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Abstract

We consider an RCAR(p) process and we establish that the standard estimation lacks con-
sistency as soon as there exists a nonzero serial correlation in the coefficients. We give the
correct asymptotic behavior and some simulations come to illustrate the results.

Keywords: RCAR process, Time series, Random coefficients, OLS estimation.

1. Introduction and Motivations

This note is devoted to the estimation issue in the random coefficients non-linear gener-
alization of the autoregressive process or order p, that is usually defined as

Xt =

p∑
k=1

(θk + bk, t)Xt−k + εt

where, for each 1 6 k 6 p, (bk, t)t∈Z is a white noise included in the coefficients, independent
of (εt)t∈Z. We refer the reader to the monograph of Nicholls and Quinn (1982) for a rich
introduction to the topic. The conditions of existence of a stationary solution to this equation
have been widely studied since the seminal works of Anděl (1976) or Nicholls and Quinn
(1981b), see also the more recent paper of Aue et al. (2006). The estimation of θ has been
extensively developed to this day as well. Nicholls and Quinn (1981a) suggest to make use
of the OLS which turns out to be the same, whether there is randomness or not in the
coefficients. Under the stationarity conditions, the OLS is known to be strongly consistent
and asymptotically normal in both cases (but with different variances). Looking for a unified
theory, that is, irrespective of stationarity issues, Aue and Horváth (2011) and Berkes et al.
(2009) show that the QMLE is consistent and asymptotically normal as soon as there is some
randomness in the coefficients, the variability of which allows to circumvent the well-known
unit root issues. Later, Hill and Peng (2014) develop an empirical likelihood estimation which
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is asymptotically normal even when the coefficients are non-random. Let us also mention the
WLS approach of Schick (1996) and the M-estimation of Koul and Schick (1996) adapted to
stationary processes, which provide asymptotically normal estimators with optimal variance.
Yet, the OLS estimation, easy to compute, that does not require numerical optimization or
additional parametrization, is still very popular. We shall note that all these works, except
those of Nicholls and Quinn, are related to the first-order process. By contrast, studies on
general multivariate RCAR processes do not seem widespread in the literature, to the best of
our knowledge. In this paper, we are interested in the implications of serial correlation in the
random coefficients of a p-order RCAR process. Among the fundamental hypotheses of the
usual theory, the coefficients are considered as white noises. However, our main statement
is that, in a chronological model, it is unlikely that the coefficients are serially uncorrelated,
from the moment they are considered as random. From that point of view, we intend to
show that the OLS method may lead to inappropriate conclusions when there is some serial
correlation in the random coefficients. This work can be seen as a partial generalization of
Pröıa and Soltane (2018) where in particular, for the first-order RCAR process, the lack
of consistency is established together with the correct behavior of the statistic. For this
purpose, consider the RCAR process (Xt)t∈Z of order p generated by the autoregression

Xt =

p∑
k=1

(θk + αk ηk, t−1 + ηk, t)Xt−k + εt (1.1)

where (εt)t∈Z and (ηk, t)t∈Z are uncorrelated strong white noises (that is, i.i.d. sequences)
with qth-order moments σq and τk, q respectively. We also assume that (ηk, t)t∈Z and (η`, t)t∈Z
are uncorrelated, for k 6= `. The main fact to give credit to this model is Prop. 3.2.1 of
Brockwell and Davis (1991) which states that any stationary process with finite memory
can be expressed by a moving average structure. Thus, by means of an MA(1) model,
we introduce a lag-one memory in the random coefficients as a simple case study meant
to illustrate the effect on the estimation. Note that, although much more cumbersome,
the same study may lead to the same conclusions for any stationary coefficients with finite
memory, via general MA structures. However, for infinite memory (e.g. stationary random
AR(1) coefficients), the problem is probably much more complicated. In Section 2, we
introduce our hypotheses and we detail the asymptotic behavior of the standard OLS in
presence of serial correlation, under the stationarity conditions. In particular, we brought to
light a disturbing consequence when testing the significance of θ. Some simulations come to
illustrate our results in Section 3 while Section 4 contains the proofs. Finally, we postpone
to the Appendix the purely computational steps, for the sake or readability.

