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Abstract. In this article, we generalize Loday and Pirashvili’s [11] computation of the Ext-category of
Leibniz bimodules for a simple Lie algebra to the case of a simple (non Lie) Leibniz algebra. Most of
the arguments generalize easily, while the main new ingredient is the Feldvoss-Wagemann’s cohomology
vanishing theorem for semi-simple Leibniz algebras.

Introduction

The goal of this article is to present a new result in the theory of representations of Leibniz algebras,
namely to compute Ext groups between finite dimensional simple bimodules of a simple (non Lie) Leibniz
algebra over a field of characteristic 0. Leibniz algebras are a generalization of Lie algebras, discovered by
A. Bloh in the 1960s, where one does not require the bracket to be antisymmetric. They were rediscovered
by J.-L. Loday [9] in the 1990s when, while trying to lift the boundary operator of Chevalley-Eilenberg

homology from d : Λng −→ Λn−1g to d̃ : g⊗n −→ g⊗n−1, he noticed that the only property needed to show
that d̃ ◦ d̃ = 0 was the Leibniz identity of the bracket, that is:

[x, [y, z]] = [[x, y] , z] + [y, [x, z]] ∀x, y, z ∈ g

(see [9] for a survey of the subject).
J.-L. Loday and T. Pirashvili studied the Leibniz representations of semi-simple Lie algebras in [11],

and established in that paper the following theorem (Theorem 3.1):

Theorem -1.1. Let g be a finite dimensional simple Lie algebra over a field of characteristic 0, and let
L(g) denote the category of finite dimensional Leibniz representations of g. The simple objects in L(g)
are exactly the representations of the form Ma and N s, where M , and N are simple right g-modules.
All groups Ext2

UL(g)(M,N) between simple finite dimensional representations M , N are zero, except

Ext2
UL(g)(g

s, ga) which is one-dimensional. Moreover,

Ext1UL(g)(M
s, Na) ≃ HomU(g)(M, N̂)

where

N̂ = Coker(h : N −→ Hom(g, N)), h(n)(x) = [n, x]

and all other groups Ext1
UL(g)(M,N) between simple finite dimensional representations M , N are zero.

This theorem shows in particular that, contrary to the representations of semi-simple Lie algebras, the
category of Leibniz bimodules of a semi-simple Lie algebra is not semi-simple.

The aim of our article is to generalize this result to Leibniz representations of simple (non Lie) Leibniz
algebras by closely following [11], and making the adequate changes whenever necessary. The key in doing
so is a theorem of J. Feldvoss and F. Wagemann, namely Theorem 4.2 of [5], assuring the vanishing of
Leibniz cohomology needed in the proof of our main theorem:

Theorem -1.2. Let h be a finite-dimensional semisimple left Leibniz algebra over a field of characteristic
zero, and let M be a finite-dimensional h-bimodule. Then HLn(h,M) = 0 for every integer n ≥ 2, and if
M is symmetric, then HLn(h,M) = 0 for every integer n ≥ 1.
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2 JEAN MUGNIERY AND FRIEDRICH WAGEMANN

Interestingly, this result represents a continuation of other vanishing theorems. First Whitehead’s
Theorem giving the vanishing of Chevalley-Eilenberg cohomology of a semi-simple Lie algebra with values
in a finite dimensional g-module whose invariants are trivial. Then P. Ntolo in [12] and T. Pirashvili in [13]
independently proved results about Leibniz (co)homology of Lie algebras, while the authors of [5] proved
the vanishing of Leibniz cohomology of semi-simple Leibniz algebras.

This allows us to prove the following theorem which is the main theorem of this article. Recall that
Leib(h) denotes the two-sided ideal generated by the elements [x, x] for x ∈ h and that hLie := h/Leib(h)
denotes the canonical quotient Lie algebra associated to a Leibniz algebra h. Both of them are in particular
left UhLie-modules and Leib(h)⋆ and h⋆Lie are the corresponding dual left modules.

Theorem -1.3. Let h be a finite dimensional simple Leibniz algebra over a field of characteristic zero k. All
groups Ext2

UL(h)(M,N) between simple finite dimensional h-bimodules are zero, except Ext2
UL(h)(M

s,Na),

with M ∈ {Leib(h)⋆, h⋆Lie} and N ∈ {Leib(h), hLie} which is one dimensional.
Moreover, we have that:

• Ext1
UL(h)(M

s, k), and Ext1
UL(h)(k,N

a) are one dimensional, for M ∈ {Leib(h)⋆, h⋆Lie} and N ∈

{Leib(h), hLie};

• Ext1
UL(h)(M

s, Na) ≃ HomU(hLie)(M, N̂ ), where

N̂ := Coker(h : N −→ Hom(h, N)) h(n)(x) := [x, n]L

• All other groups Ext1
UL(h)(M,N) between simple finite-dimensional h-bimodules M and N are

zero.

