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Abstract
Massive amounts of annotated data greatly contributed to the advance of the machine learning field. However such large data sets are
often unavailable for novel tasks performed in realistic environments such as smart homes. In this domain, semantically annotated large
voice command corpora for Spoken Language Understanding (SLU) are scarce, especially for non-English languages. We present the
automatic generation process of a synthetic semantically-annotated corpus of French commands for smart-home to train pipeline and
End-to-End (E2E) SLU models. SLU is typically performed through Automatic Speech Recognition (ASR) and Natural Language
Understanding (NLU) in a pipeline. Since errors at the ASR stage reduce the NLU performance, an alternative approach is End-to-End
(E2E) SLU to jointly perform ASR and NLU. To that end, the artificial corpus was fed to a text-to-speech (TTS) system to generate
synthetic speech data. All models were evaluated on voice commands acquired in a real smart home. We show that artificial data can be
combined with real data within the same training set or used as a stand-alone training corpus. The synthetic speech quality was assessed
by comparing it to real data using dynamic time warping (DTW).

Keywords: Spoken language understanding, automatic speech recognition, natural language understanding, corpora and language
resources, ambient intelligence, voice-user interface, text-to-speech, dynamic time warping

1. Introduction
Smart homes with integrated voice-user interfaces (VUI)
can provide in-home assistance to older adults (Peetoom
et al., 2015), allowing them to retain autonomy and pro-
viding swift intervention in emergency situations through
distant interaction (Vacher et al., 2015). However these
systems include multiple modules, such as a Spoken Lan-
guage Understanding (SLU) module that must be able to
extract the intent of the user from the voice command and
its named entities. The intent reflects the intention of the
speaker whereas entities and relations are called slots and
represent the pieces of information that are relevant for the
given task (Tur and De Mori, 2011). SLU systems typically
consist of a pipeline of automatic speech recognition (ASR)
and natural language understanding (NLU) modules. The
NLU module takes as input a transcript of the voice com-
mand provided by the ASR module and extracts its mean-
ing in a form that can be processed by a Decision Making
module. The NLU model is trained on clean transcriptions
whereas erroneous ASR transcriptions reduce the SLU per-
formances. Different from pipeline SLU, the E2E SLU ap-
proach combines ASR and NLU in one model and avoids
cumulative ASR and NLU errors (Ghannay et al., 2018). In
(Qian et al., 2017) it is demonstrated that E2E SLU does
not necessarily require an initial step of ASR if enough se-
mantically annotated data is available.
SLU systems tend to impose a strict command syntax al-
though senior adults interacting with smart environments
are inclined to deviate from the imposed grammar of the
commands (Takahashi et al., 2003; Möller et al., 2008;
Vacher et al., 2015). Such systems are not flexible enough,
which creates the need for a data driven SLU system, rather
than a rule-based system. Unfortunately, large domain spe-
cific data sets are often not available, especially for lan-
guages other than English. For the French language, the

closest data sets are either voice based but without voice
commands (Fleury et al., 2013) or designed for other tasks
(Chahuara et al., 2016). To deal with this data scarcity for
the French language, we applied Natural Language Genera-
tion (NLG) to generate an artificial textual corpus, automat-
ically labeled with named entity and intent classes. Similar
to (Lugosch et al., 2019) using text-to-speech (TTS), ar-
tificial speech data was generated based on the synthetic
corpus. Both data sets were used for training SLU models
and evaluated on voice commands acquired in a real smart
home with several speakers. (Desot et al., 2018; Mishakova
et al., 2019; Desot et al., 2019b; Desot et al., 2019a).
The contributions of this paper are: 1) The generation of
the first French semantically annotated synthetic corpus
combined with artificial speech data for voice command in
smart home. 2) The artificial data can be combined with
realistic data in the same training set as shown in section
5. It can also be used as stand-alone training data, tested
with realistic data. This paper gives an overview of the few
available French corpora in the smart home domain in sec-
tion 2. We present the real data test set that was recorded
in a smart home in section 3. The generation and valida-
tion method of the artificial corpus and speech is outlined
in section 4. followed by experiments, evaluation of the
corpora in sections 5., 6. and a conclusion.