2. Influence of serial correlation in the coefficients

It will be convenient to write (1.1) in the vector form

Φt = (Cθ +Nt−1Dα +Nt) Φt−1 + Et (2.1)

where ΦT
t = (Xt, . . . , Xt−p+1), E T

t = (εt, 0, . . . , 0), Nt is a matrix with ηt = (η1, t, . . . , ηp, t)
in the first row and 0 elsewhere, Dα = diag(α1, . . . , αp) and Cθ is the companion matrix of

2



the underlying AR(p) process. We already make the assumption that any odd moment of
ε0 and ηk, 0 is zero as soon as it exists (σ2q+1 = τk, 2q+1 = 0), and that the distribution of the
noises guarantees

E[ln ‖Cθ +N0Dα +N1‖] < 0 and E[ln+ |ε0|] < +∞. (2.2)

Those moments conditions are assumed to hold throughout the study. As for the moments
of the process, the hypotheses are related to the space Θ where the parameters live. Define

Θm = {{θ, α, σq, τk, q′} | E[η ak, tX
m
t ] < +∞ for a ∈ {0, . . . ,m} and k ∈ {1, . . . , p}}

for m = 2, 4, where σq and τk, q′ name in a generic way the highest-order moments of (εt)
and (ηk, t) necessary to obtain E[η ak, tX

m
t ] < +∞. We give in the Appendix some precise

facts about Θ2 and Θ4, in particular we can see that q = m and q ′ = 2m are needed. The
pathological cases are put together in a set called Θ∗ that is built step by step during the
reasonings. First, we have the following causal representation showing in particular that the
process is adapted to the filtration

Ft = σ((εs, η1, s, . . . , ηp, s), s 6 t). (2.3)

The reader will find the proofs of our results in Section 4.

Proposition 2.1. For all t ∈ Z,

Φt = Et +
∞∑
k=1

Et−k

k−1∏
`=0

(Cθ +Nt−`−1Dα +Nt−`) a.s. (2.4)

In consequence, (Xt) is strictly stationary and ergodic.

Suppose now that (X−p+1, . . . , Xn) is an available trajectory from which we deduce the
standard OLS estimator of θ, the mean value of the coefficients,

θ̂n = S −1
n−1

n∑
t=1

Φt−1Xt where Sn =
n∑
t=0

Φt ΦT
t . (2.5)

To simplify, the initial vector Φ0 is assumed to follow the stationary distribution of the
process. It is important to note that (2.5) is the OLS of θ with respect to

∑
t(Xt− θ TΦt−1)2

even when α 6= 0, as it is done in Sec. 3 of Nicholls and Quinn (1981a), because our interest is
precisely to show that the usual estimation (i.e. assuming α = 0) may lead to inappropriate
conclusions in case of misspecification of the coefficients.

Remark 1. From the causal representation, ergodicity implies that

1

n

n∑
t=1

Yt
a.s.−→ E[Y0] < +∞ for any process of the form Yt =

m∏
i=1

Xt−di η
ai
ki, t−d ′

i
(2.6)

where 0 6 d ′i 6 di, ai ∈ {0, 1} and 1 6 ki 6 p, provided that Θ ⊂ Θm (m = 2, 4). In all
the study, any term taking the form of Yt is called a second-order (or fourth-order) isolated
term when m = 2 (or m = 4). According to (2.6), isolated terms satisfy Yt = o(n) and thus
|Yt|1/2 = o(

√
n) a.s. Such arguments are frequently used in the proofs.
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The autocovariances of the stationary process are denoted by `i = E[XiX0] and, by ergod-
icity, the sample covariances are strongly consistent estimators, that is

1

n

n∑
t=1

XtXt−i
a.s.−→ `i. (2.7)

Based on the autocovariances, we build

Λ0 =


`0 `1 · · · `p−1

`1 `0 · · · `p−2
...

...
...

