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Nowadays, air pollution is a major treat for public health, with
clear relationships with many diseases, especially cardiovascular ones.
The spatio-temporal study of pollution is of great interest for govern-
ments and local authorities when deciding for public alerts or new city
policies against pollution increase. The aim of this work is to study
spatio-temporal profiles of environmental data collected in the south
of France (Région Sud) by the public agency AtmoSud. The idea is
to better understand the exposition to pollutants of inhabitants on a
large territory with important differences in term of geography and
urbanism. The data gather the recording of daily measurements of
five environmental variables, namely three pollutants (PM10, NO2,
O3) and two meteorological factors (pressure and temperature) over
six years. Those data can be seen as multivariate functional data:
quantitative entities evolving along time, for which there is a growing
need of methods to summarize and understand them. For this pur-
pose, a novel co-clustering model for multivariate functional data is
defined. The model is based on a functional latent block model which
assumes for each co-cluster a probabilistic distribution for multivari-
ate functional principal component scores. A Stochastic EM algo-
rithm, embedding a Gibbs sampler, is proposed for model inference,
as well as a model selection criteria for choosing the number of co-
clusters. The application of the proposed co-clustering algorithm on
environmental data of the Région Sud allowed to divide the region
composed by 357 zones in six macro-areas with common exposure to
pollution. We showed that pollution profiles vary accordingly to the
seasons and the patterns are similar during the 6 years studied. These
results can be used by local authorities to develop specific programs
to reduce pollution at the macro-area level and to identify specific pe-
riods of the year with high pollution peaks in order to set up specific
health prevention programs. Overall, the proposed co-clustering ap-
proach is a powerful resource to analyse multivariate functional data
in order to identify intrinsic data structure and summarize variables
profiles over long periods of time.
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1. Introduction. There is a growing body of evidence that air pollu-
tion is a significant threat for health worldwide (WHO, 2013). Air pollution
is composed of particulate matter (PM) and gaseous pollutants, such as ni-
trogen dioxide (NO2) and ozone (O3) (IAR, 2016). The time exposure to
air pollution leads diverse impact on the health. A short-term exposure to
an intense pollution event increases hospital admission and mortality rate,
causing mainly respiratory and cardiovascular diseases (Benbrahim-Tallaa
et al., 2012; Hamra et al., 2014); whereas a long-term exposure reduces life
expectancy (Lelieveld et al., 2015; Pascal et al., 2016). Although PM and
NO2 are mainly produced by human activities such as fossil fuel combus-
tion, biomass burning due to agricultural activities, traffic, heating/cooling
systems, industrial activities in general; O3 is a secondary product, meaning
that it is not directly produced by human activities. It is naturally produced
in the stratosphere when highly energetic solar radiation strikes molecules of
oxygen, O2, and cause the two oxygen atoms to split apart in a process called
photolysis. The Région Sud is an ideal context for the accumulation of this
pollutant, regardless of the urbanization/industrialization of the subareas,
because of its meteorological conditions: long sun days and rare rain events
all over the year, especially in summer, where this pollutant is already at its
highest level. Air pollution is a major concern not only in big cities but also
in territories with medium-sized cities and mountainous zones. Mass of air
moves from high pressure zones to low pressure and vice versa, thus parti-
cles matter can be moved from one zone to another along with the mass of
air, exposing rural zones to pollution generated by adjacent industrial zones.
Hence, pollution trend in specific zones does not depend only on the local
pollution production, but is influenced by surrounding zones and meteoro-
logical factors. The understanding of air pollution and its spatio-temporal
dynamic is of great interest for governments and local authorities in order to
set up new city policies to lower down pollution or for public alerts when pol-
lution increase above secure levels for the citizens. However, studies usually
focus on isolated cities and do not take into account meteorological features,
making their conclusions weak or not representative to generate prediction
models. Their main limitation is due to the absence of powerful statistical or
mathematical models able to analyse the complex spatio-temporal dynamic
of pollution in big zones. Here we chose to model the Région Sud in the
south of France, using a novel statistical method which allows studying the
behavior of multivariate variables in order to understand pollution dynamic
in this region. This study shows the ability of our co-clustering approach to
identify intrinsic structures in these complex data that well suits to describe
and analyse pollution behavior. Our results will allow local authorities to
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set up pollution politics adapted to the heterogeneous territory of the re-
gion and will give an instrument to analyse environmental data that can be
expanded to other regions/countries.

1.1. The Région Sud and the AtmoSud Agency. The Région Sud (for-
merly known as Provence-Alpes-Côte d’Azur) covers a territory of 31,400
km2 between Marseille, Nice and Gap, and hosts more than 5 millions of
inhabitants. It has a wide variety of landscapes, from the Alps mountains to
plains and coastal areas hosting big cities like Nice and Marseille. Most of the
population of the region lives in the Mediterranean coastline in the south.
The wide variety of landscapes and the unbalanced population distribution
all over the territory, make the study and the modeling of air pollution dif-
ficult. Thus, the French Ministry of the Environment in 2012 created the
AtmoSud agency to monitor the air quality in the Région Sud. Among its
tasks, AtmoSud fulfills a mission of public interest by informing and edu-
cating citizens, the State, communities and economic actors about pollution
trends offering decision support to implement the most relevant actions to
improve air quality. AtmoSud relies on a set of eighty fix and mobile sensors
(see sensor locations in Figure 1) which measure several pollutants and me-
teorological variables. Based on these daily measurements, AtmoSud is able
to release every day a detailed map of the pollutants and pollution forecast
for the coming days, with a resolution of 4 km, using the sophisticated model
Chimere (Menut et al., 2013) to interpolate sensor measurements.

In the present study, we collected environmental data from AtmoSud
agency, specifically daily pollution and meteorological factors measurements
for the period from 2013 to 2018 including: the maximum daily value ob-
served for NO2 and O3, the daily average value of PM10 and of maximal and
minimal observed temperature (T) and pressure (P) for each of the 357 areas
of the Région Sud. Figures 2 and 3 show a sample of the data. The raw data
can be obtained from https://www.atmosud.org and the pretreatments we
carried out are described in Section 5.1. The resulting pretreated data set is
available at https://github.com/UCA-MSI/AirQualityPACA_Data.

1.2. Functional co-clustering. The aim of this work is to study the envi-
ronmental database, constituted by 3 pollution and 2 weather-related vari-
ables, in order to identify spatio-temporal clusters representing peculiar pol-
lution trends. Such data can be seen as multivariate functional data: multiple
quantitative entities evolving during time collected simultaneously for the
same individual (Ramsay and Silverman, 2005; Jacques and Preda, 2014b).
In order to analyze and understand multivariate data, we propose to identify
subgroups of individuals (i.e. areas, in the present work) which have a similar

https://www.atmosud.org
https://github.com/UCA-MSI/AirQualityPACA_Data
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Fig 1: Map of the Région Sud and the locations of the pollution sensors.

profile for each of the 5 variables. This task could be resolved by multivariate
functional data clustering techniques (Tokushige et al., 2007; Kayano et al.,
2010; Ieva et al., 2013; Bouveyron et al., 2020), but the interpretation of
the cluster means, which will be 6-years long curves in the present case, will
be obviously difficult for a human experts, who in practice expect to have
a weekly or monthly view of the problem. Thus, in order to provide useful
summaries to local authority experts and decision makers, we split the 6-
year period into weeks of 7 days, which is the most common analysis range
for such problems. Consequently, we built a big matrix with 357 rows (areas)
and 313 columns (weeks), in which each element is a 5-variate curve. To an-
alyze such massive data, we propose to simultaneously cluster the rows into
homogeneous groups of areas and the columns into homogeneous groups of
weeks. Such kind of analysis is known as co-clustering (Govaert and Nadif,
2013). The co-clustering will identify homogeneous blocks of cities and weeks
having a similar behavior according to the different environmental variables.
It is important to note that, with such approach, temporal and spatial de-
pendence that can occur in the data are ignored. Nevertheless, as it will be
explained in Section 5.1, the meteorological and pollutants variables under
study have usually very local effects in space and time, which makes this
assumption acceptable in the current context.

