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Abstract

Air pollution is nowadays a major treat for public health, with clear links with many diseases,

especially cardiovascular ones. The spatio-temporal study of pollution is of great interest for

governments and local authorities when deciding for public alerts or new city policies against

pollution raise. The aim of this work is to study spatio-temporal profiles of environmental data

collected in the south of France (Région Sud) by the public agency AtmoSud. The idea is to

better understand the exposition to pollutants of inhabitants on a large territory with important

differences in term of geography and urbanism. The data gather the recording of daily mea-

surements of five environmental variables, namely three pollutants (PM10, NO2, O3) and two

meteorological factors (pressure and temperature) over six years. Those data can be seen as

multivariate functional data: quantitative entities evolving along time, for which there is a grow-

ing need of methods to summarize and understand them. For this purpose, a novel co-clustering

model for multivariate functional data is defined. The model is based on a functional latent block

model which assumes for each co-cluster a probabilistic distribution for multivariate functional

principal component scores. A Stochastic EM algorithm, embedding a Gibbs sampler, is proposed

for model inference, as well as a model selection criteria for choosing the number of co-clusters.

The application of the proposed co-clustering algorithm on environmental data of the Région Sud

allowed to divide the region composed by 357 zones in six macro-areas with common exposure to

pollution. We showed that pollution profiles vary accordingly to the seasons and the patterns are

conserved during the 6 years studied. These results can be used by local authorities to develop

specific programs to reduce pollution at the macro-area level and to identify specific periods of

the year with high pollution peaks in order to set up specific prevention programs for health.

Overall, the proposed co-clustering approach is a powerful resource to analyse multivariate func-

tional data in order to identify intrinsic data structure and summarize variables profiles over long

periods of time.

Keywords: latent block model, multivariate functional data, SEM-Gibbs algorithm, pollution, co-
clustering.
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1 Introduction

There is a growing body of evidence that air pollution is a significant threat to health worldwide
(WHO, 2013). Air pollution is composed of particulate matter (PM) and gaseous pollutants, such
as nitrogen dioxide (NO2) and ozone (O3) (IAR, 2016). The time exposure to air pollution leads
diverse impact on the health. A short-term exposure to an intense pollution event increases hospital
admission and mortality rate, causing mainly respiratory and cardiovascular diseases (Benbrahim-
Tallaa L, 2012),(Hamra GB, 2014); whereas a long-term exposure reduces life expectancy (Lelieveld,
2015),(Mathilde Pascal, 2016). Although PM and NO2 are mainly produced by human activities
such as fossil fuel combustion, biomass burning due to agricultural activities, traffic, heating/cooling
systems, industrial activities in general; O3 is a secondary product, meaning that it is not directly
produced by human activities. It is naturally produced in the stratosphere when highly energetic solar
radiation strikes molecules of oxygen, O2, and cause the two oxygen atoms to split apart in a process
called photolysis. The Région Sud is an ideal context for the accumulation of this pollutant, regardless
the urbanization/industrialization of the subareas, and because of the meteorological conditions:
prolonged sun days and rare rain events all over the year, especially in summer, where this pollutant
is already at the highest levels. Air pollution is a major concern not only in big cities but also in
territories with medium-sized cities and mountainous zones. Mass of air moves from high pressure
zones to low pressure and vice versa, thus particulate matter can be moved from one zone to another
along with the mass of air, may exposing rural zones to pollution generated by adjacent industrial
zones. Hence pollution trend in specific zones do not depend only by the local pollution production, but
it is influenced by surrounding zones and meteorological factors. The understanding of air pollution
and its spatio-temporal dynamic is of great interest for governments and local authorities in order to
set up new city policies to lower down pollution or for public alerts when pollution raise above secure
levels for the citizens. However, studies usually focus on isolated cities and do not take into account
meteorological features, making their conclusions weak or not representative to generate prediction
models. The main limitation is due to the absence of powerful statistical or mathematical models able
to analyse the complex spatio-temporal dynamic of pollution in big zones. Here we chose as model
the Région Sud in the south of France, to present a novel statistical method to study the behavior
of multi-variate variables in order to understand pollution dynamic in this region. This study shows
the ability of our co-clustering approach to identify intrinsic structures in these complex data that
well suits to describe and analyse pollution behavior. Our results will allow local authorities to set up
pollution politics adapted to the heterogeneus territory of the region and will give an instrument to
analyse environmental data that can be expanded to other regions/countries.

1.1 The Région Sud and the AtmoSud Agency

The Région Sud (formerly known as Provence-Alpes-Côte d’Azur) covers a territory of 31,400 km2

between Marseille, Nice and Gap, and hosts more than 5 millions of inhabitants. It has a wide variety
of landscapes, from the Alps mountains to plains and coastal areas hosting big cities like Nice and
Marseille. Most of the population of the region lives in the Mediterranean coastline on the south. The
wide variety of landscapes and the imbalance of the population distribution all over the territory, make
difficult the study and the modeling of air pollution. Thus, the French Ministry of the Environment
in 2012 created the AtmoSud agency to monitor the air quality in the Région Sud. Among its
tasks, AtmoSud fulfills a mission of public interest by informing and educating citizens, the State,
communities and economic actors about pollution trends offering decision support to implement the
most relevant actions to improve air quality. AtmoSud relies on a set of eighty fix and mobile sensors
(see sensor locations in Figure 1) which measure several pollutants and meteorological variables. Based
on these daily measurements, AtmoSud is able to release every day a detailed map of the pollutants
and pollution forecast for the coming days, with a resolution of 4 km, using the sophisticated model
Chimere (Menut and Vivanco, 2013) to interpolate sensor measurements.

In the present study, we collected environmental data from AtmoSud agency, specifically daily
pollution and meteorological factors measurements for the period from 2013 to 2018 including: the
maximum daily value observed for NO2 and O3, the daily average value of PM10 and of maximal and
minimal observed temperature (T) and pressure (P) for each of the 357 zones of the Région Sud.
Figures 2 and 3) show a sample of the data.
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Figure 1: Map of the Région Sud and the locations of the pollution sensors.

1.2 Functional co-clustering

The aim of this work is to study the environmental database, constituted by 3 pollution and 2
weather-related variables, in order to identify spatio-temporal clusters representing peculiar pollution
trends. Such data can be seen as multivariate functional data: multiple quantitative entities evolving
during time collected simultaneously for the same individual (Ramsay and Silverman, 2005; Jacques
and Preda, 2014b). In order to analyze and understand multivariate data, we propose to identify
subgroups of individuals (i.e. zones, in the present work) that have the similar profiles for each of
the 5 variables. However, the large amount of data due to the long time period taken into account
in this work could make hard the analysis and the data interpretation. Thus, we split the 6 years in
weeks of 7 days. Consequently, for each variable we built a big matrix with 357 rows (zones) and
313 columns (weeks), in which each element is a 5-variate curve. To analyze such massive data,
we propose to simultaneously cluster the rows into homogeneous groups of zones and the columns
into homogeneous groups of weeks. Such kind of analysis is known as co-clustering (Govaert and
Nadif, 2013). The co-clustering will identify homogeneous blocks of cities and weeks having a similar
behavior according to the different environmental variables.

