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Abstract. With the rapid advancements of sensor technologies and
mobile computing, Mobile Crowd-Sensing (MCS) has emerged as a new
paradigm to collect massive-scale rich trajectory data. Nomadic sensors
empower people and objects with the capability of reporting and shar-
ing observations on their state, their behavior and/or their surrounding
environments. Processing and analyzing this continuously growing data
raise several challenges due not only to their volume, their velocity, and
their complexity but also to the gap between raw data samples and the
desired application view in terms of correlation between observations and
in terms of granularity. In this paper, we put forward a proposal that
offers an abstract view of any spatio-temporal data series as well as their
manipulation. Our approach allows to support this high-level logical view
and provides efficient processing by mapping both the representation and
the manipulation to an internal physical model. We explore an imple-
mentation within a distributed framework and envision the adaptation
of data organization methods combining aggressive indexing and parti-
tioning over time and space. The mapping from the logical view and the
actual data storage will lead to revisiting the traditional database query
rewriting and optimization techniques. This proposal is a first step in the
objective of coping with the complexity, the imperfection of large data
sizes in the MCS context.

Keywords: Spatio-temporal data modeling · Mobile crowd-sensing ·
Query processing

1 Introduction

The recent advances in sensing technologies and mobile computing have paved
the way for the emergence of the Mobile Crowd-Sensing (MCS) [15,17] con-
cept, leading to a continuous generation of large volume of rich trajectory data.
More and more people rely on mobile devices (e.g., smartphone, tablets ...) and
wearable sensors to share observations on their state, their behavior and/or
their surrounding environments such as noise level, temperature or pollution
conditions.
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The growing scale of sensed data (Volume) coupled with real time sensor
observations (Velocity) requires an effective model and efficient processing of
complex spatio-temporal queries. In the past, processing large-scale data or high
velocity data has been a bottleneck. Recently, big data analytics systems are
becoming a de facto standard in massive data handling. While such systems
fit well the large scale nature of sensed data, several issues related to the gap
between raw data samples and the desired application view in term of correlation
between observations occurring in different locations, or between different peri-
ods of time and spatial/temporal granularity (Variety) are still open. The hetero-
geneity and the diversity of sensor handsets from different manufacturers (with
different sensitivities, time resolutions, and noise immunity) necessitate both an
abstract data model, and an efficient implementation and analytics mechanisms.
Currently, existing approaches mainly address historical spatio-temporal data to
deal with the volumetry aspect [14,16,29] or stream time series to deal with con-
tinuous queries [3,11,25]. While these systems are efficient for batch or stream
time series, there is a lack of a unified approach that combines batch and stream
processing and tackles the unique characteristics of spatial mobile sensing data
streams modeling and processing. In this paper, we present a prospective data
model and a query processing module for sensed data streams. Our approach
offers a high-level logical view of Spatio-Temporal Data Series (STDS) as well
as an internal physical model that combines aggressive indexing and partitioning
over time and space to dissolve the heterogeneity and the variety of data. We
introduce an incremental query processing approach within a distributed frame-
work to take into account the real-time processing of continuous queries, the
large volume, and the high velocity of data. Our contributions are as follows:

– A high level logical view of STDS and a multi-granular physical data model
that combines temporal and spatial partitioning.

– An extension of a unified distributed framework for big stored and stream
data.

– A query optimizer within an incremental query processing model that offers
a set of customized transformations rules for the optimization of spatio-
temporal queries.

The rest of this paper is organized as follows. Section 2 discusses the major
challenges related to big sensor data. Section 3 presents the related work while
Sect. 4 provides an overview of our system architecture. In Sect. 5, we explain the
details of the data model. The query processing workflow is presented in Sect. 6,
and Sect. 7summarizes the paper and provides some directions for future works.