In statistics and machine learning literature, methods for the co-clustering
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Fig 2: Daily distribution of pollutants in Marseille (red) and Nice (blue) for
the year 2018: maximum of NO2 (A) and of O3 (B) and the average of PM10
(C).
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Fig 3: Daily distribution of meteorological factors in Marseille (red) and Nice
(blue) for the year 2018: average of temperature (A) and average of pressure
(B).
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of rows and columns of a data matrix can be split into two main categories:
deterministic approaches (see for instance George and Merugu, 2005; Baner-
jee et al., 2007; Wang and Huang, 2017) and model-based approaches (Gov-
aert and Nadif, 2013; Bouveyron et al., 2019). The selection of the number of
row and column clusters is one of the most important tasks in co-clustering
analysis and model-based approaches provide a well defined framework for
model selection. Moreover, model-based approaches are usually very flexible:
taking into account groups of different sizes, they allow to manage different
types of data. All these reasons prompted us to employ the model-based
point of view.

One of the most famous model for co-clustering is the latent block model
(LBM, Govaert and Nadif (2013)). According to the LBM, the elements
of a block are modeled by a parametric distribution. Each block is there-
fore interpretable thanks to the block-distribution’s parameters. Moreover,
model selection criteria, such as the ICL criterion (Biernacki et al., 2000),
can be used for model selection purposes, including the choice of the number
of co-clusters. This technique proved its efficiency for co-clustering of sev-
eral types of data: continuous (Nadif and Govaert, 2008), nominal (Bhatia
et al., 2014), binary (Laclau et al., 2017), ordinal (Jacques and Biernacki,
2018; Corneli et al., 2019), functional data (Bouveyron et al., 2018; Cham-
roukhi and Biernacki, 2017; Ben Slimen et al., 2018) or even mixed-type
data (Selosse et al., 2021).

Since our database is composed by functional variables, from now on we
focused on functional data. Ben Slimen et al. (2018) proposed a co-clustering
algorithm based on a vectorial LBM applied on the functional principal com-
ponents scores of the curves. Bouveyron et al. (2018) extended this work
by proposing a functional latent block model assuming that the functional
principal components of the curves are block-specific and live into a low-
dimensional subspace. Chamroukhi and Biernacki (2017) presented another
co-clustering model based on a latent block model where the probability
density function is estimated thanks to a regression model with a hidden
logistic process. Unfortunately, all these works are designed for univariate
functional data and are not able to handle in an appropriate way the mul-
tivariate functional data that we consider in this study.

1.3. Contributions and organization of the work. In the present work, a
co-clustering algorithm for multivariate functional data is proposed to han-
dle the environmental data of the Région Sud that we gathered thanks to the
AtmoSud agency. The proposed algorithm, named multiFunLBM, extends to
the multivariate case the methodology proposed by Bouveyron et al. (2018).
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As it will be explained thereafter, Bouveyron et al. (2018) assume a Gaussian
distribution on the expansion coefficients of the functional data into a prede-
fined basis of functions. It is not possible to extend this approach directly to
the multivariate case by concatenating the coefficients of the different func-
tional variables, because this will increase drastically the coefficient vectors’
dimensions, and thus will lead to the well-known curse of dimensionality
issue. We consequently need to use some dimension reduction techniques, in
this case Multivariate Functional Principal Component Analysis (Jacques
and Preda, 2014b). However, in order not to lose any information with these
techniques, we keep all the principal components but model them parsimo-
niously, with cluster-specific parsimonious Gaussian models. The application
of the multiFunLBM algorithm to the AtmoSud data allowed to identify six
spatio-temporal clusters which represent sub groups of areas and weeks with
specific pollution trends.

The paper is organized as follows. Section 2 presents the co-clustering
model and Section 3 is devoted to model inference. An experimental study
of the algorithm on simulated data is presented in Section 4. Section 5 is
dedicated to the analysis of the environmental database of the South of
France. Some concluding remarks and further work are finally discussed in
Section 6.

2. A co-clustering model for multivariate functional data. This
section introduces a generative model for co-clustering multivariate func-
tional data, such as the ones of AtmoSud.

2.1. Data and functional reconstruction. Functional data, which are the
observations of a random variable living into an infinite dimensional space,
are in practice observed only at a finite set of time points. Let x = (xij)1≤i≤n,1≤j≤p
be the data matrix of dimension n × p, where each element xij is a mul-
tivariate curve xij = (x1ij(t), . . . , x

S
ij(t)) with t ∈ [0, T ]. Let us denote by i

the row index, by j the column index and let s index the dimension of the
multivariate curves. In our application, i refers to the cities (identified by
postcodes, n = 357), j refers to a week of study (p = 313) and s refers either
to some pollutant or to a weather-related variable (S = 5). Note that the
model and its inference which are presented in this work can be nevertheless
used for any other similar set of multivariate functional data.

In practice, the functional expressions of the curves xsij(t) are not known
and we only have access to discrete observations at a finite set of times:
{xsij(t1), xsij(t2), ...}. A common way to reconstruct the functional form is to
assume that the observations can be decomposed into a finite dimensional
space spanned by a basis of functions. So each observed curve xsij (1 ≤ i ≤
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n, 1 ≤ j ≤ p, 1 ≤ s ≤ S) can be expressed as a linear combination of basis
functions {φsr}r=1,...,Rs :

xsij(t) =

Rs∑
r=1

csijrφ
s
r(t)(1)

with Rs the number of basis functions used to reconstruct the sth functional
variable. These basis functions can be for instance Fourier or spline bases.
It is worth noticing that the choice of the most appropriate basis (as well
as the number of basis functions) is an open problem in the unsupervised
context (Jacques and Preda, 2014a). In practice, this choice is done em-
pirically such that the reconstruction is judged reasonable by the expert.
Estimation of the basis expansion coefficients csijr is classically done by least
squares smoothing. We refer the reader to Ramsay and Silverman (2005) for
a complete survey on this aspect.

Let c = (cij)1≤i≤n,1≤j≤p be the whole set of coefficients, which con-
tains the coefficients for the row i and column j which corresponds to the
concatenation of coefficients csijr for all S functional variables, such that

cij = (c1ij1, . . . , c
1
ijR1

, . . . , cSij1, . . . , c
S
ijRS

)t.
For the sake of presentation clarity, the same number of basis func-

tions, Rs = R,∀s = 1, ..., S, and the same basis functions, {φrs}r=1,...,R =
{φr}r=1,...,R, ∀s = 1, ..., S, are considered hereafter for each dimension of the
multivariate functional variables. Extension is straightforward. Let conse-
quently φ(t) be the S × SR matrix that gathers basis functions of all S
functional variables:

φ(t) =


φ1(t) ... φR(t) 0 ... 0 ... 0 ... 0

0 ... 0 φ1(t) ... φR(t) ... 0 ... 0
...

0 ... 0 0 ... 0 ... φ1(t) ... φR(t)

.

With these notations, Equation 1 can be written in matrix terms:

xij(t) = φ(t)cij .(2)

It is worth noticing that, depending on the basis function chosen, the
basis functions may not be orthonormal, i.e. Φ =

∫ T
0 φ(t)tφ(t)dt may not

be the identity matrix. This is specifically the case when considering B-
splines or polynomial functions. Conversely, Fourier basis functions are by
construction such that Φ = I. In any case, it is of course possible to express
the expansion coefficients within an orthonormal basis function system:

xij(t) = ψ(t)Φ1/2cij ,(3)
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where ψ(t) = φ(t)Φ−1/2. Thus, the expansion coefficients of xij(t) within
the orthonormal basis {ψ1(t), ..., ψM (t)} are Φ1/2cij , where M = S ×R.