In the statistics and machine learning literature, methods for the co-clustering of rows and columns
of a data matrix can be split into two main categories: deterministic approaches (see for instance
George and Merugu, 2005; Banerjee et al., 2007; Wang and Huang, 2017) and model-based ap-
proaches (Govaert and Nadif, 2013; Bouveyron et al., 2019). The selection of the number of row
and column clusters is one of the most important tasks in co-clustering analysis and model-based
approaches provide a well defined framework for model selection. Moreover, model-based approaches
are usually very flexible: taking into account for groups of different sizes, they allow to manage
different types of data. All these reasons prompted us to employ the model-based point of view.

One of the most famous model for co-clustering is the latent block model (LBM, (Govaert and
Nadif, 2013)). According to the LBM, the elements of a block are modeled by a parametric distribu-
tion. Each block is therefore interpretable thanks to the block-distribution’s parameters. Moreover,
model selection criteria, such as the ICL criterion (Biernacki et al., 2000), can be used for model selec-
tion purposes, including the choice of the number of co-clusters. This technique proved its efficiency
for co-clustering of several types of data: continuous (Nadif and Govaert, 2008), nominal (Bhatia
et al., 2014), binary (Laclau et al., 2017), ordinal (Jacques and Biernacki, 2018; Corneli et al., 2019),
functional data (Bouveyron et al., 2017; Chamroukhi and Biernacki, 2017; Slimen et al., 2018) or
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Figure 2: Daily distribution of pollutants in Marseille (red) and Nice (blue) for the year 2018: maximum
of NO2 (A) and of O3 (B) and the average of PM10 (C).
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Figure 3: Daily distribution of meterological factors in Marseille (red) and Nice (blue) for the year
2018: average of temperature (A) and average of pressure (B).
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even mixed-type data (Selosse et al., 2019).
Since our database is composed by functional variables, from now on we focus on functional data.

Slimen et al. (2018) proposed a co-clustering algorithm based on a vectorial LBM applied on the
functional principal components scores of the curves. Bouveyron et al. (2017) extended this work by
proposing a functional latent block model assuming that the functional principal components of the
curves are block-specific and live into a low-dimensional subspace. Chamroukhi and Biernacki (2017)
presented another co-clustering model based on a latent block model where the probability density
function is estimated thanks to a regression model with a hidden logistic process. Unfortunately, all
these works are designed for univariate functional data and are not able to handle in an appropriate
way the multivariate functional data that we consider in this study.

1.3 Contributions and organization of the work

In the present work, a co-clustering algorithm for multivariate functional data is proposed to handle
the environmental data of the Région Sud that we collected thanks to the AtmoSud agency. The
proposed algorithm, named multiFunLBM, extends to the multivariate case the methodology proposed
by Bouveyron et al. (2017). A SEM-Gibbs algorithm is derived for model inference and a model
selection criterion is proposed for choosing the hyper-parameters. The application of the multiFunLBM
algorithm to the AtmoSud data allowed to identify six spatio-temporal clusters that represents sub
groups of zones and weeks with specific pollution trends.

The paper is organized as follows. Section 2 presents the co-clustering model and Section 3 is
devoted to model inference. An experimental study of the algorithm on simulated data is presented
in Section 4. Section 5 is dedicated to the analysis of the environmental database of the South of
France. Some concluding remarks and further work are finally discussed in Section 6.

2 A co-clustering model for multivariate functional data

This section introduces a generative model for co-clustering multivariate functional data, such as the
ones of AtmoSud.

2.1 Data and functional reconstruction

Functional data, which are the observations of a random variable living into an infinite dimensional
space, are in practice observed only at a finite set of time points. Let x = (xij)1≤i≤n,1≤j≤p be the data
matrix of dimension n × p, where each element xij is a multivariate curve xij = (x1ij(t), . . . , x

S
ij(t))

with t ∈ [0, T ]. Let us denote by i the row index, by j the column index and let s index the dimension of
the multivariate curves. In our application, i refers to the cities (identified by postal codes, n = 357),
j refers to a week of the study (p = 313) and s refers either to some polluant or weather-related
variable (S = 5). Note that the model and its inference that are presented in this work can be
nevertheless used for any other similar set of multivariate functional data.

In practice, the functional expressions of the curves xsij(t) are not known and we only have access
to discrete observations at a finite set of times: {xsij(t1), xsij(t2), ...}. A common way to reconstruct
the functional form is to assume that the observations can be decomposed into a finite dimensional
space spanned by a basis of functions. So each observed curve xsij (1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ s ≤ S)
can be expressed as a linear combination of basis functions {φsr}r=1,...,Rs :

xsij(t) =

Rs∑
r=1

csijrφ
s
r(t) (1)

with Rs the number of basis functions used to reconstruct the sth functional variable. These basis
functions can be for instance Fourier or spline bases. It is worth noticing that the choice of the most
appropriate basis (as well as the number of basis functions) is an open problem (Jacques and Preda,
2014a). In practice, this choice is done empirically such that the reconstruction is judged reasonable
by the expert. Estimation of the basis expansion coefficients csijr is classically done by least squares
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smoothing. We refer the reader to Ramsay and Silverman (2005) for a complete survey on this
aspect.

Let c = (cij)ij be the whole set of coefficients, which contains the coefficients for the row i and
column j which corresponds to the concatenation of coefficients csijr for all S functional variables,

such that cij = (c1ij1, . . . , c
1
ijR1

, . . . , cSij1, . . . , c
S
ijRS

)t.
For the sake of presentation clarity, the same number of basis functions, Rs = R,∀s = 1, ..., S,

and the same basis functions, {φrs}r=1,...,R = {φr}r=1,...,R,∀s = 1, ..., S, are considered hereafter for
each dimension of the multivariate functional variables. Extension is straightforward. Let consequently
φ(t) be the S × SRmatrix that gathers basis functions of all S functional variables:

φ(t) =


φ1(t) ... φR(t) 0 ... 0 ... 0 ... 0

0 ... 0 φ1(t) ... φR(t) ... 0 ... 0
...

0 ... 0 0 ... 0 ... φ1(t) ... φR(t)

.