2. Comparable corpora
Due to an increasing interest in smart homes, speech cor-
pora in this domain were recorded, especially for the En-
glish language. The CHiME-1 and CHiME-2 home au-
tomation corpora are recordings of 34 speakers, uttering
500 6-word commands based on a fixed grammar (Barker
et al., 2017). The CHiME-5 corpus (Barker et al., 2018) is
recorded in a dinner party context with 20 separate din-
ner sessions with two hosts and two guest participants.
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Each party lasts about two hours and was as natural as
possible. The DIRHA English corpora (Ravanelli et al.,
2015) include eleven hours of read and spontaneous home
automation commands, keywords, phonetically-rich sen-
tences and conversational speech from twelve native UK
and US speakers. 50% of the data is based on simulations
and the other half of the data on real recordings in several
rooms. Similar to our generated artificial corpus, the utter-
ances contain keywords to activate the home system.
For other languages than English, we mention the DICIT
corpus (Brutti et al., 2008) recorded with four participants
in a scenario of a distant-talking interface for interactive
control of a TV. They were acting like a family while utter-
ing phonetically rich sentences. This was combined with
spontaneous interaction with the system. For the wizard-
of-Oz experiments six hours of speech was recorded in
English, German and Italian. The ITAAL Italian speech
corpus (Principi et al., 2013) contains about 20 hours of
recordings of 20 native Italian speakers at home uttering
home automation commands and distress calls in normal
and shouted conditions.
A Few French corpora in the smart home domain are avail-
able. However these are not or partially usable to train
SLU models. The HIS corpus (Fleury et al., 2010) was one
of the first including speech and everyday life recordings
in a Health Smart Home. Different from the above men-
tioned corpora, it provides home automation sensor traces.
1886 individual sounds and 669 sentences were collected
from 15 participants performing activities in a domestic
context with a maximum duration of 1 h 35 minutes per
experiment. The ANODIN-DETRESSE (AD) corpus was
recorded in the context of emergency call detection in short
phone calls by 21 older adults in a domestic context. The
corpus includes 2646 utterances, annotated for a total dura-
tion of only 38 minutes (Vacher et al., 2008). Furthermore
the utterances are read and do not contain any spontaneous
speech. They are very short and thus lack syntactic and
lexical variation. A similar corpus is the CIRDO corpus.
This data set was recorded in realistic conditions in the
SmartHome DOMUS1, fully equipped with microphones
and home automation sensors. 17 persons in the 40-60 age
range performed scenarios including falls on a carpet and
calls for help in the context of an audio/video emergency
detection system. On average the acquisition duration was
2 hours and 30 minutes per person (Vacher et al., 2016).
However the AD and CIRDO corpora do not cover more
than one intent class. Another corpus with recordings of
older adults in a domestic context is the ERES38 corpus
(Entretiens RESidences 38: Entretiens means interviews).
Contrary to the AD corpus it is a collection of annotated
spontaneous speech (Aman et al., 2013). It was acquired
from 22 senior adults between 68 and 98 years old. The to-
tal corpus includes 48 minutes of read speech and 17 hours
of spontaneous speech.
We used the SWEET-HOME corpus real data that was col-
lected in the smart home DOMUS, equipped with micro-
phones for speech recording, sensors for providing infor-
mation on the user’s localization and activity (Vacher et al.,

1https://domus.liglab.fr

2014). It was recorded by participants enacting activities
of daily living in a smart home equipped with home au-
tomation sensors and actuators. The recorded speech was
mainly composed of voice commands. However it was col-
lected with only single user settings with a set of commands
respecting a strict grammar and is not sufficient to cover a
large set of intents with a lot of syntactic and lexical varia-
tion. Characteristics of the SWEET-HOME corpus are in-
cluded in Table 2.
We finally mention the VoiceHome-2 corpus for multichan-
nel speech processing in real homes (Bertin et al., 2019).
Overall, it contains 120 clean utterances, 360 reverberated
utterances of distant-microphone spontaneous speech with-
out noise and 1080 reverberated utterances with noise from
12 different native French speakers for a total duration of
about 4 hours. All utterances are fully annotated with tran-
scriptions and location for 12 real rooms. It does not con-
tain any home automation sensor traces and is also not se-
mantically annotated.
None of the above mentioned French corpora cover the
intents and named entities defined by the Amiqual4Home
smart home context (section 3.). On top of that combining
those corpora does still not result in a sufficient amount of
data, to train SLU models. For that reason we generated
artificial data automatically labeled with slot and intent la-
bels, defined by a smart home context.

