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Symbolic Models for a Class of Impulsive Systems
Abdalla Swikir, Antoine Girard, and Majid Zamani

Abstract—Symbolic models have been used as the basis of
a systematic framework to address control design of several
classes of hybrid systems with sophisticated control objectives.
However, results available in the literature are not concerned with
impulsive systems which are an important modeling framework
of many applications. In this paper, we provide an approach for
constructing symbolic models for a class of impulsive systems
possessing some stability properties. We formally relate impulsive
systems and their symbolic models using a notion of so-called
alternating simulation function. We show that behaviors of
the constructed symbolic models are approximately equivalent
to those of the impulsive systems. Finally, we illustrate the
effectiveness of our results through a case study.

Index Terms—Hybrid systems; Quantized systems; Supervi-
sory control

I. INTRODUCTION

SYMBOLIC models have been the aim of intensive study
in the last two decades since they provide a mechanism

for reducing complexity in the analysis and control of cyber-
physical systems [1], [2]. They serve as abstract mathematical
models where each symbolic state and input represent a
collection of continuous states and inputs in the original
concrete model. As they have finite number of states and
inputs, they enable the use of correct-by-construction methods
from the computer science community to design controllers
for a wide variety of systems. For instance, they allow one
to use automata-theoretic methods [3] to design controllers
for hybrid systems with respect to logic specifications such
as those expressed as linear temporal logic (LTL) formulae
[4]. In such frameworks, controllers designed for symbolic
models can be refined to ones for concrete systems based on
some behavioral relation between original systems and their
symbolic models such as approximate alternating simulation
relations [5] or feedback refinement relations [6].

The synthesis of symbolic models for different classes of
systems has been investigated, among many others, in the
following papers: for incrementally stable and incrementally
forward complete nonlinear control systems in [7] and [8],
respectively; for nonlinear switched systems in [9], [10],
[11]; for nonlinear control systems with known constant time
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delays and time-varying delays in [12], [13]; for networked
control systems in [14], [15], and finally for incrementally sta-
ble infinite-dimensional systems with finite-dimensional input
spaces in [16], [17]. All the aforementioned approaches essen-
tially take a monolithic view of the systems while constructing
symbolic models. On the other hand, different compositional
methods for constructing symbolic models have been recently
introduced in the literature with or without imposing stability
assumptions over the network; see [18], [19], [20], [21] and
references therein. Although the literature on symbolic models
is very rich, unfortunately, there are no results so far on
constructing symbolic models for impulsive systems.

Impulsive systems are an important class of hybrid systems
that contain discontinuities or jumps (also referred to as
impulses) in the state and input trajectories of the system
governed by discrete dynamics [22], [23]. They serve as
an important modeling framework for a very large variety
of applications, e.g. power electronics, sample-data systems,
bursting rhythm models in medicine, and some models in eco-
nomics; see [24], [25] and the references therein. Hence, con-
structing symbolic models for impulsive systems enlarges the
class of systems for which designing correct-by-construction
controllers enforcing complex logic specifications is possible.
In this work, we consider time-dependent impulsive systems
in which the distance between the impulses is assumed to
belong to a finite set. Such a class of systems is well studied
in the literature; see [26] and references therein. For example,
this class of systems models the dynamics of the estimation
error in networked control systems [27, Section 8.2.] while
assuming time instants of the reception of measurements are
nondetermined but lie in a finite set.

This paper provides for the first time an approach for
synthesizing symbolic models for a class of impulsive systems.
The symbolic models constructed in this work are complete
as their behaviors are approximately equivalent to those of the
concrete systems [1]. First, we introduce a class of transition
systems which allows us to model impulsive systems and their
symbolic models in a common framework. Then we recall a
notion of so-called alternating simulation function to relate two
transition systems. Such a function allows one to determine
quantitatively the mismatch between the observed behavior
of two systems, and implies the existence of an approximate
alternating simulation relation between them [5]. Second, we
provide a methodology for constructing symbolic models to-
gether with their alternating simulation functions for impulsive
systems possessing some incremental stability properties. In
particular, we require that either the continuous or the discrete
dynamic of the impulsive system to be incrementally input-
to-state stable [28] while the other one is forward complete
[8]. Given such an incremental property, we show that the
constructed symbolic model is indeed a complete one, i.e., the



behaviors of the symbolic models are (approximately) equiv-
alent to those of the concrete systems [1]. This completeness
roughly implies that there exists a controller enforcing the
desired specifications on the symbolic model if and only if
there exists a controller enforcing the same specifications on
the concrete system. Finally, we apply our results to a model
of storage-delivery process by constructing its symbolic model
under different stability properties. We also design a controller
maintaining the number of items in the storage in a desired
range.

