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Abstract
We study the biOWA model for preference ag-
gregation and multicriteria decision making from
bipolar rating scales. A biOWA is an ordered
doubly weighted averaging extending standard or-
dered weighted averaging (OWA) and allowing a
finer control of the importance attached to positive
and negative evaluations in the aggregation. Af-
ter establishing some useful properties of biOWA
to generate balanced Pareto-optimal solutions, we
address fair biOWA-optimization problems in com-
binatorial domains. We first consider the use of
biOWA in multi-winner elections for aggregating
graded approval and disapproval judgements. Then
we consider the use of biOWA for solving ro-
bust path problems with costs expressing gains and
losses. A linearization of biOWA is proposed, al-
lowing both problems to be solved by MIP. A path-
ranking algorithm for biOWA optimization is also
proposed. Numerical tests are provided to show the
practical efficiency of our models.

1 Introduction
Decision making is often a matter of balancing pros and cons
of possible choices. This is the case in multcriteria decision
problems where the solutions are generally assessed w.r.t par-
tially conflicting criteria. This also holds in collective de-
cision making when agents have contrasted opinions about
candidates. This happens too in decision under uncertainty
where the utility of an action can vary drastically from one
scenario to another. Very often, positive and negative percep-
tions co-exist in individual values and are represented using a
bipolar utility scale in which 0 acts as a landmark separating
the positive and negative sides [Dubois and Prade, 2008].

Yet, most normative decision methods use the same aggre-
gation logic regardless the sign of outcomes under consider-
ation. The utility scale is often treated as an interval scale
and preferences are not impacted by positive affine transfor-
mations of the utility scale. For example, many aggregation
functions f : Rn → R used in multicriteria analysis are such
that f(ax + b) = af(x) + b for all x ∈ Rn, a ∈ R+, b ∈ R.
Hence if f(x) > f(y) we also have f(ax+b) = af(x)+b >
af(y) + b = f(ay + b). In this case, 0 has no specific status.

It has been observed in different contexts that decision
makers tend to think of outcomes relative to a certain refer-
ence point (often the status quo). They may exhibit different
attitudes towards gains (i.e. outcomes above the reference
point) and losses (i.e. outcomes below the reference point)
and care generally more about negative outcomes than posi-
tive ones. In the field of decision under risk, this observation
is at the origin of Prospect Theory [Kahneman and Tversky,
1979] and Cumulative Prospect Theory (CPT) [Tversky and
Kahneman, 1992] that provide decision models able to in-
corporate the observed behaviors. Similarly, in the field of
multicriteria analysis, extensions of various decision models
have been proposed for handling bipolar scales and explain-
ing observed preferences [Labreuche and Grabisch, 2006;
Grabisch et al., 2008; Grabisch et al., 2009]. In particular,
a generalization of the discrete Choquet integral is proposed
for aggregating criterion values expressed on bipolar scales.
The model is a kind of sophisticated weighted average that
assigns different weights to criteria and coalitions of criteria
depending on the nature of criterion values being positive or
negative. This model formally includes the CPT model as
special case [Labreuche and Grabisch, 2006].

In this paper we study a bipolar extension of the Ordered
Weighted Averaging (OWA), with the aim of proposing new
tools for fair optimization in combinatorial domains. The
standard OWA operator is an aggregation function introduced
in [Yager, 1998] formally defined, for all x ∈ Rn, by the
dot product fw(x) = w · x↑ where w ∈ Rn+ is a weighting
vector and x↑ is the vector obtained by rearranging the com-
ponents of x in ascending order. It is therefore a weighted
sum of the components xi, each component representing the
utility of solution x w.r.t a given point of view (e.g., a cri-
terion, an agent, a scenario). However, we remark that the
weights are not attached to criteria but to ranks of satisfac-
tion due to the sorting of components. Function fw is sym-
metric and weights only serve to control the importance at-
tached to good or bad evaluations in the aggregation. OWA
is often used with decreasing weights (wi ≥ wi+1, i =
1, . . . , n − 1) in fair optimization because its maximization
favors solutions with well-balanced profiles (a greater weight
is assigned to lower components). More precisely, when
w has decreasing components fw is monotonically increas-
ing w.r.t Mean-Preserving Transfers Reducing Inequalities
(MPTRI), i.e., any transfer moving from x = (x1, . . . , xn)



to (x1, . . . , xi − λ, . . . , xj + λ, . . . , xn) for some i, j, λ such
that xi − xj > λ > 0 (see Example 1). This property par-
ticipates to the axiomatic justification of OWA for inequality
measurement. Generalized Gini social-evaluation Functions
defined in Social Choice [Blackorby and Donalson, 1978;
Weymark, 1981] are nothing else but an OWA of individual
utilities using decreasing weights. For similar reasons, OWA
is also used in robust optimization because OWA-optimal so-
lutions tend to have well-balanced profiles (providing good
outcomes in all scenarios) [Perny and Spanjaard, 2003].

