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In this article, we generalize Loday and Pirashvili's [11] computation of the Ext-category of Leibniz bimodules for a simple Lie algebra to the case of a simple (non Lie) Leibniz algebra. Most of the arguments generalize easily, while the main new ingredient is the Feldvoss-Wagemann's cohomology vanishing theorem for semi-simple Leibniz algebras.

Introduction

The goal of this article is to present a new result in the theory of representations of Leibniz algebras, namely to compute Ext groups between finite dimensional simple bimodules of a simple (non Lie) Leibniz algebra over a field of characteristic 0. Leibniz algebras are a generalization of Lie algebras, discovered by A. Bloh in the 1960s, where one does not require the bracket to be antisymmetric. They were rediscovered by J.-L. Loday [START_REF] Loday | Une version non commutative des algèbres de Lie: les algèbres de Leibniz[END_REF] in the 1990s when, while trying to lift the boundary operator of Chevalley-Eilenberg homology from d : Λ n g -→ Λ n-1 g to d : g ⊗n -→ g ⊗n-1 , he noticed that the only property needed to show that d • d = 0 was the Leibniz identity of the bracket, that is: [x, z]] ∀x, y, z ∈ g (see [START_REF] Loday | Une version non commutative des algèbres de Lie: les algèbres de Leibniz[END_REF] for a survey of the subject).

[x, [y, z]] = [[x, y] , z] + [y,
J.-L. Loday and T. Pirashvili studied the Leibniz representations of semi-simple Lie algebras in [START_REF] Loday | Leibniz representations of Lie algebras[END_REF], and established in that paper the following theorem (Theorem 3.1):

Theorem -1.1. Let g be a finite dimensional simple Lie algebra over a field of characteristic 0, and let L(g) denote the category of finite dimensional Leibniz representations of g. The simple objects in L(g) are exactly the representations of the form M a and N s , where M , and N are simple right g-modules. All groups Ext 2 U L(g) (M, N ) between simple finite dimensional representations M , N are zero, except Ext 2 U L(g) (g s , g a ) which is one-dimensional. Moreover,

Ext 1 U L(g) (M s , N a ) ≃ Hom U (g) (M, N ) where N = Coker(h : N -→ Hom(g, N )), h(n)(x) = [n, x]
and all other groups Ext 1 U L(g) (M, N ) between simple finite dimensional representations M , N are zero. This theorem shows in particular that, contrary to the representations of semi-simple Lie algebras, the category of Leibniz bimodules of a semi-simple Lie algebra is not semi-simple.

The aim of our article is to generalize this result to Leibniz representations of simple (non Lie) Leibniz algebras by closely following [START_REF] Loday | Leibniz representations of Lie algebras[END_REF], and making the adequate changes whenever necessary. The key in doing so is a theorem of J. Feldvoss and F. Wagemann, namely Theorem 4.2 of [5], assuring the vanishing of Leibniz cohomology needed in the proof of our main theorem: Theorem -1.2. Let h be a finite-dimensional semisimple left Leibniz algebra over a field of characteristic zero, and let M be a finite-dimensional h-bimodule. Then HL n (h, M ) = 0 for every integer n ≥ 2, and if M is symmetric, then HL n (h, M ) = 0 for every integer n ≥ 1.

Interestingly, this result represents a continuation of other vanishing theorems. First Whitehead's Theorem giving the vanishing of Chevalley-Eilenberg cohomology of a semi-simple Lie algebra with values in a finite dimensional g-module whose invariants are trivial. Then P. Ntolo in [START_REF] Ntolo | Homologie de Leibniz d'algèbres de Lie semi-simples[END_REF] and T. Pirashvili in [START_REF] Pirashvili | On Leibniz homology[END_REF] independently proved results about Leibniz (co)homology of Lie algebras, while the authors of [5] proved the vanishing of Leibniz cohomology of semi-simple Leibniz algebras.

This allows us to prove the following theorem which is the main theorem of this article. Recall that Leib(h) denotes the two-sided ideal generated by the elements [x, x] for x ∈ h and that h Lie := h/Leib(h) denotes the canonical quotient Lie algebra associated to a Leibniz algebra h. Both of them are in particular left U h Lie -modules and Leib(h) ⋆ and h ⋆ Lie are the corresponding dual left modules. Theorem -1.3. Let h be a finite dimensional simple Leibniz algebra over a field of characteristic zero k. All groups

Ext 2 U L(h) (M, N ) between simple finite dimensional h-bimodules are zero, except Ext 2 U L(h) (M s , N a ), with M ∈ {Leib(h) ⋆ , h ⋆
Lie } and N ∈ {Leib(h), h Lie } which is one dimensional. Moreover, we have that:

• Ext 1 U L(h) (M s , k), and Ext 1 U L(h) (k, N a ) are one dimensional, for M ∈ {Leib(h) ⋆ , h ⋆ Lie } and N ∈ {Leib(h), h Lie }; • Ext 1 U L(h) (M s , N a ) ≃ Hom U (h Lie ) (M, N ),
where

N := Coker(h : N -→ Hom(h, N )) h(n)(x) := [x, n] L • All other groups Ext 1 U L(h) (M, N ) between simple finite-dimensional h-bimodules M and N are zero.
We see that, when we do not restrict ourselves to Lie algebras, there are more non-trivial Ext groups. Moreover, as a corollary of this theorem one can show that the Ext dimension of the category of finite dimensional bimodules over a semi-simple Leibniz algebra is again 2.