2 Challenges of STDS Management

Data measured by mobile sensors can be represented by multivariate time series
with a focus on the spatial dimension in addition to the temporal one. Such
trajectory data denote the paths traced by sensors moving in space over time.
Besides measuring the series of geographical positions over time, trajectory data
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may also contain additional time-dependent variables such as the measurements
of surrounding air pollution of the moving object. This large volume of data
exhibits a number of challenging characteristics:

Spatial and Temporal Autocorrelation. From the modeling view, a dis-
tinctive aspect of such data series is the spatial autocorrelation, meaning that
close objects tend to be more similar than distant objects. The same holds for
consecutive observations on the same device. As a result, collected data from
moving objects cannot be modeled as independent data, and specific algorithms
taking into account the correlation between observations occurring in different
locations, or between different periods of time need to be considered.

Data Heterogeneity. A notable characteristic is the heterogeneity in space
and time. The strength of MCS relies on the usage of different types of sensors
designed by different manufacturers that may vary in their sensitivity, sampling
frequency, and noise immunity. The data collected from all sensing object should
be merged, which could lead to measurements at irregular time intervals and
missing data problems. We could observe timestamps that are closely spaced or
too sparse in different cases. In fact, some sensors may be offline for hours or stay
idle when the device is static (some sensors use the accelerometer to control the
sampling rate), they can switch to a burst mode in some situations (increasing
the sample frequency more than the normal rate) or stop transmitting the data
if the variation is less than a predefined threshold, we could also get different
sensor position resolutions. Such heterogeneous data sources should be taken into
account in the model, and a harmonized view on the data is highly desirable in
order to facilitate their processing and analytics.

Multi-Granularity. Besides, one of the most fundamental characteristics of
mobile sensor data is the diversity of their granularity, both under the temporal
and spatial dimensions. The temporal domain is typically represented at differ-
ent time granularities. The spatial entity can be represented using a hierarchical
representation that describes the subdivision of the spatial domain into different
regions or cells. Combining multiple datasets with several granularities or chang-
ing the granularity of a dataset are important analysis tasks that we intend to
deal with. Thus, we need to define a multi-granularity framework that takes into
account the definition of the spatial and temporal granularities.

Data Volume. Huge amounts of data are being collected continuously from
ubiquitous sensor-enhanced mobile devices (as many as the number of equipped
holders) in different geographical areas. This requires leveraging big data pro-
cessing techniques (e.g., Hadoop or Spark) to achieve in-depth understanding,
and provide useful information.

Data Velocity. New rows in STDS are typically inserted in recent time intervals
as appended rows. Thus, it is necessary to maintain efficient storage structures
to handle the velocity of newly arriving data. The commonly used technique in
online systems is to consider recent data as more relevant and flush old data.
The limitation of such an approach is that some historical data is deleted, as a
result, it misses the opportunity to process such data.
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Continuous Queries. Due to the continuous processing of sensor data, spatio-
temporal queries should be evaluated continuously, which necessitates an incre-
mental processing paradigm. Traditional approaches for processing spatio-
temporal data rely on historical data. While analyzing such archived data is
important, it lacks the real-time processing of continuous queries. We need a
platform that integrates a range of big data technologies to combine the pro-
cessing of historical and real-time data. A new system architecture that handles
massive volume of spatio-temporal data, covers the unique characteristics of
sensor data and integrates batch and dynamic processing is necessary.

3 Related Work

Nowadays, sensor data processing can be oriented towards two perspectives:
either an offline approach for querying historical data or an online approach for
real time queries.

