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Abstract

We study the necessary condition under which a resonantly driven
exciton polariton superfluid flowing against an obstacle can generate
turbulence. The value of the critical velocity is well estimated by the
transition from elliptic to hyperbolic of an operator following ideas de-
veloped by Frisch, Pomeau, Rica [1] for a superfluid flow around an
obstacle, though the nature of equations governing the polariton super-
fluid is quite different. We find analytical estimates depending on the
pump amplitude and on the pump energy detuning, quite consistent
with our numerical computations.
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1 Introduction
Since the discovery of Helium in 1937, superfluidity has attracted some of the
greatest minds of our time. After nearly one century of studies, this phenomenon
does not stop puzzling our understanding of matter. First observed in liquid Helium
[2, 3], superfluidity has been studied in details more recently in atomic condensates
[4, 5, 6, 7]. In analogy with the rotating bucket experiment in Helium [8], quantized
vortices have been observed in rotating one component [9, 10] and two component
condensates [11]. Superfluid physics has now spread far beyond the field of atomic
physics and is used to describe the behavior of a large variety of system, from
non-linear optical system [12, 13] to neutron star [14] or bird flocks [15].

In this paper, we address the issue of the existence of a dissipationless flow
induced by the motion of a macroscopic object in a superfluid. The nucleation
of vortices corresponds to the breakdown of this dissipationless phenomenon. A
classical experiment on superfluid Helium consists in flowing Helium around an
obstacle. If the velocity of the flow at infinity is sufficiently small, the flow is
stationary and dissipationless, as opposed to what happens in a normal fluid. On
the other hand, beyond a critical velocity, the flow becomes time dependent and
vortices are emitted periodically from the north and south pole of the obstacle.
Numerical simulations illustrating this behaviour have been performed by Frisch,
Pomeau, Rica [1]: a pair of vortices is emitted and is flowing behind the obstacle,
while the next pair is being formed on the boundary of the obstacle. In Ref. [1],
the authors have also computed the critical velocity for the nucleation of vortices.
Other related works, that we will describe below, include [16, 17, 18, 19, 20].
The absence of dissipation at low velocity can be explained by the existence of a
stationary solution to some two-dimensional nonlinear Schrödinger equation. The
superfluid velocity is given at any point in the flow by the gradient of the phase of
the wave function: if the wave function does not vanish, then the velocity is well
defined everywhere. The vortices are points where the wave function vanishes and
around which the circulation of the velocity is quantized.

Following these theoretical works, an experiment was conducted at MIT by
Raman et al. [6], (see also [5, 7]) in Bose Einstein condensates, to study there the
existence of a dissipationless flow. Instead of a macroscopic object, the obstacle
is a blue detuned laser beam. The condensate is fixed and the obstacle is stirred
in the condensate. Similar features to Helium are observed, namely the evidence
of a critical velocity for the onset of dissipation. The energy release is measured
as a function of the velocity of the stirrer: if the velocity is small, the flow is
almost dissipationless and the drag on the obstacle is very small, while above a
critical value of the velocity, the flow becomes dissipative. Numerical simulations
have been performed by [21] for the 3D problem corresponding to the experiment,
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relating the increase in energy dissipation to vortex nucleation.
Among the systems where superfluidity is observed, exciton-polariton fluids

have attracted significant attention as to their ease of control and manipulation
thanks to their dual light-matter nature. Exciton-polariton fluids are composite
bosons resulting from the strong coupling between the excitonic resonance of a
semiconductor quantum well and the microcavity electromagnetic field [22]. In
particular, the experimental study of a polariton field flowing past an obstacle,
and the observation of quantized vortices in the wake of the obstacle has been the
subject of many papers [23, 24, 25]. This superfluid and turbulent behaviours have
been the topic of quite a few theoretical papers [26, 27, 28, 29] and this is at the core
of our study. Mixing advantageously the low effective mass of cavity light with the
strong inter-particle interaction between matter excitation such as semiconductor
excitons, these systems have shown recently superfluid behavior even until room
temperature [30].