We work in our article with left Leibniz algebras. All preliminary results about Leibniz algebras are due to Loday and Pirashvili and shown in the framework of right Leibniz algebras. References where the corresponding results are shown for left Leibniz algebras include [START_REF] Covez | L'intégration locales de algèbres de Leibniz[END_REF] and [START_REF] Feldvoss | Leibniz algebras as non-associative algebras[END_REF].

Leibniz Algebras

In this section, we introduce the objects in which we are interested, as well as some of their basic properties. All of this material is due to Loday and Pirashvili. For more results on Leibniz algebras as non-associative algebras see [START_REF] Feldvoss | Leibniz algebras as non-associative algebras[END_REF], and see [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF] for results about their (co)homology. Definition 1.1. A (left) Leibniz algebra over a field k is a vector space h equipped with a bilinear map:

[-, -] : h × h -→ h
called Leibniz bracket, that satisfies the (left) Leibniz identity:

(1) [x, [y, z]] = [[x, y] , z] + [y, [x, z]] ∀x, y, z ∈ h
With this definition, we see that Leibniz algebras are indeed a generalization of Lie algebras, as it is not difficult to check that if we impose the anticommutativity of the bracket, the Jacobi and Leibniz identities are equivalent.

Remark 1.2. We can also define a right Leibniz algebra by asking our bracket to satisfy the right Leibniz identity instead: [y, z]], but we will only be concerned with left Leibniz algebras.

[[x, y] , z] = [[x, z] , y] + [x,
For every Leibniz algebra h, we have a short exact sequence: This is not the only definition of simplicity: One can also only require that 0 and h are the only ideals of h, but with this definition, all simple Leibniz algebras are in fact Lie algebras, see the beginning of section 7 of [START_REF] Feldvoss | Leibniz algebras as non-associative algebras[END_REF], and the references therein. We will also need the Proposition 7.2 of [START_REF] Feldvoss | Leibniz algebras as non-associative algebras[END_REF], namely: Proposition 1.4. If h is a simple Leibniz algebra, then h Lie is a simple Lie algebra and Leib(h) is a simple h Lie -module.

(2) 0 -→ Leib(h) -→ h -→ h Lie -→
We now give the definition of the notion of Leibniz modules and bimodules. Definition 1.5. Let h be a Leibniz algebra. An h-bimodule is a vector space M over k equipped with two bilinear maps:

[-, -] L : h × M -→ M and [-, -] R : M × h -→ M which satisfy the following relations ∀x, y ∈ h, ∀m ∈ M : (LLM) [x, [y, m] L ] L = [[x, y] , m] L + [y, [x, m] L ] L (LML) [x, [m, y] R ] L = [[x, m] L , y] R + [m, [x, y]] R (MLL) [m, [x, y]] R = [[m, x] R , y] R + [x, [m, y] R ] L
We define a left h-module as being a vector space M over k equipped with a bilinear map:

[-, -] L : h × M -→ M
satisfying the relation (LLM) of Definition 1.5.

Definition 1.6. Let h be a Leibniz algebra, and M a Leibniz bimodule.

If [x, m] L = -[m, x] R ∀x ∈ h, ∀m ∈ M then M is said to be symmetric and denoted M s . If [m, x] R = 0 ∀x ∈ h, ∀m ∈ M then M is said to be antisymmetric and denoted M a .
If M is both symmetric and antisymmetric, then M is trivial.

For every h-bimodule M , there is a short exact sequence of h-bimodules: [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF]. Note that by construction M/M 0 is a symmetric h-bimodule, and that M 0 is an antisymmetric h-bimodule. Moreover, if we consider h as an h-bimodule using the adjoint action, then the short exact sequences (2) and (3) coincide.

(3) 0 -→ M 0 -→ M -→ M/M 0 -→ 0 where M 0 = Span k ([x, m] L + [m, x] R ), see (1.10) of
If M is an h-bimodule (in fact this works even when M is only a left h-module), then it has a natural h Lie -module structure (in the Lie sense). Indeed one can define a left action of h Lie as follows:

h Lie × M -→ M (x, m) -→ [x, m] L
Conversely, if M is an h Lie -module, there are two natural ways to see it as an h-bimodule. We first see it as a left h-module via the projection h -→ h Lie , and then we impose our right action to be either trivial, or to be the opposite of the left action, yielding respectively an antisymmetric bimodule, or a symmetric one. Knowing this we can state the following Theorem (due to Loday-Pirashvili [START_REF] Loday | Leibniz representations of Lie algebras[END_REF]):

Theorem 1.7. The simple objects in the category of h-bimodules of finite dimension are exactly the modules of the form M a and M s , where M is a finite dimensional simple h Lie -module.