3. VocADom@A4H corpus
Our corpus generator is easily adaptable to a modified smart
home context and its target users. Its semantics are simi-
lar to the semi-automatically annotated slot labels and in-
tent classes in the VocADom@A4H corpus (Portet et al.,
2019; Desot et al., 2018). It includes about twelve hours of
speech data and was acquired in realistic conditions in the
Amiqual4Home smart home2. This two-storey 87m2 smart
home is equipped with home automation systems, multime-
dia devices, and microphone arrays. About 150 sensors and
actuators were set in the house to acquire speech, to control
lights, to set the heating etc. Eleven participants uttered
voice commands while performing activities of daily living
for about one hour in the kitchen, living room, bedroom and
bathroom. Out-of-sight experimenters reacted to partici-
pants’ voice commands following a wizard-of-Oz strategy
to add naturalness to the corpus. To collect a corpus with
spontaneous speech with lexical and syntactic variation,
three recording phases were defined. Phase 1: Graphical
based instruction to elicite spontaneous voice commands;
phase 2: Two-inhabitant scenario between the dweller of
the smart home and a visiting friend. Both utter sponta-
neous voice commands without grammar restrictions while
interacting with the smart home; phase 3: Voice commands
are recorded with background noise (vacuum cleaner, radio,
tv etc.). In each voice command a keyword is used to acti-
vate the Smart Home. The resulting speech data was semi-
automatically transcribed, annotated with intent classes and
slot labels and resulted in 6,747 utterances (complete(3) in
Table 1). It consists of voice commands (intents(1)), and
other utterances than voice commands (none intents(2)).

2https://amiqual4home.inria.fr
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This realistic corpus is the held out test set used for all our
SLU experiments as outlined in the next sections in order
to assess the quality of the artificial corpus.

4. Artificial corpus generation
Syntactic variability and underspecification of commands
make NLU development a challenging task. For the com-
mand “raise the blinds”, the NLU must identify the correct
blinds in the home, based on the user’s current location and
activity. The same intent must be extracted from a more
syntactically complex utterance such as “can you raise the
blinds”. Similarly, “a bit more” following the command
“raise the blinds a bit” must be inferred to be a request to
repeat the previous action. The scope of our artificial cor-
pus and SLU experiments, are commands without linguistic
context and with one intent per utterance. We focused on
the issue of syntactic and linguistic variability as occurring
in the VocADom@A4H test corpus and had at the same
time to tackle the linguistic distance between this realistic
test set and the artificially generated training corpus.

4.1. Aligned and unaligned NLU transcriptions
For evaluation of the synthetic corpus, State-of-the-art
NLU CRF models (Jeong and Lee, 2008) and also DNN-
based models (Mesnil et al., 2015; Liu and Lane, 2016)
were used. These models approach the NLU problem as a
sequence labeling task. This means that the artificial train-
ing data must be aligned to associate each word to a slot
label as in the IOB NE labeling scheme (inside, outside,
beginning). The B-prefix before a tag indicates that the tag
is the beginning of a NE and an I-prefix is used for a tag
inside a NE. An O tag represents a token outside a NE.
Using a sequence generation task with unaligned data, the
model should learn to associate several words to one slot
label without aligned data. For generation of the aligned
and unaligned artificial corpus, standard expert-based NLG
was chosen (Gatt and Krahmer, 2018) that can be controlled
more easily as compared to a constrained RNN language
model for data augmentation (Hou et al., 2018). The core
of our corpus generator is the open source NLTK python
library feature-based context free grammar (FCFG) (Bird
et al., 2009), allowing for sentence generation, and for fea-
tures (i.e. slot information) to be attached to the final output
sentences.
The grammar defines intents as a composition of their pos-
sible constituents, with constraints on generation. For ex-
ample, the generative grammar rule in table 3 defines the
slots of the intent set device and can generate the com-
mand “open the window in the kitchen”. Slot action
has the feature ACTION whereas Slot device has the
feature ALLOWABLE ACTION. Both those features are
set to the same variable value ?s which makes sure we
only generate phrases with an action that is applicable to a
particular device. Subsequent rules, decomposing the con-
stituents of the intent, contain other linguistic features such
as gender and number agreement. Furthermore, domain
constraints are defined for object location in the smart-
home. To avoid the production of nonsensical utterances
such as “turn on the dishwasher in the bedroom”, unifica-
tion of features was applied. It is the process by which dif-