We see that, when we do not restrict ourselves to Lie algebras, there are more non-trivial Ext groups.
Moreover, as a corollary of this theorem one can show that the Ext dimension of the category of finite
dimensional bimodules over a semi-simple Leibniz algebra is again 2.

We work in our article with left Leibniz algebras. All preliminary results about Leibniz algebras are
due to Loday and Pirashvili and shown in the framework of right Leibniz algebras. References where the
corresponding results are shown for left Leibniz algebras include [3] and [4].

Acknowledgements:

The authors would like to thank A. Djament for pointing out a simpler way to show that the Ext in
the category of finite dimensional bimodules over a simple Leibniz algebra are well defined.

1. Leibniz Algebras

In this section, we introduce the objects in which we are interested, as well as some of their basic
properties. All of this material is due to Loday and Pirashvili. For more results on Leibniz algebras as
non-associative algebras see [4], and see [10] for results about their (co)homology.

Definition 1.1. A (left) Leibniz algebra over a field k is a vector space h equipped with a bilinear map:

[−,−] : h× h −→ h

called Leibniz bracket, that satisfies the (left) Leibniz identity:

(1) [x, [y, z]] = [[x, y] , z] + [y, [x, z]]∀x, y, z ∈ h

With this definition, we see that Leibniz algebras are indeed a generalization of Lie algebras, as it is not
difficult to check that if we impose the anticommutativity of the bracket, the Jacobi and Leibniz identities
are equivalent.

Remark 1.2. We can also define a right Leibniz algebra by asking our bracket to satisfy the right Leibniz
identity instead: [[x, y] , z] = [[x, z] , y]+ [x, [y, z]], but we will only be concerned with left Leibniz algebras.

For every Leibniz algebra h, we have a short exact sequence:

(2) 0 −→ Leib(h) −→ h −→ hLie −→ 0
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where Leib(h) is the Leibniz kernel of h, that is the two-sided ideal generated by the elements [x, x] for
x ∈ h; and hLie := h/Leib(h). hLie is a Lie algebra, called the canonical Lie algebra associated to h

Definition 1.3. A left Leibniz algebra is called simple if 0, Leib(h), and h are the only two sided ideals of
h, and Leib(h) $ [h, h].

This is not the only definition of simplicity: One can also only require that 0 and h are the only ideals
of h, but with this definition, all simple Leibniz algebras are in fact Lie algebras, see the beginning of
section 7 of [4], and the references therein. We will also need the Proposition 7.2 of [4], namely:

Proposition 1.4. If h is a simple Leibniz algebra, then hLie is a simple Lie algebra and Leib(h) is a simple
hLie-module.

We now give the definition of the notion of Leibniz modules and bimodules.

Definition 1.5. Let h be a Leibniz algebra. An h-bimodule is a vector space M over k equipped with two
bilinear maps:

[−,−]L : h×M −→M

and
[−,−]R :M × h −→M

which satisfy the following relations ∀x, y ∈ h,∀m ∈M :

(LLM) [x, [y,m]L]L = [[x, y] ,m]L + [y, [x,m]L]L

(LML) [x, [m, y]R]L = [[x,m]L , y]R + [m, [x, y]]R

(MLL) [m, [x, y]]R = [[m,x]R , y]R + [x, [m, y]R]L

We define a left h-module as being a vector space M over k equipped with a bilinear map:

[−,−]L : h×M −→M

satisfying the relation (LLM) of Definition 1.5.

Definition 1.6. Let h be a Leibniz algebra, and M a Leibniz bimodule.
If

[x,m]L = − [m,x]R ∀x ∈ h,∀m ∈M

then M is said to be symmetric and denoted M s.
If

[m,x]R = 0 ∀x ∈ h,∀m ∈M

then M is said to be antisymmetric and denoted Ma.
If M is both symmetric and antisymmetric, then M is trivial.

For every h-bimodule M , there is a short exact sequence of h-bimodules:

(3) 0 −→M0 −→M −→M/M0 −→ 0

where M0 = Spank([x,m]L+ [m,x]R), see (1.10) of [10]. Note that by construction M/M0 is a symmetric
h-bimodule, and that M0 is an antisymmetric h-bimodule. Moreover, if we consider h as an h-bimodule
using the adjoint action, then the short exact sequences (2) and (3) coincide.

If M is an h-bimodule (in fact this works even when M is only a left h-module), then it has a natural
hLie-module structure (in the Lie sense). Indeed one can define a left action of hLie as follows:

hLie ×M −→M

(x̄,m) 7−→ [x,m]L

Conversely, if M is an hLie-module, there are two natural ways to see it as an h-bimodule. We first see it
as a left h-module via the projection h −→ hLie, and then we impose our right action to be either trivial,
or to be the opposite of the left action, yielding respectively an antisymmetric bimodule, or a symmetric
one. Knowing this we can state the following Theorem (due to Loday-Pirashvili [11]):
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Theorem 1.7. The simple objects in the category of h-bimodules of finite dimension are exactly the
modules of the form Ma and M s, where M is a finite dimensional simple hLie-module.