`p−1 `p−2 · · · `0

 and L1 =


`1

`2
...
`p

 . (2.8)

The matrix Λ0 is clearly positive semi-definite but the case where it would be non-invertible is
part of Θ∗. This is the multivariate extension of the condition 2α τ2 6= 1 in Pröıa and Soltane
(2018), this can also be compared to assumption (v) in Nicholls and Quinn (1981a). The
asymptotic behavior of (2.5) is now going to be studied in terms of convergence, normality
and rate. The result below is immediate from the ergodic theorem, provided that Θ ⊂ Θ2.

Theorem 2.2. Assume that Θ ⊂ Θ2\Θ∗. Then, we have the almost sure convergence

θ̂n
a.s.−→ θ ∗ = Λ−1

0 L1.

We give in Remark 3 of the Appendix another expression of θ ∗ which directly shows that
θ ∗ = θ as soon as α = 0, as it is already established in Thm. 4.1 of Nicholls and Quinn
(1981a). However, except for p = 1 (see Pröıa and Soltane (2018)), we generally do not have
θ ∗ = 0 when θ = 0, and we will use this disturbing fact in the short example of Section 3.

Theorem 2.3. Assume that Θ ⊂ Θ4\Θ∗. Then, there exists a limit matrix L such that we
have the asymptotic normality

√
n (θ̂n − θ ∗)

D−→ N (0, Λ−1
0 LΛ−1

0 ).

Theorem 2.4. Assume that Θ ⊂ Θ4\Θ∗. Then, we have the rate of convergence

lim sup
n→+∞

n

2 ln lnn
‖θ̂n − θ ∗‖ 2 < +∞ a.s.

In particular, we can see that despite the correlation in the noise of the coefficients, the
hypotheses are sufficient to ensure that the estimator achieves the usual rate of convergence
in stable autoregressions, i.e.

‖θ̂n − θ ∗‖ = O

(√
ln lnn

n

)
a.s.

Note that σ2 and τk, 4 are involved in Θ2 to obtain the almost sure convergence, whereas σ4

and τk, 8 are involved in Θ4 to get the asymptotic normality and the rate of convergence.

Remark 2. Assuming that (ηk, t) and (η`, t) are uncorrelated for k 6= ` is a matter of simplifi-
cation of the calculations. We might as well consider a covariance structure for (η1, t, . . . , ηp, t)
and obtain the same kind of results, at the cost of additional parameters and refined hy-
potheses (see e.g. assumption (iii) in Nicholls and Quinn (1981a)).
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3. Illustration and Perspectives

To conclude this short note, let us illustrate a consequence of the presence of correlation
in the coefficients when testing the significance of θ. For the sake of simplicity, take p = 2
and consider the test of H0 : “θ2 = 0” against H1 : “θ2 6= 0”. Thanks to Remark 3, it is
possible to show that, under H0,

θ ∗1 =
θ1 (θ 2

1 + β2 − (1− β1) 2 − β1 (β1 + β2 − 1))

(θ1 − 2 β1 − β2 + 1) (θ1 + 2 β1 + β2 − 1)

and

θ ∗2 =
θ 2

1 β2 − β1 ((1− β2) 2 + 4 β1 (β1 + β2 − 1))

(θ1 − 2 β1 − β2 + 1) (θ1 + 2 β1 + β2 − 1)

where β1 = α1 τ1, 2 and β2 = α2 τ2, 2. As a consequence,
√
n |θ̂2, n| is almost surely divergent

and even if θ2 = 0, we may detect a non-zero-mean coefficient where there is in fact a zero-
mean autocorrelated one. Worse, suppose also that α2 = τ2, 2 = 0 so that there is no direct
influence of Xt−2 on Xt. Then, we still generally have θ ∗2 6= 0. In other words, a correlation
in the random coefficient associated with Xt−1, i.e. α1 6= 0, generates a spurious detection
of a direct influence of Xt−2 on Xt. This phenomenon can be observed on some simple but
representative examples. To test H0, we infer two statistics from Thm. 4.1 of Nicholls and
Quinn (1981a) and the procedure of estimation given by the authors,

Z1, n =

√
n θ̂2, n

v1, n

and Z2, n =

√
n θ̂2, n

v2, n

.