ferent symbols in rules are matched based on their features.
If the rule defining for instance “dishwasher” device has
a feature ”location=[room=”kitchen”]”, the grammar must
unify this feature with the same feature attributed to a room,
in order to generate a sentence as for instance “turn on the
dishwasher in the kitchen”.
Syntactical variation was also part of the grammar design,
such as the French interrogative constructions with the par-
ticle (“est-ce que”) (Table 3 includes an example). Similar
to the test set (section 3.), each voice command includes
a keyword to activate the Smart Home. Maximizing all
combinations of semantic labels that result in meaningful
utterances, the grammar generates about 77,000 phrases,
each annotated with an intent and slots for training pur-
pose (Artif. in Table 2). An overview of intents is pre-
sented in Table 4. Slot labels are divided into eight basic
categories: the action to perform, the device to act
on, the location of the device or action, the person or
organization to be contacted, a device component,
a device setting and the property of a location, de-
vice, or world property. Together with variation on these
categories, 17 slot labels are defined.
The artificial data is generated in three aligned formats to
train NLU models for Rasa-NLU, Tri-CRF and Att-RNN
using the IOB NE labeling scheme (Desot et al., 2018) and
two unaligned formats for pipeline and E2E SLU (Desot et
al., 2019b; Desot et al., 2019a). We give an example in json
format for the utterance can you close the blind:
"vocadom tu peux fermer le store"
"intent": "set_device"
{
"start": 16,
"end": 22,
"entity": "action",
"value": "close",
"text": "fermer",
},
{
"start": 23,
"end": 31,
"entity": "device",
"value": "blind",
"text": "le store",
}
]

Table 5 (Tri-CRF) shows a sentence from the corpus ver-
sion using the IOB NE labeling scheme format with a win-
dow of two words preceding and following the target word
associated with a slot label for training the Tri-CRF model
from (Jeong and Lee, 2008; Jeong and Lee, 2009). Ta-
ble 5 (Att-RNN) shows the aligned corpus with the IOB
NE labeling scheme for training the Att-RNN model from
(Liu and Lane, 2016). There is a one-to-one mapping be-
tween source words and target labels: the French definite
article ’le’ is mapped to the target slot label ’B-person-
occupation’.
Aligned approaches are less efficient for pipeline and E2E
SLU with input data consisting of spontaneous speech with
disfluencies. These frequently cause ASR deletion and in-
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Table 1: SLU test data
VocADom@A4H utterances words intents slot labels slot values
intents(1) 2612 430 7 14 60
none intents(2) 4135 1326 1 - -
complete(3) 6747 1462 8 14 60

Table 2: Comparison of SLU training and test data (OOV = test set words not seen in training data)
training set utterances words intents slot labels slot values perplex. OOV VocADom@A4H
Artif. 77,481 187 7 17 69 124.41 307 intents(1)
Sweet-Home 1412 480 6 7 28 49.33 343 intents(1)
Eslo2 161,699 29,149 1 - - 151.90 211 none intents(2)
Artif.+Sweet-Home+Eslo2 240,592 30,821 8 17 69 372.06 235 complete(3)

Figure 1: Intents in artificial/real training set and VocADom@A4H test set

sertion errors. Therefore an artificial data version was gen-
erated without alignment between source and target series
of labels and intent classes for a sequence generation ap-
proach. Hence slot labels can be inferred from imperfect
ASR transcriptions. The resulting unaligned corpus was the
training data for an NLU seq2seq attention-based model3

(Desot et al., 2019a; Desot et al., 2019b) approach. Table 5
includes a training example (Seq2seq). In this format, the
intent is included (in square brackets) into the sequence of
slot labels as first element. We assumed that the intent in
initial position will improve the prediction of the following
slots since these tend to depend on the intent. Slot-labels
(in square brackets) are separated from slot-values so that
models can learn them separately (Mishakova et al., 2019).

4.2. Transcriptions enriched with symbolic slot
and intent labels

For the E2E SLU approach the artificial corpus transcrip-
tions are enriched with intent class and slot label symbols
(Desot et al., 2019b; Desot et al., 2019a). A similar ap-
proach was applied in (Ghannay et al., 2018). Transcrip-
tions symbolically enriched with named entity labels were
used to train a model with the Baidu Deep Speech ASR sys-
tem (Hannun et al., 2014). Our approach is also inspired
by (Serdyuk et al., 2018) where intents were directly in-
ferred from audio MFCC features training a seq2seq model
on clean and noisy speech data. Different from these ap-
proaches our transcriptions are enriched with both intent
and slot label symbols. The symbolic labels per intent class

3https://gricad-gitlab.univ-grenoble-
alpes.fr/getalp/seq2seqpytorch

are,
set_device intent @
set_device_property _
set_room_property &
check_device #
get_world_property ]
get_room_property {
contact [

An example of an enriched transcription is included in the
last two rows of Table 5. As an E2E approach extracts
slot labels and intent classes directly from speech, the sec-
ond part of the E2E artificial corpus, is an artificial speech
data base. To that end synthetic speech was generated for
the 77k artificial corpus sentences, using the open source
ubuntu SVOX 4 female French voice 5. An E2E model was
trained on the synthetic speech source data and the sym-
bolically enriched artificial target data transcriptions using
ESPnet (Watanabe et al., 2018).