II. NOTATION AND PRELIMINARIES

A. Notation

We denote by R, Z, and N the set of real numbers, integers,
and non-negative integers, respectively. These symbols are
annotated with subscripts to restrict them in the obvious way,
e.g., R>0 denotes the positive real numbers. We denote the
closed, open, and half-open intervals in R by [a, b], (a, b),
[a, b), and (a, b], respectively. For a, b ∈ N and a ≤ b, we
use [a; b], (a; b), [a; b), and (a; b] to denote the corresponding
intervals in N. Given any a ∈ R, |a| denotes the absolute
value of a. Given any u = (u1, . . . , un) ∈ Rn, the infinity
norm of u is defined by ‖u‖ = max1≤i≤n |ui|. Given a
function ν : R≥0 → Rn, the supremum of ν is denoted
by ‖ν‖∞; we recall that ‖ν‖∞ := supt∈R≥0

‖ν(t)‖. Given
x : R≥0 → Rn,∀t, s ∈ R≥0 with t ≥ s, we define
x(−t) = lims→t x(s). We denote by card(·) the cardinality
of a given set and by ∅ the empty set. Given sets X and
Y , we denote by f : X → Y an ordinary map of X
into Y , whereas f : X ⇒ Y denotes a set-valued map
[29]. For any set S ⊆ Rn of the form S =

⋃M
j=1 Sj for

some M ∈ N, where Sj =
∏n
i=1[cji , d

j
i ] ⊆ Rn with

cji < dji , and nonnegative constant η ≤ η̃, where η̃ =
minj=1,...,M ηSj and ηSj = min{|dj1 − c

j
1|, . . . , |djn − cjn|},

we define [S]η = {a ∈ S | ai = kiη, ki ∈ Z, i = 1, . . . , n} if
η 6= 0, and [S]η = S if η = 0. The set [S]η will be used as a
finite approximation of the set S with precision η 6= 0. Note
that [S]η 6= ∅ for any η ≤ η̃. We use notations K and K∞ to
denote different classes of comparison functions, as follows:
K = {α : R≥0 → R≥0| α is continuous, strictly increasing,
and α(0) = 0}; K∞ = {α ∈ K| lim

s→∞
α(s) = ∞}. For

α, γ ∈ K∞ we write α ≤ γ if α(r) ≤ γ(r), and, by abuse of
notation, α = c if α(r) = cr ∀r ∈ R≥0. Finally, we denote by
Id the identity function over R≥0, i.e. Id(r) = r, ∀r ∈ R≥0.

B. Nonlinear Impulsive Systems

Among several classes of impulsive systems studied in the
literature, e.g., [22], [23], [27], in this work, we study a class of
time-dependent nonlinear impulsive systems as defined next.

Definition 1: A nonlinear impulsive system Σ is defined by
the tuple Σ = (Rn,U,U , f, g), where Rn is the state space,
U ⊆ Rm is the input set, U is the set of all measurable bounded
input functions ν : R≥0 → U, and f, g : Rn × U → Rn are
locally Lipschitz functions;

The nonlinear impulsive system Σ is described by differen-
tial and difference equations of the form

Σ :

{
ẋ(t) = f(x(t), ν(t)), t ∈ R≥0\Ω,
x(t) = g(x(−t), ν(t)), t ∈ Ω,

(II.1)

where Ω = {tk}k∈N with tk+1 − tk ∈ {p1τ, . . . , p2τ} for
fixed jump parameters τ ∈ R>0 and p1, p2 ∈ N≥1, p1 ≤ p2;
and, x : R≥0 → Rn is the state signal, which is assumed to be
right-continuous for all t ∈ R≥0, and ν ∈ U is the input signal.
We will use xx,ν(t) to denote a point reached at time t ∈ R≥0
from initial state x = x(0) under input signal ν ∈ U . The
Lipschitz condition imposed on f ensures the existence and
uniqueness of a solution of system Σ in (II.1); see [30], [31]
for more details. We denote by Σc and Σd the continuous and
discrete dynamics of system Σ, i.e., Σc : ẋ(t) = f(x(t), ν(t)),
and Σd : x(t) = g(x(−t), ν(t)).