3.1 Offline Processing of STDS

Considerable research efforts have been devoted to offline management and anal-
ysis of big trajectory data (multi-dimensional time series) [12,13,27,34]. These
works are characterized by a complete storage of large historical data. Such data
is used for offline analysis and knowledge discovery. Depending on the applica-
tion type and the queries, the system tries to optimize query processing over the
entire data. The key idea is to use a partitioning mechanism and distribute query
processing among multiple nodes using distributed systems, such as Hadoop or
Spark. Most of current works are oriented towards exploiting spatial indexes to
design efficient methods for optimized query processing while preserving spa-
tial locality. The objective is to tune the system and optimize spatio-temporal
queries by making the best use of existing spatial and temporal indexes. There
are three approaches for indexing trajectory data. The first approach is to con-
sider the time dimension as the first dimension besides the spatial location. It
divides the time dimension into multiple intervals and builds a spatial index
(e.g., R-tree) for the trajectories in each time interval [2], or partitions spatial
data within each time interval into spatial chunks and loads only relevant chunks
for processing [29]. The second approach is to avoid discrimination between the
spatial and the temporal dimensions using 3D space-filling curves techniques as
proposed in Geomesa [16]. This approach allows to map spatio-temporal points
into a single dimension and ensure data locality. It is efficient for queries that
combine both temporal and spatial criteria. This category includes also the vari-
ations and extensions of R-trees: 3D R-tree, TB-tree, STR-tree [24]. The third
approach is to alternate time and space. For example, T-PARINET [26] is based
on a combination of spatial partitioning and B+-tree local indexes. Except T-
PARINET, the aim of such systems is indexing large historical trajectory data.
Therefore, they remain limited when it comes to the support of real time appli-
cation which central goal is to minimize update costs and to support continuous
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queries. Moreover, they do not encompass other dimensions than space and time,
as required in MCS context.

Another related area of research is distributed time series management sys-
tems, a survey on existing systems can be found in [19]. Flint [14] is a time
series library for Apache Spark, it proposes interesting features for time series
manipulation (temporal join, aggregation, moving average ...). It builds a time
series aware data structure (TimeSeriesRDD) that allows to associate a time
range to each partition and preserves the temporal order of data. Flint does not
consider the spatial dimension and the real time nature of queries. It also lacks
optimization techniques for temporal queries. However, in real life applications,
data collected from sensors is represented by multi-dimensional time series where
one dimension corresponds to the spatial location traversed by moving objects
over time. TimeScaleDB [29] extends PostgreSQL query planner, data model,
and execution engine to support SQL queries on time series data. Internally, it
splits tables into chunks, each chunk corresponds to a specific time interval and
a region of the partition key’s space (using hashing). The created partitions are
disjoint, which allows the query planner to select only required chunks to resolve
a query. While apt at scaling SQL queries on large volume of data, this system is
not designed for real time operations, as it lacks the ability to handle continuous
queries and stream processing.

3.2 Online Processing of STDS

There are several commercial solutions for stream processing such as Samza
[25], Flink [11], Spark Structured Streaming [3,32], Storm [30]. While these sys-
tems generally support high ingestion rate and continuous queries, they are not
designed for spatial time series. Academic architectures [1,21,31] were proposed
in the literature focusing on streaming data and ignoring historical data. The
PLACE [22] server is a data stream management system that supports contin-
uous query processing of spatio-temporal streams. It employs an incremental
evaluation paradigm that allows to continuously update the query answer and
proposes high-level algorithms for continuous spatio-temporal queries. Zhang
et al. [33] extends Apache Storm to process data streams for moving objects, they
employ a distributed spatial index to process continuous queries (e.g., contin-
uous kNN). SCUBA [23] allows continuous spatio-temporal queries on moving
objects. It proposes clustering techniques to group moving objects and queries
into moving clusters based on common spatio-temporal properties to optimize
query execution. However, the massive volume of historical trajectory data have
exceeded the capacities of such streaming architectures. Management and index-
ing aspects of large volume of data were not their main concern. Batch processing
is still needed for data analysis on historical data. Besides, for some queries, all
the data is necessary to ensure a more accurate query result. As a result, a com-
mon strategy is to use a hybrid architecture that combines stream and batch
processing.