4.3. Acoustic validity of the artificial speech data
As the artificial speech data is a part of our corpus, we
assessed its quality by comparing the artificial speech to
the VocADom@A4H real speech data, by calculating the
acoustic distances between the two data sets. We gener-
ated TTS for the 6747 utterances of the VocaDom@A4H
test set and calculated the acoustic distance between the
real speech utterances and the resulting artificial speech ut-
terances using dynamic time warping (DTW). The DTW

4https://launchpad.net/ubuntu/+source/svox
5https://doc.ubuntu-fr.org/svoxpico
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Table 3: Syntactic variation with annotation in the artificial corpus and grammar rule
Sentence (French) English translation
Ouvre la fenêtre dans la cuisine Open the window in the kitchen
Syntactic variation
Est-ce que tu peux ouvrir la fenêtre dans la cuisine? Can you open the window in the kitchen?
Annotation
SET DEVICE(ACTION=open="open",DEVICE=window="window",LOCATION=room="kitchen")
Generative grammar rule
Intent set device[ACTION=?s,Location=?l, Device=?d] → Slot action[ACTION=?s,
:ACTION TYPES={}, AGR=?a] Slot device[ALLOWABLE ACTION=?s,
Location=?l, Device=?d, ARTTYPE=def]

Table 4: Artificial corpus (Artif.) and VocADom@A4H (Real.): Examples and Frequency of intents
Intent Example (French) English translation Frequency

Artif. Real.
Contact Appelle un médecin Call a doctor 567 114
Set device Ouvre la fenêtre Open the window 63,288 2178
Set device property Diminue le volume de la télé Decrease the TV volume 7290 9
Set room property Diminue la température Decrease the temperature 3564 21
Check device Est-ce que la fenêtre est ouverte? Is the window open? 2754 284
Get room property Quelle est la température? What’s the temperature? 9 3
Get world property Quelle heure est-il? What’s the time? 9 3
None La fenêtre est ouverte The window is open - 4135

distance measure is a technique that has been introduced
in speech recognition a few decades ago by Sakoe et al.
(Sakoe and Chiba, 1978) and is still in use (Dhingra et
al., 2013; Su et al., 2019). Since time alignment of dif-
ferent utterances is a core problem for distance measure-
ment of speech sequences, DTW measures the similarity
between two time series which may vary or warp in time.
The optimal alignment is found for a time series that is
warped non-linearly by stretching or shrinking it along its
time axis. This similarity is measured with the minimum
edit distance. Thus, two identical time series will have a
DTW distance of zero (Muda et al., 2010; Sakoe and Chiba,
1978). Time series Q and C of length n and m respectively,
Q = q1, q2, ..., qi, qn and C = c1, c2, ..., cj , cm, are aligned
in an n-by-m matrix, using DTW, where n is the number of
frames in the first and m the number of frames in the sec-
ond signal. The (ith, jth) element of the matrix contains the
distance d(qi, cj) between the two points qi and cj . Each
matrix element (i, j) corresponds to the alignment between
the points qi and cj . The accumulated distance is measured
by:

D(i, j) = min[D(i− 1, j − 1), D(i− 1, j),

D(i, j − 1)] + d(i, j)
(1)

The absolute distance between the values of the two se-
quences is calculated using the Euclidean distance:

d(qi, cj) = (qi − cj)
2 (2)

This is shown in Figure 2 for a sample of real speech (Vo-
cADom@A4H) with 20 mfcc’s over 168 frames, and a TTS
sample (20 mfcc’s over 179 frames) for the French sentence
“chanticou arrêtez les stores de la salle de bains”, chanti-
cou stop (opening or closing) the blinds in the bathroom.