III. TRANSITION SYSTEMS AND ALTERNATING
SIMULATION FUNCTIONS

We start by introducing the class of transition systems [1]
which allows us to model impulsive and symbolic systems in
a common framework.

Definition 2: A transition system is a tuple T =
(X,X0, U,F , Y,H) consisting of:
• a set of states X;
• a set of initial states X0 ⊆ X;
• a set of inputs U ;
• transition function F : X × U ⇒ X;
• an output set Y ;
• an output map H : X → Y .

The transition x+ ∈ F(x, u) means that the system can evolve
from state x to state x+ under the input u. Thus, the transition
function defines the dynamics of the transition system. Sets X ,
U , and Y are assumed to be subsets of normed vector spaces
with appropriate finite dimensions. If for all x ∈ X,u ∈ U ,
card(F(x, u)) ≤ 1 we say that T is deterministic, and non-
deterministic otherwise. Additionally, T is called finite if X,U
are finite sets and infinite otherwise. Furthermore, if for all
x ∈ X there exists u ∈ U such that card(F(x, u)) 6= 0 we
say that T is non-blocking. In this work, we only deal with
non-blocking transition systems.

Next we introduce a notion of so-called alternating simula-
tion functions, inspired by [32, Definition 1], which quantita-
tively relates two transition systems.

Definition 3: Let T = (X,X0, U,F , Y,H) and T̂ =
(X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be transition systems with Ŷ ⊆ Y . A
function S̃ : X×X̂ → R≥0 is called an alternating simulation
function from T̂ to T if there exist α̃ ∈ K∞, 0 < σ̃ < 1,
ρ̃u ∈ K∞ ∪ {0}, and some ε̃ ∈ R≥0 so that the following
hold:
• For every x ∈ X, x̂ ∈ X̂ , one has

α̃(‖H(x)− Ĥ(x̂)‖)≤S̃(x, x̂). (III.1)

• For every x ∈ X, x̂ ∈ X̂, û ∈ Û there exists u ∈ U such
that for every x+ ∈ F(x, u) there exists x̂+ ∈ F̂(x̂, û)
so that

S̃(x+, x̂+) ≤ σ̃S̃(x, x̂) + ρ̃u(‖û‖∞) + ε̃. (III.2)



The next lemma is adapted from [33, Theorem 1] and stated
without a proof. This lemma is needed in the proof of
Proposition 1.

Lemma 1: Let S̃ be an alternating simulation function from
T̂ to T as in Definition 3. Then for every x ∈ X, x̂ ∈ X̂, û ∈
Û , there exists u ∈ U such that for every x+ ∈ F(x, u) there
exists x̂+ ∈ F̂(x̂, û) so that

S̃(x+, x̂+) ≤ max{σS̃(x, x̂), ρ(‖û‖∞), ε}, (III.3)

where σ = 1−(1−ψ)(1−σ̃), ρ = 2
(1−σ̃)ψ ρ̃u, and ε = 2ε̃

(1−σ̃)ψ ,
for an arbitrarily chosen positive constant ψ < 1, and σ̃, ε̃, ρ̃u
are constants and function appearing in Definition 3.

Before showing the next result, let us recall the definition
of an alternating simulation relation introduced in [5].

Definition 4: Let T = (X,X0, U,F , Y,H) and T̂ =
(X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be transition systems with Ŷ ⊆ Y . A
relation R ⊆ X × X̂ is called an ε̂-approximate alternating
simulation relation from T̂ to T if for any (x, x̂) ∈ R
• (i) ‖H(x)− Ĥ(x̂)‖ ≤ ε̂;
• (ii) For any û ∈ Û , there exists u ∈ U such that for

all x+ ∈ F(x, u) there exists x̂+ ∈ F̂(x̂, û) satisfying
(x+, x̂+) ∈ R.

In addition, if (ii) still holds when reversing the role of T
and T̂ , the relation R is in fact an ε̂-approximate alternating
bisimulation relation between T and T̂ [5] (see Remark 4).

The next result shows that the existence of an alternating
simulation function for transition systems implies the existence
of an approximate alternating simulation relation between
them as as defined above

Proposition 1: Let T = (X,X0, U,F , Y,H) and T̂ =
(X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be transition systems with Ŷ ⊆ Y .
Assume S̃ is an alternating simulation function from T̂ to
T as in Definition 3 and that there exists r ∈ R>0 such that
‖û‖∞≤r for all û∈ Û . Then, relation R⊆X×X̂ defined by
R=

{
(x, x̂)∈X×X̂|S̃(x, x̂)≤ max {ρ(r), ε}

}
, where ρ, ε as in

Lemma 1, is an ε̂-approximate alternating simulation relation
from T̂ to T with ε̂ = α̃−1(max{ρ(r), ε}).