The first one takes into account random coefficients (which means that τ1, 2 and τ2, 2 are
estimated to get v1, n) and the second one is built assuming fixed coefficients (τ1, 2 and τ2, 2

are not estimated but set to 0). Note that we make sure that Θ ⊂ Θ4 when we vary the
settings. Unsurprisingly, Z2, n is less reliable since it does not model the random effect owing
to τ1, 2 > 0 and the corrected statistic Z1, n behaves as expected when α1 = 0.

Figure 1: Empirical distribution of Z1, n (blue) and Z2, n (green) for Gaussian noises η1, 0 ∼ N (0, 0.2) and
ε0 ∼ N (0, 1), θ1 = 0.3, θ2 = α2 = τ2, 2 = 0, and α1 ∈ {−0.5, 0, 0.3} from left to right, obtained with
N = 10000 repetitions of size n = 500. The red curve is the theoretical N (0, 1).

However, as it is visible on Figure 1 and confirmed by Figure 2, when α1 6= 0 both tests
reject H0 with a rate growing well above the 5% threshold that we used in this experiment
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even if, for the same reason as before, Z1, n appears slightly more robust. This is indeed what
theory predicts. Theorem 2.3 also confirms that, once correctly recentered, Z1, n and Z2, n

must remain asymptotically normal.

Figure 2: Rate of rejection ofH0 for numerous values of α1 ∈ [−0.5, 0.5] at the 5% threshold. The simulations
are conducted with the setting of Figure 1 and, from left to right, with θ1 = −0.3, θ1 = 0 and θ1 = 0.3.

This example clearly highlights the question of whether we can build a consistent estimate
for θ of course, but also for the covariance in the coefficients. In Pröıa and Soltane (2018),
this is done (see Sec. 4), mainly due to the fact that calculations are feasible when p = 1,
and a test for serial correlation followed. We can see through this note that this is not as
easy in the general case and that this must be a reflection for future studies. Besides, we
only considered the OLS but it would be worth working either with a QMLE or with a two-
stage procedure to be able to exhibit a reliable estimate despite a possible serial correlation.
We conclude by emphasizing the importance of developing statistical testing procedures for
correlation in the random coefficients in the future works dedicated to RCAR processes. For
practitioners, testing for serial correlation should appear as logic consequence of the tests
for randomness in the coefficients, especially when the main hypothesis of the model is the
existence of temporal correlations in the phenomenon.

Acknowledgements. The authors warmly thank the anonymous reviewer for the careful
reading and for making numerous useful corrections to improve the readability of the paper.
They also thank the research program PANORisk of the Région Pays de la Loire.

4. Technical proofs

4.1. Proof of Proposition 2.1

From our hypotheses on the noises (ηk, t), the matrix-valued process (Cθ +Nt−1Dα +Nt)
is strictly stationary and ergodic. Thus, it follows from (2.2) that we can find δ < 0 and a
random k0 such that, as soon as k > k0,

1

k

k−1∑
`=0

ln ‖Cθ +Nt−`−1Dα +Nt−`‖ < δ a.s.
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See also Lem. 1.1 of Brandt (1986) for a similar reasoning. For n > 1, consider the truncation

Φt, n = Et +
n∑
k=1

Et−k

k−1∏
`=0

(Cθ +Nt−`−1Dα +Nt−`).