The blue line in Figure 2 shows the optimal warping path
which minimizes the sum of the DTW distance between
the artificial and the real speech signal. The darker regions
show a higher cost and distance. Using the python librosa
library, DTW was calculated on 20 mfcc features from the
original TTS and real speech 16 kHz wav files.
Table 6 includes the DTW between (female) TTS and real
samples (TTS vs. real), and inter speaker DTW for real
samples for identical sentences (Inter-real). The distances
were normalized by dividing the total distance by the length
of the longest time series (Long norm.), by the length of the
shortest time series (Short norm.), and by the length of the
optimal warping path (Opt. norm.) (Table 6) (Ratanama-
hatana and Keogh, 2004). In Table 6 the average distance
and standard deviation over all compared samples are men-
tioned. For a comparison between (female) TTS and real
speech, DTW was calculated between the 6747 TTS and
all corresponding real speech samples (all). Table 6 also
includes a comparison between all real speech male sam-
ples and the corresponding number (between brackets) of
TTS samples (male). The third row includes a comparison
between all real speech female samples and the correspond-
ing TTS samples (female).
For real speech inter speaker comparison (last row), we cal-
culated DTW for sentences uttered by all speakers (4 com-
mon sentences, common). Thus, for each speaker we com-
pared the time series with all time series of the other speak-
ers uttering the same sentence once, or more than once, and
calculated DTW for each pair of time series. Table 6 shows
that in general inter speaker distances for real speech are
significantly smaller than between TTS and real speech. As
the artificial speech is generated for a French female voice,
distances between TTS and real female samples are smaller
as compared to distances between real male and TTS sam-
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Table 5: Aligned, unaligned artificial corpus format and symbolically enriched transcriptions
Aligned

Tri-CRF (“vocadom call a doctor”)
(Source) vocadom appelle médecin
(Target)
O vocadom / -1=<s> +1=appelle +2=médecin
action-B appelle / -2=<s> -1=vocadom +1=médecin +2=</s>
person-occupation-B médecin / -2=vocadom -1=appelle +1=</s>
CONTACT

Att-RNN (“vocadom call the doctor”)
(Source) vocadom appelle le médecin
(Target) O B-action B-person-occupation I-person-occupation
CONTACT
Unaligned

Seq2seq (“vocadom close the door”)
(Source) vocadom ferme la porte
(Target) intent[set_device], action[close], device[door]
Symbolically enriched

E2E (ESPnet) (“vocadom switch on the light”)
(Source + Target labels injected)
@ VocADom ˆallumeˆ }la lumière} @
SET_DEVICE intent class symbol @/ Action slot symbol ˆ / Device slot symbol }

Figure 2: Warping path and DTW distance

ples. Experiments in section 5. show the impact of the
distance between artificial training and real test data on the
symbolic and on the acoustic level. On top of that we out-
line how we dealt with the bottleneck of combining syn-
thetic and real speech in the training data.

Table 6: DTW TTS vs. real speech, mean-standard devia-
tion

DTW Long Short Opt
norm. norm. norm.

TTS vs. real:
all (6747) 5.58±4.42 7.20±8.32 4.71±3.61

male (4372) 5.72±4.02 7.31±7.86 4.83±3.28

female (2375) 5.32±5.04 7.01±9.07 4.51±4.12

Inter-real:
common (2806) 1.85±2.22 4.16±9.05 1.67±2.07

5. Evaluation experiments and results
For evaluation of the artificial corpus and speech data, we
examined performances for aligned and unaligned NLU, a
pipeline and E2E SLU approach, with and without real data
in the training set. Performances are included in Table 7.
The data sets in the first column are specified in Figure 3.