Example 1. If w = ( 2
3 ,

1
3 ) we have fw(30, 0) = fw(0, 30) =

10 < 15 = fw(15, 15), therefore (15, 15) is better than
(30, 0) and (0, 30). Modeling this preference for the balanced
solution could not be possible with a linear aggregator.

However, the standard OWA is not always sufficient to de-
scribe rational behaviors in a fair optimization context, es-
pecially when utilities are expressed on a bipolar scale and
preferences are impacted by the reference point under con-
sideration. Let us consider the following example:

Example 2. A research lab would like to hire a new engineer.
Two teams are interested by the recruitment and the new en-
gineer will possibly interact with both teams. Candidates are
evaluated by the two teams and the final decision will be made
by the director of the lab. Let us consider two different cases,
involving two candidates {a, b} and {c, d} respectively. The
teams express their evaluation on the scale [−5,+5] where 0
is the neutral element. The evaluations are given below:

In case 1, evaluations of candidates are positive for both
teams, and in this case, according to the director, the best
candidate will be the one having the best average evaluation.
Therefore a is preferred to b. In case 2 the situation is differ-
ent due to the existence of negative evaluations. In that case
the director of the lab may adopt a more cautious attitude to
avoid frustration and conflicts. For this reason he prefers d
to c because d has a better balanced profile.

If we look for a symmetric aggregator f : R2 → R to
describe the observed preferences (symmetric to guarantee
an equal treatment of the two teams), we must satisfy the
following constraints: f(0, 5) > f(2, 2) and f(−2, 1) >
f(4,−4). Function f cannot be an average nor an OWA.
An OWA would indeed have the following form: f(x, y) =
wmin{x, y} + (1 − w) max{x, y} with w ∈ [0, 1]. Thus,
preferring a to b implies w < 3

5 . Moreover preferring d to c
implies w > 3

5 which yields a contradiction.

This example shows that one cannot model the director’s
preferences with an OWA. A more general aggregation func-
tion is needed, making it possible to model different attitudes
in the aggregation depending on whether evaluations are on

Team 1 Team 2
a 0 5
b 2 2

(a) Case 1

Team 1 Team 2
c 4 -4
d -2 1

(b) Case 2

Table 1: Score tables of Example 2

the positive or on the negative side. Our aim here is to in-
crease the range of possible applications of OWA optimiza-
tion by extending OWA and related computational models to
cope with bipolar evaluation scales and preferences depend-
ing on a reference point.

The paper is organized as follows: In Section 2 we propose
a brief review of related work. In Section 3 we introduce the
biOWA and establish useful monotonicity properties for this
aggregation function. Then we study the use of biOWA in
the context of multi-winner election with approval and dis-
approval ballots (Section 4) and in the context of the robust
shortest paths problem (Section 5).

2 Related Work

The model of CPT [Tversky and Kahneman, 1992] and
the extension of the Choquet integral to the bipolar case
[Labreuche and Grabisch, 2006] clearly provide a formal
canvas to extend OWA to the bipolar case since OWA is a
symmetric instance of the Choquet integral [Grabisch et al.,
2009]. We will develop this idea in Section 3.

Another attempt to extend OWA to the case of bipolar
scales was proposed in [Grzegorzewski and Łącka, 2015] for
preference modeling in the context of recommender systems.
The proposed criterion named BOWA uses a single weighting
vector and applies weights to components reordered accord-
ing to their absolute value. This definition does not allow the
use of distinct weighting systems for positive and negative
components. Moreover it is not monotonic w.r.t Pareto dom-
inance. Alternative combinations of OWA operations have
also been studied in a more general setting [Mesiar et al.,
2018], leading to more complex models. However, none of
the contributions mentioned above tackles computational is-
sues relative to optimization on implicit sets.