In many circumstances such as the one considered here, it is not necessary to
work with the pair of equations of motions for the photonic and excitonic fields
and one can restrict to a single classical field describing the lower polariton field.
This simplified description is generally legitimate provided the Rabi frequency is
much larger than all other energy scales of the problem, namely the kinetic and
interaction energies, the pump detuning, and the loss rates γ [22]. Contrary to
atomic superfluids, polariton superfluids are driven-dissipative fluids. To compen-
sate their short lifetime (of the order of tens of picoseconds), the system must be
continuously pumped. Here, we consider continuous and quasi-resonant pumping
of frequency ωp and amplitude F . One of the interests of this technique to create a
polariton fluid, is that it allows the creation of a flowing fluid. If the laser beam is
slightly tilted with respect to the cavity plan, the polariton fluid generated within
the plan of the cavity will carry a finite momentum kp. Consequently, in a polari-
ton fluid, contrary to what happens in a cold-atomic ensemble, the obstacle is fixed
and the fluid is moving at a speed far from the obstacle which is v∞ = ~|kp|/m.
This yields the following generalized Gross-Pitaevskii equation (GPE) or Nonlinear
Schrödinger equation (NLS) for the polariton field ψ in the pump rotating frame:

i~∂tψ(x, t) =

(
− ~2

2m
∇2 −∆− iγ

2
+ V (x) + g|ψ(x, t)|2

)
ψ(x, t) + Feikp.x (1)

where m is the polariton effective mass set to 1 and g is the interaction strength.
Contrary to atomic superfluids, no confinement potential is needed. The other
parameters are directly linked to the driven-dissipative nature of polaritons: γ is
the decay rate of polaritons, ∆ the energy detuning between the driving field ~ωp
and the polariton eigenenergy, F the coherent driving field and kp the driving
field momentum. The potential V (x) is an added repulsive potential modelling the
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obstacle, which is therefore equal to 0 outside the obstacle.
When varying the driving field F , the polariton density undergoes an S-like

dependency with a bistable regime, presenting a low-density regime and a high-
density regime [23, 22]. In the low-density regime the interaction term in Equation
(1) can be neglected to lead to a standard linear system. On the contrary, in
the high-density regime, the interaction term cannot be neglected and leads to
the appearance of a superfluid behavior. In the first experiments, it was thought
that the driving inhibits the formation of vortices. Therefore, in order to observe
the nucleation of vortices past an obstacle, the fluid was released from the driving
presence either temporally [26, 25] or spatially [24]. A detailed numerical studied
recently revealed a more subtle situation [28]: indeed, the driving field tends to
inhibit the formation of turbulence, however, it can be reduced enough to release its
constraints and allows the formation of vortices on the edge of the obstacle. Fine-
tuning of the driving amplitude F eventually allows passing from a dissipationless
superfluid to a turbulent one [28] without having to remove it. This has been
achieved experimentally very recently [31].

Whereas in atomic superfluids, the Mach number M = v∞/cs (where cs =√
g|ψ|2/m is the fluid speed of sound), is the only parameter controlling the tran-

sition from dissipating energy via vortex emission to dissipationless, in the present
driven-dissipative scenario, the pump field amplitude plays a crucial role. In this
work, we will focus on this phenomenon and disentangle the role played by the
pump amplitude F and pump detuning ∆ in this transition from turbulent to a
non-turbulent superfluid.

We will perform numerical simulations of Equation (1) such as in Figure 1
which illustrates the vortex nucleation behaviour and will be detailed below. But
we will also perform an analytical approach of the transition behaviour.

2 Equations
As mentioned above, this problem of onset of dissipation in a superfluid was first
addressed by Frisch, Pomeau and Rica [1]. They have studied the case where the
obstacle is a small disk in the frame where the obstacle is fixed. The nonlinear
Schrödinger equation studied in [1] can be rewritten using the hydrodynamic for-
mulation, where ρ is the density and which allows to identify ∇φ with a velocity:

∂ρ

∂t
+∇ · (ρ∇φ) = 0 (2)