The proof follows easily from the existence of the short exact sequence (3), and the fact that Leib(h) acts trivially from the left (i.e. is contained in the left center).

We now introduce the notion of the universal enveloping algebra of a Leibniz algebra, see (2.1) of [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF] (but note that the authors work with right Leibniz algebras. A reference for left Leibniz algebras is [START_REF] Covez | L'intégration locales de algèbres de Leibniz[END_REF].). Definition 1.8. Let h be a Leibniz algebra. Given two copies h l and h r of h generated respectively by the elements l x and r x for x ∈ h, we define the universal enveloping algebra of h as the unital associative algebra:

U L(h) := T (h l ⊕ h r )/I
where

T (h l ⊕h r ) := ∞ n=0
(h l ⊕h r ) ⊗n is the tensor algebra of h l ⊕h r and I is the two-sided ideal of h generated by the elements :

l [x,y] -l x ⊗ l y + l y ⊗ l x r [x,y] -l x ⊗ r y + r y ⊗ l x r y ⊗ (l x + r x )
For a Lie algebra g, there is an equivalence between being a g-module and being a U (g)-module, where U (g) is the universal enveloping algebra of the Lie algebra g. The following theorem allows us to establish the same kind of connection between the structure of h-bimodule and left U L(h)-module (due to Loday-Pirashvili [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF]. See also [START_REF] Covez | L'intégration locales de algèbres de Leibniz[END_REF] for a proof in the framework of left Leibniz algebras). Theorem 1.9. Let h be a Leibniz algebra. There is an equivalence of categories between the category of h-bimodules and the category of U L(h)-modules.

For a proof see Theorem (2.3) of [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF] (note once again that the authors work with right Leibniz algebras). This actually tells us, given one of the two structures, how to obtain the other: The action of l x corresponds to the left action [x, -] L while the action r y corresponds to the right action [-, y] R .

Another nice property of this universal enveloping algebra is that we can establish a connection between U (h Lie )-modules and U L(h)-modules. To this end we define the following algebras homomorphisms:

d 0 : U L(h) -→ U (h Lie ) d 0 (l x ) = x d 0 (r x ) = 0
and:

d 1 : U L(h) -→ U (h Lie ) d 1 (l x ) = x d 1 (r x ) = -x
With these, given a U (h Lie )-module, we can view it as a U L(h)-module either via d 0 or via d 1 . The former gives an antisymmetric h-bimodule, while the latter gives a symmetric h-bimodule. Moreover, since they are surjective (their image contains the generators of U (h Lie )), this allows us to consider U (h Lie ) as the quotient U L(h)/Ker(d i ) for i ∈ {0, 1}.

Being a generalization of Lie algebras, Leibniz algebras are equiped with a generalization of Chevalley-Eilenberg cohomology, namely Leibniz cohomology which was discovered by Loday. Let h be a Leibniz algebra, and M be an h-bimodule. We give the (left version of the) definition of the cochain complex CL n (h, M ), dL n } n≥0 from [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF] (1.8) (a reference for this left version is [5]), namely:

CL n (h, M ) = Hom(h ⊗n , M ) dL n : CL n (h, M ) -→ CL n+1 (h, M )
with:

dL n ω(x 0 , ..., x n ) = n-1 i=0 (-1) i [x i , ω(x 0 , ..., xi , ..., x n )] L + (-1) n-1 [ω(x 0 , ..., x n-1 ), x n ] R + 0≤i<j≤n (-1) i+1 ω(x 0 , ..., xi , ..., x j-1 , [x i , x j ] , x j+1 , ..., x n )
Definition 1.10. Let h be a Leibniz algebra, and M be an h-bimodule. The cohomology of h with coefficients in M is the cohomology of the cochain complex {CL n (h, M ), dL n } n≥0 .

HL n (h, M ) = H n ({CL n (h, M ), dL n } n≥0 ) ∀n ≥ 0 Remark 1.11. By definition CL 0 (h, M ) = M and dL 0 m(x) = -[m,
x, ] R . Therefore, we have:

HL 0 (h, M ) = {m ∈ M, [m, x] R = 0 ∀x ∈ h}
This is the submodule of right invariants. Note that if M is antisymmetric, then HL 0 (h, M ) = M .