With these notations, Equation 1 can be written in matrix terms:

xij(t) = φ(t)cij . (2)

It is worth noticing that, depending on the basis function choice, the basis functions may not

be orthonormal, i.e. Φ =
∫ T
0
φ(t)tφ(t)dt may not be the identity matrix. This is in particular the

case when considering B-splines or polynomial functions. Conversely, Fourier basis functions are by
construction such that Φ = I. In any case, it is of course possible to express the expansion coefficients
within an orthonormal basis function system:

xij(t) = ψ(t)Φ1/2cij , (3)

where ψ(t) = φ(t)Φ−1/2. Thus, the expansion coefficients of xij(t) within the orthonormal basis
{ψ1(t), ..., ψM (t)} are Φ1/2cij , where M = S ×R.

2.2 The proposed latent block model

The aim of a co-clustering model is to define row and column partitions in order to summarize the
data matrix x into smaller subgroups, usually called blocks, that are eventually distributed in the same
way. To this end, let z = (zik)1≤i≤n,1≤k≤K be the row partition of the n rows into K groups, and
w = (wjl)1≤j≤p,1≤l≤L the column partition of the p columns into L groups, such as zik = 1 if row i
belongs to row-cluster k and 0 otherwise (and similarly for wjl). Thus, one block is defined by a set
of curves which belong to a row and column cluster such as zikwjl = 1.

Let us first assume that the partitions z and w are independent:

p(x; Θ) =
∑
z∈Z

∑
w∈W

p(z; Θ)p(w; Θ)p(x|z, w; Θ) (4)

where Z is the set of all possible rows partitions into K groups and W the set of all possible columns
partitions into L groups. Let us introduce αk and βl as the row and column mixing proportions
(belonging to [0, 1] and summing to 1), such that:

p(z; Θ) =
∏
ik

αzikk and p(w; Θ) =
∏
jl

β
wjl

l .

Let us also assume that, conditionally on (z, w), the curves xij are independent and generated by a
block-specific distribution:

p(x|z, w; Θ) =
∏
ijkl

p(xij ; Θkl)
zikwjl . (5)

Unfortunately, the notion of probability density for functional variable is not well defined. In
Delaigle and Hall (2010), it is proved that it can be approximated with the probability density of the
functional principal components scores (FPCA, Ramsay and Silverman (2005)). Under the assumption
(2) of basis expansion decomposition, these FPCA scores are obtained directly from a PCA of the
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coefficient c using a metric defined by the scalar product between the basis function Φ. Consequently,
model-based approaches for functional data consider probabilistic distribution for either the FPCA
scores (Jacques and Preda, 2013, 2014b) or the basis expansion coefficients (Bouveyron et al., 2015,
2020), but it is equivalent.

In addition, depending on the application, the period of observation [0, T ] can be long, and the
number of basis functions used for reconstruction can be large. Consequently, the coefficient vectors
cij may live in high dimensions. In order to suggest a parsimonious data modeling and to avoid the
curse of the dimensionality, we further suppose that the curves of each block (k, l), for k = 1, ...,K and
l = 1, ..., L, can be described into a low-dimensional functional latent subspace specific to each block,
with intrinsic dimension dkl < M = S × R. As it will be demonstrated below, this low-dimensional
description can be obtained through a principal component analysis for multivariate functional data
(MFPCA, Jacques and Preda, 2014b) performed per block. MFPCA is an extension of FPCA to the
multivariate functional case, which represents the multivariate curves by a vector of principal scores
into an eigenspace formed by multivariate eigenfunctions.

Thus, conditionally to its belonging to block (k, l), each multivariate curve xij can be represented
by its latent conterpart δij ∈ Rdkl . Let us define Qkl the orthogonal matrix of dimension M ×M ,
that can be split into two parts: Qkl = [Ukl, Vkl] with Ukl of dimension M ×dkl and Vkl of dimension
M × (M − dkl). With these notations, the linear mapping from the original space of cij to the
low-dimensional functional subspace can be written:

cij = Φ−1/2Uklδij + εij .

Let us recall that depending on the basis function choice, the orthonormalization matrix Φ may be
equal to I (Fourier basis) or not (B-splines, polynomial functions).

Conditionally to the blocks, the latent representations are further assumed to follow a Gaussian
distribution with a parsimonious parametrization of the covariance matrix:

δij |zikwjl = 1 ∼ N (mkl,∆kl), (6)

with mkl ∈ Rdkl and ∆kl = diag(akl1, . . . , akldkl
). Additionally, εij is assumed to have a centred

Gaussian distribution:
εij |zikwjl = 1 ∼ N (0,Ξkl)

These assumptions induce a Gaussian distribution for the basis expansion coefficients:

cij |zikwjl = 1 ∼ N (µkl,Σkl)

where µkl = Φ−1/2Uklmkl and Σkl = Φ−1/2Ukl∆klU
t
klΦ
−1/2 + Ξkl. Finally, Ξkl is assumed to be

such

QtklΦ
1/2ΣklΦ

1/2Qkl =



akl1 0
. . .

0 akldkl

0

0

bkl 0
. . .

0 bkl



 dkl

 M − dkl

where akl1 > . . . > akldkl
> bkl. With this assumption, the first dkl values express the main part of

the variability of the data, while the remaining ones reflect the variance of the noise and are modeled
by a unique parameter bkl. Thus, the space spanned by the columns of Ukl is a low-dimensional
space which contains the main part of information about the data of the block (k, l). The remaining
information is considered as noise and modeled by a unique variance parameters bkl for the block
(k, l).

Thus, p(xij ; Θkl) in Eq.(5) can be approximated by p(cij ;µkl, akl·, bkl, Qkl). Let us finally in-
troduce θkl = (µkl, akl·, bkl, Qkl). The whole set of model parameters is finally denoted by θ =
(αk, βl, θkl)1≤k≤K,1≤l≤L.
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2.3 A family of parsimonious models

In order to provide more parsimonious models, additional assumptions can be made on the different
parameters akl·, bkl and dkl, considering that they are common between clusters or dimensions. This
approach allows to generate a family of sub-models of the general model introduced above. In this
paper, we will detail the inference procedure to the sub-model assuming aklm = akl,∀m = 1, ..., dkl,
since a good behavior has been observed in practice. Nevertheless, the co-clustering method presented
here can be derived for all models of the family extension, following the approach detailed in Bouveyron
et al. (2020).

3 Model inference

This section focuses on model inference via a SEM-Gibbs algorithm. Model selection and initialization
will be also discussed.

3.1 Model inference through a SEM-Gibbs algorithm

Since we consider the task of co-clustering, the goal is to estimate the unknown row and column
partitions zik and wjl given the data at hand. Usually in mixture model, the maximum a posteriori
rule is used, based on the estimation of model parameter θ maximizing the observed log-likelihood
L(c; θ) = log p(c; θ).