∂φ

∂t
=

∆
√
ρ

2
√
ρ
− ρ+ c2s +

1

2
v2∞ −

1

2
|∇φ|2, (3)
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Figure 1: Polariton fluid density in panel a., while propagating against
an obstacle marked by a red circle leading to the appearance of vortex
in its shadow. Corresponding phase profile in panel b. with the ob-
stacle region marked in black. Physical parameters: kp = 0.718 µm−1,
m = 1 meV.ps2.µm−2, and F = 0.24 meV, ∆ = 0.7 meV, γ = 0.05 meV,
g = 0.01 meV; simulation parameters: 256× 128 grid, dt = 0.02 ps.
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where the mass m is set to unity, cs is the sound speed, v∞ the flow velocity at
infinity. They look for stationary solutions and assume that the quantum pressure
term ∆ρ/

√
ρ is negligible, which is a kind of long wave approximation, and leads

to the following problem

∇ · (ρ∇φ) = 0, ρ = c2s +
1

2
v2∞ −

1

2
|∇φ|2, (4)

with boundary conditions ∂φ/∂n = 0 on the obstacle, ρ → c2s, and ∇φ → v∞ at
infinity. Note that the second equation in (4) is a Bernouilli law for this problem.
The system (4) has the same formulation as that of a stationary irrotational flow of
a compressible fluid about an obstacle. Mathematically, the existence of solutions
for such a related subsonic problem and the non existence for large velocity at
infinity is proved by [32, 33] using a fixed point theorem. In one dimension, in Ref.
[16], the saddle node bifurcation is analyzed and the critical velocity is related to
the spatial variation of the potential representing the obstacle.

Let v = ∇φ. From [1], Equation (4) goes from elliptic to hyperbolic when

∂v(vρ(v)) = 0, with ρ(v) = c2s +
1

2
v2∞ −

1

2
v2. (5)

This yields that the transition first takes place when

c2s +
1

2
v2∞ −

3

2
v2 = 0. (6)

As explained in Ref. [1], this first happens at the point of maximum of v, which
is at the north and south pole of the obstacle. It is therefore crucial to estimate
this maximal velocity. Several papers deal with this question [17, 34, 19]. The
maximal velocity occurs at the equator of an object and is 3/2v∞ for a sphere and
2v∞ for a cylinder. Nevertheless for a compressible fluid, this equatorial velocity
is slightly larger due to pressure effects. In Ref. [19], an asymptotic expansion in
terms of the Mach number is made. Further studies about this critical velocity
in particular including scaling laws and the bifurcation diagram can be found in
Ref. [17]. What happens beyond this critical velocity and the transition to an
Euler-Tricomi equation has been studied in Ref. [20]. In Ref. [1], it is assumed
that the maximal velocity is 2v∞ which yields from Equation (6)

v∞ =

√
2

11
cs

for the onset of dissipation.
Similarly to Ref. [1], in our case of a polariton superfluid, Equation (1) can be

rewritten in terms of the phase and amplitude using the Madelung transform so
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that ψ =
√
neiθ which yields, after setting m to 1,

~∂tn = −~2∇. (n∇θ)− 2n

(
γ

2
− F√

n
sin(kp.x− θ)

)
(7)

~∂tθ =
~2

2

(
1√
n
∇2√n− (∇θ)2

)
+ ∆− V − gn− F√

n
cos(kp.x− θ) (8)

We assume the flow to be directed along the x axis so that kp = (kp, 0) with kp ≥ 0
and v = ~∇θ is the flow speed. With respect to the Gross-Pitaevskii equation
describing atomic Bose-Einstein condensates (2)-(3), Equations (7)-(8) include ad-
ditional terms to account for the driven-dissipative nature of the polariton gas,
namely a loss rate proportional to γ and the coherent pumping proportional to F .

To determine whether the fluid can remain superfluid, we will follow the same
approach as in Ref. [1]. It consists in determining when the continuity equation,
Equation (7), in its stationary version, goes from elliptic to hyperbolic. This only
depends on the structure of the operator ∇. (n∇θ) and not the right hand side
term of the same equation. Therefore, we need to determine how the density n
is connected to the flow velocity v = ~∇θ. To do this, we use Equation (8) in
its stationary version, away from the obstacle where V = 0, and we neglect the
quantum pressure term. This yields

1

2
v2 +

F√
n

cos(kpx− θ) + gn−∆ = 0. (9)

We point out that this equation is a polynomial of degree 3 in
√
n.