The proof follows easily from the existence of the short exact sequence (3), and the fact that Leib(h)
acts trivially from the left (i.e. is contained in the left center).

We now introduce the notion of the universal enveloping algebra of a Leibniz algebra, see (2.1) of [10]
(but note that the authors work with right Leibniz algebras. A reference for left Leibniz algebras is [3].).

Definition 1.8. Let h be a Leibniz algebra. Given two copies hl and hr of h generated respectively by
the elements lx and rx for x ∈ h, we define the universal enveloping algebra of h as the unital associative
algebra:

UL(h) := T (hl ⊕ hr)/I

where T (hl⊕hr) :=

∞⊕

n=0

(hl⊕hr)⊗n is the tensor algebra of hl⊕hr and I is the two-sided ideal of h generated

by the elements :

l[x,y] − lx ⊗ ly + ly ⊗ lx

r[x,y] − lx ⊗ ry + ry ⊗ lx

ry ⊗ (lx + rx)

For a Lie algebra g, there is an equivalence between being a g-module and being a U(g)-module, where
U(g) is the universal enveloping algebra of the Lie algebra g. The following theorem allows us to establish
the same kind of connection between the structure of h-bimodule and left UL(h)-module (due to Loday-
Pirashvili [10]. See also [3] for a proof in the framework of left Leibniz algebras).

Theorem 1.9. Let h be a Leibniz algebra. There is an equivalence of categories between the category of
h-bimodules and the category of UL(h)-modules.

For a proof see Theorem (2.3) of [10] (note once again that the authors work with right Leibniz algebras).
This actually tells us, given one of the two structures, how to obtain the other: The action of lx corresponds
to the left action [x,−]L while the action ry corresponds to the right action [−, y]R.

Another nice property of this universal enveloping algebra is that we can establish a connection between
U(hLie)-modules and UL(h)-modules. To this end we define the following algebras homomorphisms:

d0 : UL(h) −→ U(hLie)

d0(lx) = x̄

d0(rx) = 0

and:

d1 : UL(h) −→ U(hLie)

d1(lx) = x̄

d1(rx) = −x̄

With these, given a U(hLie)-module, we can view it as a UL(h)-module either via d0 or via d1. The
former gives an antisymmetric h-bimodule, while the latter gives a symmetric h-bimodule. Moreover, since
they are surjective (their image contains the generators of U(hLie)), this allows us to consider U(hLie) as
the quotient UL(h)/Ker(di) for i ∈ {0, 1}.

Being a generalization of Lie algebras, Leibniz algebras are equiped with a generalization of Chevalley-
Eilenberg cohomology, namely Leibniz cohomology which was discovered by Loday. Let h be a Leibniz
algebra, and M be an h-bimodule. We give the (left version of the) definition of the cochain complex

CLn(h,M), dLn}n≥0

from [10] (1.8) (a reference for this left version is [5]), namely:

CLn(h,M) = Hom(h⊗n,M)

dLn : CLn(h,M) −→ CLn+1(h,M)
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with:

dLnω(x0, ..., xn) =

n−1∑

i=0

(−1)i [xi, ω(x0, ..., x̂i, ..., xn)]L + (−1)n−1 [ω(x0, ..., xn−1), xn]R

+
∑

0≤i<j≤n

(−1)i+1ω(x0, ..., x̂i, ..., xj−1, [xi, xj ] , xj+1, ..., xn)

Definition 1.10. Let h be a Leibniz algebra, and M be an h-bimodule. The cohomology of h with coeffi-
cients in M is the cohomology of the cochain complex {CLn(h,M), dLn}n≥0.

HLn(h,M) = Hn({CLn(h,M), dLn}n≥0) ∀n ≥ 0

Remark 1.11. By definition CL0(h,M) =M and dL0m(x) = − [m,x, ]R. Therefore, we have:

HL0(h,M) = {m ∈M, [m,x]R = 0 ∀x ∈ h}

This is the submodule of right invariants. Note that if M is antisymmetric, then HL0(h,M) =M .