Then, by the triangle inequality, for n large enough we have

‖Φt, n‖ 6 |εt|+
k0−1∑
k=1

|εt−k|
k−1∏
`=0

‖Cθ +Nt−`−1Dα +Nt−`‖+
n∑

k=k0

|εt−k| eδk

and Lem. 2.2 of Berkes et al. (2003) ensures the a.s. convergence of the last term under (2.2).
Thus, the limit superior of ‖Φt, n‖ is finite and so is (2.4) with probability 1. Moreover, it is
easy to check that this is a solution to the recurrence (2.1). Finally, the strict stationarity
and ergodicity of (Φt) may be obtained following the same reasoning as in Nicholls and
Quinn (1981a). Indeed, one can see that there exists φ independent of t such that Φt =
φ((Et, Nt), (Et−1, Nt−1), . . .) and the strict stationarity and ergodicity of the process (Et, Nt)
are passed to (Φt). That also implies the Ft-measurability of (Xt). �

4.2. Proof of Theorem 2.3

Let the filtration generated by F ∗0 = σ(Φ0, η1, 0, . . . , ηp, 0) and, for n > 1, by

F ∗n = σ(Φ0, η1, 0, . . . , ηp, 0, (ε1, η1, 1, . . . , ηp, 1), . . . , (εn, η1, n, . . . , ηp, n)). (4.1)

In the sequel, to avoid a huge amount of different notation, Mn and Rn will be generic
terms, not necessarily identical from one line to another, designating vector F ∗n -martingales
(see e.g. Duflo (1997)) and isolated terms, respectively. We make use of the Appendix for
some computational results and we start by two fundamental propositions showing that the
recentered empirical covariances are F ∗n -martingales, up to residual terms. To this aim, we
need to build the matrix Mα,β as follows. First, consider

Mθ =


θ1 0 · · · · · · 0

θ2
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

θp · · · · · · θ2 θ1

+


0 θ2 · · · · · · θp
...

... . . . 0
...

... . . .
...

... θp
...

0 · · · · · · · · · 0


and use it to define

Mα,β =



1
1−2β1

0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1



Mθ +


0 β2 0 · · · 0

β1 0 0
...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 β1 0
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where β1 = α1 τ1, 2 and β2 = α2 τ2, 2 + . . .+ αp τp, 2. Then, set U0 as the first column of Mα,β

and set K as the remaining part of Mα,β to which we add a zero vector on the right. Using
the notation of the reasonings below, the pathological set Θ∗ is enhanced with the situations
where 2 β1 = 1, α1 β1 = 1, det(Ip −K) = 0, s0 = 1 or U T (Ip −K)−1 U0 = 1− s0.

Proposition 4.1. Assume that Θ ⊂ Θ4\Θ∗. Then, we have the decomposition

n∑
t=1

Φt−1Xt − nL1 = (Ip −K)−1 U0

( n∑
t=1

X 2
t − n `0

)
+Mn +Rn

where Mn is a vector F ∗n -martingale and the remainder term satisfies ‖Rn‖ = o(
√
n) a.s.

Proof. The proposition is established through Lemma A.2. Indeed, this statement shows
that, as soon as Θ ∩Θ∗ = ∅, there is a decomposition of the form

1

n

n∑
t=1

Φt−1Xt = (Ip −K)−1 U0
1

n

n∑
t=1

X 2
t +

Mn

n
+
Rn

n
.

By ergodicity, taking the limit on both sides gives L1 = (Ip − K)−1 U0 `0. The remainder
term Rn is made of second-order isolated terms so, by Remark 1 and because Θ ⊂ Θ4, we
must have ‖Rn‖ = o(

√
n) a.s. �

Proposition 4.2. Assume that Θ ⊂ Θ4\Θ∗. Then, we have the decomposition

n∑
t=1

X 2
t − n `0 = Mn +Rn

where Mn is a scalar F ∗n -martingale and the remainder term satisfies |Rn| = o(
√
n) a.s.

Proof. This is a consequence of Lemma A.4. As soon as Θ ∩Θ∗ = ∅, it follows from this
lemma and Proposition 4.1, using the same notation, that( n∑

t=1

X 2
t − n `0

)[
1− U T (Ip −K)−1 U0

1− s0

]
=

U T Mn +Rn

1− s0

.