5.1. NLU
The training data for all aligned approaches is the artifi-
cial corpus only, using the VocADom@A4H real test set.
The Att-RNN models ((3) and (4) in Table 7 and Figure
3), based on aligned data, outperform the Rasa-NLU (1)
and Tri-CRF (2) models and show the feasibility of us-
ing artificial NLU training data and realistic held-out test
data, in spite of the linguistic distance between both data
sets (Desot et al., 2018). The Seq2seq model (5), using
the same amount of artificial training data but unaligned,
augmented with 727 utterances of realistic domain specific
SWEET-HOME data, is only slightly outperformed by the
Att-RNN model for intent prediction. However it indicates
that a model trained with unaligned data can be tested with
ASR output transcriptions and be integrated in a pipeline
SLU approach. The 3-gram SWEET-HOME corpus lan-
guage model (LM) perplexity (perplex. in Table 2) on the
test set sentences with voice command is 49.33 and sig-
nificantly lower as compared to the artificial data LM per-
plexity on the VocADom@A4H test set. Integrating these
real data in the training set partially contributes to boost
the seq2seq model performances. As shown in Figure 1
and Table 1 (none intents(2)), none intents are the majority
class in the VocADom@A4H test set. To model the none
intent we increased the training data set with ESLO2 cor-
pus (Table 2) utterances of conversational French speech
(Serpollet et al., 2007). Similar to the VocADom@A4H
and SWEET-HOME corpora, it contains frequent disfluen-
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cies. Sentences which were unrelated to voice command
intent were extracted (i.e. none intent) and manually fil-
tered. Only out of domain utterances were kept for col-
lecting none intent training data. Table 2 shows the low-
est OOV of none intent test utterances (none intents(2))
as compared to the ESLO2 training set. The complete test
set (complete(3)) and full training set for the seq2seq model
(Artif.+Sweet-Home+Eslo2) are specified in the last row.
Table 7 (Seq2seq(6)) includes performances significantly
lower than the other Att-RNN and Seq2seq models due
to a strong tendency towards none intent prediction with
ESLO2 data as part of the training set (Figure 3 Seq2seq(6))
(Desot et al., 2019a; Desot et al., 2019b).

Table 7: aligned and unaligned NLU performances (%) on
VocADom@A4H

NLU Model Intent Slot
+Data set F1-score F1-score
Aligned:
Rasa-NLU(1) 76.57 79.03
Tri-CRF(2) 76.36 60.64
Att-RNN1(3) 91.30 66.09
Att-RNN2(4) 96.70 74.27
Unaligned:
Seq2seq1(5) 94.74 51.06
Seq2seq2(6) 85.51 65.49

5.2. SLU
For the pipeline SLU approach, a large acoustic model
(Kaldi-Seq2seq-complete(7) in Table 8 and Figure 3) was
trained using 90% of the 472.65 hours of Real data in Fig-
ure 3, the other 10% being the development set. This data
includes the corpora ESTER1 (Galliano et al., 2005) and 2
(Galliano et al., 2009), REPERE , ETAPE, BREF120 (Tan
and Besacier, 2006), AD, SWEET-HOME and CIRDO
(section 2.). The ASR transcriptions were generated using
the hybrid HMM-DNN Kaldi tool using speaker adapted
features from the Gaussian mixture model (GMM) (Povey
et al., 2011). Its output transcriptions were fed to the
seq2seq NLU module outlined in section 5.1. (Seq2seq(6)
in Table 7 and Figure 3), (Desot et al., 2019a; Desot et
al., 2019b). We report NLU performances on the Vo-
cADom@A4H test set using the concept error rate (CER)
for slot labels. As the NLU problem is designed as a se-
quence generation task using unaligned data, the type of er-
rors differs from a sequence labeling task with aligned data.
Typical errors using aligned data are substitutions whereas
with unaligned data, frequent deletions and insertions oc-
cur. In (Hahn et al., 2008) the CER is defined as the ratio of
the sum of deleted, inserted and confused concepts w.r.t. a
Levenshtein-alignment for a given reference concept string.
We compared with a small pipeline model consisting of an
acoustic model trained with ESPnet and an NLU seq2seq
model both trained on 94.39% of artificial data (ESPnet-
Seq2seq-small(8) in Table 8 and in Figure 3). ESPnet was
used for the acoustic model (60.6% WER), as Kaldi perfor-
mances dramatically decreased integrating artificial speech
in the training data (WER >90%). The small model, with

almost completely artificial data, shows slot label predic-
tions similar to the large model with only real data.
For the E2E experiments, we used ESPnet default settings
(Desot et al., 2019a) in order to train on speech data, with
slots and intents symbolically injected in the transcriptions
(section 4.2.). We also injected the intent and slot symbols
into the clean transcriptions of the 553.9 hours of speech
training data utterances. These were bootstrapped from the
artificial data. In the sentence ”The light is switched off”
(La lumière est éteinte), the slot label for ”The light” is
device. A model with real and artificial data (553.9h),
a second model of only artificial speech (81.25h), and
a third model of predominantly artificial speech (84.69)
were trained (respectively ESPnet-complete(9), ESPnet-
Artif-only(10) and ESPnet-small(11) in Table 8 and Figure
3). It shows that E2E SLU with a small training set con-
sisting of predominantly artificial domain-specific speech
is feasible. Adding a small portion of real data to the train-
ing model significantly improves performances, indicating
a too large distance between real test and artificial training
data acoustic features.