Prospective Data Model and Distributed Query Processing 71

3.3 Unified Approach for STDS Management

The growing volume of spatial data series and the rapid increase of the veloc-
ity of sensor data streams accelerate the need for a big data architecture that
offers continuous processing of data streams. With the emergence of the volume
and the velocity issues, Marz introduced the Lambda architecture [21] to handle
query processing in a scalable and a fault-tolerant way. It is composed of three
layers: the batch layer, serving layer, and speed layer. The batch layer is respon-
sible for processing historical data for batch analysis. The speed layer focuses on
analyzing incoming streaming data in near real-time and the serving layer aims
at merging the results from the previous two layers. This architecture allows
to handle large-scale data and integrate batch and real-time processing within a
single framework. While the Lambda architecture achieves its goal, it comes with
high complexity and redundancy. Kreps [20] discussed the disadvantages of the
Lambda architecture and presented a new approach for real time data processing
named the Kappa architecture. This architecture favors simplicity by merging the
batch and streaming layers and avoiding data replication. Inspired by the Kappa
architecture, Spark Structured Streaming [3] is a streaming computation system
that combines batch and stream processing using the same code. Based on the
Lambda architecture, PlanetSense [28] is a generic platform for gathering geospa-
tial intelligence from real time data (e.g., social media, passive and participatory
sensing). It combines the power of archived data and the dynamics of real time
data for spatio-temporal analytics. However, such an architecture inherits the
limits of the Lambda architecture, as it needs to implement the transformation
logic twice, once in the batch system and once in the stream processing system.
In contrast to our proposal, PlanetSense does not propose to manipulate tem-
poral operations specific to time series and lacks a representative data model for
time series data taking into account the heterogeneity of data.

4 System Overview

Figure 1 describes our vision of a unified framework for processing batch and
streaming STDS.

Data Sources. There are two types of data ingestion in the system. The first
is batch data ingestion (finite datasets) that consists of loading a previously
acquired data (e.g., loading the data from a previous campaign as a cold start
of the data store). The second type corresponds to streaming data (infinite
datasets) collected from current campaigns. Notice that we archive the acquired
data for further batch analysis, when needed.

Core Engine. The main data processing is performed within the core engine.
It contains three components: the query parser, the optimizer and the indexing
component (as detailed hereafter). Internally, we rely on existing distributed and
streaming engines to generate parallel dataflows. Our target is not a pure stream-
ing framework that requires hard real-time handling. Therefore, we have chosen
Spark Structured Streaming as a back-end and exploit the parallel receivers of
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Fig. 1. System architecture

Spark Streaming to collect data from different data sources. Our queries are
processed using the Spark’s micro-batch model, which processes data streams as
a series of small batch jobs.

Query Parser. The query parser is responsible for checking and validating the
query syntax. It translates an algebraic expression into a set of transformations
on Spark Streaming DataFrame, such as selection, projection, temporal join, shift,
aggregation to convert values to coarser or finer granularity. These operators form
an algebra, as an extension of the relational algebra to account for the semantic
of STDS (see Sect. 5 for more details). Subsequently, we propose to extend the
Spark Streaming DataFrame API to support spatio-temporal operations.

Query Processing. Our query optimizer creates a series of incremental exe-
cution plans from a streaming logical plan. The idea is to inject appropriate
optimization rules to obtain optimized execution plans. Rule-based optimization
in our context exploits spatial indexing and time slicing to access the smallest
possible number of partitions, avoiding cartesian product (in case of temporal or
spatial joins) or performing selection on required time intervals as early as possi-
ble ... Indeed, our query optimizer injects optimization rules to avoid scanning all
the data series and eliminates records that do not contribute to the query result.
Our query processing module uses the Spark streaming DataFrames/Datasets
API to combine batch and stream processing. This data structure allows to rep-
resent bounded data as well as streaming data. The advantage is that we can
apply the same operations on static and streaming DataFrames.

Indexing. We integrate the concept of indexing to achieve better query perfor-
mances. We employ time slicing to divide the input data into multiple slices that
are distributed on their time granularity. Data within each slice is further divided
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into sub-slices based on spatial indexing techniques. The key idea is to consider
the temporal dimension first, which is important for time series analysis. Details
about our physical model are presented in Sect. 5.3.

Data Storage. In order to provide accurate and real-time analysis, we maintain
different data storage for raw data and query (continuous) results. Raw data
refers to incoming stream time series data persisted for batch analysis using
Parquet format. New streaming data are maintained in memory until it exceeds
a memory threshold (specified by the user). Once the threshold is reached, it
is flushed to a separate data storage. This is done periodically using an append
mode to the DataFrame. Doing so, data are blocked in output files which size is
controlled, avoiding the inefficient multiplicity of small files resulting from the
default mode.