This concludes the proof since, likewise, the remainder term Rn is a linear combination of
second-order isolated terms. �

We now come back to the proof of Theorem 2.3. The keystone of the reasoning consists
in noting that there is a matrix A such that

n∑
t=1

Φt−1Xt − Sn−1 θ
∗ = A

( n∑
t=1

Φt−1Xt − nL1

)
− θ ∗

( n∑
t=1

X 2
t − n `0

)
+Rn

8



since, by ergodicity, 0 = L1−Λ0 θ
∗ = AL1− θ ∗ `0. The combination of Propositions 4.1 and

4.2 enables to obtain the decomposition

n∑
t=1

Φt−1Xt − Sn−1 θ
∗ = Mn +Rn (4.2)

where, as in the previous proofs, Mn is a vector F ∗n -martingale and the remainder term
satisfies ‖Rn‖ = o(

√
n) a.s. Let us call mn a generic element of Mn. As can be seen from

the details of the Appendix, it always takes the form of

mn =
n∑
t=1

X a1
t−d1 X

a2
t−d2 η

a3
k, t−d3 η

a4
`, t−d4 νt (4.3)

where 0 < d3, d4 6 d1, d2, ai ∈ {0, 1} and where the zero-mean random variable νt is
identically distributed and independent of F ∗t−1. Provided that σ4 < +∞ and τk, 8 < +∞
(included in Θ4), the ergodicity arguments (2.6) together with the fact that Θ ⊂ Θ4 show
that there exists a matrix L satisfying 〈M〉n/n → L a.s. From the causal representation of
the process given in Proposition 2.1 and the hypothesis on Φ0, the increments of mn are also
strictly stationary and ergodic. Thus, for any x > 0,

1

n

n∑
t=1

E[(∆mt)
2
1{|∆mt|>x} | F ∗t−1]

a.s.−→ E[(∆m1) 2
1{|∆m1|>x}].

Since E[(∆m1) 2] < +∞, the right-hand side can be made arbitrarily small for x → +∞.
Once again generalizing to Mn, we obtain via the same arguments that the Lindeberg’s
condition is satisfied. We are now ready to apply the central limit theorem for vector
martingales, given e.g. by Cor. 2.1.10 of Duflo (1997), and get that Mn/

√
n is asymptotically

normal with mean 0 and covariance L. Together with Remark 1, that leads to

1√
n

( n∑
t=1

Φt−1Xt − Sn−1 θ
∗
)

D−→ N (0, L).

Finally, the a.s. convergence of nS −1
n−1 to Λ−1

0 and Slutsky’s lemma conclude the proof. �

4.3. Proof of Theorem 2.4

Let us come back to the F ∗n -martingale mn given in (4.3). By the Hartman-Wintner law
of the iterated logarithm for martingales (see e.g. Stout (1970)),

lim sup
n→+∞

mn√
2n ln lnn

= vm and lim inf
n→+∞

mn√
2n ln lnn

= −vm a.s.

where vm = E[(∆m1) 2] < +∞, provided that Θ ⊂ Θ4. The limit inferior was obtained by
replacing mn by −mn, which share the same variance and martingale properties. Exploiting
the latter bounds and generalizing to Mn, we can deduce that

lim sup
n→+∞

‖Mn‖√
2n ln lnn

< +∞ a.s. (4.4)
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Because (4.2) implies ‖θ̂n − θ ∗‖ 6 ‖S −1
n−1‖ ‖Mn + Rn‖, it is now easy to conclude the proof

via (4.4). Indeed, we recall that nS −1
n−1 is convergent and that ‖Rn‖ = o(

√
n), obviously

implying that it is also o(
√
n ln lnn) a.s. �

A. Some martingales decompositions

For an easier reading, let us gather in this Appendix the proofs only based on calculations.
Like in Section 4, Mn, δn and Rn will be generic terms, not necessarily identical from one line
to another, designating F ∗n -martingales, differences of F ∗n -martingales and isolated terms,
respectively, where F ∗n is the filtration defined in (4.1). To save place, we deliberately skip the
proofs for most of them because they only consist of tedious but straightforward calculations.
We assume in all the Appendix that Θ ⊂ Θ4\Θ∗.