Unfortunately, the fact that LBM implies a missing structure (z and w) makes the inference harder
than in a classical mixture model. Indeed, the maximization of the log-likelihood is not tractable in
practice and we have to rely on an iterative inference algorithm.

In such a case where latent variables are involved, one would instinctively use the expectation-
maximization (EM) algorithm (Dempster et al., 1977) to find a candidate θ̂ for the maximum of
the log-likelihood. The EM algorithm alternates two steps, the E and M steps, in order to create a
converging series of θ(h) by optimizing a lower bound of the log-likelihood.

This lower bound can be easily exhibited by rewriting the log-likelihood function as follows:

log(p(c|θ)) = L(q(z, w); θ) +KL(q(s, w)||p(z, w|c, θ)),

where L(q(z, w); θ) =
∑
z,w q(z, w) log(p(c, z, w, |θ)/q(z, w)) is a lower bound of the log-likelihood and

KL(q(z, x)||p(z, w|c, θ)) = −
∑
z,w q(z, w) log(p(z, w|c, θ)/q(z, w)) is the Kullback-Leibler divergence

between q(z, w) and p(z, w|c, θ).
The E step of the EM algorithm consists in maximizing the lower bound L over q for a given

value of θ. A straightforward calculation shows that L is maximized for q∗(z, w) = p(z, w|c, θ).
Unfortunately, in our case, the joint posterior distribution p(z, w|c, θ) is not tractable as well.

In order to overcome this additional issue, we propose to make use of a Gibbs sampler within the
E step to approximate the posterior distribution p(z, w|c, θ). We refer to Keribin et al. (2010) for a
discussion on the inference algorithms in the case of latent block models. The resulting stochastic
version of the EM algorithm, called SEM-Gibbs hereafter, has the following structure (at iteration h
and starting from an initial column partition w(0) and initial parameter value θ(0)):

• SE step: θ is fixed and q∗(z, w) ' p(z, w|c, θ) is approximated with a Gibbs sampler. The Gibbs
sampler consists in alternating the two following steps a certain number of times to simulate
the unknown labels with their conditional distribution knowing the observations and a current
estimation of the parameters:

– simulate z(h+1)|c, w(h) according to:

p(zik = 1|c, w(h); θ(h)) =
α
(h)
k fk(ci|w(h); θ(h))∑

k′ α
(h)
k′ fk′(ci|w(h); θ(h))

with fk(ci|w(h); θ(h)) =
∏
jl p(cij ; θ

(h)
kl )w

(h)
jl .
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– simulate w(h+1)|c, z(h+1) according to:

p(wjl = 1|c, z(h+1); θ(h)) =
β
(h)
l fl(cj |z(h+1); θ(h))∑

l′ β
(h)
l′ fl′(cj |z(h+1); θ(h)).

with fl(cj |z(h+1); θ(h)) =
∏
ik p(cij ; θ

(h)
kl )z

(h)
ik .

• M step: L(q∗(z, w), θold) is now maximized over θ, where :

L(q∗(z, w), θold) '
∑
z,w

p(z, w|c, θold) log(p(c, z, w|θ)/p(z, w|c, θold))

' E[log(p(c, z(h+1), w(h+1)|θ)|θold] + ξ,

ξ being a constant term regarding θ. This step therefore reduces to the maximization of
the conditional expectation of the complete-data log-likelihood given c, z(h+1) and w(h+1)

(Appendix A.1 provides a developed form of E[log(p(c, z(h+1), w(h+1)|θ)|θold]) and conduces to
the following updates for model parameters.

The mixing proportion and the block mean are updated as follows:

– α
(h+1)
k = 1

n

∑
i z

(h+1)
ik and β

(h+1)
l = 1

p

∑
j w

(h+1)
jl ,

– µ
(h+1)
kl = 1

n
(h+1)
kl

∑
ij z

(h+1)
ik w

(h+1)
jl cij with n

(h+1)
kl =

∑
ij z

(h+1)
ik w

(h+1)
jl .

For the variance parameters akl, bkl and Qkl, let us define the sample covariance matrix Ω
(h)
kl

of block kl at step h:

Ω
(h)
kl =

1

n
(h)
kl

n∑
i=1

M∑
j=1

z
(h+1)
ik w

(h+1)
jl (cij − µ(h)

kl )t(cij − µ(h)
kl ).

Then, the updates for akl, bkl and Qkl are:

– the variance parameters a
(h+1)
kl , are updated by the mean of the dkl largest eigenvalues of

Φ1/2Ω
(h)
kl Φ1/2,

– the variance parameters bkl are updated by 1
M−dkl

(trace(Φ1/2Ω
(h)
kl Φ1/2)− dkla(h)kl ),

– the dkl first columns of the matrix of eigen functions coefficients Q
(h)
kl are updated by the

eigen functions coefficients associated with the largest eigenvalues of Φ1/2Ω
(h)
kl Φ1/2.

Proofs of those results are available in Appendices A.2, A.3 and A.4.

3.2 Algorithmic considerations

Implementation Regarding the practical implementation, the SEM-Gibbs algorithm is run for a
given number of iterations. After a burn-in period, the final estimation θ̂ of the parameters is obtained
by the mean of the sample distribution (without the burn-in iterations). Then, a new Gibbs sampler is
used to sample (ẑ, ŵ) according to θ̂, and the final partition (ẑ, ŵ) is obtained by the marginal mode
of this sample distribution.

Initialization of the algorithm As said previously, our algorithm relies on a SEM-Gibbs algorithm.
This algorithm needs to be initialized carefully with values for column partitions and parameters, or
similarly with both column and row partitions. To this end, we consider the three following initial-
ization strategies: random, k-means and funFEM. In the random case, row and column partitions
are randomly sampled from a multinomial distribution with uniform probabilities. The k-means strat-
egy consists in initializing the two partitions with those obtained by k-means directly applied on a
discretized version of the data matrix and its transpose. Finally, the funFEM strategy initializes the
partitions by applying the funFEM algorithm (Bouveyron et al., 2015) on the matrix concatenating
the functional variables and its transpose. We will see later, in the numerical experimentation section,
that funFEM is the one that gives the best results.
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3.3 Choice of the number of clusters

We now discuss the choice of the hyper-parameters K and L, i.e. the number of row clusters and
column clusters respectively. The choice of these hyper-parameters is viewed here as a model selection
problem. Well established model selection tools are Akaike information criterion (AIC, Akaike 1974),
Bayesian information criterion (BIC, Schwarz 1978) and Integrated Classification Likelihood (ICL,
Biernacki et al. 2000). However, in the co-clustering case, the likelihood is not tractable for the same
reason than the EM algorithm is not usable. Consequently, AIC and BIC are not tractable. Conversely,
the ICL criterion can still be considered since it relies on the completed data log-likelihood, which is
tractable. Adapted to our model, the ICL criterion is:

ICL(K,L) = log p(c, ẑ, ŵ; θ̂)− K − 1

2
log(n)− L− 1

2
log(p)− ν

2
log(np)

where ν = KLM + 2KL +
∑
kl dkl(M −

dkl+1
2 ) is the number of continuous parameters per block

and

log p(c, ẑ, ŵ; θ̂) =
∏
ik

ẑiklog(αk) +
∏
jl

ŵjllog(βl) +
∑
ijkl

ẑikŵjllog p(cij ; θ̂kl).