2. Ext in the category of Leibniz bimodules

We are now interested in computing the Ext groups in the category of h-bimodules. From now on, we will
consider a finite-dimensional left Leibniz algebra h over a field of characteristc zero k. The definition of the
morphisms d0 and d1, together with the change of rings spectral sequence constructed in the subsections
1 to 4 of Chapter XVI from [2], yield the following spectral sequences:

Epq
2 = Extp

U(hLie)

(
Y,Extq

UL(h) (U(hLie)
a,X)

)
=⇒ Extp+q

UL(h)(Y
a,X) (S1)

Epq
2 = Extp

U(hLie)

(
Z,Extq

UL(h) (U(hLie)
s,X)

)
=⇒ Extp+q

UL(h)(Z
s,X) (S2)

where X is an h-bimodule, and Y and Z are left h-modules.
For a Lie algebra g, we have the following isomorphism Ext∗

U(g)(M,N) ≃ H∗ (g,Hom(M,N)), which we

can use to rewrite (S1) and (S2) as:

Epq
2 = Hp

(
hLie,Hom(Y,Extq

UL(h) (U(hLie)
a,X)

)
=⇒ Extp+q

UL(h)(Y
a,X) (S1)

Epq
2 = Hp

(
hLie,Hom(Z,Extq

UL(h) (U(hLie)
s,X)

)
=⇒ Extp+q

UL(h)(Z
s,X) (S2)

Moreover, by Theorem (3.4) of [10], we have an isomorphism

Ext∗UL(h)(U(hLie)
a,X) ≃ HL∗(h,X)

This isomorphism also holds for the left framework as is easily shown by constructing the left version of
the non-commutative Koszul complex of [10].

This gives us the proposition:

Proposition 2.1. Let h be a Leibniz algebra, let X be an h-bimodule, and Y and Z be left h-modules.
There are two spectral sequences:

Epq
2 = Hp (hLie,Hom(Y,HLq(h,X))) =⇒ Extp+q

UL(h)(Y
a,X) (S1)

Epq
2 = Hp

(
hLie,Hom

(
Z,Extq

UL(h)
(U(hLie)

s,X)
))

=⇒ Extp+q

UL(h)
(Zs,X) (S2)

In the previous proposition, we were able to identify Ext∗
UL(h)(U(hLie)

a,X) to the Leibniz cohomology

HL∗(h,X). What about Ext∗
UL(h)(U(hLie)

s,X)? The following result will give a generalization of Propo-

sition 2.3 of [11], in order to give a relation between Ext∗
UL(h)(U(hLie)

s,X) and Leibniz cohomology. In

order to do so, we will have to introduce a shift in the homological degree which will be responsible for
nontrivial Ext groups in what will follow.
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Proposition 2.2. Let h be a Leibniz algebra, and M be an h-bimodule. There are isomorphisms:

Exti+1
UL(h) (U(hLie)

s,M) ≃ Hom(h,HLi(h,M)) for i > 0

≃ Coker(f) for i = 0

≃ Ker(f) for i = -1

where f :M −→ Hom(h,HL0(h,M)) is given by:

f(m)(h) = [h,m]L + [m,h]R ∀h ∈ h, ∀m ∈M

Proof. Let M be an h-bimodule, and

f :M −→ Hom(h,HL0(h,M))

f(m)(h) = [h,m]L + [m,h]R

We first want to show that Ext0
UL(h)(U(hLie)

s,M) = Ker(f). But by definition

Ext0UL(h)(U(hLie)
s,M) = HomUL(h)(U(hLie)

s,M)

We then define the map:

ev : HomUL(h)(U(hLie)
s,M) −→M

ϕ 7−→ ϕ(1)

which is an isomorphism onto Ker(f), of inverse:

µ : Ker(f) −→ HomUL(h)(U(hLie)
s,M)

m 7−→ ϕm : (1 7→ m)

This gives the degree zero equality of the proposition.
We now want to show that Ext1

UL(h)(U(hLie)
s,M) = Coker(f).

Consider UL(h)⊗ h as a left UL(h)-module with the following action ∀x ∈ h,∀r, s ∈ UL(h):

s.(r ⊗ x) = sr ⊗ x

Define a homomorphism of left UL(h)-modules by:

f1 : UL(h)⊗ h −→ UL(h)

1⊗ h 7−→ lh + rh

Then f1 factors through f2 : U(hLie)
a ⊗ h −→ UL(h). Indeed we have the following commutative

diagram:

(D)

UL(h)⊗ h UL(h)

U(hLie)
a ⊗ h

0

f1

d0⊗id
f2

and define f2(d0(x)⊗h) := f1(x⊗h) which is well-defined: If x, y ∈ UL(h) are such that d0(x) = d0(y),
then f1(x⊗ h) = f1(y⊗ h). Indeed if x− y ∈ Ker(d0), then x = y+ z̄ with z̄ ∈ 〈rz, z ∈ h〉. Therefore, the
relation ry(lx + rx) = 0 in UL(h) implies that f1(x⊗ h) = f1(y ⊗ h).
We claim that f2 is injective. This follows from the diagram (D) and the fact that Ker(f1) = Ker(d0⊗id).
This therefore gives us the following short exact sequence:

0 U(hLie)
a ⊗ h UL(h) Cokerf2 0

f2
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But by construction, Im(f2) is the left ideal 〈lx + rx | x ∈ h〉, which is equal to Ker(d1) (see Section 1).
This implies that Coker(f2) is the quotient UL(h)/Ker(d1), that is Im(d1), and the short exact sequence
above becomes:

0 U(hLie)
a ⊗ h UL(h) U(hLie)

s 0
f2

This short exact sequence yields the following long exact sequence in cohomology:

0 −→ HomUL(h)(U(hLie)
s,M) −→ HomUL(h)(UL(h),M) −→ HomUL(h)(U(hLie)

a ⊗ h,M)

−→ Ext1UL(h)(U(hLie)
s,M) −→ Ext1UL(h)(UL(h),M) −→ Ext1UL(h)(U(hLie)

a ⊗ h,M)

−→ Ext2UL(h)(U(hLie)
s,M) −→ . . .