Besides, various computational models have been pro-
posed for OWA optimization on unipolar scales, either re-
lying on linear programming techniques [Ogryczak, 2003;
Chassein and Goerigk, 2015] or based on specialized implicit
enumeration methods, e.g., [Galand and Spanjaard, 2007].
These techniques have been widely used in AI and opera-
tions research, in various contexts such as multiagent assign-
ment problems (resource or task allocation) [Lesca and Perny,
2010; Heinen et al., 2015; Lesca et al., 2019], multiobjective
state-space search [Galand and Spanjaard, 2007], multiagent
knapsack problems [Bourdache and Perny, 2019] and also in
facility location problems [Ogryczak, 2009]. However, none
of these contributions considers the case of bipolar scales.

Let us finally mention that a multiobjective linear program-
ming approach exploiting OWA and a bipolar view of pref-
erences is proposed in [Dubey and Mehra, 2012]. However,
OWA is only used to aggregate positive evaluations. Negative
evaluations are only used to check admissibility constraints.

In this paper we keep the approach adopted in CPT and
consider a bipolar version of OWA named biOWA, defined as
a difference of two OWA separately aggregating the positive
and negative arguments. Beyond the definition of this aggre-
gator and the study of some properties, we propose and test
several computational models for biOWA optimization.



3 BiOWA: an OWA for Bipolar Scales
A natural extension of OWA to bipolar scales, in the style of
CPT, is the following;
Definition 1. Let x ∈ Rn be an evaluation vector and α, β ∈
Rn+ two weighting vectors, the bipolar ordered weighted av-
eraging (biOWA for short) is the aggregation function gα,β :
Rn → R defined by:

gα,β(x) = α · x+
↑ − β · x

−
↓ (1)

where x+ = max{x, 0}, x− = max{−x, 0} and x↑ (resp.
x↓) is a vector derived from x by rearranging its components
in ascending (resp. descending) order.

We observe that, when x ∈ Rn+ then x+ = x and x− = 0
therefore gα,β(x) = fα(x). In this case biOWA reduces to a
standard OWA. More generally, for any fixed x ∈ Rn, there
exists w ∈ Rn+ such that gα,β(x) = fw(x). The weighting
vector w depends on x and is given by:

wi =

{
βi if (x↑)i < 0
αi otherwise i = 1, . . . , n (2)

Hence any biOWA can be seen as a generalization of OWA
using a non-constant weighting vector that may vary with x.
Coming back to Example 2 we see that gα,β used with α =
( 1

2 ,
1
2 ) and β = (1, 0) describes the observed preferences:

gα,β(0, 5) = α · (0, 5)− β · (0, 0) = (α1, α2) · (0, 5) = 2.5
gα,β(2, 2) = α · (2, 2)− β · (0, 0) = (α1, α2) · (2, 2) = 2
gα,β(4,−4) = α · (0, 4)− β · (4, 0) = (β1, α2) · (−4, 4) = −2
gα,β(−2, 1) = α · (0, 1)− β · (2, 0) = (β1, α2) · (−2, 1) = −1.5

Then, a natural question is whether biOWA is monotonic
w.r.t weak Pareto-dominance. The answer is given below:
Proposition 1. Let x, y ∈ Rn such that xi ≥ yi, for i =
1, . . . , n, one of these inequalities being strict. Let α, β ∈ Rn+
be two weighting vectors with decreasing and strictly positive
components, then gα,β(x) > gα,β(y).

Proof. Since α and β have decreasing components, we have:
α · x↑ = minπ∈Π

∑n
i=1 απ(i)xi (3)

β · x↓ = maxπ∈Π

∑n
i=1 βπ(i)xi (4)

where Π is the set of all permutations defined on (1, . . . , n).
Moreover, since x+

i ≥ y+
i for all i we have, for all π ∈

Π, απ(i)x
+
i ≥ απ(i)y

+
i and therefore

∑n
i=1 απ(i)x

+
i ≥∑n

i=1 απ(i)y
+
i . Hence, taking the minimum over all π ∈ Π

we obtain α ·x+
↑ ≥ α ·y

+
↑ (a) by (3). Similary, since y−i ≥ x

−
i

for all i we have, for all π ∈ Π, βπ(i)y
−
i ≥ βπ(i)x

−
i and

therefore
∑n
i=1 βπ(i)y

−
i ≥

∑n
i=1 βπ(i)x

−
i . Hence, taking the

maximum over all π ∈ Π we obtain −β · x−↓ ≥ −β · y
−
↓ (b)

by (4). Moreover, xi > yi holds for some i by hypothesis.
Therefore at least one inequality (a) or (b) is strict. Then the
result follows by summing (a) and (b) term by term.