3 Results
We both want to simulate Equation (1) and see numerically the change of behaviour
on the one hand, and use the hydrodynamic formulation and the change of the
operator from elliptic to hyperbolic to find a critical pump amplitude consistent
with the numerics.

3.1 Numerical results
In the simulations, we fix kp = 0.718 µm−1, m = 1 meV.ps2.µm−2, γ = 0.05 meV,
g = 0.01 meV. We observe two types of behaviours: for fixed pump detuning ∆,
and small pump amplitude F , vortices are emitted periodically from the north and
south poles as in [1] as illustrated in Figure 1. On the contrary, for large pump
amplitude F , the solution is superfluid and there is a stationary flow as illustrated
in Figure 2b. So for each ∆, there is a critical value of the pump amplitude Fc where
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Figure 2: Density profile n/n∞ for two different pump powers: in a. F =
0.2515 meV and in b. F = 0.2712 meV. The red circle indicate the position
of the potential barrier. The color scale is identical for both images. Physical
parameters: kp = 0.718 µm−1, m = 1 meV.ps2.µm−2, ∆ = 0.3 meV, γ = 0.05
meV, g = 0.01 meV; simulation parameters: 256× 128 grid, dt = 0.02 ps.

the transition goes from a solution emitting vortices to a superfluid solution. Close
to the transition, the period of emission gets very large. The difference with Helium
or Bose Einstein condensates is that instead of prescribing a velocity at infinity, it
is the pump amplitude which is prescribed and characterizes the behaviour.

We simulate Equation (1) using a split-step method on a grid made of 256×128
pixels corresponding to 100 × 50 µm2. We use periodic boundary conditions and
tailor the pump profile at the edge of the grid to avoid undesired propagation of
density modulation. The time step is 0.2 ps and we start with an empty system.
Then the pump amplitude is slowly raised up to about ten times the pump ampli-
tude of interest. Finally, the amplitude is decreased to reach the elected one, which
is then kept constant. This initialization procedure lasting about 200 ps allows us
to prepare the system in the upper part of the bistable regime, corresponding to
the point where vortex nucleation was numerically observed [28].

In Figure 2 we represent the polariton field density around an obstacle (indi-
cated by a red circle) at a given time frame. The only difference between Figures
2.a and b is the pump amplitude F which varies by less than 10%. As visible, for
low enough pump amplitude a pair of vortex has formed at the edge of the obstacle
(2.a) whereas for a slightly higher pump amplitude no vortex forms (2.b). Both
images correspond to the same time frame.
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To evaluate numerically the critical pump amplitude Fc (and its dependencies
with respect to ∆), for each ∆, we perform a large set of simulation at fixed F .
For each one, while running we evaluate the formation of vortices at the edge of
the defect and stop the simulation if one is found (low-density core distinguishable
from the obstacle). We re-run the simulation slightly increasing F . If no vortex
forms on the edge of the defect after a time long enough (0.5 ns), the simulation is
re-run with a slightly lower F . The program stops after 8 iterations given accurate
enough estimation of the critical pump amplitude Fc. Notice that the closer we are
to Fc from below, the slower the nucleation of vortices. Consequently, a significant
increase of precision on the determination of Fc will have required an important
computational effort not necessary given the result obtained.

It is noticeable that despite the important change of the detuning ∆, the critical
driving amplitude Fc only slightly varies around 0.26 (between .255 and .27). Since,
Fc is almost constant when ∆ varies (and kp and γ are fixed), this could provide a
new relation between the parameters of the problem using the well known relation:

F
√
n∞

=

√
γ2

4
+ (

v2∞
2
−∆ + gn∞)2. (10)

This can be obtained from our system, on the one hand from Equation (9), since
at infinity, v∞ = ~kp the asymptotic fluid speed far from the obstacle, which is
fixed by the driving field momentum kp, so we can write θ as kpx+ φ and we find,
from Equation (9), at infinity,

F
√
n∞

cosφ∞ =
v2∞
2
−∆ + gn∞ (11)

and from Equation (7),
γ

2
=

F
√
n∞

sinφ∞.