Proof: Item (i) in Definition 4 is a simple consequence
of the definition of R and condition (III.1) (i.e. α̃(‖H(x) −
Ĥ(x̂)‖) ≤ S̃(x, x̂) ≤ max{ρ(r), ε}), which results in ‖H(x)−
Ĥ(x̂)‖ ≤ α̃−1(max{ρ(r), ε}) = ε̂. Item (ii) in Definition 4
follows immediately from the definition of R, condition (III.3)
in Lemma 1, and the fact that 0 < σ < 1. In particular, we have
S̃(x+, x̂+) ≤ max{ρ(r), ε} which implies (x+, x̂+) ∈ R.

The approximate alternating simulation relation guarantees
that for each output behavior of T there exists one of T̂ such
that the distance between these output behaviors is uniformly
bounded by ε̂.

Remark 1: Since the input set in all practical applications
is bounded, requiring the control inputs to be bounded is
not restrictive at all. Moreover, under certain properties of
impulsive systems (see Section IV), one can choose function
ρ̃u the definition of R to be identically zero which cancels the
dependency to the size of control inputs in Proposition 1. �

IV. CONSTRUCTION OF SYMBOLIC MODELS

This section contains the main contribution of this work
and its results rely on additional assumption on U that we

now describe. Consider impulsive system Σ = (Rn,U,U , f, g)
with jump parameters τ , p1 and p2. We restrict attention to
sampled-data impulsive systems, where input curves belong to
Uτ containing only curves, constant in duration τ , i.e.

Uτ = {ν : R≥0 → U|ν(t) = ν((k − 1)τ), (IV.1)
t ∈ [(k − 1)τ, kτ), k ∈ N≥1}.

Next we define sampled-data impulsive systems as a transition
system. Such a transition system would be the bridge that
relates impulsive systems to their symbolic models.

Definition 5: Given an impulsive system Σ =
(Rn,U,Uτ , f, g), with jump parameters (τ , p1, p2), we define
the associated transition system Tτ (Σ) = (X,X0, U,F , Y,H)
where:
• X = Rn × {0, . . . , p2};
• X0 = Rn × {0};
• U = Uτ ;
• (x+, l+) ∈ F((x, l), ν) if and only if one of the following

scenarios hold:
– Flow scenario: 0≤ l≤p2−1, x+ =xx,ν(−τ), and l+ = l+1;
– Jump scenario: p1 ≤ l ≤ p2, x+ = g(x, ν(0)), and l+ = 0;
• Y = Rn;
• H : X → Y , defined as H(x, l) = x.

In order to construct a symbolic model for Tτ (Σ), we
introduce the following assumptions and lemma.

Assumption 1: Consider impulsive system Σ =
(Rn,U,Uτ , f, g) with jump parameters τ , p1 and p2. Assume
that there exist a locally Lipschitz function V : Rn × Rn →
R≥0, K∞ functions α, α, ρuc , ρud , and constants κc ∈ R, κd ∈
R>0, such that the following hold
• ∀x, x̂ ∈ Rn

α(‖x− x̂‖) ≤ V (x, x̂) ≤ α(‖x− x̂‖). (IV.2)

• ∀x, x̂ ∈ Rn a.e, and ∀u, û ∈ U

∂V (x, x̂)

∂x
f(x, u) +

∂V (x, x̂)

∂x̂
f(x̂, û) (IV.3)

≤−κcV (x, x̂) + ρuc(‖u− û‖).

• ∀x, x̂ ∈ Rn and ∀u, û ∈ U

V (g(x, u), g(x̂, û))≤κdV (x, x̂) + ρud(‖u−û‖). (IV.4)

Assumption 2: There exists a K∞ function γ̂ such that

∀x, y, z ∈ R
n, V (x, y) ≤ V (x, z) + γ̂(‖y − z‖). (IV.5)

Remark 2: Assumption 1 has different implications based on
the values of κc and κd as the following. Given (IV.2) holds:
(i) the existence of function V satisfying (IV.3) and (IV.4) with
kc≤0 and kd≥1 results in incremental forward completeness
of the continuous and discrete dynamics of Σ, respectively,
and we say Σc and Σd are δ-FC [8]; (ii) the existence of
function V satisfying (IV.3) and (IV.4) with kc > 0 and kd < 1
results in incremental input-to-state stability of the continuous
and discrete dynamics of Σ, respectively, and we say Σc and
Σd are δ-ISS [28], [34]. In addition, Assumptions 2 is non-
restrictive conditions provided that one is interested to work
on a compact subset of Rn [35]. �

Remark 3: In condition (IV.3), “∀x, x̂ ∈ Rn a.e.” should
be interpreted as “for every x, x̂ ∈ Rn except on a set of
zero Lebesgue-measure in Rn”. From Rademacher’s theorem
[36], the local Lipschitz assumption on function V ensures that



∂V (x, x̂)

∂x
f(x, u)+

∂V (x, x̂)

∂x̂
f(x̂, û) is well defined, except on

a set of measure zero. �
The following lemma provides a bound to the evolution of

function V in Assumption 1 which is needed in the proof of
Theorem 1.

Lemma 2: Consider impulsive system Σ =
(Rn,U,Uτ , f, g) with jump parameters τ , p1 and p2,
where Uτ is given by (IV.1). Let (IV.3) in Assumption 1
holds. Then for all x, x̂ ∈ Rn, for all ν, ν̂ ∈ Uτ , and for any
two consecutive impulses (tk, tk+1), one has

V (xx,ν(−tk+1),xx̂,ν̂(−tk+1)) (IV.6)

≤e−κc(tk+1−tk)V (xx,ν(tk),xx̂,ν̂(tk))

+
1− e−κc(tk+1−tk)

κc
ρuc(‖ν − ν̂‖∞).

The proof follows by unitizing Lemma 1 in [27] and following
similar arguments to the ones in [37, Section 2]. The proof is
omitted here due to lack of space, and it can be found in [38].

We now have all the ingredients to construct a symbolic
model T̂τ (Σ) of transition system Tτ (Σ) associated to the
impulsive system Σ admitting a function V that satisfies
Assumption 1 as follows.

Definition 6: Consider a transition system Tτ (Σ) =
(X,X0, U,F , Y,H), associated to the impulsive system Σ =
(Rn,U,Uτ , f, g). Assume Σ admits a function V that satis-
fies Assumption 1. Then one can construct symbolic model
T̂τ (Σ) = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) where:
• X̂ = R̂n × {0, · · · , p2}, where R̂n = [Rn]η and η is the

state space quantization parameter;
• X̂0 = R̂n × {0};
• Û = [U]µ, where µ is the input set quantization parameter;
• (x̂+, l+) ∈ F̂((x̂, l), û) if and only if one of the following

scenarios hold:
– Flow scenario: 0≤ l≤p2−1, ‖x̂+−xx̂,û(−τ)‖≤η, l+ = l+1;
– Jump scenario: p1≤ l≤p2, ‖x̂+−g(x̂, û)‖≤η, l+ =0;
• Ŷ = Y ;
• Ĥ : X̂ → Ŷ , defined as Ĥ(x̂, l) = x̂.
In the definition of the transition function, and in the remainder
of the paper, we abuse notation by identifying û with the
constant input curve with domain [0, τ) and value û. Now, we
establish the relation between Tτ (Σ) and T̂τ (Σ), introduced
above, via the notion of alternating simulation function as in
Definition 3.

Theorem 1: Consider an impulsive system Σ =
(Rn,U,Uτ , f, g) with its associated transition system Tτ (Σ) =
(X,X0, U,F , Y,H). Let Assumptions 1, and 2 hold. Consider
symbolic model T̂τ (Σ) = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) constructed as
in Definition 6. If inequality

ln(κd)− κcτ l < 0 (IV.7)

holds for l ∈ {p1, p2}, then function V defined as

V((x, l), (x̂, l)):=


V (x, x̂) if κd < 1 & κc > 0,
V (x, x̂)eκcτεl if κd ≥ 1 & κc > 0,

V (x, x̂)κ
l
δ
d if κd < 1 & κc ≤ 0,

(IV.8)

for some 0 < ε < 1 and δ > p2, is an alternating simulation
function from T̂τ (Σ) to Tτ (Σ).

After proving Theorem 1, we will provide additional insight
into condition (IV.7). Note that for the case in which κd ≥ 1

and κc ≤ 0, this condition cannot hold at all. Hence this case
is excluded from the definition of V in (IV.8).