A nice consequence of this proposition is that maxi-
mizing gα,β with positive weights necessary leads to a
Pareto-optimal solution. Yet, this does not mean that gα,β-
optimization favors well balanced solutions. Let us determine
a set of necessary and sufficient conditions on (α, β) for gα,β
to be monotonic w.r.t MPTRI.

Proposition 2. gα,β is monotonic w.r.t MPTRI if and only if
α and β have decreasing components and βl ≥ αl+1 for all
l ∈ {1, . . . , n− 1}.

Proof. ⇐ We assume that α and β have decreasing compo-
nents and that for all l ∈ {1, ...n − 1} αl ≥ βl+1. Let us
consider any x ∈ Rn with xi < xj for some pair (i, j). Let
x′ = [x1, .., xi + λ, .., xj − λ, .., xn] with λ ∈ (0, xj − xi)
the vector derived from x using a MPTRI. Let w and w′

be the weighting vectors respectively derived from x and
x′ using Equation (2). If xi and xj are of the same sign,
or if λ > max(−xi, xj) or if λ < min(−xi, xj), then
x and x′ have the same number of positive (resp. nega-
tive) components. Hence we have w = w′ and therefore
gα,β(x′) = fw(x′). Moreover fw(x′) ≥ fw(x) = gα,β(x)
(the inequality is due to the fact that w has decreasing com-
ponents). Therefore gα,β(x′) ≥ gα,β(x). Now let us con-
sider the case where x and x′ have a different number of
negative components (this occurs when xi < 0 < xj and
min(−xi, xj) ≤ λ ≤ max(−xi, xj)). This means that ei-
ther component i or component j (not both) has a different
sign when passing from x to x′. In the sequel we assume
that the sign changes for component j (a symmetric proof
could be done for the other case). Hence we can decompose
the transfer into two successive ones: the first transfer de-
creases component j to 0 and the second transfer completes
the first one by decreasing component j from 0 to xj−λ. Let
x′′ = (x1, .., xi + xj , .., xj − xj , .., xn) the vector we obtain
after the first transfer and w′′ the associated weighting vector
using Equation (2). Then we have:
• Since x′′j = 0, component j is still non-negative af-

ter the first transfer, and then w′′ = w. Hence
we have gα,β(x′′) = fw(x′′). Moreover fw(x′′) ≥
fw(x) = gα,β(x) (the inequality is due to the fact that w
has decreasing components) and therefore gα,β(x′′) ≥
gα,β(x).
• Since x′′j = 0, the component j does not impact the

calculation of gα,β(x′′), which implies that fw′′(x′′) =
fw′(x

′′). Therefore we have gα,β(x′) = fw′(x
′) ≥

fw′(x
′′) = gα,β(x′′) (the inequality is due to the fact

that w′ has decreasing components).
Finally, we have gα,β(x′) ≥ gα,β(x) in all cases. This shows
that gα,β is monotonic w.r.t MPTRI.

⇒ Let x′ be a solution obtained from x by a MPTRI. We can
distinguish two possible cases where (α, β) do not fulfill the
required conditions:
• Either α or β does not have decreasing components. In

the former case we can consider a non-constant vector
x with no negative component. Then gα,β(x) = fα(x)
is an OWA, known to be non-monotonic w.r.t MPTRI
since components of α are not in the right order. The
same reasoning applies to the latter case considering any
other x with no positive component.
• ∃ l ∈ {1, .., n − 1} with βl < αl+1. Let us consider
x such that x1 < . . . < xl < 0 < xl+1 < . . . < xn
and x′ the solution obtained from x by a MPTRI be-
tween xl+1 and xl of size λ chosen sufficiently small



to preserve in x′ the element’s order of x. We have
gα,β(x′)− gα,β(x) = βl (xl + λ) + αl+1 (xl+1 − λ)−
βl xl − αl+1 xl+1 = λ(βl − αl+1) < 0. Then, gα,β is
not monotonic w.r.t MPTRI.