2.2. The proposed latent block model. The aim of a co-clustering model is
to define row and column partitions in order to summarize the data matrix x
into smaller subgroups, usually called blocks, that are eventually distributed
in the same way. To this end, let z = (zik)1≤i≤n,1≤k≤K be the row partition
of the n rows into K groups, and w = (wjl)1≤j≤p,1≤l≤L the column partition
of the p columns into L groups, such as zik = 1 if row i belongs to row-cluster
k and 0 otherwise (and similarly for wjl). Thus, one block is defined by a
set of curves which belong to a row and column cluster such as zikwjl = 1.

Let us first assume that the partitions z and w are independent:

p(x; Θ) =
∑
z∈Z

∑
w∈W

p(z; Θ)p(w; Θ)p(x|z, w; Θ)(4)

where Z is the set of all possible rows partitions into K groups and W the
set of all possible columns partitions into L groups. Let us introduce αk
and βl as the row and column mixing proportions (belonging to [0, 1] and
summing to 1), such that:

p(z; Θ) =
∏
ik

αzikk and p(w; Θ) =
∏
jl

β
wjl

l .

Let us also assume that, conditionally on (z, w), the curves xij are indepen-
dent and generated by a block-specific distribution:

(5) p(x|z, w; Θ) =
∏
ijkl

p(xij ; Θkl)
zikwjl .

Unfortunately, the notion of probability density for functional variable
is not well defined. In Delaigle and Hall (2010), it is proved that it can be
approximated with the probability density of the functional principal compo-
nents scores (FPCA, Ramsay and Silverman (2005)). Under the assumption
(2) of basis expansion decomposition, these FPCA scores are obtained di-
rectly from a PCA of the coefficient c using a metric Φ defined by the scalar
product between the basis function. Consequently, model-based approaches
for functional data consider probabilistic distribution for either the FPCA
scores (Jacques and Preda, 2013, 2014b) or the basis expansion coefficients
(Bouveyron et al., 2015, 2020), but it is equivalent.

In addition, depending on the application, the period of observation [0, T ]
can be long, and the number of basis functions used for reconstruction can be
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large. Consequently, the coefficient vectors cij may live in high dimensions.
In order to suggest a parsimonious data modeling and to avoid the curse
of dimensionality, we further suppose that the curves of each block (k, l),
for k = 1, ...,K and l = 1, ..., L, can be described into a low-dimensional
functional latent subspace specific to each block, with intrinsic dimension
dkl < M = S × R. As it will be demonstrated below, this low-dimensional
description can be obtained through a principal component analysis for mul-
tivariate functional data (MFPCA, Jacques and Preda, 2014b) performed
per block. MFPCA is an extension of FPCA to the multivariate functional
case, which represents the multivariate curves by a vector of principal scores
into an eigenspace formed by multivariate eigenfunctions.

Thus, conditionally to its belonging to block (k, l), each multivariate curve
xij can be represented by its latent counterpart δij ∈ Rdkl . Let us define Qkl
the orthogonal matrix of dimension M × M , that can be split into two
parts: Qkl = [Ukl, Vkl] with Ukl of dimension M × dkl and Vkl of dimension
M × (M − dkl). With these notations, the linear mapping from the original
space of cij to the low-dimensional functional subspace can be written:

cij = Φ−1/2Uklδij + εij .

Let us recall that depending on the basis function choice, the orthonor-
malization matrix Φ may be equal to I (Fourier basis) or not (B-splines,
polynomial functions).

Conditionally to the blocks, the latent representations are further assumed
to follow a Gaussian distribution with a parsimonious parametrization of the
covariance matrix:

δij |zikwjl = 1 ∼ N (mkl,∆kl),(6)

with mkl ∈ Rdkl and ∆kl = diag(akl1, . . . , akldkl). Additionally, εij is assumed
to have a centred Gaussian distribution:

εij |zikwjl = 1 ∼ N (0,Ξkl)

These assumptions induce a Gaussian distribution for the basis expansion
coefficients:

cij |zikwjl = 1 ∼ N (µkl,Σkl)

where µkl = Φ−1/2Uklmkl and Σkl = Φ−1/2Ukl∆klU
t
klΦ
−1/2 + Ξkl. Finally,
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Ξkl is assumed to be such

QtklΦ
1/2ΣklΦ

1/2Qkl =



akl1 0
. . .

0 akldkl

0

0

bkl 0
. . .

0 bkl



 dkl

 M − dkl

where akl1 > . . . > akldkl > bkl. With this assumption, the first dkl values
express the main part of the variability of the data, while the remaining ones
reflect the variance of the noise and are modeled by a unique parameter bkl.
Thus, the space spanned by the columns of Ukl is a low-dimensional space
which contains the main part of information about the data of the block
(k, l). The remaining information is considered as noise and modeled by a
unique variance parameters bkl for the block (k, l).

Thus, p(xij ; Θkl) in Eq.(5) can be approximated by p(cij ;µkl, akl·, bkl, Qkl).
Let us finally introduce θkl = (µkl, akl·, bkl, Qkl). The whole set of model
parameters is finally denoted by θ = (αk, βl, θkl)1≤k≤K,1≤l≤L.

2.3. A family of parsimonious models. In order to provide more parsimo-
nious models, additional assumptions can be made on the different parame-
ters akl·, bkl and dkl, considering that they are common between clusters or
dimensions. This approach allows to generate a family of sub-models of the
general model introduced above. In this paper, we will detail the inference
procedure to the sub-model assuming aklm = akl,∀m = 1, ..., dkl, since a
good behavior has been observed in practice. Nevertheless, the co-clustering
method presented here can be derived for all models of the family extension,
following the approach detailed in Bouveyron et al. (2020).

3. Model inference. This section focuses on model inference via a
SEM-Gibbs algorithm. Model selection and initialization will be also dis-
cussed.

3.1. Model inference through a SEM-Gibbs algorithm. Since we consider
the task of co-clustering, the goal is to estimate the unknown row and col-
umn partitions zik and wjl given the data at hand. Usually, the maximum
a posteriori rule is used, based on the estimation of model parameter θ
maximizing the observed log-likelihood L(c; θ) = log p(c; θ).

In such a case where latent variables are involved (zik and wjl), one would
instinctively use the expectation-maximization (EM) algorithm (Dempster
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et al., 1977) to find a candidate θ̂ for the maximum of the log-likelihood. The
EM algorithm alternates two steps, the E and M steps, in order to create a
converging series of θ(h) by optimizing a lower bound of the log-likelihood.

This lower bound can be easily exhibited by rewriting the log-likelihood
function as follows:

log(p(c|θ)) = L(q; θ) +KL(q||p(·|c, θ)),

where L(q; θ) =
∑

z,w q(z, w) log(p(c, z, w, |θ)/q(z, w)) is a lower bound of
the log-likelihood andKL(q||p(·|c, θ)) = −

∑
z,w q(z, w) log(p(z, w|c, θ)/q(z, w))

is the Kullback-Leibler divergence between q and p(·|c, θ).
The E step of the EM algorithm consists in maximizing the lower bound

L over q for a given value of θ. A straightforward calculation shows that L
is maximized for q∗(z, w) = p(z, w|c, θ). Unfortunately, in our case, the joint
posterior distribution p(z, w|c, θ) is not tractable as well.

In order to overcome this additional issue, we propose to make use of a
Gibbs sampler within the E step to approximate the posterior distribution
p(z, w|c, θ). We refer to Keribin et al. (2010) for a discussion on the infer-
ence algorithms in the case of latent block models. The resulting stochastic
version of the EM algorithm, called SEM-Gibbs hereafter, has the following
structure (at iteration h and starting from an initial column partition w(0)

and initial parameter value θ(0)):

• SE step: θ is fixed and q∗(z, w) ' p(z, w|c, θ) is approximated with
a Gibbs sampler. The Gibbs sampler consists in alternating the two
following steps a certain number of times to simulate the unknown
labels with their conditional distribution knowing the observations and
a current estimation of the parameters:

– simulate z(h+1)|c, w(h) according to:

p(zik = 1|c, w(h); θ(h)) =
α
(h)
k fk(ci|w(h); θ(h))∑

k′ α
(h)
k′ fk′(ci|w(h); θ(h))

with fk(ci|w(h); θ(h)) =
∏
jl p(cij ; θ

(h)
kl )w

(h)
jl .