The couple (K∗, L∗) leading to the highest ICL value is selected as the most appropriate number of
row and column clusters.

4 Numerical experimentation on simulated data

This section presents numerical experiments on simulated data in order to illustrate the behavior of
the proposed methodology in presence of different noise ratio in data and to study the selection of
the number of row and column clusters. The R code for our multivariate functional co-clustering
algorithm is currently available under request and will be soon available on CRAN as an R package.

4.1 Simulation setup

We first detail here the simulation setup that is used in the following numerical experiments. Bi-
variate curves (S = 2) are simulated with K = 4, L = 3. The proportions of row clusters α
used is (0.2,0.4,0.1,0.3) and column clusters β is (0.4,0.3,0.3). The first functional variable is de-
signed from four different functions that are used as blocks mean at 31 equi-spaced time points,
t = 0, 1/30, 2/30, ..., 1:

xij(t)|zikwjl = 1 ∼ N (mkl(t), s
2),

where s = 0.3. The block mean functions mkl are such that m11 = m21 = m33 = m42 = f1,
m12 = m22 = m31 = f2, m13 = m32 = f3 and m23 = m41 = m43 = f4, with f1(t) = sin(4πt),
f2(t) = 0.75 − 0.51t∈]0.7,0.9[, f3(t) = h(t)/max(h(t)) where h(t) = N (0.2,

√
0.02) and f4(t) =

sin(10πt). Then the second variable is designed according to the same process than the first one but
with four different functions: f1(t) = cos(4πt), f2(t) = 0.75− 0.51t∈]0.2,0.4[, f3(t) = h(t)/max(h(t))

where h(t) = N (0.2,
√

0.05) and f4(t) = cos(10πt). The block means functions of the two functional
variables are shown on Figure 4.

Starting from this simulation setting, five scenarios are derived by adding some noise fraction
within the blocks by randomly simulating a percentage τ of curves using other block means: 0%
(scenario 1), 10% (scenario 2), 30% (scenario 3), 50% (scenario 4) and 80% (scenario 5).

Regarding the algorithm setup, we set to 50 iterations the burn-in period of the algorithm and the
SEM-Gibbs maximal number of iterations is set to 100.

4.2 Robustness to noise and influence of initialization

This first experiments aims at studying the ability of our algorithm to recover the simulated model
in clean but also noisy situations, and depending on the type of initialization of the SEM-Gibbs
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Figure 4: Block means functions for the first variable (top) and second variable (bottom)
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algorithm. To this end, 20 simulations with n = p = 100 have been performed for each scenario with
both k-means, funFEM and random initializations. The algorithm is applied for K = 4 and L = 3
and with Fourier smoothing with 15 basis functions. The quality of estimated partitions is assessed
with the Adjusted Rand Index (ARI, Rand 1971). We recall that an ARI of 1 indicates that the
partition provided by the algorithm is perfectly aligned with the simulated one. Conversely, an ARI of
0 indicates that the two partitions have just some random matches.

Results are shown in Figure 5 for both row (left panels) and columns partitions (right panels). We
can see that co-clustering results are almost perfect for the 4 first scenarios with funFEM initialization
(bottom panles), and the 2 first scenarios for k-means initialization. As expected, the algorithm
performance decreases while noise increases, but median ARI value is always above 0.8 in the case of
four first scenarios with k-means and funFEM initialization. Moreover k-means initialization performs
better than random when the noise ratio is upper than 50%. And the funFEM initialization performs
better than the k-means one. In view of the good behaviour of funFEM initialization, we recommend
to use the funFEM initialization rather than the two others available in the algorithm.

Figure 5: ARI results for our SEM-Gibbs according to the noise ratio and depending on the type of
initialization: k-means (top), random (middle) and funFEM (bottom).

4.3 Model selection

In this section, the selection of the number of clusters using the ICL criterion we derived earlier is
investigated. Data are generated as previously. The simulation setting is repeated 20 times with
n = 500, p = 500 and T = 30. For each of the 20 generated data sets, the SEM-Gibbs algorithm
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is run with K and L values ranging from 2 to 6 clusters, with funFEM initialization. Each time,
the model selected by ICL is reported. Results are shown in Table 1. The results indicate that our
SEM-Giibs algorithm in combination with the ICL criterions is able to perfectly recover the actual
model with a noise ratio from 0 to 30% of the data volume. Then, as expected, the performance of
the criterion decreases. For a noise ratio of 50%, the ICL criterion is however still able to identify
the actual simulation model in 90% of the cases. Finally, for 80% of noise, the algorithm not being
able to recover the partitions (Figure 5), the ICL criterion is also not able to find the number of
co-clusters.

Table 1: Percentage of selection of each model (K,L) by ICL among the 20 simulated data sets.
The actual values for (K,L) are (4, 3).

Scenario τ = 0 Scenario τ = 0.3 Scenario τ = 0.5
K/L 2 3 4 5 6 K/L 2 3 4 5 6 K/L 2 3 4 5 6

2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0
3 0 0 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0
4 0 100 0 0 0 4 0 100 0 0 0 4 0 90 0 0 0
5 0 0 0 0 0 5 0 0 0 0 0 5 0 10 0 0 0
6 0 0 0 0 0 6 0 0 0 0 0 6 0 0 0 0 0

5 Co-clustering of environmental data from Région Sud

5.1 Data and and pretreatments

The environmental database is composed by five variables, namely three pollutants (maximum of NO2

and O3 and average of PM10) and two meteorological measurements (average of temperature (T)
and pressure (P)). On the spatial point of view, the measurements are collected on a resolution of 4
km: the region is divided in 4km squares, each square represent a measure, constituting a mesh of
1995 and 1967 for pollution and meteorological variables respectively (Figure 6A-B). Unfortunately,
the two meshes do not overlap, thus we needed to set up a procedure to reconcile the two databases.