5 Data Model

As a running example, we consider a database derived from Polluscope1. A cohort
of volunteers is collecting sensory data each in a different STDS, possibly at
different granularities. For instance, GPS data are acquired at a higher frequency
than air pollutants such as PM2.5 and NO2.

5.1 Preliminaries

The notion of granularities has been deeply studied in the literature, Bettini
et al. [4–6] define the temporal granularity as a partition of the time domain.

Definition 1 (Temporal Granularity). Formally, a temporal granularity gT is a
function from an ordered set IT to the power set of the temporal domain T such
that:

∀i, j, k ∈ IT , (i < k < j ∧ gT (i) �= ∅ ∧ gT (j) �= ∅ =⇒ gT (k) �= ∅)

∀i, j ∈ IT , (i < j =⇒ ∀x ∈ gT (i) ∀y ∈ gT (j) x < y)

Typical examples of temporal granularities are days, weeks, months. gT (i) are
called temporal granules of the granularity gT . The first condition states that
the subset of the set that maps to non-empty subsets of the time domain is
contiguous. The second condition states that granules do not overlap and that
their order is the same as their time domain order. Besides, Camossi et al. [10]
define the spatial granularity as a mapping from an index set to subsets of the
spatial domain (i.e. a set of 2−dimensional points).

Definition 2 (Spatial Granularity). Formally, a spatial granularity gS is a func-
tion from an ordered set IS to the power set of the spatial domain S such that:

∀i, j ∈ IS , (i �= j ∧ gS(i) �= ∅ ∧ gS(j) �= ∅ =⇒ intersects(gS(i), gS(j) �= ∅)
1 A French project to build a participative observatory for the surveillance of individ-

ual exposure to air pollution and health effects. ANR-15-CE22-0018 Grant. http://
polluscope.uvsq.fr.

http://polluscope.uvsq.fr
http://polluscope.uvsq.fr
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Typical examples of spatial granularities are pixels of different sizes, or a
spatial hierarchy such as administrative subdivisions of a country. gS(i) are called
spatial granules of the granularity gS .

5.2 Logical Data Model

Definition 3 (Time Series). We define a time series as an infinite sequence of
values where a value is a couple (t, v) where t ∈ T is a timestamp (at a given
granularity) from a time domain T with discrete time units in increasing order
and v is a vector (v1, ..., vn) where each value is a measurement or scalar value,
v is an n-tuple of a fixed size.
The left side Fig. 2 shows an example of a time series that records the time t and
the corresponding values (e.g., PM2.5, PM10, NO2) captured in a vector v.

Definition 4 (Spatio-Temporal Data Series). We define a Spatio-Temporal
Data Series (STDS) as a time series where the location (e.g., latitude and lon-
gitude) belongs to the vector v.

Definition 5 (Empty Value). The empty value (denoted ‘!’) means that there
exist no value. As a time series R is an infinite sequence of vectors, ∀v ∈
R, time(v) ∈ T . If v is not defined at a given time, then v = !.

Definition 6 (Unknown Value). The unknown value (denoted ‘?’) means that
the value is undefined. It is equivalent to the NULL value in the relational model.

Using our model, a time series constitutes a linear space vector (a collection
of vectors). This mathematical structure allows us to apply basic vector space
operations (plus, minus, scale). Thus, time series could be added (denoted +),
multiplied (denoted ∗) by numbers (scalar) or even combined linearly in expres-
sions such as TS1+s∗TS2 (s being a real). Our model includes also an extension
of the relational algebra operators to the support of time series. To this end, we
revisit the operators such as temporal selection, projection, join, union, inter-
section, aggregation as follows.