– simulate w(h+1)|c, z(h+1) according to:

p(wjl = 1|c, z(h+1); θ(h)) =
β
(h)
l fl(cj |z(h+1); θ(h))∑

l′ β
(h)
l′ fl′(cj |z(h+1); θ(h)).

with fl(cj |z(h+1); θ(h)) =
∏
ik p(cij ; θ

(h)
kl )z

(h)
ik .
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• M step: L(q∗(z, w), θold) is now maximized over θ, where:

L(q∗(z, w), θold) '
∑
z,w

p(z, w|c, θold) log(p(c, z, w|θ)/p(z, w|c, θold))

' E[log(p(c, z(h+1), w(h+1)|θ)|θold] + ξ,

ξ being a constant term regarding θ. This step therefore reduces to
the maximization of the conditional expectation of the complete-data
log-likelihood given c, z(h+1) and w(h+1) (Appendix A.1 provides a
developed form of E[log(p(c, z(h+1), w(h+1)|θ)|θold]) and leads to the
following updates for model parameters.
The mixing proportion and the block mean are updated as follows:

– α
(h+1)
k = 1

n

∑
i z

(h+1)
ik and β

(h+1)
l = 1

p

∑
j w

(h+1)
jl ,

– µ
(h+1)
kl = 1

n
(h+1)
kl

∑
ij z

(h+1)
ik w

(h+1)
jl cij with n

(h+1)
kl =

∑
ij z

(h+1)
ik w

(h+1)
jl .

For the variance parameters akl, bkl and Qkl, let us define the sample

covariance matrix Ω
(h)
kl of block kl at step h:

Ω
(h)
kl =

1

n
(h)
kl

n∑
i=1

M∑
j=1

z
(h+1)
ik w

(h+1)
jl (cij − µ(h)kl )t(cij − µ(h)kl ).

Then, the updates for akl, bkl and Qkl are:

– the variance parameters a
(h+1)
kl , are updated by the mean of the

dkl largest eigenvalues of Φ1/2Ω
(h)
kl Φ1/2,

– the variance parameters bkl are updated by 1
M−dkl (trace(Φ

1/2Ω
(h)
kl Φ1/2)−

dkla
(h)
kl ),

– the dkl first columns of the matrix of eigenfunctions coefficients

Q
(h)
kl are updated by the eigenfunctions coefficients associated

with the largest eigenvalues of Φ1/2Ω
(h)
kl Φ1/2.

Proofs of those results are available in Appendices A.2, A.3 and A.4.

3.2. Algorithmic considerations.

Implementation. Regarding the practical implementation, the SEM-Gibbs
algorithm is run for a given number of iterations. After a burn-in period, the
final estimation θ̂ of the parameters is obtained by the mean of the sample
distribution (without the burn-in iterations). Then, a new Gibbs sampler is
used to sample (ẑ, ŵ) according to θ̂, and the final partition (ẑ, ŵ) is obtained
by the marginal mode of this sample distribution.
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Initialization of the algorithm. As said previously, multiFunLBM relies on
a SEM-Gibbs algorithm. This algorithm needs to be initialized carefully with
values for column partitions and parameters, or similarly with both column
and row partitions. To this end, we consider the three following initialization
strategies: random, k-means and funFEM. In the random case, row and col-
umn partitions are randomly sampled from a multinomial distribution with
uniform probabilities. The k-means strategy consists in initializing the two
partitions with those obtained by k-means directly applied on a discretized
version of the data matrix and its transpose. Finally, the funFEM strategy
initializes the partitions by applying the funFEM algorithm (Bouveyron
et al., 2015) on the matrix concatenating the functional variables and its
transpose. We will see later, in the numerical experimentation section, that
funFEM is the one that gives the best results.

3.3. Choice of the number of clusters. We now discuss the choice of the
hyper-parameters K and L, i.e. the number of row clusters and column
clusters respectively. The choice of these hyper-parameters is viewed here
as a model selection problem. Well established model selection tools are
Akaike information criterion (AIC, Akaike 1974), Bayesian information cri-
terion (BIC, Schwarz 1978) and Integrated Classification Likelihood (ICL,
Biernacki et al. 2000). However, in the co-clustering case, the likelihood is
not tractable for the same reason than the EM algorithm is not usable. Con-
sequently, AIC and BIC are not tractable. Conversely, the ICL criterion can
still be considered since it relies on the completed data log-likelihood, which
is tractable. Adapted to our model, the ICL criterion is:

ICL(K,L) = log p(c, ẑ, ŵ; θ̂)− K − 1

2
log(n)− L− 1

2
log(p)− ν

2
log(np)

where ν = KLM + 2KL+
∑

kl dkl(M −
dkl+1

2 ) is the number of continuous
parameters per block and

log p(c, ẑ, ŵ; θ̂) =
∏
ik

ẑiklog(αk) +
∏
jl

ŵjllog(βl) +
∑
ijkl

ẑikŵjllog p(cij ; θ̂kl).

The couple (K∗, L∗) leading to the highest ICL value is selected as the most
appropriate number of row and column clusters.

4. Numerical experimentation on simulated data. This section
presents numerical experiments on simulated data in order to illustrate the
behavior of the proposed methodology in presence of different noise ratio
in the data and to study the selection of the number of row and column
clusters. The R code for multiFunLBM is available on CRAN through the
new version of the funLBM package for R (Bouveyron et al., 2020).
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4.1. Simulation setup. We first detail here the simulation setup that is
used in the following numerical experiments. Bivariate curves (S = 2) are
simulated with K = 4, L = 3. The proportions of row clusters α used is
(0.2,0.4,0.1,0.3) and column clusters β is (0.4,0.3,0.3). The first functional
variable is designed from four different functions that are used as blocks
mean at 31 equispaced time points, t = 0, 1/30, 2/30, ..., 1:

xij(t)|zikwjl = 1 ∼ N (mkl(t), s
2),

where s = 0.3. The block mean functions mkl are such that m11 = m21 =
m33 = m42 = f1, m12 = m22 = m31 = f2, m13 = m32 = f3 and m23 =
m41 = m43 = f4, with f1(t) = sin(4πt), f2(t) = 0.75 − 0.51t∈]0.7,0.9[,

f3(t) = h(t)/max(h(t)) where h(t) = N (0.2,
√

0.02) and f4(t) = sin(10πt).
Then the second variable is designed according to the same process than
the first one but with four different functions: f1(t) = cos(4πt), f2(t) =
0.75 − 0.51t∈]0.2,0.4[, f3(t) = h(t)/max(h(t)) where h(t) = N (0.2,

√
0.05)

and f4(t) = cos(10πt). The block means functions of the two functional
variables are shown on Figure 4.

Starting from this simulation setting, five scenarios are derived by adding
some noise fraction within the blocks by randomly simulating a percentage
τ of curves using other block means: 0% (scenario 1), 10% (scenario 2), 30%
(scenario 3), 50% (scenario 4) and 80% (scenario 5).

Regarding the algorithm setup, we set to 50 iterations the burn-in period
of the algorithm and the SEM-Gibbs number of iterations is set to 100.
Computation time on a 2,3 GHz Intel Core i7 with 32 Go RAM for one
execution of the algorithm with funFEM initialization is about 30 seconds
for n = p = 100 and 6 minutes for n = p = 500. In practice, we advice to use
parallel computing to execute simultaneously the algorithm with different
values of K and L (and select the solution leading to the best ICL criterion).