It was first necessary to manage the missing data from the weather and pollution databases: there
were 2 % of days missing for the pollution data and 1 % for the weather data over 2191 days between
2013 and 2018. Out of scale measurements due to captures failures or modeling errors were identified
and considered and treated as missing data. When data are missing, no square of the mesh has a
value associated, thus we need to reconstruct the data for the entire region over the days that are
missing. Two methods were used: interpolation and random sampling. The interpolation method
was used for variables with a periodic trend or a seasonality (PM10, O3, P, T) whereas the random
sampling method was considered for other variables (NO2). The interpolation method was done with
the na.approx() function of the R package “zoo”. Regarding the random sampling method, the values
that replace the missing data are taken from a window of variable size around the missing data period.
The window size adapts according to the period (i.e. day/s) of missing data to replace: specifically
it is equivalent to 4 days + the length of the missing period divided by 2.

In order to reconcile the pollution and meteorological databases constituted on the two different
meshes and to make data easier to interpret, we decided to change the data resolution, specifically
we created 357 zones (Figure 6C). These zones represent non-overlapping postal codes. A postal
code can be associated with several municipalities but can also be different for the same municipality
(4 postal codes in Nice for example). Environmental data therefore had to be transformed from the
4 squares km to the zone level. The association was therefore made in 2 stages, firstly an association
of pollution data - zones then weather data - zones and finally pollution-weather data at zone level.
Briefly, when a 4 km square covers the largest area of a zone, it is associated with it. Thus we
ended up with an environment database of 357 lines, corresponding to the zones of the region, for
each pollution and weather variable. The pollution and meteorological data associated to each zone,
represent the maximal or the average value of the squares included in the zone. Accordingly, if a zone
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Figure 6: Non-overlapping meshes of squares of 4 km for pollution (A) and meteorological (B) data.
(C) Région Sud divided in 357 zones of non-overlapping postal codes.

cover only one square, it will assume the values associated to the single square. We chose the maximal
value for NO2, O3 and the average value for PM10, T and P to respect the original measurement
done at the mesh level.

5.2 Experimental protocol

In order to test the ability of multiFunLBM to identify spatio-temporal profiles, we used daily measure-
ments of our five variables, in the 357 zones of the Région Sud, for a period of six years from 2013 to
2018 for a total of 2191 measurements per variable per zone. Firstly, the variables were standardized
in order to be compared easily. They were also transformed into functional data by weeks (7 days,
start from Tuesday) using a Fourier basis. We chose the week as the time window, because we needed
a window to divided evenly the period under investigation. There are exactly 313 weeks of 7 days
in the period concerned by the study. The Fourier basis was chosen for reconstructing the functions
because some variables exhibit a clear periodicity. The number of basis function was set to 7. Then,
the multiFunLBM algorithm was applied to the environmental database. The number of clusters on
the spatial and temporal dimensions (respectively, K and L) were allowed to vary in the range 2 to
10. The appropriate number of clusters was assessed according to ICL criterion (maximum) and the
type of initialization used was funFEM.

5.3 Results

The algorithm identified K = 6 clusters for the spatial dimension, and also L = 6 clusters for the
temporal dimension (see Figures 7A and 7B respectively). Figure 7A shows the frequency and the
number of zones (postal codes) in each cluster. The spatial distribution of the six clusters is shown
in Figure 8. Overall, the clusters well represent the different zones of the region: cluster 3 groups
all zones in the mountains, cluster 6 represents the west part of the region, which is organized along
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Figure 7: Frequency of the 6 clusters identified by multiFunLBM on the spatial (A) and temporal (B)
dimension, respectively. The number of zones (A) or weeks (B) for each cluster is reported.

the Rhône river. The zones on the coast are divided in two clusters : cluster 4 that groups the
most populated and industrialized zones of the region including the city of Marseille and Nice, while
cluster 2 collects the others. Interestingly, all zones where the main highway of the region pass by are
clustered in cluster 5. Finally, rural zones with are gathered in cluster 1. This segmentation confirms
that pollution levels are correlated with the geography and the human activity, and that our clustering
approach well identifies intrinsic structures of the territory.

Figure 8: Association of the 357 zones in Région Sud with the clusters on the spatial dimension.
Color code is indicated in the figure.

The analysis on the temporal dimension is done by weeks, meaning that the behavior of the
five environmental variables is studied with a week resolution. On this dimension, six clusters were
identified as well: cluster 1 is the biggest one with 70 weeks (22 %) and cluster 6 the smallest with 27
weeks (9 %), see Figure 7B. Tables 2–4 in Appendix A.5 show respectively the number of weeks by
cluster by year, month and season. Figure 9 presents a calendar representation of the 313 weeks by
cluster. Interestingly, the clusters mainly group the weeks accordingly to the seasons, independently by
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the year, proving the ability of multiFunLBM to find out data structures and the intrinsic link between
pollution and meteorological factors due to the seasons. Specifically, cluster 2 mainly collects summer
weeks (June, July, August) all over the six years, while cluster 1 and cluster 5 winter and late autumn
ones (November, December, January and February). Spring and early autumn (March, April, May,
September and October) weeks are in two clusters, cluster 3 and 4. Finally cluster 6 collects sporadic
weeks all over the six years regardless the season, suggesting perhaps peculiar pollution trends in these
weeks.

Figure 9: Association of the 313 weeks for the period from 2013 and 2018 in Région Sud with the
clusters on the temporal dimension. Color code is indicated in the figure.

We hereafter propose a deeper analyses of the results regarding the different functional variables.

5.3.1 Meteorological variables

To explore the profiles of the five variables by cluster, we plot the average week profiles for each spatial
and temporal cluster obtaining 36 profiles for each variable represented in Figure 10 for meterological
and Figures 11, 12 for pollution variables. Each plot represents the average curve by day of the week
of the environmental variable measurements for all the weeks and zones contained in each cluster. For
instance, the top-left panel shows for each variable the average week profile for all zones contained
in cluster 1 on the spatial dimension (97 zones mainly rural) on the weeks falling in cluster 1 on the
temporal dimension (70 weeks, mainly winter and late autumn), and so on for the other plots.

Meteorological variables, especially average of temperatures, show flat profiles within a cluster,
meaning that no week trend is observed, as expected (Figure 10). Temperature profiles perfectly
reflects what expected by season and zone of the region (refer to Figure 10A): winter weeks grouped
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Figure 10: Mean profiles by cluster on temporal (columns) and spatial (rows) dimensions for meteo-
rological variables : temperature (A) and pressure (B).
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in clusters 1 and 5 on the temporal dimension (columns) are below the mean level, with the lowest
reached for zones on the mountains collected in cluster 3 on the spatial dimension (rows). A similar
trend but with opposite values (above the mean) is observed for temporal cluster 2, summer weeks.
Conversely, clusters 3 and 4 exhibit quite opposite trends for spring and early autumn weeks, showing
the coldest and the warmest profiles respectively, despite the spatial clusters.