Table 8: Pipeline and E2E SLU performances (% F1-score
- Concept Error Rate) on VocADom@A4H
SLU Model (%) TTS Intent Slot
+Data set in train F1-score CER
Pipeline:
Kaldi-Seq2seq-complete(7) 0.00 84.21 36.24
ESPnet-Seq2seq-small(8) 94.39 61.35 35.62
E2E:
ESPnet-complete(9) 14.67 47.31 51.87
ESPnet-Artif-only(10) 100.00 35.94 56.00
ESPnet-small(11) 94.39 75.73 26.17

Table 9: E2E SLU performances (%) on male and female
VocADom@A4H utterances

SLU Model (%) TTS Intent Slot
+Data set in train F1-score CER
E2E:
ESPnet-small(11) all 94.39 75.73 26.17
ESPnet-small(11) female 94.39 77.00 25.45
ESPnet-small(11) male 94.39 75.11 28.70

Table 9 repeats best performances for the E2E SLU
model with 94.39% of artificial speech in the training
data (ESPnet-small(11) from Table 8), and includes per-
formances for separate female and male VocADom@A4H
real test data(female/male in the last two rows). Similar
to smaller distances between (female) TTS and real female
samples (section 4.3.), E2E SLU results are slightly better
for the female test data than for the male test data

6. Discussion
The Att-RNN2 NLU (Att-RNN(4) in Table 7) outperforms
the other aligned and unaligned models. It is competitive
with the state of the art NLU showing that for an NLU
task, the artificial corpus can be used as a stand alone cor-
pus, in spite of the the lexical and syntactic distance be-
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Figure 3: Training data sets and models overview

tween realistic test and artificial data. We used standard
expert-based NLG (Gatt and Krahmer, 2018) in order to
create the artificial corpus. However, for generating sen-
tences with more lexical and syntactic variation, closer to
the VocADom@A4H test data, Generate Adversary Net-
works (GAN) text generation techniques should be studied
(Yu et al., 2017) where the discriminator tries to differenti-
ate between real and fake data produced by the generator.
For pipeline SLU, poor performances are shown in Table 8
(Pipeline, ESPnet-seq2seq-small(8)) with training data pre-
dominantly consisting of TTS (94.39%). This is contrary
to E2E SLU performances with the same data size (E2E,
ESPnet-small(11)), making better use of a reduced data set,
predominantly being artificial data. For the Pipeline SLU
model, optimal performances are only exhibited using an
ASR module trained on a huge amount of real speech data
(472 h) (Kaldi acoustic model (7) in Figure 3).
For E2E SLU Table 9 exhibits better performances for
separate female VocADom@A4H real test data (ESPnet-
small(11) female in the last row) as compared to only male
test data. This is due to the (only) female artificial speech
in the training data and is in line with DTW acoustic dis-
tances being larger between (female) artificial speech and
male real speech as compared to female real speech (Ta-
ble 6). Subsequently male TTS speech should be added to
boost performances. On top of that real inter speaker DTW
acoustic distances are significantly smaller than acoustic
distances between TTS and real speech (Table 6). This in-
dicates that TTS generated with other TTS voices might
decrease this distance. Another possibility is to train a neu-
ral speech synthesis model such as Tacotron (Wang et al.,
2017; Li et al., 2018) for SWEET-HOME real corpus data,
and train with TTS for the synthetic corpus sentences. A
symbolic analysis shows frequent E2E ASR errors for the

keyword proper noun predictions (10% of the total ASR er-
rors), partially due to TTS mispronunciations.

7. Conclusion
In this study we demonstrated the feasibility to train SLU
models, with an artificial semantically labeled domain-
specific corpus. We made our artificial corpus available to
the community6, including the data in different formats to
train state-of-the-art aligned, unaligned NLU models, and
the enriched transcriptions with symbolically inserted slot
and intent labels, to train E2E SLU models. Corpus evalu-
ation using the E2E SLU model exhibits promising results
and shows the possibility of using artificial data as almost
a stand alone training set. Different from pipeline SLU,
an E2E model can be trained with small domain specific
data sets, artificially generated. Acoustic distance analy-
sis shows that the artificial (female) speech data should be
augmented with male voice TTS. The training set can also
be augmented with TTS data as output from neural speech
synthesis models trained on real domain specific training
data. NLG experiments using GANs, might be consid-
ered in order to decrease the symbolic, lexical and syntactic
distance between artificial and real data. Future work to
improve E2E SLU performances, includes multi-task and
transfer learning.
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