Ext in the category of Leibniz bimodules

We are now interested in computing the Ext groups in the category of h-bimodules. From now on, we will consider a finite-dimensional left Leibniz algebra h over a field of characteristc zero k. The definition of the morphisms d 0 and d 1 , together with the change of rings spectral sequence constructed in the subsections 1 to 4 of Chapter XVI from [START_REF] Cartan | Homological algebra. With an appendix by David A. Buchsbaum[END_REF], yield the following spectral sequences:

E pq 2 = Ext p U (h Lie ) Y, Ext q U L(h) (U (h Lie ) a , X) =⇒ Ext p+q U L(h) (Y a , X) (S1) E pq 2 = Ext p U (h Lie ) Z, Ext q U L(h) (U (h Lie ) s , X) =⇒ Ext p+q U L(h) (Z s , X) (S2)
where X is an h-bimodule, and Y and Z are left h-modules. For a Lie algebra g, we have the following isomorphism Ext * U (g) (M, N ) ≃ H * (g, Hom(M, N )), which we can use to rewrite (S1) and (S2) as:

E pq 2 = H p h Lie , Hom(Y, Ext q U L(h) (U (h Lie ) a , X) =⇒ Ext p+q U L(h) (Y a , X) (S1) E pq 2 = H p h Lie , Hom(Z, Ext q U L(h) (U (h Lie ) s , X) =⇒ Ext p+q U L(h) (Z s , X) (S2)
Moreover, by Theorem (3.4) of [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF], we have an isomorphism

Ext * U L(h) (U (h Lie ) a , X) ≃ HL * (h, X)
This isomorphism also holds for the left framework as is easily shown by constructing the left version of the non-commutative Koszul complex of [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF].

This gives us the proposition:

Proposition 2.1. Let h be a Leibniz algebra, let X be an h-bimodule, and Y and Z be left h-modules.

There are two spectral sequences:

E pq 2 = H p (h Lie , Hom(Y, HL q (h, X))) =⇒ Ext p+q U L(h) (Y a , X) (S1) E pq 2 = H p h Lie , Hom Z, Ext q U L(h) (U (h Lie ) s , X) =⇒ Ext p+q U L(h) (Z s , X) (S2)
In the previous proposition, we were able to identify Ext * U L(h) (U (h Lie ) a , X) to the Leibniz cohomology HL * (h, X). What about Ext * U L(h) (U (h Lie ) s , X)? The following result will give a generalization of Proposition 2.3 of [START_REF] Loday | Leibniz representations of Lie algebras[END_REF], in order to give a relation between Ext * U L(h) (U (h Lie ) s , X) and Leibniz cohomology. In order to do so, we will have to introduce a shift in the homological degree which will be responsible for nontrivial Ext groups in what will follow. Proposition 2.2. Let h be a Leibniz algebra, and M be an h-bimodule. There are isomorphisms:

Ext i+1 U L(h) (U (h Lie ) s , M ) ≃ Hom(h, HL i (h, M )) for i > 0 ≃ Coker(f ) for i = 0 ≃ Ker(f ) for i = -1
where f : M -→ Hom(h, HL 0 (h, M )) is given by:

f (m)(h) = [h, m] L + [m, h] R ∀h ∈ h, ∀m ∈ M
Proof. Let M be an h-bimodule, and

f : M -→ Hom(h, HL 0 (h, M )) f (m)(h) = [h, m] L + [m, h] R We first want to show that Ext 0 U L(h) (U (h Lie ) s , M ) = Ker(f ). But by definition Ext 0 U L(h) (U (h Lie ) s , M ) = Hom U L(h) (U (h Lie ) s , M )
We then define the map:

ev : Hom U L(h) (U (h Lie ) s , M ) -→ M ϕ -→ ϕ(1)
which is an isomorphism onto Ker(f ), of inverse:

µ : Ker(f ) -→ Hom U L(h) (U (h Lie ) s , M ) m -→ ϕ m : (1 → m)
This gives the degree zero equality of the proposition. We now want to show that Ext 1 U L(h) (U (h Lie ) s , M ) = Coker(f ). Consider U L(h) ⊗ h as a left U L(h)-module with the following action ∀x ∈ h, ∀r, s ∈ U L(h): s.(r ⊗ x) = sr ⊗ x Define a homomorphism of left U L(h)-modules by:

f 1 : U L(h) ⊗ h -→ U L(h) 1 ⊗ h -→ l h + r h Then f 1 factors through f 2 : U (h Lie ) a ⊗ h -→ U L(h).
Indeed we have the following commutative diagram:

(D) U L(h) ⊗ h U L(h) U (h Lie ) a ⊗ h 0 f 1 d 0 ⊗id f 2 and define f 2 (d 0 (x) ⊗ h) := f 1 (x ⊗ h) which is well-defined: If x, y ∈ U L(h) are such that d 0 (x) = d 0 (y), then f 1 (x ⊗ h) = f 1 (y ⊗ h). Indeed if x -y ∈ Ker(d 0 ), then x = y + z with z ∈ r z , z ∈ h . Therefore, the relation r y (l x + r x ) = 0 in U L(h) implies that f 1 (x ⊗ h) = f 1 (y ⊗ h).
We claim that f 2 is injective. This follows from the diagram (D) and the fact that Ker(f 1 ) = Ker(d 0 ⊗id). This therefore gives us the following short exact sequence:

0 U (h Lie ) a ⊗ h U L(h) Cokerf 2 0 f 2
But by construction, Im(f 2 ) is the left ideal l x + r x | x ∈ h , which is equal to Ker(d 1 ) (see Section 1). This implies that Coker(f 2 ) is the quotient U L(h)/Ker(d 1 ), that is Im(d 1 ), and the short exact sequence above becomes:

0 U (h Lie ) a ⊗ h U L(h) U (h Lie ) s 0 f 2
This short exact sequence yields the following long exact sequence in cohomology:

0 -→ Hom U L(h) (U (h Lie ) s , M ) -→ Hom U L(h) (U L(h), M ) -→ Hom U L(h) (U (h Lie ) a ⊗ h, M ) -→ Ext 1 U L(h) (U (h Lie ) s , M ) -→ Ext 1 U L(h) (U L(h), M ) -→ Ext 1 U L(h) (U (h Lie ) a ⊗ h, M ) -→ Ext 2 U L(h) (U (h Lie ) s , M ) -→ .
. . Now, by noticing the obvious identification Hom U L(h) (U L(h), M ) = M , and the fact that, U L(h) being a free U L(h)-module, it is projective and therefore Ext 1 U L(h) (U L(h), M ) = 0, we can extract the following exact sequence:

0 → Hom U L(h) (U (h Lie ) s , M ) → M → Hom U L(h) (U (h Lie ) a ⊗ h, M ) → Ext 1 U L(h) (U (h Lie ) s , M ) → 0
To obtain the desired isomorphism, we want to relate it to the exact sequence we get from f :

0 -→ Ker(f ) -→ M -→ Hom(h, HL 0 (h, M )) -→ Coker(f ) -→ 0
and conclude by using the 5-lemma. We can send M onto M via the identity map. We then construct an isomorphism

Hom U L(h) (U (h Lie ) a ⊗ h, M ) -→ Hom(h, HL 0 (h, M )) Notice that since U (h Lie ) a ⊗ h is a quotient of U L(h) ⊗ h, it
is generated, as a U L(h)-module, by the elements 1 ⊗ h, for h ∈ h. We can now define a map:

Hom U L(h) (U (h Lie ) a ⊗ h, M ) -→ Hom(h, HL 0 (h, M )) ϕ -→ φ
where φ(h) := ϕ(1 ⊗ h), for h ∈ h. The image of φ lies in HL 0 (h, M ), for:

φ(h), h ′ R = ϕ(1 ⊗ h), h ′ R = ϕ(r h ′ .(1 ⊗ h)) = 0
using the fact that ϕ is a U L(h)-morphism and the fact that we are considering the U L(h)-module U (h Lie ) a ⊗ h. We can then construct its inverse, by:

Hom(h, HL 0 (h, M )) -→ Hom U L(h) (U (h Lie ) a ⊗ h, M ) u -→ ϕ u with ϕ u : x ⊗ h → x.u(h)
where x denotes the class of x ∈ U L(h) in the quotient U (h Lie ) a (see Section 1). This yields the following diagram:

M Hom U L(h) (U (h Lie ) a ⊗ h, M ) Ext 1 U L(h) (U (h Lie ) s , M ) 0 0 M Hom(h, HL 0 (h, M )) Coker(f ) 0 0 ∼ ( * ) f
where the arrow ( * ) :

Ext 1 U L(h) (U (h Lie ) s , M ) -→ Coker(f ) is
given by functoriality of the Coker. To conclude, we just need to prove that this diagramm is commutative. It is sufficient to show that it is the case for the square:

M Hom U L(h) (U (h Lie ) a ⊗ h, M ) M Hom(h, HL 0 (h, M )) ∼ f Notice that for the arrow M -→ Hom U L(h) (U (h Lie ) a ⊗ h, M ) we identified M ≃ Hom U L(h) (U L(h), M )
via the map m -→ (ψ m : u → u.m). This arrow is therefore given by ψ m -→ ψ m • f 2 , that is:

ū ⊗ x -→ ψ m (f 2 (ū ⊗ x)) = ψ m (f 2 (d 0 (u) ⊗ x)) = ψ m (f 1 (u ⊗ x)) = ψ m (u(l x + r x )) = u(l x + r x ).m
Since U (h Lie ) a ⊗ h is generated as a U L(h)-module by the elements 1 ⊗ x for x ∈ h, it is enough to check the commutativity of the diagram only on these elements. By explicitly writing the maps in question we get:

m = ψ m (1 ⊗ x -→ (l x + r x ).m) m (x -→ [x, m] L + [m, x] R ) f
which by Theorem 1.9 proves the commutativity of the square and therefore of the diagram. The 5-lemma then tells us the arrow ( * ) is an isomorphism, and we obtain the second isomorphism of the proposition.