The conditions are therefore necessary and sufficient.

Proposition 2 characterizes the set of admissible parame-
ters (α, β) for performing a fair optimization with a biOWA.
Now, we study two applications of fair biOWA optimization,
first in social choice and then in robust optimization.

4 Multi-Winner Election with Approval and
Disapproval Ballots

Approval balloting is an evaluation system used in voting pro-
cedures in which each voter submits a ballot including the
candidates he approves. It can be extended to richer sys-
tems involving approval and disapproval ballots [Felsenthal,
1989]. Such systems are often used in single-winner elec-
tions but can be extended to the multi-winner case [Kilgour,
2010]. We consider here a refinement of such voting systems
where voters assign positive or negative grades to candidates
to modulate approval and disapproval intensities.

More formally, let V be a set of n voters and C a set of m
candidates. Let vij ∈ J−T, T K be the grade assigned to candi-
date j by voter i, T being the maximal admissible grade. We
assume that preferences are additive over bundles and there-
fore the value of any subset S ⊆ C for voter i is defined by∑
j∈S vij . Assume we want to elect a committee of k candi-

dates maximizing the voters’ satisfaction, while paying a par-
ticular attention to unsatisfied voters (with negative satisfac-
tions). We propose to use a biOWA to model the overall value
of any subset. Hence we can formulate the biOWA Multi-
Winner Election Problem (biOWA-MWE Problem) with the
following mixed integer program:

max gα,β(x1, . . . , xn)

s.t.
{
xi =

∑m
j=1 vijyj i = 1, . . . , n∑m

j=1 yj = k

yj ∈ {0, 1}, j = 1, . . . ,m

(5)

where yj is the decision variable relative to the selection of
candidate j, j = 1, . . . ,m. For any fixed k, the biOWA-
MWE problem is polynomial. Indeed, we can enumerate
the
(
m
k

)
subsets of size k and return the gα,β-optimal subset.

The general problem is NP-hard because biOWA optimiza-
tion includes min-max optimization and the min-max version
of the problem, a.k.a the minimum selecting items problem,
is known to be NP-hard for two scenarios and strongly NP-
hard for an unbounded number of scenarios [Kasperski and
Zieliński, 2015]. In order to solve the biOWA-MWE prob-
lem using mixed-integer programming, we establish a useful
result for linearizing gα,β :
Proposition 3. For all x ∈ Rn, and all α, β ∈ Rn+ two
weighting vectors having decreasing components we have:

gα,β(x) = min
τ∈Π

n∑
i=1

(ατ(i) x
+
i − βτ(i) x

−
i ) (6)

with Π the set of permutations on {1, .., n}.

Proof. Due to Equations (3) and (4) we have:

gα,β(x) = min
π∈Π

n∑
i=1

απ(i) x
+
i −max

π′∈Π

n∑
i=1

βπ′(i)x
−
i

= min
π∈Π

n∑
i=1

απ(i)x
+
i + min

π′∈Π

n∑
i=1

βπ′(i) (−x−i )

≤ min
τ∈Π

n∑
i=1

(ατ(i) x
+
i − βτ(i) x

−
i )

Now we establish the reverse inequality. Let π∗ a permutation
such that α · x+

↑ =
∑n
i=1 απ∗(i)x

+
i and π′∗ a permutation

such that β · x−↓ =
∑n
i=1 βπ′∗(i)x

−
i . Now, let us consider any

permutation τ∗ of (1, . . . , n) such that τ∗(i) = π∗(i) if xi > 0
and τ∗(i) = π′∗(i) if xi < 0, τ∗(i) being chosen arbitrarily
for all i such that xi = 0 to complete the permutation. By
construction we have:
min
τ∈Π

n∑
i=1

(ατ(i)x
+
i − βτ(i)x

−
i ) ≤

n∑
i=1

(ατ∗(i)x
+
i − βτ∗(i)x

−
i )

=
n∑
i=1

απ∗(i)x
+
i −

n∑
i=1

βπ′∗(i)x
−
i = gα,β(x).