Now, by noticing the obvious identification HomUL(h)(UL(h),M) =M , and the fact that, UL(h) being a

free UL(h)-module, it is projective and therefore Ext1
UL(h)(UL(h),M) = 0, we can extract the following

exact sequence:

0 → HomUL(h)(U(hLie)
s,M) →M → HomUL(h)(U(hLie)

a ⊗ h,M) → Ext1UL(h)(U(hLie)
s,M) → 0

To obtain the desired isomorphism, we want to relate it to the exact sequence we get from f :

0 −→ Ker(f) −→M −→ Hom(h,HL0(h,M)) −→ Coker(f) −→ 0

and conclude by using the 5-lemma. We can send M onto M via the identity map. We then construct an
isomorphism

HomUL(h)(U(hLie)
a ⊗ h,M) −→ Hom(h,HL0(h,M))

Notice that since U(hLie)
a ⊗ h is a quotient of UL(h) ⊗ h, it is generated, as a UL(h)-module, by the

elements 1⊗ h, for h ∈ h. We can now define a map:

HomUL(h)(U(hLie)
a ⊗ h,M) −→ Hom(h,HL0(h,M))

ϕ 7−→ ϕ̃

where ϕ̃(h) := ϕ(1⊗ h), for h ∈ h. The image of ϕ̃ lies in HL0(h,M), for:
[
ϕ̃(h), h′

]
R
=

[
ϕ(1 ⊗ h), h′

]
R

= ϕ(rh′ .(1 ⊗ h))

= 0

using the fact that ϕ is a UL(h)-morphism and the fact that we are considering the UL(h)-module
U(hLie)

a ⊗ h.
We can then construct its inverse, by:

Hom(h,HL0(h,M)) −→ HomUL(h)(U(hLie)
a ⊗ h,M)

u 7−→ ϕu

with ϕu : x̄⊗h 7→ x.u(h) where x̄ denotes the class of x ∈ UL(h) in the quotient U(hLie)
a (see Section 1).

This yields the following diagram:

M HomUL(h)(U(hLie)
a ⊗ h,M) Ext1

UL(h)(U(hLie)
s,M) 0 0

M Hom(h,HL0(h,M)) Coker(f) 0 0

∼ (∗)

f

where the arrow (∗) : Ext1
UL(h)(U(hLie)

s,M) −→ Coker(f) is given by functoriality of the Coker.

To conclude, we just need to prove that this diagramm is commutative. It is sufficient to show that it
is the case for the square:

M HomUL(h)(U(hLie)
a ⊗ h,M)

M Hom(h,HL0(h,M))

∼

f
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Notice that for the arrow M −→ HomUL(h)(U(hLie)
a ⊗ h,M) we identified

M ≃ HomUL(h)(UL(h),M)

via the map m 7−→ (ψm : u 7→ u.m). This arrow is therefore given by ψm 7−→ ψm ◦ f2, that is:

ū⊗ x 7−→ ψm(f2(ū⊗ x)) = ψm(f2(d0(u)⊗ x))

= ψm(f1(u⊗ x))

= ψm(u(lx + rx))

= u(lx + rx).m

Since U(hLie)
a ⊗ h is generated as a UL(h)-module by the elements 1⊗ x for x ∈ h, it is enough to check

the commutativity of the diagram only on these elements. By explicitly writing the maps in question we
get:

m = ψm (1⊗ x 7−→ (lx + rx).m)

m (x 7−→ [x,m]L + [m,x]R)
f

which by Theorem 1.9 proves the commutativity of the square and therefore of the diagram. The 5-lemma
then tells us the arrow (∗) is an isomorphism, and we obtain the second isomorphism of the proposition.

To get the higher degree isomorphisms, notice that the long exact sequence in cohomology we found
earlier goes as follow:

. . .→ExtiUL(h)(UL(h),M) −→ ExtiUL(h)(U(hLie)
a ⊗ h,M) −→ Exti+1

UL(h)(U(hLie),M)

−→ Exti+1
UL(h)(UL(h),M) → . . .