4.2. Robustness to noise and influence of initialization. This first experi-
ments aims at studying the ability of multiFunLBM to recover the simulated
model in clean but also noisy situations, and depending on the type of ini-
tialization of the SEM-Gibbs algorithm. To this end, 20 simulations with
n = p = 100 have been performed for each scenario with both k-means, fun-
FEM and random initializations. The algorithm is applied for K = 4 and
L = 3 and with Fourier smoothing with 15 basis functions. The quality of
estimated partitions is assessed with the Adjusted Rand Index (ARI, Rand
1971). We recall that an ARI of 1 indicates that the partition provided by
the algorithm is perfectly aligned with the simulated one. Conversely, an
ARI of 0 indicates that the two partitions are just some random matches.
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Fig 4: Block means functions for the first variable (top) and second variable
(bottom). On each plot, the row number correspond to k and the column
number to l
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Results are shown in Figure 5 for both row (left panels) and columns
partitions (right panels). We can see that co-clustering results are almost
perfect for the 4 first scenarios with funFEM initialization (bottom panels),
and the 2 first scenarios for k-means initialization. As expected, the algo-
rithm performance decreases while noise increases, but median ARI value is
always above 0.8 in the case of four first scenarios with k-means and fun-
FEM initialization. Moreover k-means initialization performs better than
random when the noise ratio is upper than 50%. And the funFEM initial-
ization performs better than the k-means one. In view of the good behavior
of funFEM initialization, we recommend to use the funFEM initialization
rather than the two others available in the algorithm. Of course, if different
initializations are used, the user will have to select the solution with the
highest log-likelihood.

Let’s note that in these experiments, we consider symmetric number of
rows and columns (n = p). Contrary to usual statistical models in which
the number n of observations and the number p of variables do not have the
same importance (the greater n the better is the inference, the greater p the
worse is the inference), in co-clustering their roles are totally symmetric: the
quality of the inference increase both with n and p (Keribin et al., 2015). This
is confirmed by the results obtained with a larger sample size (n = p = 500),
available in Appendix A.5, which are better than those with n = p = 100.

4.3. Model selection. In this section, the selection of the number of clus-
ters using the ICL criterion we derived earlier is investigated. Data are gen-
erated as previously. The simulation setting is repeated 20 times. For each of
the 20 generated data sets, the SEM-Gibbs algorithm is run with K and L
values ranging from 2 to 6 clusters, with funFEM initialization. Each time,
the model selected by ICL is reported.

For a sample size of n = p = 500, results are shown in Table 1. The results
indicate that multiFunLBM in combination with the ICL criterions is able
to perfectly recover the actual model with a noise ratio from 0 to 30% of the
data volume. Then, as expected, the performance of the criterion decreases.
However, for a noise ratio of 50%, the ICL criterion is still able to identify
the right simulation model in 90% of the cases. Finally, for 80% of noise, the
algorithm is not able to recover the partitions (Figure 5), the ICL criterion
is also not able to find the right number of co-clusters.

For a smaller sample size, n = p = 100, the ICL criterion tends to select
less clusters that it should do (results are in Appendix A.6). This result is not
surprising since such a criterion has asymptotic properties (Keribin et al.,
2015). In practice, selecting a too small number of clusters in clustering or
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Fig 5: ARI results for multiFunLBM with n = p = 100 according to the
noise ratio and depending on the type of initialization: random (top), k-
means (middle) and funFEM (bottom).

co-clustering is not problematic, it will just lead to less precise analyses and
interpretations of the data. If we want to have more precise analyses, the
sample size should be sufficiently large.
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Table 1
Percentage of selection of each model (K,L) by ICL among the 20 simulated data sets,

with n = p = 500. The actual values for (K,L) are (4, 3).

Scenario τ = 0 Scenario τ = 0.3 Scenario τ = 0.5

K/L 2 3 4 5 6 K/L 2 3 4 5 6 K/L 2 3 4 5 6

2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0
3 0 100 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0
4 0 0 0 0 0 4 0 100 0 0 0 4 0 90 0 0 0
5 0 0 0 0 0 5 0 0 0 0 0 5 0 10 0 0 0
6 0 0 0 0 0 6 0 0 0 0 0 6 0 0 0 0 0

4.4. Robustness to spatial and temporal dependences. In the proposed co-
clustering algorithm, the row and column partitions z and w are assumed
to be independent (Eq. 4). This assumption, which can be seen as a strong
one, is in fact useful when combined with the idea of clusters since it forces
the model to find row and column clusters that carry out the data structure.
In the present experiment, the robustness of this assumption is evaluated
since many applications from real-world, such as the one presented in the
next section, may depart from this hypothesis. To this end, the robustness to
spatial and temporal dependences is evaluated by introducing dependence
between the rows and/or the columns of x.

Data are simulated according to the previous simulation setting, and then
spatial and temporal dependences are introduced as follows. For the column
dependence, which corresponds in the application under study in this paper
to a temporal dependence, each simulated curve xsij(t) is multiplied by a
factor τj/p, where τ is a parameter controlling the dependence strength.
Thus, greater is the index j of the curve, larger is the multiplication factor
of the function xsij(t). This dependence simulates an increasing trend in the
observation.

For the row dependence, a 2-dimensional spatial trend is simulated, by
assuming that the n observations are spatially distributed onto a square of
size
√
n×
√
n, the first observation (i = 1) being on the bottom-left corner

and the last one (i = n) on the top-right corner. The trend increases from
the bottom-left corner to the top-right corner as illustrated by Figure 6. The
trend is linear and such that the first observation is multiplied by a factor 1
and the n-th observation by a factor τ .

Figure 7 shows the evolution of the ARI on rows and columns regarding
the dependency parameter τ , which we vary in the range [1, 2]. As one can
observe, the proposed methodology turns out to be relatively robust to row
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Fig 6: Simulated spatial dependency between the rows. The dependency
parameter is here fixed to τ = 2.

and column dependencies, with an ARI slowly decreasing until about 0.4
when the strength of the dependence is the highest. We can therefore expect
the multiFunLBM algorithm to perform well in real-world situation where
moderate spatial and temporal dependencies are present.
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Fig 7: ARI results for multiFunLBM with n = p = 100 according to the
strength of the spatial and temporal dependencies.
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5. Co-clustering of environmental data from Région Sud. This
section presents the application of the methodology introduced above to the
analysis of the multivariate spatio-temporal functional data set of pollution
in the South of France.

5.1. Data and and pretreatments. The environmental database is com-
posed of five variables, respectively three pollutants (maximum of NO2 and
O3 and average of PM10) and two meteorological measurements (average
of temperature (T) and pressure (P)). On the spatial point of view, these
measurements are collected at a resolution of 4 km: the region is divided in
4km squares, each square represents a measure, constituting a grid of size
1995 for pollution and of size 1967 for meteorological variables (Figure 8A-
B). Unfortunately, the two grids do not overlap, thus we needed to set up a
procedure to merge the two databases.

Fig 8: Non-overlapping grids of 4km - squares for pollution (A) and meteo-
rological (B) data. (C) Région Sud divided in 357 areas of non-overlapping
postcodes.

Firstly, it was necessary to manage the missing data from the weather
and pollution databases: there were 2 % of days missing for the pollution
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data and 1 % for the weather data over 2191 days between 2013 and 2018.
Out of scale measurements due to captures failures or modeling errors were
identified and treated as missing data. When data are missing, none of the
square of the grid has a value associated to it, thus we needed to reconstruct
the data for the entire region over the days that were missing. Two methods
were used: interpolation and random sampling. The interpolation method
was used for variables with a periodic trend or a seasonality (PM10, O3,
P, T) whereas the random sampling method was considered for other vari-
ables (NO2). The interpolation method was done using the na.approx()

function of the R package zoo. Regarding the random sampling method,
the values which replaced the missing data were taken from a window of
variable size around the missing data period. The window size was adapted
according to the period (i.e. day/s) of missing data to replace: specifically
it was equivalent to 4 days + the length of the missing period divided by 2.