Proposition 3 shows that gα,β(x) can be computed, for any
fixed x ∈ Rn, by solving the following linear program:

min
n∑
i=1

n∑
j=1

(αi x
+
j − βi x

−
j ) pij

s.t.


n∑
i=1

pij = 1 j = 1, . . . , n

n∑
j=1

pij = 1 i = 1, . . . , n

pij ≥ 0, i, j = 1, . . . , n

(7)

In the above program, variables pij are used to model per-
mutations of (1, . . . , n). Let us first assume that pij are
boolean variables. In this case they are able to model any
permutation π ∈ Π by setting pij = 1 if π(i) = j and 0
otherwise. Now, if we relax variables pij , these permutations
are represented by the vertices of the convex polyhedron de-
fined by variables pij (vertices are integral). Hence, due to the
linearity of the objective function w.r.t variables pij , one can
relax the integrity of variable pij without changing the opti-
mal value of the problem. This argument is used in [Chassein
and Goerigk, 2015] to model permutations of OWA and still
applies to permutations used in biOWA. The dual formulation
of the above linear program (7) reads as follows:

max
n∑
i=1

(ni + pi)

s.t. ni + pj ≤ αi x+
j − βi x

−
j i, j = 1, . . . , n

ni, pi ∈ R, i = 1, . . . , n

(8)

Using this formulation, we propose a mixed integer pro-
gram (P) to maximize gα,β(x) over a set X:



max
n∑
i=1

(ni + pi)

(P)


ni + pj ≤ αi x+

j − βi x
−
j i, j = 1, . . . , n

xi = x+
i − x

−
i i = 1, . . . , n

0 ≤ x+
i ≤ ti ×M i = 1, . . . , n

0 ≤ x−i ≤ (1− ti)×M i = 1, . . . , n
x ∈ X

xi, x
+
i , x

−
i ≥ 0, i = 1, . . . , n

ni, pi ∈ R, i = 1, . . . , n
ti ∈ {0, 1}, i = 1, . . . , n

The integer variables ti, i = 1, . . . , n are used to decide
whether xi is positive or not. TheM constant is used as usual
to model disjunctive constraints depending on the sign of xi.

Program P for biOWA optimization can be specialized to
solve the biOWA-MWE problem. It is sufficient to insert m
boolean variables yj modeling elementary decisions on can-
didates (yj = 1 iff the candidate is selected in the current
solution). Then x ∈ X must be replaced by the constraints
xi =

∑m
j=1 vijyj , i = 1, . . . , n and

∑n
j=1 yj = k. We obtain

a mixed-integer program with n + m boolean variables, 5n
real variables and n2 + 4n + 1 linear constraints. Note that
proposition 3 enables to reduce both the number of variables
and constraints in this program. We indeed used only one set
of permutation variables instead of the two needed if biOWA
were only seen as a difference of two OWAs.

We have implemented the above model using the Gurobi
7.5.2 solver on a computer with 12GB of RAM, a Intel(R)
Core(TM) i7 CPU 950 @ 3.07GHz processor. We used in-
stances of the BiOWA-MWE problem of different sizes, the
number of candidates (m) ranging from 20 to 100 and the
number of voters (n) ranging from 10 to 100. Votes vij are
randomly generated in the range J−10, 10K and k = m

2 . Vec-
tors α and β are randomly drawn and satisfy the conditions of
Proposition 2. For each pair (n,m), the average time given in
Table 2 is expressed in seconds and computed over 20 runs,
with a timeout set to 1200 seconds.

Another linearization of biOWA could be obtained by ex-
ploiting a linearization of OWA due to Ogryczack [Ogryczak,
2003]. We have implemented and tested this second option
but it appears to be less efficient. Its presentation has been
omitted here to save space.

5 Robust Paths with Gains and Losses
The ability of OWA or biOWA optimization to generate
solutions having a balanced utility vector can also be ex-
ploited in the context of robust optimization. The need of
robustness appears in decision problems under uncertainty,

n m = 20 m = 50 m = 100
10 0.04 0.06 0.18
20 0.13 0.21 0.53
50 0.79 1.48 9.96

100 5.13 25.78 342.24

Table 2: Times (s) obtained by MIP for the biOWA-MWE

when a number of plausible scenarios must be considered,
each scenario impacting differently the values of solutions.
In such contexts, uncertainty aversion leads to prefer ro-
bust solutions, i.e., solutions having a balanced profile over
scenarios. In this context, the use of OWA-optimization
has been closely investigated [Perny and Spanjaard, 2003;
Kasperski and Zieliński, 2015]; It is therefore natural to study
the use of biOWA when positive and negative values are
present. For example, let us consider the robust path prob-
lem on a graph valued in a bipolar scale, modeling gains or
losses induced by transitions between nodes.