Lemma A.1. We have the decomposition

n∑
t=1

X 2
t η1, t =

2 τ1, 2

1− 2 β1

[
p∑

k=1

θk

n∑
t=1

XtXt−k+1 + β2

n∑
t=1

XtXt−1

]
+Mn +Rn

where β1 = α1 τ1, 2 and β2 = α2 τ2, 2 + . . .+ αp τp, 2.

Proof. Develop Xt using (1.1) to get that, for all t and after a lot of simplifications,

X 2
t η1, t = 2 τ1, 2

( p∑
k=1

θkXt−1Xt−k +

p∑
k=2

αk τk, 2Xt−kXt−k−1 + α1X
2
t−1 η1, t−1

)
+ δt.

It remains to sum over t and to gather all equivalent terms. Note that {2 β1 = 1} ⊂ Θ∗. �

Lemma A.2. We have the decomposition

n∑
t=1

XtXt−1 =
1

1− 2 β1

[
p∑

k=1

θk

n∑
t=1

XtXt−k+1 + β2

n∑
t=1

XtXt−1

]
+Mn +Rn

where β1 = α1 τ1, 2 and β2 = α2 τ2, 2 + . . .+ αp τp, 2. In addition, for i > 2, we have

n∑
t=1

XtXt−i =

p∑
k=1

θk

n∑
t=1

XtXt−|i−k| + β1

n∑
t=1

XtXt−|i−2| +Mn +Rn.

Proof. Develop Xt using (1.1) to get, after additional calculations, that for all t,

XtXt−i =

p∑
k=1

θkXt−iXt−k + α1 τ1, 2Xt−2Xt−i + δt

as soon as i > 2. For i = 1, we can show that for all t,

XtXt−1 =

p∑
k=1

θkXt−1Xt−k + α1X
2
t−1 η1, t−1 +

p∑
k=2

αk τk, 2Xt−kXt−k−1 + δt.

Finally, it remains to sum over t and to exploit Lemma A.1. Note that {2 β1 = 1} ⊂ Θ∗. �
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Lemma A.3. There exists γ0, . . . , γp−1 such that we have the decomposition

n∑
t=1

X 2
t η

2
1, t =

1

1− α1 β1

[
p∑

k=1

γk−1

n∑
t=1

XtXt−k+1 + σ2 τ1, 2 n

]
+Mn +Rn

where β1 = α1 τ1, 2.

Proof. We first obtain, using (1.1), that for all t,

X 2
t η

2
1, t = Xt η

2
1, t

(
p∑

k=1

θkXt−k +

p∑
k=1

Xt−k ηk, t +

p∑
k=1

αkXt−k ηk, t−1

)
+ η 2

1, t ε
2
t + δt.

Then, the statements above lead to the result. Note that {α1 β1 = 1} ⊂ Θ∗. �

Lemma A.4. There exists U T = (u1, . . . , up−1, 0) such that we have the decomposition

n∑
t=1

X 2
t =

U T

1− s0

n∑
t=1

Φt−1Xt +

(
`0 −

U T L1

1− s0

)
n+Mn +Rn

where

s0 =

(
1 + α1 θ2 +

2α1 θ
2
1

1− 2 β1

+
σ2

1− α1 β1

)
τ1, 2 +

p∑
k=2

(1 + α 2
k ) τk, 2

and β1 = α1 τ1, 2.

Proof. As in the previous proofs, we start by developping Xt using (1.1) to get, for all t,

X 2
t = Xt

(
p∑

k=1

θkXt−k +

p∑
k=1

Xt−k ηk, t +

p∑
k=1

αkXt−k ηk, t−1

)
+ ε 2

t + δt.

