and polarisation profile.
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 11 Figure 11: Example 3. Piezoelectric multilayered torsional device. Configuration and polarisation profile.
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 12 Figure 12: Example 3. Design of the multilayered bending piezoelectric actuator for p m = 3 and p e = 6.
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 13 Figure 13: Example 3. Design of the multilayered torsional piezoelectric actuator for p m = 3 and p e = 6.

Table 2 :

 2 Numerical example 2. Geometrical parameters for experimental setting in Figure

Table 3 :

 3 Numerical example 3. Geometrical parameters for experimental setting in Figures10 and 11. Material parameters for the solid model with Helmholtz functional Ψ m (F ) in[START_REF] Chung | Level-set topology optimization considering nonlinear thermoelasticity[END_REF] and electromechanical contribution Ψ em (F , E 0 ) in[START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF].

	Geometry	L X L Y /3	m
		L Y	0.05	m
		L Z L Y /40	m
	Mechanical parameters of	µ 1	50	MPa
	Host and Active Layers	µ 2	50	MPa
		λ	300	MPa
		µ 3	0	Pa
		µ 4	0	Pa
	Piezoelectric parameters of e 1	0.1	NV -1
	Active Layers	e 2	0	NV -1
		e 3	0	NV -1
	Dielectric parameters	ε 1	4ε 0	Fm -1
	of Active Layers	ε 2	0	Fm -1
	Optimisation parameters	α	10 -8	
		N X	240	
		N Y	40	
		N Z	7	
		c	0.51	
		K	40	Nm -1

The spatial electric displacement vector D can be obtained through D 0 = H T D,[START_REF] Dorfmann | Nonlinear electroelasticity[END_REF]. In addition, the spatial electric field vector E can be obtained through E 0 = F T E[START_REF] Dorfmann | Nonlinear electroelasticity[END_REF].

When the internal energy functional e χ (χ(X), F , D 0 ) is preferred, the Hemholtz functional Ψ χ (χ(X), F , E 0 ) can be obtained through the Legendre transformation in[START_REF] Donoso | Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile[END_REF].
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