Titan's induced magnetosphere from plasma wave, particle data and magnetometer observations
Résumé
The Magnetometer (MAG) measurements, the particle data (CAPS) are combined with the Radio and Plasma Wave Science (RPWS) observations to provide an overall and organized description of the electron plasma environment and the pickup ion distribution around Titan. RPWS observations are used to measure the electron number density of the thermal plasma close to Titan. This data set is combined with CAPS-ELS electron number density in Saturn's magnetosphere and Titan's environment. A relatively good correspondence between the number density estimated from CAPS-ELS and RPWS are most of the time observed between 0.1 - 1 cm-3. Combining both ELS and RPWS data allows deducing a continuous electron density profile going from Saturn's magnetosphere to Titan's ionosphere leading to a global electron density map in Titan's vicinity. The MAG observations are used to derive information about the ambient magnetic field environment in the vicinity of Titan and also to emphasize the bipolar tail region. Ion information such the mass composition of the plasma and ion distribution function for specific time intervals are determined from CAPS-IMS. Pick-up ions have been identified from their energy signature and mass composition for few flybys. These observations also emphasized a ring distribution, characteristic of pick-up ions. The pick-up observations, in the DRAP coordinate system, are found to be located in the E=-vxB hemisphere as expected.