Finally, after some additional steps of calculations, Lemmas A.1 and A.3 enable to simplify
the summation. Note that {2 β1 = 1} ∪ {α1 β1 = 1} ∪ {s0 = 1} ⊂ Θ∗. �

B. Moments of the process

In this section, we repeatedly need the well-known relations vec(AXB) = (B T⊗A) vec(X)
and (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). First, let us give more details on the condition
E[η ak, tX

2
t ] < +∞ for a ∈ {0, 1, 2}. From the vector form (2.1) of the process together with

its Ft-measurability (2.4), we may obtain that for all t, developing and taking expectation,

E[vec(Φt ΦT
t )] = (Cθ ⊗ Cθ + Γ0)E[vec(Φt−1 ΦT

t−1)]

+ (Ip ⊗ Cθ)E[((Nt−1Dα)⊗ Ip) vec(Φt−1 ΦT
t−1)]

+ (Cθ ⊗ Ip)E[(Ip ⊗ (Nt−1Dα)) vec(Φt−1 ΦT
t−1)]

+ E[((Nt−1Dα)⊗ (Nt−1Dα)) vec(Φt−1 ΦT
t−1)] + vec(Σ0)
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where Γ0 = E[N0 ⊗N0] and Σ0 = E[E0E
T
0 ]. In a more compact form,

Ut = (Cθ ⊗ Cθ + Γ0)Ut−1 + (Ip ⊗ Cθ)V1, t−1 + (Cθ ⊗ Ip)V2, t−1 +Wt−1 + vec(Σ0)

where Ut, V1, t, V2, t and Wt are easily identifiable from the explicit relation above. Working
similarly on the other components and stacking them into Ωt, we get the linear system

Ωt = A2 Ωt−1 +B2 (B.1)

where B T
2 = (vec(Σ0), 0, 0,Γαα vec(Σ0)),

A2 =


Cθ ⊗ Cθ + Γ0 Ip ⊗ Cθ Cθ ⊗ Ip Ip2
Gα ⊗ Cθ + Γαc Γα Gα ⊗ Ip 0
Cθ ⊗Gα + Γ ′αc Ip ⊗Gα Γ ′α 0

Γαα (Cθ ⊗ Cθ) + Λαα Γαα (Ip ⊗ Cθ) Γαα (Cθ ⊗ Ip) Γαα


and where, additionally, Gα = E[N0DαN0], Γα = E[(N0Dα) ⊗N0], Γ ′α = E[N0 ⊗ (N0Dα)],
Γαc = E[(N0DαCθ) ⊗ N0], Γ ′αc = E[N0 ⊗ (N0DαCθ)], Γαα = E[(N0Dα) ⊗ (N0Dα)] and
Λαα = E[(N0DαN0)⊗ (N0DαN0)]. In virtue of (B.1), the condition ρ(A2) < 1 is necessary
and sufficient for the existence of the second-order moments of the process, like in Nicholls
and Quinn (1981b). Note that the fourth-order moments of (ηk, t) and the second-order
moments of (εt) are involved.

Remark 3. Let Ω = (I4p2 − A2)−1B2 be the steady state of (B.1) with vertical blocks U ,
V1, V2 and W . Then, by ergodicity,

1

n

n∑
t=1

Φt−1 ΦT
t−1

a.s.−→ vec−1(U) and
1

n

n∑
t=1

Φt−1 ΦT
t−1DαNt−1

a.s.−→ vec−1(V1)

where vec−1 : Rp2 → Rp×p stands for the inverse operator of vec : Rp×p → Rp2 . Thus, we
deduce from (2.1) and (2.5) that θ ∗ = θ + Λ−1

0 λ, where Λ0 = vec−1(U), given in (2.8), and
λ is the first column of vec−1(V1). In particular, θ ∗ = θ ⇔ λ = 0⇐ α = 0.

The condition E[η ak, tX
4
t ] < +∞ for a ∈ {0, . . . , 4} can also be treated using the same

strategy. However, due to the extent of calculations, we cannot afford it in this paper and
we just give an outline. Instead of working on E[vec(Φt ΦT

t )] like in the case of the second-
order moments, we have to start with the treatment of E[vec(vec(Φt ΦT

t ) vecT (Φt ΦT
t ))] which

shall lead, after an extremely long development, to another system of the form

Πt = A4 Πt−1 +B4. (B.2)

Here, the fourth-order moments of (εt) and the eighth-order moments of (ηk, t) are involved.
Finally, the condition of existence of the fourth-order moments of the process is ρ(A4) < 1,
as it is done in Pröıa and Soltane (2018) for p = 1.
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