In order to merge the pollution and meteorological databases constituted
on the two different grids and to make data easier to interpret, we decided
to change the data resolution, specifically we created 357 areas (Figure 8C).
These areas represent non-overlapping postcodes. A postcode can be asso-
ciated with several municipalities but can also be different for the same mu-
nicipality (4 postcodes in Nice for example). Therefore, environmental data
had to be transformed from the 4km squares to the area level. The associa-
tion was therefore made in 2 stages, firstly an association of pollution data
- areas then weather data - areas and finally pollution-weather data at the
area level. Briefly, when a 4 km square covers the largest surface of an area,
it is associated with it. Thus we ended up with an environment database of
357 lines, corresponding to the areas of the region, for each pollution and
weather variable. The pollution and meteorological data associated to each
area, represent the maximal or the average value of the squares included
in the area. Accordingly, if an area covers only one square, it will assume
the values associated to the single square. We chose the maximal value for
NO2, O3 and the average value for PM10, T and P to respect the original
measurement done at the grid level.

It is important to notice that the pollutants which are studied here have
usually very local effects in space and time. For instance, PM10 can drasti-
cally vary in a radius of 200 meters and we can therefore consider that two
areas of 4 square km are likely to have different values, in particular on two
different days. This remark is also true for meteorological data since the ge-
ographical landscape of the studied region is very specific: some mountains
of an altitude of 1000 meters can be found less than 5km from the sea (par-
ticularly in the neighborhood of Nice). For these reasons, the multiFunLBM
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method we proposed is well adapted to the co-clustering of the data we show
here.

5.2. Experimental protocol. In order to test the ability of multiFunLBM
to identify spatio-temporal profiles, we used daily measurements of our five
variables, in the 357 areas of the Région Sud, for a period of six years from
2013 to 2018 for a total leading to 2191 measurements per variable and per
area. Firstly, the variables were standardized in order to be compared easily
(centering and scaling). They were also transformed into functional data by
weeks (7 days, start from Tuesday) using a Fourier basis. We chose the week
as the time window since we needed a window to divide evenly the period
under investigation. There are exactly 313 weeks of 7 days in the period
of interest for this study. The Fourier basis was chosen to reconstruct the
functions because some variables exhibit a clear periodicity. The number of
basis function was set to 7. Then, the multiFunLBM algorithm was applied
to the environmental database. The number of clusters on the spatial and
temporal dimensions (respectively, K and L) were allowed to vary in the
range 2 to 10. The appropriate number of clusters was assessed according to
ICL criterion (maximum) and the type of initialization used was funFEM.

Fig 9: Frequency of the 6 clusters identified by multiFunLBM on the spatial
(A) and temporal (B) dimension, respectively. The number of areas (A) or
weeks (B) for each cluster is reported.

5.3. Results. The algorithm identified K = 6 clusters for the spatial di-
mension, and also L = 6 clusters for the temporal dimension (see Figures 9A
and 9B respectively). Figure 9A shows the frequency and the number of
zones (postcodes) in each cluster. The spatial distribution of the six clusters
is shown in Figure 10. On overall, the clusters represent well the different
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areas of the region: cluster 3 groups all areas which are in the mountains,
cluster 6 represents the west part of the region, which is organized along
the Rhône river. The areas located on the coast are divided in two clusters:
cluster 4 that groups the most populated and industrialized zones of the
region including the city of Marseille and Nice, while cluster 2 gathers the
remaining ones. Interestingly, all areas where the main highway of the region
pass by are clustered in cluster 5. Finally, rural zones are gathered in cluster
1. This segmentation confirms that pollution levels are correlated with the
geography and the human activity, and that multiFunLBM well identifies
intrinsic structures of the territory.

Fig 10: Association of the 357 areas in Région Sud with the clusters on the
spatial dimension. Color code is indicated in the figure.

The analysis on the temporal dimension is done by weeks, meaning that
the behavior of the five environmental variables is studied with a week reso-
lution. On this dimension, six clusters were identified as well: cluster 1 is the
biggest one with 70 weeks (22 %) and cluster 6 the smallest with 27 weeks
(9 %), see Figure 9B. Tables 2–4 in Appendix A.7 show respectively the
number of weeks by cluster by year, month and season. Figure 11 presents a
calendar representation of the 313 weeks by cluster. Interestingly, the clus-
ters mainly group the weeks accordingly to the seasons, independently of
the year, proving the ability of multiFunLBM to find out data structures
and the intrinsic link between pollution and meteorological factors due to
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the seasons. Specifically, cluster 2 mainly collects summer weeks (June, July,
August) all over the six years, while cluster 1 and cluster 5 winter and late
autumn ones (November, December, January and February). Spring and
early autumn (March, April, May, September and October) weeks are in
two clusters, cluster 3 and 4. Finally cluster 6 collects sporadic weeks all
over the six years regardless the season, suggesting perhaps peculiar pollu-
tion trends in these weeks.

We hereafter propose a deeper analyses of the results regarding the dif-
ferent functional variables.

5.3.1. Meteorological variables. To explore the profiles of the five vari-
ables by cluster, we plot the average week profiles for each spatial and tem-
poral cluster obtaining 36 profiles for each variable represented in Figure 12
for meteorological and Figures 13, 14 for pollution variables. For this, we
used functional boxplots thanks to the fbplot function of the fda package.
Each plot represents the typical behaviors by day of the week of the environ-
mental variable measurements for all the weeks and areas contained in each
cluster. For instance, the top-left panel shows for each variable the week
profile for all areas contained in cluster 1 on the spatial dimension (97 zones
mainly rural) on the weeks falling in cluster 1 on the temporal dimension
(70 weeks, mainly winter and late autumn), and so on for the other plots.

Meteorological variables, especially average of temperatures, show flat
profiles within a cluster, meaning that no week trend is observed, as ex-
pected (Figure 12). Temperature profiles perfectly reflects what is expected
by season and area of the region (refer to Figure 12A): winter weeks grouped
in clusters 1 and 5 on the temporal dimension (columns) are below the mean
level, with the lowest reached for areas on the mountains collected in cluster
3 on the spatial dimension (rows). A similar trend but with opposite values
(above the mean) is observed for temporal cluster 2, summer weeks. Con-
versely, clusters 3 and 4 exhibit quite opposite trends for spring and early
autumn weeks, showing the coldest and the warmest profiles respectively,
despite the spatial clusters.

Regarding the pressure, expected observations can be made: the highest
levels are reached for spatial cluster 3 (mountains) independently by the
temporal clusters. On the temporal clusters point of view, the highest levels
are obtained for profiles in cluster 1 (winter and late autumn) and the lowest
in cluster 3 (spring and early autumn), while summer weeks (cluster 2) show
flat profiles around the average. Cluster 4 (spring and early autumn), 5
(winter and late autumn) and 6 (sporadic weeks) on the temporal dimension
show profiles modulated by the day of the week, with the highest values in
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Fig 12: Functional boxplots by cluster on temporal (columns) and spatial
(rows) dimensions for meteorological variables: temperature (A) and pres-
sure (B).
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the middle of the week (Wednesday, Thursday and Friday) and the lowest
in the weekend plus Monday and Tuesday, for the formers, opposite pattern
for the latter.

5.3.2. Pollution variables.

Ozone. Pollutant variable profiles mostly vary according to the day of the
week. As it can be seen on Figure 13A, the most stable trends on the week
window are for maximum of O3, due to the strong dependency of this pollu-
tant to the season more that the day of the week. Indeed, O3 levels depend
on heat and sunshine. The seasonality of this pollutant is well identified by
multiFunLBM because profiles are similar by column (temporal dimension)
and not by row (spatial dimension). The lowest levels are for temporal clus-
ter 1 and 5 (winter and late autumn), while the highest are for cluster 2
(summer) independently of the cluster on the spatial dimension. Interest-
ingly, as observed for meteorological variables, the two clusters of spring and
early autumn weeks (cluster 3 and 4) collect weeks from the same period of
the year. They do not show similar profiles intra-variables, but each cluster
have similar trend inter-variable, confirming the strong relationship between
O3 and meteorological factors, mainly temperature. Overall the O3 seems
not to have a strong spatial dependence, since profiles by temporal dimen-
sions looks similar among clusters of the zones of Région Sud. However, we
observe a strong temporal dependence with the highest levels in summer.