More formally, letG = (V,E) be an acyclic directed graph
where V is a finite set of nodes andE the set of arcs represent-
ing possible transitions between nodes. For all i = 1, . . . , n,
let ui : E → R be a valuation function defined on E, ui(e)
representing the gain (or loss) attached to e in scenario i. Val-
uations of arcs are supposed to be additive along a path and
we want to find a biOWA-optimal path from s to t in G. This
problem is NP-hard because biOWA includes OWA as special
case and the OWA optimal path is known to be NP-hard for 2
scenarios and strongly NP-hard for an unbounded number of
scenarios [Kasperski and Zieliński, 2015].

Program P introduced in Section 4 can be specialized
to determine a biOWA-optimal path problem using standard
max flow formulations of paths problems. To define the fea-
sible set of solutions X let us introduce I(v) (resp. O(v)) the
set of edges entering in v (resp. leaving v) for any v ∈ V and
ye a boolean variable (set to 1 if e is selected in the path), for
all e ∈ E. Then we add the following constraints:

xi =
∑
e∈E

ui(e) ye, i = 1, . . . , n

∑
e∈O(k) ye −

∑
u∈I(k) yu =

{
1 if k = s
−1 if k = t

0 if k ∈ V \ {s, t}
We implemented the above model using the Gurobi solver

on the computer described in Section 4. We made tests on
random instances including up tom = 4000 nodes and n = 7
scenarios (in robust paths problems with a finite set of scenar-
ios, one generally considers only a small number of scenar-
ios, but 2 are sufficient to obtain a NP-hard problem). To
generate instances, nodes are uniformly distributed on 25 dif-
ferent layers and arcs are randomly generated between nodes
of consecutive layers, with a probability 1

2 . Valuations of arcs
are generated within J−100, 100K with an uniform distribu-
tion. Weights α and β are randomly generated and satisfy the
conditions of Proposition 2. Table 3 gives the average com-
putational times obtained over 20 runs, with a timeout set to
1200 seconds for each run.

We can see that this new specialization of program P intro-

m n = 3 n = 5 n = 7
500 1.08 1.19 2.81

1000 3.86 4.27 15.89
2000 47.91 56.43 173.49
3000 33.15 61.88 374.66
4000 50.98 103.01 444.50

Table 3: Times (s) obtained by MIP for biOWA-optimal paths



duced in Section 4 can solve all instances in very reasonable
time. To go further on the biOWA optimal path problem, we
also investigated combinatorial algorithms in graphs. First,
it is important to remark that it is not possible to construct
a biOWA-optimal path with a simple dynamic programming
algorithm progressively extending biOWA-optimal subpaths.
This is due to the fact that preferences induced by a biOWA
do not satisfy the Bellman principle. This phenomenon is al-
ready known for OWA and can be illustrated by the following:
Example 3. Consider an instance G = (V,E) with V =
{1, 2, 3, 4, 5} and E = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5)}
and two scenarios leading to the following outcomes:

arcs (1, 2) (1, 3) (2, 4) (3, 4) (4, 5)
outcomes (6,−2) (3,−1) (−1, 2) (−1, 4) (0, 5)

We look for the gα,β-maximal path from 1 to 5 with α =
( 2

3 ,
1
3 ) and β = ( 3

4 ,
1
4 ). Subpath 1-2-4 leads to outcomes

(5, 0) and gα,β(5, 0) = 5
3 . Subpath 1-3-4 leads to outcomes

(2, 3) and gα,β(2, 3) = 7
3 . Therefore 1-3-4 is the best path

from 1 to 4 according to biOWA valuations. Moreover, 1-3-
4-5 yields (2, 3) + (0, 5) = (2, 8) and gα,β(2, 8) = 10

3 while
1-2-4-5 yields (5, 0) + (0, 5) = (5, 5) and gα,β(5, 5) = 5.
Hence the biOWA-optimal path from 1 to 5 is 1-2-4-5 al-
though the subpath 1-2-4 was not optimal from 1 to 4. This
violation of the Bellman principle prevents local pruning of
subpaths based on gα,β values in a constructive algorithm.