Proof: By using (IV.2), ∀(x, l) ∈ X and ∀(x̂, l) ∈ X̂ , we
have

‖H(x, l)−Ĥ(x̂, l)‖=‖x−x̂‖≤α−1(V (x, x̂))≤ α̂ (V((x, l), (x̂, l))) ,

where

α̂(s) =


α−1(s) if κd < 1 & κc > 0,
α−1(e−κcτεp1s) if κd ≥ 1 & κc > 0,

α−1(κ
− p2
δ

d s) if κd < 1 & κc ≤ 0,

for all s ∈ R≥0. Hence, (III.1) holds with α̃ = α̂−1.
Now we show that inequality (III.2) holds as well. Consider

any û ∈ Û and choose ν(·) = û. Then, using (IV.5), for all
x, x̂ ∈ Rn, for all û ∈ Û , we have in the flow scenario the
following inequality:

V (xx,û(−τ), x̂+) ≤ V (xx,û(−τ),xx̂,û(−τ))+γ̂(‖x̂+−xx̂,û(−τ)‖).

Now, from Definition 6, the above inequality reduces to

V (xx,û(−τ), x̂+) ≤ V (xx,û(−τ),xx̂,û(−τ))+γ̂(η),

for any x̂+ such that (x̂+, l+) ∈ F̂((x̂, l), û). From (IV.6)
with tk+1 = τ, tk = 0, one gets

V (xx,û(−τ),xx̂,û(−τ)) ≤ e−κcτV (xx,û(0),xx̂,û(0))

= e−κcτV (x, x̂)

Hence, for all x, x̂ ∈ Rn, for all û ∈ Û , one obtains

V (xx,û(−τ), x̂+) ≤ e−κcτV (x, x̂)+γ̂(η), (IV.9)

for any x̂+ such that (x̂+, l+) ∈ F̂((x̂, l), û). By following
similar argument to the previous one and using (IV.4), one
also obtains the following inequality in the jump scenario for
all x, x̂ ∈ Rn, and for all û ∈ Û

V (g(x, û), x̂+) ≤ κdV (x, x̂)+γ̂(η), (IV.10)

for any x̂+ such that (x̂+, l+) ∈ F̂((x̂, l), û).
Now, in order to show function V defined in (IV.8) satisfies

(III.2), we consider the different scenarios in Definition 6 and
different cases for values of κd and κc as follows:
• κd < 1 & κc > 0 (case 1):

– Flow scenario (l+ = l + 1):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)

≤ e−κcτV (x, x̂)+γ̂(η) = e−κcτV((x, l), (x̂, l))+γ̂(η).

– Jump scenario (l+ = 0):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)

≤ κdV (x, x̂)+γ̂(η) = κdV((x, l), (x̂, l))+γ̂(η).

Let λf = max{e−κcτ , κd}, and γf = γ̂, then

V((x+, l+), (x̂+, l+)) ≤ λfV((x, l), (x̂, l))+γf (η).

• κd ≥ 1 & κc > 0 (case 2):
– Flow scenario (l+ = l + 1):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)eκcτεl
+

= V (x+, x̂+)eκcτε(l+1)

≤ (e−κcτV (x, x̂)+γ̂(η))eκcτε(l+1)

= e−κcτeκcτεeκcτεlV (x, x̂)+
γ̂(η)

e−κcτε(l+1)

= e−κcτ(1−ε)V((x, l), (x̂, l))+
γ̂(η)

e−κcτε(l+1)
.



– Jump scenario (l+ = 0):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)eκcτεl
+

= V (x+, x̂+)

≤ κdV (x, x̂)+γ̂(η) =
eκcτεl

eκcτεl
κdV (x, x̂)+γ̂(η)

= e−κcτεlκdV((x, l), (x̂, l))+γ̂(η).

Let λf = max{e−κcτ(1−ε), e−κcτεp1κd}, and γf =
eκcτε(p2+1)γ̂, then

V((x+, l+), (x̂+, l+)) ≤ λfV((x, l), (x̂, l)) + γf (η).

• κd < 1 & κc ≤ 0 (case 3):
– Flow scenario (l+ = l + 1):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)κ
l+

δ
d

=V (x+, x̂+)κ
(l+1)
δ

d ≤(e−κcτV (x, x̂)+γ̂(η))κ
(l+1)
δ

d

= e−κcτκ
l
δ
d κ

1
δ
d V (x, x̂)+γ̂(η)κ

(l+1)
δ

d

= e−κcτκ
1
δ
d V((x, l), (x̂, l))+γ̂(η)κ

(l+1)
δ

d .