Particulate matters. Levels of PM10 depend on intensive anthropogenic
activities, such as fossil fuel combustion and biomass burning, and thus we
expect a strong spatial dependence. Accordingly, multiFunLBM finds well
that spatial cluster 5 (zones on the high-way), cluster 4 (big-cities on the
coast) and cluster 6 (west), regardless of the temporal clusters, those clusters
all show the highest levels, as reported in Figure 13B. Interestingly, we found
high levels of PM10 in spatial cluster 1 (countryside) probably because of
the biomass burning practice due to agricultural and gardening activities
that produce high quantities of particles. Overall, higher levels of average of
PM10 are observed mainly in wintertime (cluster 1 and 5 on the temporal
dimension) due to a higher use of heating systems and fossil fuel combustion
than in summer time. Clusters 1, 4, 5 and 6 on the temporal dimension show
clearly the weekly dependency of this pollutant, even though with different
levels: all these clusters show higher level of PM10 in the middle of the week
(Tuesday, Wednesday and Thursday) and lowest in weekends and Monday,
probably suggesting that industrial activities and traffic due to working days
have the strongest influence on the concentrations of this pollutant.
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Fig 13: Functional boxplots by cluster on temporal (columns) and spatial
(rows) dimensions for maximum of O3 (A) and average of PM10 (B).
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Nitrogen Dioxide. More than 50 % of the NO2 present in the air is produced
by fuel combustion and cars, and is mainly present in densely populated
areas. Thus, as expected, the spatial clusters 4 (big cities on the coast) and
5 (zones on the highway) have high levels of maximum of NO2 regardless
of the season (clusters on temporal dimension), as showed in Figure 14.
Temporal clusters 1 (winter and late autumn) and 2 (summer) show very
similar profiles and levels on the spatial dimension, demonstrating the high
spatial dependence of this pollutant that is not influenced by climatic factors
due to seasonality. As observed for the other pollutants, spring and early
autumn weeks of the six years under study are grouped in two clusters that
show two profiles: cluster 3 has a flat profile, i.e. pollutant concentration
does not depend on the day of the week, cluster 4 exhibits high levels during
the week with a drop during the weekends. These two clusters show that
pollution concentration in this time of the year is mostly affected by working
activities, and this more than in other periods. In overall, NO2 shows quite
strong week trends, with high levels during the week and low levels in the
week-ends due to public and private traffic trends accordingly with working
days.

Fig 14: Functional boxplots by cluster on temporal (columns) and spatial
(rows) dimensions for maximum of NO2.

5.4. Summary of the results. The six clusters on the spatial dimension
collect areas in the mountains, rural areas and west side of the region. Fur-
thermore, the algorithm differentiates as well areas on the coast line de-
pending on inhabitant proportions and industrialization levels. Surprisingly,
it also identified one cluster that gathers all the areas where the main high-
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way of the region pass by. On the other dimension, the 313 weeks of the
period under investigation are gathered as well in clusters based on seasonal
trends: winter and late autumn, spring and early autumn, summer. Policies
to limit pollution increase are usually taken at the county level (5 in the
Région Sud). However, a county represents a very heterogeneous territory
with different industrialization levels, inhabitant proportions and geograph-
ical composition, making hard to find policies that suit well all the diversity
of scenarios. The clusters identified by multiFunLBM may be used by local
authorities in order to set up specific policies to lower down pollution or for
public alerts when pollution raise above secure levels for the citizens and that
are adapted to the different areas. Furthermore, the temporal clusters can
help to spot periods of the years that are particularly affected by pollution
at the level of the spatial clusters, in order to set up alerts and prevention
behaviors for each specific area.

6. Discussion and conclusion. This work was prompted by the need
to analyze air pollution in the South of France in order to help the At-
moSud agency and local institution to monitor pollutants dynamics and to
spread public alerts when necessary. Here, we introduced a co-clustering of
multivariate functional data to fulfill these objectives. The multiFunLBM
algorithm allows to cluster both individuals (areas) and columns (weeks)
simultaneously, in order to propose a summary of the data through homoge-
nous blocks of functional data. The proposed approach relies on a functional
latent block model, which assumes for each block a probabilistic distribu-
tion for the scores of the multivariate curves obtained from a multivariate
functional principal component analysis. Model inference is based on a SEM-
Gibbs algorithm which alternates a SE-step where row and column parti-
tions are simulated according to Gibbs algorithm, and a M-step where model
parameters are updated conditionally on the previous simulated partitions.
Model selection relies on the ICL criterion which has been specifically de-
rived for the proposed model. As far as the authors know, this is the first
algorithm available for functional multivariate co-clustering. The proposed
multiFunLBM model is available on CRAN through the funLBM package for
R (Bouveyron et al., 2020).

The multiFunLBM algorithm has been used to analyze an environmental
database supplied by the AtmoSud agency, collecting daily measurements
of three pollutants along with pressure and temperature for a period of 6
years in the south of France. Without any knowledge about the geographical
composition of the territory, nor the specific seasonality of the territory, the
algorithm identifies accurate and meaningful clusters, both on the spatial
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and temporal dimensions. These clusters could be used in a near future to
help local authorities to issue public alerts that are specific to more restricted
areas.

To go further in the analysis of these data, two additional research aspects
could be explored. The first would be to take into account the temporal and
spatial dependencies that exist within these data. One way to do this would
be to assume a smooth spatial dependence of the mixing proportions using a
multinomial logistic regression as in Vandewalle et al. (2020). Recent results
of Mart́ınez-Hernández and Genton (2020) could also probably help in this
task. The second one is to relax the co-clustering structure assumption and
to consider bi-clustering algorithm in order to detect more subtle patterns
in the data due to local and temporal specific phenomenon. An extension
of the work of Orio and Vantini (2019) to the multivariate functional case
could be a first solution.

On a larger dimension, the understanding of the spatio-temporal dynamic
of air pollution is a current challenge worldwide. Several agencies have been
created all over the world in order to monitor air pollution behavior, to iden-
tify factors influencing pollution peaks before alerting local authorities and
citizens. Nevertheless, air pollution dynamic is extremely complicated and
affected by many factors including meteorological variables such as temper-
ature, pressure, wind speed, rain, humidity etc. Due to the high amount of
variables to take into account, there is a tendency to focus pollution behav-
ior studies mainly in big cities, as the main producers of pollution. However,
masses of air move over bigger territories than single cities, thus spreading
the pollution to adjacent areas. There is therefore a need to analyse air pol-
lution on large territories, taking into account not only pollutants but also
meteorological factors, and we believe that tools such as multiFunLBM may
be useful in this context.
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APPENDIX A: APPENDIX

A.1. Developed form of E[log(p(c, z(h+1), w(h+1)|θ)|θold]. The
conditional expectation of the complete-data log-likelihood H(θ|θold) has
the following form for the model proposed in this work:

H(θ|θold) = E[log(p(c, z(h+1), w(h+1)|θ)|θold](7)

=
∑
i,k

z
(h+1)
ik logαk +

∑
j,l

w
(h+1)
jl log βl +

∑
i,j,k,l

z
(h+1)
ik w

(h+1)
jl log(p(cij ; θkl)),(8)

where z
(h+1)
ik = E[zik|θold] and w

(h+1)
jl = E[wjl|θold]. In order to ease the

reading of the reminder, the subscript (h+1) will be omitted hereafter. Let
us now focus on the last quantity of the previous equation.∑
i,j,k,l

zikwjl log(p(cij ; θkl)) =
∑
i,j,k,l

zikwjllog(
1

(2π)M/2
|Σkl|−1/2 exp(−1

2
(cij−µkl)tΣ−1kl (cij−µkl))),

where Σkl = Φ−1/2Qkl∆klQ
t
klΦ
−1/2 + Ξkl. Let nkl =

∑n
i=1

∑M
j=1 zikwjl be

the number of curves belonging to the block (kl), then:

∑
i,j,k,l

zikwjl log(p(cij ; θkl)) = − 1

2

K∑
k=1

L∑
l=1

nkl

[
dkllog(akl) + (M − dkl)log(bkl)

+
1

nkl

n∑
i=1

M∑
j=1

zikwjl(cij − µkl)tΦ1/2Qkl∆
−1
kl Q

t
klΦ

1/2(cij − µkl)

]

− nM

2
log(2π)

Since the quantity (cij − µkl)tΦ1/2Qkl∆
−1
kl Q

t
klΦ

1/2(cij − µkl) is a scalar, it
is equal to its trace: tr([(cij − µkl)tΦ1/2Qkl] × [∆−1kl Q

t
klΦ

1/2(cij − µkl)]) =
tr([∆−1kl Q

t
klΦ

1/2(cij − µkl)]× [(cij − µkl)tΦ1/2Qkl]), consequently:

1

nkl

n∑
i=1

M∑
j=1

zikwjl(cij − µkl)tΦ1/2Qkl∆
−1
kl Q

t
klΦ

1/2(cij − µkl)

=
1

nkl

n∑
i=1

M∑
j=1

zikwjltr(∆
−1
kl Q

t
klΦ

1/2(cij − µkl)(cij − µkl)tΦ1/2Qkl)

= tr(∆−1kl Q
t
klΦ

1/2[
1

nkl

n∑
i=1

M∑
j=1

zikwjl(cij − µkl)t(cij − µkl)]Φ1/2Qkl)

= tr(∆−1kl Q
t
klΦ

1/2ΩklΦ
1/2Qkl),
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where Ωkl = 1
nkl

∑n
i=1

∑M
j=1 zikwjl(cij − µkl)t(cij − µkl) is the empirical co-

variance matrix of the curves of the block (kl). Since the matrix ∆kl is
diagonal, so we can write:

1

nkl

n∑
i=1

M∑
j=1

zikwjl(cij − µkl)tQkl∆−1kl Q
t
kl(cij − µkl) =

dkl∑
j=1

qtkljΦ
1/2ΩklΦ

1/2qklj

aklj

+
M∑

j=dkl+1

qtkljΦ
1/2ΩklΦ

1/2qklj

bkl
,

where qklj is jth column of Qkl.
Finally,

H(θ|θold) =
∑
i,k

z
(h+1)
ik logαk +

∑
j,l

w
(h+1)
jl log βl

− 1

2

∑
k,l

nkl

[
dkllog(akl) + (M − dkl)log(bkl)

+

dkl∑
j=1

qtkljΦ
1/2ΩklΦ

1/2qklj

aklj
+

M∑
j=dkl+1

qtkljΦ
1/2ΩklΦ

1/2qklj

bkl

]
− nM

2
log(2π)

A.2. Parameter Qkl update. We aim to maximize H(θ|θold) under
the constraint qtkljqklj = 1, with qklj the j th column of Qkl. This is equivalent
to look for a saddle point of the Lagrange function:

L = −2H(θ|θold)−
M∑
j=1

ωklj(q
t
kljqklj − 1)

where ωklj are Lagrange multipliers. The gradient of L in relation to qkjl is:

∇qkljL = ∇qklj (
K∑
k=1

L∑
l=1

nkl[

dkl∑
j=1

qtkljΦ
1/2ΩklΦ

1/2qklj

aklj
+

M∑
j=dkl+1

qtkljΦ
1/2ΩklΦ

1/2qklj

bkl
]

−
M∑
j=1

ωklj(q
t
kljqklj − 1)).

As a reminder, when W is symmetric, then ∂
∂x(x−s)TW (x−s) = 2W (x−s)

and ∂
∂x(xTx) = 2x (cf. Petersen and Pedersen (2012)), so:

∇qkljL = nkl[2
Φ1/2ΩklΦ

1/2

σklj
qklj ]− 2ωkljqklj
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where σklj is the j-th diagonal term of matrix ∆k (aklj for j ≤ dkl and bkl
otherwise).
Thus,

∇qkljL = 0 ⇔ Φ1/2ΩklΦ
1/2qklj =

ωkljσklj
nkl

qklj .

qklj is the eigenfunction of Φ1/2ΩklΦ
1/2 which match the eigenvalue λklj =

ωkljσklj
nkl

= qtkljΦ
1/2ΩklΦ

1/2qklj . Since the vectors qklj are eigenvectors of Ωkl,

we have qtkljqklm = 0 if j 6= m. Reporting the value of λklj in H(θ|θold) allows

to see that maximizing H(θ|θold) regarding qklj is equivalent to minimize the

quantity
∑K

k=1

∑L
l=1 nkl

∑dkl
j=1 λklj(

1
akl
− 1
bkl

) regarding to λklj . Knowing that

( 1
akl
− 1

bkl
) ≤ 0, λkl has to be as high as possible. therefore, the j -th column

qklj of matrix Qkl is estimated by the eigenfunction associated to the j -th
highest eigenvalue of Φ1/2ΩklΦ

1/2.

A.3. Parameter akl update. Partial derivative ofH(θ|θold) according
to akl correspond to:

∂H(θ|θold)
∂akl

= −1

2
nkl(

dkl
akl
−

dkl∑
j=1

qtkjlΦ
1/2ΩklΦ

1/2qkjl

a2kl
)

= −1

2
nkl(

dkl
akl
−

dkl∑
j=1

λklj
a2kl

)

The prerequisite ∂H(θ|θold)
∂akl

= 0 implies:

nkldkl
akl

=
nkl
a2kl

dkl∑
j=1

λklj

⇔ akl =
1

dkl

dkl∑
j=1

λklj

with λkl the eigenvalues of block kl.

A.4. Parameter bkl update. Partial derivative of H(θ|θold) according
to bkl correspond to:

∂H(θ|θold)
∂bkl

= −1

2
[
M − dkl
bkl

−
M∑

j=dkl+1

qtkljΦ
1/2ΩklΦ

1/2qklj

b2kl
]
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The prerequisite ∂H(θ|θold)
∂bkl

= 0 implies:

M − dkl
bkl

=

M∑
j=dk+1

qtkljΦ
1/2ΩklΦ

1/2qklj

b2k

⇔ bkl =
1

M − dkl
[tr(Φ1/2ΩklΦ

1/2)−
dkl∑
j=1

λklj ]

A.5. Robustness to noise and influence of initialization n = p =
500. Figure 15 plots the ARI results for a sample size of n = p = 500
corresponding to the simulation setting of Section 4.2.

A.6. Model selection results for n = p = 100. Table 2 contains
the model selection results for a sample size of n = p = 100 corresponding
to the simulation setting of Section 4.3.

Table 2
Percentage of selection of each model (K,L) by ICL among the 20 simulated data sets,

with n = p = 100. The actual values for (K,L) are (4, 3).

Scenario τ = 0 Scenario τ = 0.3 Scenario τ = 0.5

K/L 2 3 4 5 6 K/L 2 3 4 5 6 K/L 2 3 4 5 6

2 0 0 0 0 0 2 5 95 0 0 0 2 100 0 0 0 0
3 0 100 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0
4 0 0 0 0 0 4 0 0 0 0 0 4 0 0 0 0 0
5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0
6 0 0 0 0 0 6 0 0 0 0 0 6 0 0 0 0 0

Table 3
Number of weeks by year by cluster.

Cluster/Year 2013 2014 2015 2016 2017 2018

1 16 12 17 11 9 7
2 8 9 8 9 7 11
3 11 10 7 12 7 18
4 9 10 11 7 15 8
5 5 9 3 11 8 6
6 4 3 7 3 7 3

A.7. Distribution of weeks by cluster.
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Fig 15: ARI results for multiFunLBM with n = p = 500 according to the
noise ratio and depending on the type of initialization: random (top), k-
means (middle) and funFEM (bottom).
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