Definition 7 (Temporal Selection). The temporal selection applied to a time
series is a time series where we replace the original value with an empty value
(!) if the predicate is not satisfied. Denoting (t, v) the entry t of vector v of the
processed time series:

TSelpred(R) = {(t, v) | (t, v) ∈ R ∧ pred(v)} ∪ {(t, !) | (t, v) ∈ R∧ !pred(v)}
Example: Selection of air pollutants exceeding a certain threshold (e.g., 50).

TSelvi>50(R)

Definition 8 (Window Selection). We define a window selection operator as a
transformation that selects values satisfying a temporal predicate w. Formally:

WSelw(R) = {(t, v) | (t, v) ∈ R ∧ overlaps(t, w)}
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Example: Selection of air pollutants during a specific time period.

WSel[01/06/2019,15/06/2019](R)

Definition 9 (Temporal Projection). We define a temporal projection operator
as a transformation that applies a function to each value of the time series it is
applied on. Formally:

TProjf (R) = {(t, (v1, ...vk)) | (t, v) ∈ R ∧ vi = f(v) for i ∈ {j1, j2, ..., jk}}
Where f is a linear function that preserves vector addition and scalar multipli-
cation.
Example: Projection and multiplication of PM10 values by 2.

TProjv2∗2(R)

TProjv2∗2(R)

T V

1
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Fig. 2. Selection and Projection with Examples

Definition 10 (Shift). We define a shift operator as a transformation that
applies a shift (future or past) to each timestamp of the time series. Formally:

Shiftδ(R) = {(t′, v) | (t, v) ∈ R ∧ t′ = t + δ}
Example: Shift the environmental time series by 1 day in order to compare the
exposure to pollutants between two consecutive days.

Shift1day(R)

Definition 11 (Temporal Intersection, Difference & Union). We define an
adaptation of the relational intersection, difference and outer union as follows:

S1∩S2 = {(t, v) | (t1, v1) ∈ S1∧(t2, v2) ∈ S2∧t = intersects(t1, t2)∧v = v1 = v2}
S1 − S2 = {(t, v) | (t, v) ∈ S1 ∧ (t, v) /∈ (S1 ∩ S2)}

S1 ∪ S2 = {(t, v) | (t, v) ∈ (S1 − S2) ∨ (t, v) ∈ (S2 − S1) ∨ (t, v) ∈ (S1 ∩ S2)}
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Definition 12 (Temporal Aggregation). Let R be a time series with a timestamp
attribute t, f be an aggregation function (e.g., sum, count, avg) that takes a set
of values as an argument and applies an aggregation. We define a set GT that
contains all granules τ of granularity gT such that GT (R) = {τ |τ ∈ cast(t, gT )∧
t ∈ R}. Each element of GT defines a partition S(τ,R) of R such that:

S(τ,R) = {v | (t, v) ∈ R ∧ overlaps(time(v), τ)} (2)

The temporal aggregation is defined as:

TAgg(gT ,f)(R) = {(τ, f(S(τ,R))) | τ ∈ GT (R)}
The set GT (e.g., GT = {March,April, June, July}) ranges over the gran-

ules of a granularity gT (e.g., months). S(τ,R) collects all the values v ∈ R
such that time(v) is overlapping τ . A result tuple is then produced by extending
τ with the result of the aggregate function f that is computed over each element
of S(τ,R). Example: Compute the monthly average of all air pollutants.

TAgg(months,avg)(R)

Definition 13 Window Aggregation. This operator allows to partition and
aggregate values over time, based on a moving window w. We define a set
WT (R) = {τ1, τ2, τ3, ..., τq} that contains the collection of time intervals dividing
the time horizon tI of R into sub-intervalls of the size of the window w such that
tI =

⋃q
i=1 τi. Each element of WT define a partition S(τ,R) as defined in Eq. 2.

Thus, we define the window aggregation as:

WAgg(w,f)(R) = {(τ, f(S(τ,R))) | τ ∈ WT (R)}
Example: Compute the average over a half an hour moving window of a specific
air pollutant.