– Jump scenario (l+ = 0):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)κ
l+

δ
d

= V (x+, x̂+) ≤ κdV (x, x̂)+γ̂(η)

=
κ
l
δ
d

κ
l
δ
d

κdV (x, x̂)+γ̂(η) = κ
δ−l
δ

d V((x, l), (x̂, l))+γ̂(η).

Let λf = max{e−κcτκ
1
δ

d , κ
δ−p2
δ

d }, and γf = γ̂, then

V((x+, l+), (x̂+, l+)) ≤ λfV((x, l), (x̂, l)) + γf (η).

To continue with the proof, we need to show that λf < 1
for case 2 and case 3 (case 1 is trivial). In case 2, note that
e−κcτ(1−ε) < 1 since 0 < ε < 1 and κc > 0. Additionally,
e−κcτεp1κd < 1⇔ ln(κd)−κcτεp1 < 0. By continuity of the
real number, we can always find some 0 < ε < 1 such that
ln(κd)−κcτ l < 0, l ∈ {p1, p2}, implies ln(κd)−κcτεp1 < 0.

Hence, λf < 1. Similarly, in case 3, we have κ
δ−p2
δ

d < 1 since
δ > p2 and κd < 1. Moreover, e−κcτκ

1
δ

d < 1 ⇔ ln(κd) −
κcτδ < 0. By continuity of the real number, we can always
find some δ > p2 such that ln(κd) − κcτ l < 0, l ∈ {p1, p2},
implies ln(κd)− κcτδ < 0. Therefore, λf < 1.

Hence, for all ((x, l), (x̂, l)) ∈ X × X̂ , for all û ∈ Û , for
any x̂+ such that (x̂+, l+) ∈ F̂((x̂, l), û), V satisfies inequality
(III.2) with ν = û, σ̃ = λf , ε̃ = γf (η), and ρ̃u = 0. Thus, V
is an alternating simulation function from T̂τ (Σ) to Tτ (Σ).

Remark 4: One can also verify that function V
given by (IV.8) is also an alternating simulation function
from Tτ (Σ) to T̂τ (Σ). In particular, V satisfies (III.1)
and (III.2) with choosing û satisfying1 ‖û − ν‖ ≤
µ, same σ̃, ρ̃u defined in Theorem 1, ε̃ = γf (η) +

max
{

1−e−κc(tk+1−tk)

κc
ρuc , ρud

}
(µ) for case 1 and 3, and ε̃ =

γf (η)+max
{
eκcτε(p2+1) 1−e−κc(tk+1−tk)

κc
ρuc , ρud

}
(µ) for case 2.

Observe that the existence of a function V serving as an
alternating simulation function in both directions, i.e. from
Tτ (Σ) to T̂τ (Σ) and from T̂τ (Σ) to Tτ (Σ), implies the

1By the structure of Û , there always exists û satisfying ‖û− ν‖ ≤ µ.

existence of an approximate alternating bisimulation relation
between Tτ (Σ) and T̂τ (Σ) as introduced in [5]. Consequently,
T̂τ (Σ) is a complete symbolic model for Tτ (Σ). �

Remark 5: The symbolic model T̂τ (Σ) has a countably
infinite set of states. However, in practical applications, the
physical variables are restricted to a compact set. Hence, we
are usually interested in the dynamics of the impulsive system
only on a compact subset X ⊆ Rn. Then, we can restrict the
set of states of T̂τ (Σ) to the sets ([Rn]η ∩ X)×{0, · · · , p2}
which is finite. We refer the interested readers to the explana-
tion provided after Remark 4.1 in [8] for more details. �

Finally, we would like to provide a discussion on condition
(IV.7) in Theorem 1. In the case when κd < 1 and κc > 0,
the continuous and discrete dynamics of Σ are δ-ISS, and,
clearly, (IV.7) always holds. For the case when κc > 0 and
κd ≥ 1, the continuous dynamic Σc is δ-ISS while the discrete
dynamic Σd is δ-FC. In order for condition (IV.7) to hold
in this case, κc should be large enough to accommodate the
undesirable effect of κd and that the impulses do not happen
too frequently. Finally, κc ≤ 0 and κd < 1 corresponds to
the case that the continuous dynamic Σc is δ-FC while the
discrete one Σd is δ-ISS. Here, we require the impulses to
happen very often and κd to be small enough to accommodate
the undesirable effect of κc. Note that condition (IV.7) ensures
that an increase in the value of function V in Assumption 1
during flows is compensated by a decrease at jumps and vice
versa. A similar argument was used in [27, Sections 4,5,6]
to reason about input-to-state stability of impulsive systems,
and we expect that by utilizing Assumption 1 with condition
(IV.7), one can get δ-ISS for system Σ in (II.1).