Regarding the pressure, expected observations can be done: the highest levels are reached for
spatial cluster 3 (mountains) independently by the temporal clusters. On the temporal clusters point
of view, the highest levels are obtained for profiles in cluster 1 (winter and late autumn) and the lowest
in cluster 3 (spring and early autumn), while summer weeks (cluster 2) show flat profiles around the
average. Cluster 4 (spring and early autumn), 5 (winter and late autumn) and 6 (sporadic weeks)
on the temporal dimension show profiles modulated by the day of the week, with the highest values
in the middle of the week (Wednesday, Thursday and Friday) and the lowest in the week-end plus
Monday and Tuesday, for the formers, opposite pattern for the latter.

5.3.2 Pollution variables

Ozone Pollutant variable profiles mostly vary according to the day of the week. As it can be seen
on Figure 11A, the most stable trends on the week window are for maximum of O3, due to the
strong dependency of this pollutant by the season more that the day of the week. Indeed, O3 levels
depend on heat and sunshine. The seasonality of this pollutant is well identified by multiFunLBM
because profiles are similar by column (temporal dimension) and not by row (spatial dimension). The
lowest levels are for temporal cluster 1 and 5 (winter and late autumn), while the highest are for
cluster 2 (summer) independently of the cluster on the spatial dimension. Interestingly, as observed
for meteorological variables, the two clusters of spring and early autumn weeks (cluster 3 and 4),
although they collect weeks from the same period of the year, they do not show similar profiles
intra-variables, but each cluster have similar trend inter-variable, confirming the strong relationship
between O3 and meteorological factors, mainly temperature. Overall the O3 seems not to have a
strong spatial dependence, since profiles by temporal dimensions looks similar among clusters of the
zones of Région Sud. We however observe a strong temporal dependence with the highest levels in
summer.

Particulate matters Levels of PM10 depend on intensive anthropogenic activities, such as fossil
fuel combustion and biomass burning, and thus we expect a strong spatial dependence. Accordingly,
multiFunLBM well finds that spatial cluster 5 (zones on the high-way), cluster 4 (big-cities on the
coast) and cluster 6 (west), regardless of the temporal clusters, always show the highest levels, as
reported in Figure 11B. Interestingly, we found high levels of PM10 in spatial cluster 1 (countryside)
probably because of the biomass burning practice due to agricultural and gardening activities that
produce high quantities of particles. Overall, higher levels of average of PM10 are observed mainly in
wintertime (cluster 1 and 5 on the temporal dimension) due to a higher use of heating systems and
fossil fuel combustion than in summer time. Clusters 1, 4, 5 and 6 on the temporal dimension show
clearly the weekly dependency of this pollutant, even though with different levels: all these clusters
show higher level of PM10 in the middle of the week (Tuesday, Wednesday and Thursday) and lowest
in week-ends and Monday, probably suggesting that industrial activities and traffic due to working
days have the strongest influence on the concentrations of this pollutant.

Nitrogen Dioxide More than 50 % of the NO2 presents in the air is produced by fuel combustion
and cars, and is mainly present in densely populated areas. Thus, as expected, the spatial clusters 4
(big cities on the coast) and 5 (zones on the highway) have high levels of maximum of NO2 regardless
of the season (clusters on temporal dimension), as showed in Figure 12. Temporal clusters 1 (winter
and late autumn) and 2 (summer) show very similar profiles and levels on the spatial dimension,
demonstrating the high spatial dependence of this pollutant that is not influenced by climatic factors
due to seasonality. As observed for the other pollutants, spring and early autumn weeks of the six
years under study are grouped in two clusters that show two profiles: cluster 3 has a flat profile, i.e.
pollutant concentration does not depend on the day of the week, cluster 4 exhibits high levels during
the week with a drop during the week-ends. These two clusters show that pollution concentrations
in this time of the year is affected by working activities more than in other periods. Overall, NO2
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Figure 11: Mean profiles by cluster on temporal (columns) and spatial (rows) dimensions for maximum
of O3 (A) and average of PM10 (B).
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shows quite strong week trends, with high levels during the week and low levels in the week-ends due
to public and private traffic trends accordingly with working days.

Figure 12: Mean profiles by cluster on temporal (columns) and spatial (rows) dimensions for maximum
of NO2.

5.4 Summary of the results

The six clusters on the spatial dimension collect zones on the mountains, rural areas, west side
of the region. Furthermore, the algorithm differentiates as well zones on the coast line depending
on habitant proportions and industrialization levels. Surprisingly it also identified one cluster that
collects all the zones where the main highway of the region pass by. On the other dimension, the
313 weeks of the period under investigation are as well collected in clusters respecting the seasonal
trends: winter and late autumn, spring and early autumn, summer. Policies against pollution raise are
usually taken at the department level (5 in the Région Sud). However a department represents a very
heterogeneous territory with different industrialization levels, inhabitant proportions and geographical
composition, making hard to find policies that well suit all the diverse scenarios. The clusters identified
by multiFunLBM may be used by local authorities in order to set up specific policies to lower down
pollution or for public alerts when pollution raise above secure levels for the citizens that adapt to
the different areas. Furthermore the temporal clusters can help to spot periods of the years that
are particularly affected by pollution at the level of the spatial clusters, in order to set up alerts and
prevention behaviors for each specific zone.

6 Discussion and conclusion

This work was prompted by the need to analyze air pollution in the South of France in order to
help the AtmoSud agency and local institution to monitor pollutants dynamics and to spread public
alerts when necessary. Here we introduced a co-clustering of multivariate functional data to fulfill
these objectives. The multiFunLBM algorithm allows to cluster both individuals (zones) and columns
(weeks) simultaneously, in order to propose a summary of the data through homogenous blocks of
functional data. The proposed approach relies on a functional latent block model, which assumes
for each block a probabilistic distribution for the scores of the multivariate curves obtained from
a multivariate functional principal component analysis. Model inference is based on a SEM-Gibbs
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algorithm which alternates a SE-step where row and column partitions are simulated according to
Gibbs algorithm, and a M-step where model parameters are updated conditionally on the previous
simulated partitions. Model selection relies on the ICL criterion which has been specifically derived
for the proposed model. As far as the authors know, this is the first algorithm available for functional
multivariate co-clustering.

The multiFunLBM algorithm has been used to analyze an environmental database supplied by
the AtmoSud agency, collecting daily measurements of three pollutants along with pressure and
temperature for a period of 6 years in the south of France. Without any knowledge about the
geographical composition of the territory nor the specific seasonality of the territory, the algorithm
identifies fine and meaningful clusters, both on the spatial and temporal dimensions. These clusters
could be used in a near future to help local authorities to issue public alerts that are specific to more
restricted areas.