WAgg(30min,avg)(R)

Definition 14 (Temporal Join). The temporal join between two time series R
and S allows to append each row in R with the row in S at the same time values.
Formally:

TJoin(R,S) = {(t, v) | (t1, v1) ∈ R ∧ (t2, v2) ∈ S ∧ v = v1 ⊕ v2
∧t = intersects(t1, t2) ∧ t �= ∅}

Example: Match the environmental time series (R) with the GPS data (L).

TJoin(R,L)

Definition 15 (Shift Temporal Join). The future (past) temporal join between
two time series R and S allows to append each row in R with the closest future
row in S at or after (before) a time interval δ. It is a redefinition of the temporal
join and the shift operators. Formally:

TJoinδ(R,S) = {(t, v) | (t1, v1) ∈ R ∧ (t2, v2) ∈ S ∧ v = v1 ⊕ v2
∧t = intersects(t1 + δ, t2) ∧ t �= ∅}
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Example: Match the environmental time series (R) with the shifted humidity (H)
which variation may impact the values in R after 3mn.

TJoin3mn(R,H)

Definition 16 (Spatial Aggregation). We define the spatial counterpart of GT

denoted GS such that GS(R) = {s|s ∈ cast(location(t), gS) ∧ t ∈ R} where gS is
a spatial granularity and location(t) gives the spatial element of a timestamp t
∈ R. Each element of GS defines a subset of values as follows:

SgS
(s,R) = {v | (t, v) ∈ R ∧ overlaps(location(t), s)}

Similar to the temporal aggregation, the spatial aggregation is defined by the
following expression:

SAgg(gS ,f)(R) = {(s, f(SgS
(s,R))) | s ∈ GS(R)}

Example: For each country, compute the highest value of a specific air pollutant.

SAgg(countries,max)(R)

We could also propose other operators such as a split operator which subdi-
vides a single time series into multiple segments, or a clustering that partitions
a time series according to consecutive similar values, or spatio-temporal join by
adding a spatial predicate.

5.3 Physical Data Model

Physically, an infinite sequence of values cannot be stored. As in [18], at storage
level, we propose a discrete model of time series data to implement the infinite
sequence as in the logical (abstract) model. We physically encode time series data
as a set of sequences with specific metadata. As streaming time series enters our
framework, each timestamp is represented by a positive integer named Epoch and
a granularity. The granularity is chosen based on the original precision of data
(e.g., 2019/06 corresponds to a one-month granularity). To reduce the storage
overhead, for each sequence of a time series, we only store an array of values
omitting the actual timestamp. In fact, we associate a start Epoch value s, and
a granularity g as metadata. Then the timestamp of the ith values of the array
can be recovered by the simple formula s+ i ∗ g. If the analysis needs to operate
over raw time format, then we use the metadata to calculate the row number of
the corresponding values. Our model allows to manage missing data, for example,
if there is no value between two sequences, at the storage level nothing is stored,
at the logical level, it is represented by an empty value denoted as ‘!’.

To summarize the first phase of our proposed physical model, time series data
is organized as sequences of lists where each list is represented by a granularity.
This allows to structure data in a temporal hierarchy where each granularity is
represented as a level in the hierarchy. In order to speed-up the access and the
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filtering on time series, and in particular to STDS data, we propose a model that
alternates temporal and spatial indexing. We envision a two-level partitioning
scheme, where the first level follows a global index, and the second depends on
a second index. At the lowest level, the data will be further divided into even
smaller spatial sub-partitions called buckets. For instance, the first level can
leverage a spatial index while the second follows a temporal partition, and the
buckets could be based on the order of spatial filling curves. The way the spatial
and temporal dimensions will be alternated is not yet decided and may require
fine tuning to adapt to the data and the query profile. For query processing,
our system will only scan the content of the spatial bucket (e.g., /sid=20) that
can be accessed from the temporal partition (e.g., /ts.parquet/nump=10) that
contains a range of Epoch indices. This physical organization is inspired by the
physical optimization employed for large volume of astronomical data proposed
in [7,9]. It has proved its efficiency, as it processes the query in a way that
makes it efficient to retrieve the contents of required spatial buckets, obviate
scanning irrelevant partitions and allow fast aggregation queries for granularity
conversions. We use an append save-mode to load additional data while avoiding
to overwrite existing data. Data is archived in time-ordered partitions. New
incoming time series naturally arrives time-ordered, this allows new data to be
appended to existing partitions rather than having to re-sort data into previously
stored partitions.