V. CASE STUDY: A STORAGE-DELIVERY PROCESS MODEL

In this case study, we apply our approach to a variant
of the storage-delivery process model from [39]. Let the
number x ∈ R≥0 of goods in a storage be continuously
evolving proportionally to the number of items with rate
coefficient a. At every time instant t ∈ Ω = {tk}k∈N, with
tk+1 − tk ∈ {p1τ, . . . , p2τ} for a fixed jump parameters
τ ∈ R>0 and p1, p2 ∈ N≥1, p1 ≤ p2, a truck comes to
the storage and delivers (b − 1)%, or picks up (1 − b)% of
the current items. Let c denote the number of items per time
unit that can be added, through lineside delivery from the
factory to the storage, or taken out, from the storage to other
locations during t ∈ (tk+1, tk). Similarly, let d be the number
of items that can be added, or taken out, from the storage at
time instants t ∈ Ω. The delivery and picking-up process is
controlled by the input ν(t) = ν(0) ∈ {−1, 0, 1}, t ∈ [0, τ).
The evolution of this process can be modeled as

Σ :

{
ẋ(t) = ax + cν(t), t ∈ R≥0\Ω,
x(t) = bx(−t) + dν(t), t ∈ Ω.

(V.1)

In order to construct a symbolic model for impulsive system
Σ, we start by checking Assumptions 1 and 2. It can be shown
that conditions (IV.2), (IV.3), and (IV.4) hold with V (x, x′) =
‖x−x′‖ with α = α = Id, ρuc = |c|, ρud = |d|, κc = −a, and
κd = |b|. Moreover, condition (IV.5) holds with γ̂ = Id. Given
that (IV.7) holds for l ∈ {1, p}, and, with a proper choice2 of
ε and δ, function V(x, x̂) given by (IV.8) is an alternating
simulation function from T̂τ (Σ), constructed as in Definition

2ε = 1− ς , and δ = p2 + ς with ς sufficiently small.
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Fig. 1: Trajectories of system Σ for different values of p1, p2, a, b,c,
d, Ψ: blue (bottom) (p1 = 1, p2 = 5, a = −0.2, b = 0.9, c = d = 5,
Ψ = {25, 50}), red (middle) (p1 = 5, p2 = 7, a = −0.3, b = 1.01,
c = d = 15, Ψ = {50, 75}), green (top) (p1 = 1, p2 = 2, a = 0.2,
b = 0.85, c=d=15, Ψ={75, 100}). The jumps are indicated by •.

6, to Tτ (Σ). In particular, V satisfies conditions (III.1) and
(III.2) with functions α̃, ρ̃u and constants σ̃, ε given below
based on the value of a and b, with ψ = 0.99.
• |b| < 1 & a < 0: α̃ = Id, ρ̃u = 0, σ̃ = max{eaτ , |b|}, ε̃ = η.
• |b| ≥ 1 & a < 0: α̃ = e−aτεp1 , ρ̃u = 0, σ̃ =

max{eaτ(1−ε), eaτεp1 |b|}, and ε̃ = e−aτε(p2+1)η.
• |b| < 1 & a ≥ 0: α̃ = |b|

p2
δ , ρ̃u = 0, σ̃ =

max{eaτ |b|
1
δ , |b|

δ−p2
δ }, and ε̃ = η.

The control objective here is to maintain the number of
items in a desired range Ψ given by Ψ = [ψl, ψu] (a safety
specification). For the sake of numerical illustration, we choose
different combinations of p1, p2, a, b, c, d, Ψ, and leverage
software tool SCOTS [40] for constructing symbolic models
T̂τ (Σ) and controller u for Tτ (Σ) with τ = 0.2, and η = 0.01.
The controllers for all cases with their domains are available
in [38]. In addition, Figure 1 shows trajectories of system Σ
for different values of p1, p2, a, b, c, d, Ψ. Finally, one can
compute the mismatch between the output behavior of Tτ (Σ)
and its symbolic model T̂τ (Σ) by utilizing Proposition 1. In
particular, we have ε̂ = 0.25 for case 1, ε̂ = 0.75 for case 2,
and ε̂ = 0.65 for case 3.
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