Adding the two, we obtain Equation (10). We have checked numerically that
Equation (10) holds for our solutions. Note that the number of solutions in n∞ to
Equation (10) is related to the bistability mentioned in the introduction.

We point out that in our case the Mach number is large (from 0.75 to 1.3),
therefore the approximation vmax ∼ v∞(2 + 7/6 ∗ M2) of Ref. [19] is not cor-
rect. Nevertheless, we have found that after the transition of emission of vortices,
vmax/v∞ is not too far from 2.5 but we do not know how general this is and whether
it can be estimated. Maybe the techniques in [35] could help. We have plotted
in Figure 3 the Mach number at infinity vs ∆, to show that it varies though the
velocity at infinity is kept constant in our simulations. This can also be estimated
from Eqaution (10).
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Figure 3: Mach Number M = v∞/
√
gn∞ vs ∆ for F = Fc. Physical param-

eters: kp = 0.718 µm−1, m = 1 meV.ps2.µm−2, γ = 0.05 meV, g = 0.01 meV.
We point out that v∞ = ~kp is a constant in the simulations with ~ = 0.654
meV.ps.
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3.2 Theoretical estimates
Now we want to estimate Fc analytically. As in [1], the operator in Equation (7)
changes type when

∂v(n(v)v) = 0 (12)

where v = |~∇θ|2. In our case, from Equation (9), the equation providing n(v) is
not simply quadratic in v but is given as a polynomial of order 3 in

√
n(v):

gn(v) +
v2

2
−∆ +

F√
n(v)

cos(φ) = 0. (13)

Instead of solving it, we prefer to differentiate it with respect to v to find(
g − F

2
√
n(v)n(v)

cos(φ)

)
n′(v) + v = 0. (14)

We identify n′(v) from Equation (14) and plug this into Equation (12) to find that
at the point of maximal velocity, the cosine is equal to −1 and

v2max − gn−
F

2
√
n

= 0. (15)

This changes sign at the transition where vortices are emitted. This is quite con-
sistent with our numerical computations because indeed the critical value of Fc
corresponds to the case where this function changes sign. For instance, for ∆ = 0.3,
the function is negative for F = 0.2515 and positive for F = 0.2712 coinciding with
the change of behavior reported in Figure 2. We point out that Equation (15) is
consistent with Ref. [25] where the transition takes place when the Mach number
vmax/

√
gn is one. In our case, Equation (15) yields vmax/

√
gn =

√
1 + F/2gn

√
n

which is close to 1, and equal to 1 when the driving is zero as in [25].
Because it is not easy to test Equation (15) numerically for many values, we re-

place v2max in Equation (15) from Equation (13) and we find an equivalent condition
at the critical case:

gnmax
2
− ∆

3
− Fc

4
√
nmax

= 0 (16)

This expression changes sign at the transition where vortices are emitted. This is
verified by our numerical simulations leading to an error in Equation (16) of order
10−3 to 10−2. In Figure 4, we plot gnmax from the numerics and compare it with
the formula coming from Equation (16), namely 2∆/3 + Fc/2

√
nmax. In fact, in

this equation, the term in Fc/
√
n is of lower order leading to an approximation

gnmax ∼
2∆

3
(17)
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Figure 4: gnmax vs ∆ computed from the numerics (thick line) and coming
from Equation (16) (dashed line).

which is quite consistent with our numerics and relates therefore the Mach number
to ∆. Nevertheless, we notice a slight discrepancy between the numerics and the
analytics which is likely to be due to errors in numerical estimates of nmax.

We hope that these estimates can help future experiments to determine the
critical pump amplitude or the regime of parameters of interest.

4 Conclusion
We analyze the driven-dissipative nature of a polariton superfluid, in particular the
effect of the pump amplitude and pump detuning. As they are varied, the solution
goes from a superfluid solution to a solution emitting vortices. We can characterize
analytically the change of behaviour and onset of turbulence by Equation (15) or
(16). The relation between the parameters that we derive is consistent with the
numerical simulations. In particular, we find that, if the driving field is kept fixed,
as the pump detuning varies, the maximal density is proportional to the pump
detuning at the critical transition.
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