6 Query Processing

Spark Structured Streaming is based on the Spark Catalyst extensible opti-
mizer [3] which allows adding new optimization techniques. Our knowledge of
the Spark Catalyst optimizer helped us in designing a new query processing
model for STDS. Figure 3 represents our query processing workflow that con-
sists of three major steps: Extended Analysis, Incrementalization and Extended
logical-physical optimizations. The input is an algebraic expression that is trans-
lated into a set of transformations on Spark Streaming DataFrames by the query
parser. This allows to leverage the optimizations offered by the Catalyst opti-
mizer and to inject new optimization techniques.

Query Parser Logical Plan
Optimized 
Physical 

Plan
Incremental 

Logical Plans

Algebraic 
expression

Extended 
Analysis

Incrementalization Logical and Physical 
Optimization

Fig. 3. Query processing workflow
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Extended Analysis. The Extended Analysis extends the Spark Structured
Streaming analysis to resolve spatio-temporal operations. It validates the query
and resolves the attributes and data types. We intend to extend the catalyst
optimizer to inject resolution rules in order to transform an impossible-to-solve
plan into an analyzed logical plan.

Incrementalization. The next step is to use the Spark Structured Stream-
ing incrementalization technique that allows to continuously update results in
response to new data. The main idea is to only report the changes in the query
result since the last trigger. This ensures a fast query evaluation because we limit
the amount of data to get the query result. We rely on the concept of incremental
algorithms to transform queries into trees of traditional logical operators (e.g.,
join, filter ...).

Extended Logical and Physical Optimizations. The objective of this step
is to exploit logical optimization to transform the logical plan into an optimized
logical-physical plan using indexing and partitioning. It allows to solve the fil-
tering phase of some proposed queries by either transforming the temporal join
query into an equi-join or by filtering the relevant partitions required by spatial
or temporal ranges... Our query processing module applies multiple optimization
rules to map a query plan to a semantically equivalent plan. Some examples of
optimization rules that could be included:

– Temporal Partition Pruning. It consists in determining the temporal par-
titions that need to be scanned, and hence the epoch indices that can be
pruned, to get the query result. Such a rule could be applied for selection
queries and allows to access relevant values using their rows number.

– Spatial Index PushDown. This optimization allows to inject new filters in the
query plan to eliminate loading spatial objects that do not contribute to the
query result. This ensures that such filters are applied at the low level rather
than dealing with the entire temporal partition.

– Avoiding Cartesian Product. Temporal join queries can be conceptually for-
mulated as cartesian products. A possible optimization is to replace this prod-
uct by an equi-join on Epoch indices. The trick is to take inspiration from our
spatial join algorithm [8] by shifting all objects of a reference dataset on the
fly and transforming the start epoch values. Then, a simple equi-join query
on epoch indices becomes sufficient to generate candidate results.

7 Conclusion

In this paper, we presented a unified framework for mobile sensing big stored
and stream data. Our framework extends Spark Structured Streaming with the
adaptation of data organization and the injection of various optimization rules
to optimize processing of stream and historical data series. We also presented
a logical data model for STDS and a multi-granular internal data model to
take into account the heterogeneity of data. We presented the key query pro-
cessing workflow of our framework to support incremental algorithms and logi-
cal/physical optimizations. Currently, we are working on an integrated prototype
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within Spark and Catalyst to support an important application branch of MCS
which is air quality sensing where air pollution is monitored using multi-sensor
devices within the Polluscope project. To deal with the heterogeneity of data, we
are currently working on the integration of spatial and temporal disaggregation
techniques using ancillary data. These techniques allow a high-resolution and
unified output in both the temporal and spatial dimensions.
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source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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