To get the higher degree isomorphisms, notice that the long exact sequence in cohomology we found earlier goes as follow:

. . . →Ext i U L(h) (U L(h), M ) -→ Ext i U L(h) (U (h Lie ) a ⊗ h, M ) -→ Ext i+1 U L(h) (U (h Lie ), M ) -→ Ext i+1 U L(h) (U L(h), M ) → . . . But U L(h) being a free U L(h)-module, it is projective, hence Ext i U L(h) (U L(h), M ) = Ext i+1 U L(h) (U L(h), M ) = 0
and this for all i. We thus obtain:

0 -→ Ext i U L(h) (U (h Lie ) a ⊗ h, M ) -→ Ext i+1 U L(h) (U (h Lie ), M ) -→ 0 Now,
in order to conclude, we use the fact that:

Ext i U L(h) (U (h Lie ) a ⊗ h, M ) = Hom(h, Ext i U L(h) (U (h Lie ) a , M
)) which is obtained from the classical Hom/Tens adjunction, and the isomorphism given in Theorem (3.4) of [START_REF] Loday | Universal enveloping algebras of Leibniz algebras and (co)homology[END_REF]:

Ext i U L(h) (U (h Lie ) a , M ) ≃ HL i (h, M )
This gives us all the promised isomorphisms, therefore concluding the proof.

We can now compute the Ext groups in the category of h-bimodules and we will see that nontrivial Ext 1 groups appear whenever the degree shift from Proposition 2.2 is happening.

Theorem 2.3. Let h be a finite dimensional simple Leibniz algebra over a field of characteristic zero k. All groups

Ext 2 U L(h) (M, N ) between simple finite dimensional h-bimodules are zero, except Ext 2 U L(h) (M s , N a ), with M ∈ {Leib(h) ⋆ , h ⋆
Lie } and N ∈ {Leib(h), h Lie }, which is one dimensional. Moreover, we have that:

• Ext 1 U L(h) (M s , k), and Ext 1 U L(h) (k, N a ) are one dimensional, for M ∈ {Leib(h) ⋆ , h ⋆ Lie } and N ∈ {Leib(h), h Lie }; • Ext 1 U L(h) (M s , N a ) ≃ Hom U (h Lie ) (M, N ),
where

N := Coker(h : N -→ Hom(h, N )) h(n)(x) := [x, n] L
• All other groups Ext 1 U L(h) (M, N ) between simple finite-dimensional h-bimodules M and N are zero.

Proof. We will compute Ext * U L(h) (M, N ) for every combination of finite-dimensional h-bimodules M and N and reduce it to the Chevalley-Eilenberg cohomology of the simple Lie algebra h Lie in order to conclude.

• Case 1: M = N = k is the trivial h-bimodule. We apply Proposition 2.1 to Y = X = k. By Theorem -1.2, HL q (h, k) = 0 for q ≥ 1, since k being trivial, it is also symmetric. Therefore, we obtain:

Ext * U L(h) (k, k) ≃ H * (h Lie , k) • Case 2: M = k is the trivial h-bimodule,
and N is a nontrivial simple symmetric h-bimodule.

We apply Proposition 2.1 to Y = k, and X = N . Once again by Theorem -1.2, we get:

Ext n U L(h) (k, N s ) = 0 for n ≥ 1
• Case 3: M = k is the trivial h-bimodule, and N is a nontrivial simple antisymmetric h-bimodule.

We have:

HL q (h, N a ) ≃ 0 for q > 1, by Theorem -1.2

≃ Hom U (h Lie ) (h, N ) for q = 1, by Lemma 1.5 of [5] ≃ N for q = 0, since N is antisymmetric

Since N is a nontrivial simple antisymetric h-bimodule, it is also a nontrivial simple h Lie -module, and therefore H * (h Lie , N ) = 0 by Whitehead's theorem. Now using Proposition 2.1, we find:

Ext * U L(h) (k, N a ) ≃ H * -1 (h Lie , Hom U (h Lie ) (h, N )) ≃ H * -1 (h Lie , k) ⊗ Hom U (h Lie ) (h, N )
The second isomorphism is given in [START_REF] Fuchs | Cohomology of infinite-dimensional Lie algebras[END_REF] 

H * -1 (h Lie , k) ⊗ Hom U (h Lie ) (h, N ) ≃ H * -1 (h Lie , k)
If this is not the case, then

H * -1 (h Lie , k) ⊗ Hom U (h Lie ) (h, N ) ≃ 0
• Case 4: M is a nontrivial simple antisymmetric h-bimodule, and N is a simple symmetric hbimodule.

Using Theorem -1.2, we have HL q (h, N s ) = 0 for q ≥ 1. Moreover, because HL 0 (h, N s ) = N h is a trivial h-bimodule, and since we can identify Hom(M, HL 0 (h, N s )) ≃ M ⋆ ⊗ N h with the direct sum of dim(N h ) copies of M ⋆ we find that H p (h Lie , Hom(M, HL 0 (h, N a ))) ≃ H p (h Lie , M ⋆ ) ⊕ ... ⊕ H p (h Lie , M ⋆ ) = 0, since M being a simple nontrivial h Lie -module, so is M ⋆ . Thus yielding:

Ext * U L(h) (M a , N s ) = 0 • Case 5:
M is a nontrivial simple antisymmetric representation, and N is simple and antisymmetric.