But UL(h) being a free UL(h)-module, it is projective, hence

ExtiUL(h)(UL(h),M) = Exti+1
UL(h)(UL(h),M)

= 0

and this for all i. We thus obtain:

0 −→ ExtiUL(h)(U(hLie)
a ⊗ h,M) −→ Exti+1

UL(h)(U(hLie),M) −→ 0

Now, in order to conclude, we use the fact that:

ExtiUL(h)(U(hLie)
a ⊗ h,M) = Hom(h, ExtiUL(h)(U(hLie)

a,M))

which is obtained from the classical Hom/Tens adjunction, and the isomorphism given in Theorem (3.4)
of [10]:

ExtiUL(h)(U(hLie)
a,M) ≃ HLi(h,M)

This gives us all the promised isomorphisms, therefore concluding the proof. �

We can now compute the Ext groups in the category of h-bimodules and we will see that nontrivial
Ext1 groups appear whenever the degree shift from Proposition 2.2 is happening.

Theorem 2.3. Let h be a finite dimensional simple Leibniz algebra over a field of characteristic zero k. All
groups Ext2

UL(h)(M,N) between simple finite dimensional h-bimodules are zero, except Ext2
UL(h)(M

s,Na),

with M ∈ {Leib(h)⋆, h⋆Lie} and N ∈ {Leib(h), hLie}, which is one dimensional.
Moreover, we have that:

• Ext1
UL(h)(M

s, k), and Ext1
UL(h)(k,N

a) are one dimensional, for M ∈ {Leib(h)⋆, h⋆Lie} and N ∈

{Leib(h), hLie};

• Ext1
UL(h)(M

s, Na) ≃ HomU(hLie)(M, N̂ ), where

N̂ := Coker(h : N −→ Hom(h, N)) h(n)(x) := [x, n]L
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• All other groups Ext1
UL(h)(M,N) between simple finite-dimensional h-bimodules M and N are

zero.

Proof. We will compute Ext∗
UL(h)(M,N) for every combination of finite-dimensional h-bimodules M and

N and reduce it to the Chevalley-Eilenberg cohomology of the simple Lie algebra hLie in order to conclude.

• Case 1: M = N = k is the trivial h-bimodule.
We apply Proposition 2.1 to Y = X = k. By Theorem -1.2, HLq(h, k) = 0 for q ≥ 1, since k being
trivial, it is also symmetric. Therefore, we obtain:

Ext∗UL(h)(k, k) ≃ H∗(hLie, k)

• Case 2: M = k is the trivial h-bimodule, and N is a nontrivial simple symmetric h-bimodule.
We apply Proposition 2.1 to Y = k, and X = N . Once again by Theorem -1.2, we get:

ExtnUL(h)(k,N
s) = 0 for n ≥ 1

• Case 3: M = k is the trivial h-bimodule, and N is a nontrivial simple antisymmetric h-bimodule.
We have:

HLq(h, Na) ≃ 0 for q > 1, by Theorem -1.2

≃ HomU(hLie)(h, N) for q = 1, by Lemma 1.5 of [5]

≃ N for q = 0, since N is antisymmetric

Since N is a nontrivial simple antisymetric h-bimodule, it is also a nontrivial simple hLie-module,
and therefore H∗(hLie, N) = 0 by Whitehead’s theorem. Now using Proposition 2.1, we find:

Ext∗UL(h)(k,N
a) ≃ H∗−1(hLie,HomU(hLie)(h, N))

≃ H∗−1(hLie, k)⊗HomU(hLie)(h, N)

The second isomorphism is given in [6], Theorem 2.1.8 pp. 74–75, or in [8], Theorem 13.
Since h might not be a simple hLie-module, we cannot just apply Schur’s lemma to the group
HomU(hLie)(h, N). But this is where the short exact sequence (2) comes in handy. As a sequence
of left hLie-modules it actually splits, yielding the decomposition

h = Leib(h)⊕ hLie

and since h is a simple Leibniz algebra, this is the decomposition of h into simple hLie-modules.
Now, since N is also a simple hLie-module, we get that if N ≃ Leib(h) or N ≃ hLie (as a left
hLie-module), then

H∗−1(hLie, k)⊗HomU(hLie)(h, N) ≃ H∗−1(hLie, k)

If this is not the case, then

H∗−1(hLie, k)⊗HomU(hLie)(h, N) ≃ 0

• Case 4: M is a nontrivial simple antisymmetric h-bimodule, and N is a simple symmetric h-
bimodule.
Using Theorem -1.2, we have HLq(h, N s) = 0 for q ≥ 1. Moreover, because HL0(h, N s) = Nh is
a trivial h-bimodule, and since we can identify Hom(M,HL0(h, N s)) ≃M⋆ ⊗Nh with the direct
sum of dim(Nh) copies of M⋆ we find that Hp(hLie,Hom(M,HL0(h, Na))) ≃ Hp(hLie,M

⋆)⊕ ...⊕
Hp(hLie,M

⋆) = 0, since M being a simple nontrivial hLie-module, so is M⋆. Thus yielding:

Ext∗UL(h)(M
a, N s) = 0

• Case 5: M is a nontrivial simple antisymmetric representation, and N is simple and antisymmetric.
Here, Theorem -1.2 apply again, and we have that HLq(h, Na) 6= 0 only when q ∈ {0, 1}. We check
that HL1(h, Na) is a trivial left h-module. By definition of the chain complex defining Leibniz
cohomology, we have that CL1(h, Na) = Hom(h, N). Now for a morphism ϕ ∈ Hom(h, N) to be
annihilated by the differential dL1 means satisfying:

dL1ϕ(x, y) := [x, ϕ(y)]L − ϕ([x, y]) = 0 ∀x, y ∈ h,



10 JEAN MUGNIERY AND FRIEDRICH WAGEMANN

which is exactly to say that the left action of h on the module Hom(h, N) is trivial. Therefore,
the same arguments used in Case 4 still apply, and we get that Epq

2 = 0 for q > 0, and:

Ext∗UL(h)(M
a, Na) = 0

• Case 6: M is a nontrivial simple symmetric representation, and N = k is the trivial h-bimodule.
We apply Proposition 2.2 to k to find:

ExtiUL(h)((U(hLie)
s, k) ≃ 0 if i > 1

≃ h⋆ if i = 1

≃ k if i = 0

because since in this case, the map f in Proposition 2.2 is zero. We can now plug this in the second
spectral sequence of Proposition 2.1, with X = k, and Z =M , to obtain:

Ext∗UL(h)(M
s, k) ≃ H∗−1(hLie,Hom(M, h⋆))

≃ H∗−1(hLie, k)⊗HomU(hLie)(M, h⋆)

Using the same arguments as in Case 3, we get that if M ≃ Leib(h)⋆ or M ≃ h⋆Lie, then

H∗−1(hLie, k)⊗HomU(hLie)(M, h⋆) ≃ H∗−1(hLie, k)

If this is not the case, then

H∗−1(hLie, k)⊗HomU(hLie)(M, h⋆) ≃ 0

• Case 7: M and N are both simple nontrivial symmetric h-bimodules.
Applying Proposition 2.2 to N s, and because N is a symmetric h-bimodule, we find that

ExtiUL(h)(U(hLie)
s, N s) ≃ 0 i ≥ 1

≃ N if i = 0

Now using the second spectral sequence of Proposition 2.1, we get:

Ext∗UL(h)(M
s, N s) ≃ H∗(hLie,Hom(M,N))

≃ H∗(hLie, k) ⊗HomhLie
(M,N)

Once again, since M and N are simple hLie-modules, this vector space is nonzero only if M ≃ N ,
in which case it is isomorphic to H∗(hLie, k).

• Case 8: M is a simple nontrivial symmetric h-bimodule, and N is a simple nontrivial antisymmetric
h-bimodule.
By Proposition 2.2, we have:

ExtiUL(h)(U(hLie)
s, Na) ≃ 0 for i > 2

≃ Hom(h,HomU(hLie)(h, N)) for i = 2

≃ Coker(h) for i = 1

≃ Ker(h) for i = 0

The map h appearing here (defined in the statement of the theorem) is due to the fact that N is
an antisymmetric h-bimodule. Moreover, since N is supposed to be nontrivial and h is a h-module
homomorphism, Ker(h) = 0. Therefore we have that Epq

2 = 0 for q > 2 and q = 0. For the
remaining values of q, we have isomorphisms

Ep1
2 ≃ Hp(hLie,Hom(M, N̂ ))

≃ Hp(hLie, k)⊗HomU(hLie)(M, N̂ )

and

Ep2
2 ≃ Hp(hLie,Hom(M,Hom(h,HomU(hLie)(h, N))))

≃ Hp(hLie, k)⊗HomU(hLie)(M,Hom(h,HomU(hLie)(h, N)))
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The first isomorphism tells us that Ext1
UL(h)(M

s, Na) ≃ HomU(hLie)(M, N̂).

To use the second isomorphism, we need to proceed as in Case 6, since h is not a priori a simple
hLie-module, although with some more cases.

– If N 6≃ Leib(h) or N 6≃ hLie:

Then HomU(hLie)(h, N) ≃ 0, yielding Ep2
2 = 0

– If N ≃ Leib(h) or N ≃ hLie:
Then HomU(hLie)(h, N) ≃ k, and we have

Ep2
2 ≃ Hp(hLie,Hom(M, h⋆))

≃ Hp(hLie, k)⊗HomU(hLie)(M, h⋆)

Now we need to do the same work for HomU(hLie)(M, h⋆). Since h is a simple Leibniz algebra,
hLie is a simple Lie algebra and is isomorphic as an hLie-module to its dual h⋆Lie via the Killing
form. Moreover, the exactness of the functor Hom(−, k) gives us the short exact sequence

0 −→ h⋆Lie −→ h⋆ −→ Leib(h)⋆ −→ 0

and the decomposition of h⋆ = Leib(h)⋆ ⊕ h⋆Lie as a left hLie-module, since the Leib(h) is a
simple hLie-module and therefore so is its dual.
We therefore are in one of the following cases:

∗ If M 6≃ Leib(h)⋆ or M 6≃ h⋆Lie:

Then HomU(hLie)(M, h⋆) ≃ 0, and Ep2
2 = 0.