To overcome the problem we use a path-ranking algorith-
mic scheme which has been successfully used to solve mul-
tiobjective optimization problems in graphs under nonlinear
scalarization models [Galand and Perny, 2007]. Let g be a
non-linear function defining the scalar value of a path from
its outcome vector, and assume that we can approximate g
by a linear function h such that, for all x ∈ Rn verifies
g(x) ≤ h(x). Then the path-ranking scheme consists in 1)
scalarizing outcome vectors attached to arcs using the h func-
tion and 2) launching the enumeration of paths by decreasing
values of h. To implement this approach, we need an efficient
path-ranking algorithm. We use here an improved version of
Eppstein algorithm proposed in [Jiménez and Marzal, 2003].

At any step of the ranking process, let x be the current
solution and x∗ the solution with the highest g-value among
those obtained so far. Whenever g(x∗) ≥ h(x), we know
that x∗ is the optimal solution for this instance. Indeed, we
have, for any y that will be enumerated after x in the ranking
algorithm, g(x∗) ≥ h(x) ≥ h(y) ≥ g(y). Hence y cannot
improve x∗ and the ranking process can be stopped, x∗ is the
g-optimal solution.

To apply this scheme to g = gα,β we need a proper func-
tion h. To this end, we establish the following inequality:
Proposition 4. Let α and β be two positive vectors having
decreasing components such that

∑n
i=1 αi =

∑n
i=1 βi = 1,

then for all x ∈ Rn we have: gα,β(x) ≤ 1
n

∑n
i=1 xi.

Proof. It is well known that: α ·x↑ ≤ 1
n

∑n
i=1 xi when α has

decreasing components. As a direct consequence, we also
have: β · x↓ ≥ 1

n

∑n
i=1 xi when β has decreasing compo-

nents. Hence we have: gα,β = α·x+
↑ −β·x

−
↓ ≤

1
n

∑n
i=1 x

+
i −

1
n

∑n
i=1 x

−
i = 1

n

∑n
i=1(x+

i − x
−
i ) = 1

n

∑n
i=1 xi

m n = 3 n = 5 n = 7
500 0.16 2.99 38.14

1000 0.52 3.72 78.90
2000 1.92 10.10 367.58
3000 3.91 9.53 221.71
4000 6.85 15.40 352.4

Table 4: Times (s) obtained by ranking for biOWA-optimal paths

Thus, the average can be used as a valid h function in
the ranking scheme, provided we use normalized vectors α
and β. Table 4 provides the results obtained with the path-
ranking algorithm for the biOWA-optimal path problem. The
instances are generated as before, using layered graphs. Com-
putational times are obtained by averaging over 20 runs, with
a timeout set to 1200 second for each run.

If we compare the results given in Table 4 with previous re-
sults obtained using Gurobi and the MIP model (Table 3), we
observe that the ranking-path algorithm is faster on average.
A deeper analysis shows that this is due to the fact that the
gα,β-optimal path is often very well ranked according to the
average (h). On the other hand, there exist instances where
the gα,β-optimal path appears much later in the ranking pro-
cess, yielding worse computational times. The previous ap-
proach based on MIP is less sensitive to this phenomenon.

6 Conclusion
In this paper we have identified the conditions under which
a biOWA is monotonic w.r.t mean-preserving transfers re-
ducing inequalities. This justifies its use in multiobjective
optimization contexts when one wants to favor the determi-
nation of balanced Pareto-optimal solutions. Then we have
proposed and tested computational models allowing to effec-
tively determine biOWA-optimal solutions on combinatorial
domains. We presented two possible applications, first in the
context of fair multiagent optimization and then in the con-
text of robust optimization. Many other problems could be
considered as well due to generality of the proposed compu-
tational models (MIP and ranking algorithm).

One specifity of biOWA is to perform a symmetric aggre-
gation of its arguments. Although this property is highly
desirable in Social Choice (when every agent has the same
importance) or in robust optimization under total uncertainty
(when all scenarios are equally likely), there are other sit-
uations where different weights or probabilities must be at-
tached to components (criteria, scenarios or individual val-
ues), thus breaking the symmetry. The computational models
proposed in this paper could very likely be extended to the
case of weighted OWA [Torra, 1997], CPT and other classes
of general Choquet integrals [Grabisch et al., 2009] to per-
form weighted aggregation on bipolar valuation scales in op-
timization problems.
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