Here, Theorem -1.2 apply again, and we have that HL q (h, N a ) = 0 only when q ∈ {0, 1}. We check that HL 1 (h, N a ) is a trivial left h-module. By definition of the chain complex defining Leibniz cohomology, we have that CL 1 (h, N a ) = Hom(h, N ). Now for a morphism ϕ ∈ Hom(h, N ) to be annihilated by the differential dL 1 means satisfying:

dL 1 ϕ(x, y) := [x, ϕ(y)] L -ϕ([x, y]) = 0 ∀x, y ∈ h,
which is exactly to say that the left action of h on the module Hom(h, N ) is trivial. Therefore, the same arguments used in Case 4 still apply, and we get that E pq 2 = 0 for q > 0, and: Ext * U L(h) (M a , N a ) = 0 • Case 6: M is a nontrivial simple symmetric representation, and N = k is the trivial h-bimodule.

We apply Proposition 2.2 to k to find:

Ext i U L(h) ((U (h Lie ) s , k) ≃ 0 if i > 1 ≃ h ⋆ if i = 1 ≃ k if i = 0
because since in this case, the map f in Proposition 2.2 is zero. We can now plug this in the second spectral sequence of Proposition 2.1, with X = k, and Z = M , to obtain:

Ext * U L(h) (M s , k) ≃ H * -1 (h Lie , Hom(M, h ⋆ )) ≃ H * -1 (h Lie , k) ⊗ Hom U (h Lie ) (M, h ⋆ )
Using the same arguments as in Case 3, we get that if

M ≃ Leib(h) ⋆ or M ≃ h ⋆ Lie , then H * -1 (h Lie , k) ⊗ Hom U (h Lie ) (M, h ⋆ ) ≃ H * -1 (h Lie , k) If this is not the case, then H * -1 (h Lie , k) ⊗ Hom U (h Lie ) (M, h ⋆ ) ≃ • Case 7: M and N are both simple nontrivial symmetric h-bimodules.
Applying Proposition 2.2 to N s , and because N is a symmetric h-bimodule, we find that

Ext i U L(h) (U (h Lie ) s , N s ) ≃ 0 i ≥ 1 ≃ N if i = 0
Now using the second spectral sequence of Proposition 2.1, we get:

Ext * U L(h) (M s , N s ) ≃ H * (h Lie , Hom(M, N )) ≃ H * (h Lie , k) ⊗ Hom h Lie (M, N )
Once again, since M and N are simple h Lie -modules, this vector space is nonzero only if M ≃ N , in which case it is isomorphic to H * (h Lie , k). • Case 8: M is a simple nontrivial symmetric h-bimodule, and N is a simple nontrivial antisymmetric h-bimodule. By Proposition 2.2, we have:

Ext i U L(h) (U (h Lie ) s , N a ) ≃ 0 for i > 2 ≃ Hom(h, Hom U (h Lie ) (h, N )) for i = 2 ≃ Coker(h) for i = 1 ≃ Ker(h) for i = 0
The map h appearing here (defined in the statement of the theorem) is due to the fact that N is an antisymmetric h-bimodule. Moreover, since N is supposed to be nontrivial and h is a h-module homomorphism, Ker(h) = 0. Therefore we have that E pq 2 = 0 for q > 2 and q = 0. For the remaining values of q, we have isomorphisms When Ext 2 U L(h) (M s , N a ) = 0, then it is one dimensional. This means that we only have to produce a non trivial two-fold extension 0 -→ N a -→ E -→ F -→ M s -→ 0 with dim(E), dim(F ) < ∞ to conclude.

E
Since Ext 2 U L(h) (M s , N a ) is one dimensional, then we can select one of its generators. It is the equivalence class of an exact sequence

0 N a E F M s 0 ϕ
We can split this sequence into two exact sequences of length 1, 0 -→ N a -→ E -→ Im(ϕ) -→ 0 and 0 -→ Im(ϕ) -→ F -→ M s -→ 0.

Since the sequence represents a generator of Ext 2 U L(h) (M s , N a ), the 1-fold exact sequences cannot split, i.e. represent trivial classes in the corresponding Ext 1 U L(h) . But by Theorem 2.3 again, for this to be the case, they must be in Ext 1 U L(h) (M s , k) and Ext 1 U L(h) (k, N a ) respectively, since the bimodule Im(ϕ) must be both symmetric and antisymmetric (else the extensions are split, again using Theorem 2.3).

But we know that Ext 1 U L(h) (M s , k) = Ext 1 L(h) (M s , k), and Ext 1 U L(h) (k, N a ) = Ext 1 L(h) (k, N a ). This means that E and F must be of finite dimension, allowing us to conclude.