On a larger dimension, the understanding of the spatio-temporal dynamic of air pollution is a
current challenge world-wide. Several agencies have been created world-wide in order to monitor air
pollution behavior, to identify factors influencing pollution peaks before alertin local authorities and
citizens. Nevertheless, air pollution dynamic is extremely complicated and affected by many factors
including meteorological variables such as temperature, pressure, wind speed, rain, humidity etc. Due
to the high amount of variable to take into account, there is the tendency to focus pollution studies
behavior only on big cities, as the main producers of pollution. However mass of air moves over
bigger territories that single cities, thus spreading the pollution to adjacent areas. There is therefore
a need to analyse air pollution on large territories, taking into account not only pollutants but also
meteorological factors, and we believe that tools such that multiFunLBM may be useful in such a
context.
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A Appendix

A.1 Developed form of E[log(p(c, z(h+1), w(h+1)|θ)|θold]
The conditional expectation of the complete-data log-likelihood H(θ|θold) has the following form for
the model proposed in this work:

H(θ|θold) = E[log(p(c, z(h+1), w(h+1)|θ)|θold] (7)

=
∑
i,k

z
(h+1)
ik logαk +

∑
j,l

w
(h+1)
jl log βl +

∑
i,j,k,l

z
(h+1)
ik w

(h+1)
jl log(p(cij ; θkl)), (8)

where z
(h+1)
ik = E[zik|θold] and w

(h+1)
jl = E[wjl|θold]. In order to ease the reading of the reminder,

the subscript (h+1) will be omitted hereafter. Let us now focus on the last quantity of the previous
equation.∑
i,j,k,l

zikwjl log(p(cij ; θkl)) =
∑
i,j,k,l

zikwjllog(
1

(2π)M/2
|Σkl|−1/2 exp(−1
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Since the quantity (cij − µkl)
tΦ1/2Qkl∆
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kl Q

t
klΦ

1/2(cij − µkl) is a scalar, it is equal to its trace:
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j=1 zikwjl(cij − µkl)t(cij − µkl) is the empirical covariance matrix of the

curves of the block (kl). Since the matrix ∆kl is diagonal, so we can write:
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where qklj is jth column of Qkl.
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Finally,

H(θ|θold) =
∑
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∑
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A.2 Parameter Qkl update

We aim to maximize H(θ|θold) under the constraint qtkljqklj = 1, with qklj the jth column of Qkl.
This is equivalent to look for a saddle point of the Lagrange function:

L = −2H(θ|θold)−
M∑
j=1

ωklj(q
t
kljqklj − 1)

where ωklj are Lagrange multipliers. The gradient of L in relation to qkjl is:

∇qklj
L = ∇qklj

(

K∑
k=1

L∑
l=1

nkl[

dkl∑
j=1

qtkljΦ
1/2ΩklΦ

1/2qklj

aklj
+

M∑
j=dkl+1

qtkljΦ
1/2ΩklΦ

1/2qklj

bkl
]

−
M∑
j=1

ωklj(q
t
kljqklj − 1)).

As a reminder, when W is symmetric, then ∂
∂x (x − s)TW (x − s) = 2W (x − s) and ∂

∂x (xTx) = 2x
(cf. Petersen and Pedersen (2012)), so:
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where σklj is the j-th diagonal term of matrix ∆k (aklj for j ≤ dkl and bkl otherwise).
Thus,

∇qklj
L = 0 ⇔ Φ1/2ΩklΦ

1/2qklj =
ωkljσklj
nkl

qklj .

qklj is the eigenfunction of Φ1/2ΩklΦ
1/2 which match the eigenvalue λklj =

ωkljσklj

nkl
= qtkljΦ

1/2ΩklΦ
1/2qklj .

Since the vectors qklj are eigenvectors of Ωkl, we have qtkljqklm = 0 if j 6= m. Reporting the value

of λklj in H(θ|θold) allows to see that maximizing H(θ|θold) regarding qklj is equivalent to minimize

the quantity
∑K
k=1

∑L
l=1 nkl

∑dkl

j=1 λklj(
1
akl
− 1

bkl
) regarding to λklj . Knowing that ( 1

akl
− 1

bkl
) ≤ 0,

λkl has to be as high as possible. therefore, the j-th column qklj of matrix Qkl is estimated by the
eigen function associated to the j-th highest eigenvalue of Φ1/2ΩklΦ

1/2.

A.3 Parameter akl update

Partial derivative of H(θ|θold) according to akl correspond to:

∂H(θ|θold)
∂akl

= −1

2
nkl(

dkl
akl
−

dkl∑
j=1

qtkjlΦ
1/2ΩklΦ

1/2qkjl

a2kl
)

= −1

2
nkl(

dkl
akl
−

dkl∑
j=1

λklj
a2kl

)

24



The prerequisite ∂H(θ|θold)
∂akl

= 0 implies:

nkldkl
akl

=
nkl
a2kl

dkl∑
j=1

λklj

⇔ akl =
1

dkl

dkl∑
j=1

λklj

with λkl the eigen values of block kl.

A.4 Parameter bkl update

Partial derivative of H(θ|θold) according to bkl correspond to:

∂H(θ|θold)
∂bkl

= −1

2
[
M − dkl
bkl

−
M∑

j=dkl+1

qtkljΦ
1/2ΩklΦ

1/2qklj

b2kl
]

The prerequisite ∂H(θ|θold)
∂bkl

= 0 implies:

M − dkl
bkl

=

M∑
j=dk+1

qtkljΦ
1/2ΩklΦ

1/2qklj

b2k

⇔ bkl =
1

M − dkl
[tr(Φ1/2ΩklΦ

1/2)−
dkl∑
j=1

λklj ]

A.5 Distribution of weeks by cluster

Table 2: Number of weeks by year by cluster.

Cluster/Year 2013 2014 2015 2016 2017 2018

1 16 12 17 11 9 7
2 8 9 8 9 7 11
3 11 10 7 12 7 18
4 9 10 11 7 15 8
5 5 9 3 11 8 6
6 4 3 7 3 7 3

Table 3: Number of weeks by month by cluster.

Cluster/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 15 12 6 3 1 0 0 0 1 11 12 23
2 0 0 0 1 3 14 22 15 7 1 0 0
3 3 4 14 14 17 7 2 0 3 6 7 2
4 0 0 5 9 6 9 5 7 15 11 2 0
5 13 14 4 3 0 0 0 0 0 2 6 6
6 1 0 2 1 5 1 3 9 5 1 3 1
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Table 4: Number of weeks by season by cluster.

Cluster/Season Winter Spring Summer Autumn

1 38 3 0 35
2 0 11 43 1
3 13 34 7 12
4 4 24 22 19
5 26 4 0 11
6 1 8 13 5
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