∗ If M ≃ Leib(h)⋆ or M ≃ h⋆Lie:
Then HomU(hLie)(M, h⋆) ≃ k, and we get

Ep2
2 ≃ Hp(hLie, k)⊗HomU(hLie)(M, h⋆)

≃ Hp(hLie, k)

In order to get the promised vanishing of the Ext groups, we just use the fact that, since hLie is simple:

H1(hLie, k) ≃ H2(hLie, k) ≃ 0

and this concludes our proof. �

This theorem also allows us to compute the Ext dimension of the category, denoted by L(h) in [11],
of finite dimensional bimodules (but here in the left setting). First we need to make sure that the Ext
groups are well defined in this category. To do so we will use more general results from Category Theory.

Notice that L(h) is an essentially small abelian category. This means by definition that the class of
isomorphism classes of objects is a set. This property implies that every one of its categories of fractions
exists and is essentially small as well (see for example Proposition 5.2.2 of [1]). Therefore the derived
category of L(h) is well defined.

All there is to do now is to see that one can relate the Ext groups with morphisms in the derived
category. For this, we refer the reader to §5 of Chapter III, and §6.14 of Chapter III in [7]. In §5 the
authors define the Ext functor in terms of the Hom in the derived category, and they show in §6.14 that
it is equivalent to the derived functor definition.

Therefore, the Ext groups are well defined in the category L(h) and we can now state the following
corollary to Theorem 2.3:

Corollary 2.4. For i ∈ {0, 1, 2}, the natural transformation Exti
L(h) −→ Exti

UL(h) induced by the inclu-

sion functor from L(h) to the category of UL(h)-modules is an isomorphism. Moreover, since Exti
L(h) = 0

for i > 2, the Ext dimension of L(h) is 2.

Proof. For finite dimensional bimodules M and N , it is clear that HomL(h)(M,N) = HomUL(h)(M,N),

as well as Ext1
L(h)(M,N) = Ext1

UL(h)(M,N). This gives us the i ∈ {0, 1} cases.

For i = 2, because of the short exact sequence (3), it is enough to consider the case when M and
N are simple objects. In this case Theorem 2.3 tells us that Ext2

UL(h)(M
s, Na) 6= 0 only when M ∈
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{Leib(h)⋆, h⋆Lie} and N ∈ {Leib(h), hLie}. When this Ext group is zero, then Ext2
L(h) −→ Ext2

UL(h) is

obviously an isomorphism.
When Ext2

UL(h)(M
s, Na) 6= 0, then it is one dimensional. This means that we only have to produce

a non trivial two-fold extension 0 −→ Na −→ E −→ F −→ M s −→ 0 with dim(E),dim(F ) < ∞ to
conclude.

Since Ext2
UL(h)(M

s, Na) is one dimensional, then we can select one of its generators. It is the equivalence

class of an exact sequence

0 Na E F M s 0
ϕ

We can split this sequence into two exact sequences of length 1, 0 −→ Na −→ E −→ Im(ϕ) −→ 0 and
0 −→ Im(ϕ) −→ F −→M s −→ 0.

Since the sequence represents a generator of Ext2
UL(h)(M

s, Na), the 1-fold exact sequences cannot split,

i.e. represent trivial classes in the corresponding Ext1
UL(h). But by Theorem 2.3 again, for this to be the

case, they must be in Ext1
UL(h)(M

s, k) and Ext1
UL(h)(k,N

a) respectively, since the bimodule Im(ϕ) must

be both symmetric and antisymmetric (else the extensions are split, again using Theorem 2.3).
But we know that Ext1

UL(h)(M
s, k) = Ext1

L(h)(M
s, k), and Ext1

UL(h)(k,N
a) = Ext1

L(h)(k,N
a). This

means that E and F must be of finite dimension, allowing us to conclude.
The last step is to show that Exti

L(h)(M,N) = 0 for i ≥ 3. Note that this is not true for the whole

category of UL(h)-bimodules. But we have seen in Theorem 2.3 that all higher Ext groups come from
higher Chevalley-Eilenberg cohomology H∗(hLie, k) = Ext∗UhLie

(k, k) of the simple Lie algebra hLie. We

claim that these Ext groups vanish for ∗ > 0 in the subcategory (of finite dimensional hLie-modules of
the subcategory) of finite dimensional UL(h)-bimodules. Indeed, for a simple Lie algebra h, the category
of finite-dimensional hLie-modules is semisimple by Weyl’s theorem (see for example Theorem 7.8.11 in
[14]). �
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