The last step is to show that Ext i L(h) (M, N ) = 0 for i ≥ 3. Note that this is not true for the whole category of U L(h)-bimodules. But we have seen in Theorem 2.3 that all higher Ext groups come from higher Chevalley-Eilenberg cohomology H * (h Lie , k) = Ext * U h Lie (k, k) of the simple Lie algebra h Lie . We claim that these Ext groups vanish for * > 0 in the subcategory (of finite dimensional h Lie -modules of the subcategory) of finite dimensional U L(h)-bimodules. Indeed, for a simple Lie algebra h, the category of finite-dimensional h Lie -modules is semisimple by Weyl's theorem (see for example Theorem 7.8.11 in [START_REF] Weibel | An introduction to homological algebra Cambridge studies in advanced mathematics 38[END_REF]).

  0where Leib(h) is the Leibniz kernel of h, that is the two-sided ideal generated by the elements [x, x] for x ∈ h; and h Lie := h/Leib(h). h Lie is a Lie algebra, called the canonical Lie algebra associated to h Definition 1.3. A left Leibniz algebra is called simple if 0, Leib(h), and h are the only two sided ideals of h, and Leib(h) [h, h].

  , Theorem 2.1.8 pp. 74-75, or in[START_REF] Hochschild | Cohomology of Lie algebras[END_REF], Theorem 13. Since h might not be a simple h Lie -module, we cannot just apply Schur's lemma to the group Hom U (h Lie ) (h, N ). But this is where the short exact sequence (2) comes in handy. As a sequence of left h Lie -modules it actually splits, yielding the decomposition h = Leib(h) ⊕ h Lie and since h is a simple Leibniz algebra, this is the decomposition of h into simple h Lie -modules. Now, since N is also a simple h Lie -module, we get that if N ≃ Leib(h) or N ≃ h Lie (as a left h Lie -module), then

  p1 2 ≃ H p (h Lie , Hom(M, N )) ≃ H ⋆ , h ⋆ Lie } and N ∈ {Leib(h), h Lie }. When this Ext group is zero, then Ext 2 L(h) -→ Ext 2 U L(h) is obviously an isomorphism.

p (h Lie , k) ⊗ Hom U (h Lie ) (M, N ) and E p2 2 ≃ H p (h Lie , Hom(M, Hom(h, Hom U (h Lie ) (h, N )))) ≃ H p (h Lie , k) ⊗ Hom U (h Lie ) (M, Hom(h, Hom U (h Lie ) (h, N )))

{Leib(h)
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The first isomorphism tells us that Ext 1 U L(h) (M s , N a ) ≃ Hom U (h Lie ) (M, N ). To use the second isomorphism, we need to proceed as in Case 6, since h is not a priori a simple h Lie -module, although with some more cases.

-

Then Hom U (h Lie ) (h, N ) ≃ k, and we have

Now we need to do the same work for Hom U (h Lie ) (M, h ⋆ ). Since h is a simple Leibniz algebra, h Lie is a simple Lie algebra and is isomorphic as an h Lie -module to its dual h ⋆ Lie via the Killing form. Moreover, the exactness of the functor Hom(-, k) gives us the short exact sequence

Lie as a left h Lie -module, since the Leib(h) is a simple h Lie -module and therefore so is its dual. We therefore are in one of the following cases:

In order to get the promised vanishing of the Ext groups, we just use the fact that, since h Lie is simple:

and this concludes our proof.

This theorem also allows us to compute the Ext dimension of the category, denoted by L(h) in [START_REF] Loday | Leibniz representations of Lie algebras[END_REF], of finite dimensional bimodules (but here in the left setting). First we need to make sure that the Ext groups are well defined in this category. To do so we will use more general results from Category Theory.

Notice that L(h) is an essentially small abelian category. This means by definition that the class of isomorphism classes of objects is a set. This property implies that every one of its categories of fractions exists and is essentially small as well (see for example Proposition 5.2.2 of [START_REF] Borceux | Handbook of categorical algebra. 1. Basic category theory[END_REF]). Therefore the derived category of L(h) is well defined.

All there is to do now is to see that one can relate the Ext groups with morphisms in the derived category. For this, we refer the reader to §5 of Chapter III, and §6.14 of Chapter III in [START_REF] Gelfand | Methods of homological algebra[END_REF]. In §5 the authors define the Ext functor in terms of the Hom in the derived category, and they show in §6.14 that it is equivalent to the derived functor definition.

Therefore, the Ext groups are well defined in the category L(h) and we can now state the following corollary to Theorem 2.3: Corollary 2.4. For i ∈ {0, 1, 2}, the natural transformation Ext i L(h) -→ Ext i U L(h) induced by the inclusion functor from L(h) to the category of U L(h)-modules is an isomorphism. Moreover, since Ext i L(h) = 0 for i > 2, the Ext dimension of L(h) is 2.

Proof. For finite dimensional bimodules M and N , it is clear that Hom L(h) (M, N ) = Hom U L(h) (M, N ), as well as Ext 1 L(h) (M, N ) = Ext 1 U L(h) (M, N ). This gives us the i ∈ {0, 1} cases. For i = 2, because of the short exact sequence (3), it is enough to consider the case when M and N are simple objects. In this case Theorem 2.3 tells us that Ext 2 U L(h) (M s , N a ) = 0 only when M ∈