
HAL Id: hal-02861511
https://hal.science/hal-02861511v1

Preprint submitted on 9 Jun 2020 (v1), last revised 16 Feb 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Money Transfer Made Simple
Alex Auvolat, Davide Frey, Michel Raynal, François Taïani

To cite this version:
Alex Auvolat, Davide Frey, Michel Raynal, François Taïani. Money Transfer Made Simple. 2020.
�hal-02861511v1�

https://hal.science/hal-02861511v1
https://hal.archives-ouvertes.fr


Money Transfer Made Simple

Alex Auvolat1,2, Davide Frey1, Michel Raynal1,3, and Franois Taani1

1{alex.auvolat,davide.frey}@inria.fr, {michel.raynal,francois.taiani}@irisa.fr
1Univ Rennes, Inria, CNRS, IRISA, Rennes, France

2cole Normale Suprieure, Paris, France
3Department of Computing, Polytechnic University, Hong Kong

June 9, 2020

Abstract

It has recently been shown (PODC 2019) that, contrarily to a common
belief, money transfer in the presence of faulty (Byzantine) processes does
not require strong agreement such as consensus. This article goes one step
further: namely, it shows that money transfers do not need to explicitly
capture the causality relation that links individual transfers. A simple
FIFO order between each pair of processes is sufficient. To this end, the
article presents a generic money transfer algorithm that can be instan-
tiated in both the crash failure model and the Byzantine failure model.
The genericity dimension lies in the underlying reliable broadcast abstrac-
tion which must be suited to the appropriate failure model. Interestingly,
whatever the failure model, the money transfer algorithm only requires
adding a single sequence number to its messages as control information.
Moreover, as a side effect of the proposed algorithm, it follows that money
transfer is a weaker problem that the construction of a read/write register
in the asynchronous message-passing crash-prone model.

1 Introduction

Short historical perspective

Like field-area or interest-rate computations, money transfers have had a long
history (see e.g., [18, 23]). Roughly speaking, when looking at money transfer
in today’s digital era, the issue consists in building a software object, that
associates an account with each user and provides two operations, one that
allows a process to transfer money from one account to another and one that
allows a process to read the current value of an account. The main issue of
money transfer lies is the fact that the transfer of an amount of money v by a
user to another user is conditioned to the current value of its account being at
least v.

Fully decentralized electronic money transfer was introduced in [21] with
the Bitcoin cryptocurrency in which there is no central authority that controls
the money exchanges issued by users. From a software point of view, Bitcoin
adopts a peer-to-peer approach, while from an application point of view it seems
to have been motivated by the 2008 subprime crisis [27].

1



To attain its goal Bitcoin introduced a specific underlying distributed soft-
ware technology called blockchain, which can be seen as a specific distributed
state-machine-replication technique, the aim of which is to provide its users with
an object known as a concurrent ledger. Such an object is defined by two opera-
tions, one that appends a new item in such a way that, once added, no item can
be removed, and a second operation that atomically reads the full list of items
currently appended. Hence, a ledger builds a total order on the invocations of
its operations. When looking at the synchronization power provided by a ledger
in the presence of failures, measured with the consensus-number lens, it has
been shown that the synchronization power of a ledger is +∞ [12, 25]. In a very
interesting way, recent work [13] has shown that, in a context where each user
is associated with a single device (called process in the following) and assum-
ing each account has a single owner which can spend its money, the consensus
number of the money-transfer concurrent object is 1. This is an important
result, as it shows that the power of blockchain technology is much stronger
(and consequently more costly) than necessary to implement money transfer.
To illustrate this discrepancy, the authors of [13] show first that, in a failure-
prone shared-memory system, money transfer can be implemented on top of
a snapshot object [1] (whose consensus number is 1, and consequently can be
implemented on top of read/write atomic registers). Then, they appropriately
modify their shared-memory algorithm to obtain an algorithm that works in
asynchronous failure-prone message-passing systems. To allow the processes to
correctly validate the money transfers, the resulting algorithm demands them to
capture the causality relation linking money transfers and requires each message
to carry control information encoding the causal past of the money transfer it
carries.

As already indicated, the main problem encountered with money transfer
is double spending (i.e., the use of the same money more than once). This
problem occurs in the presence of dishonest, i.e., Byzantine, processes. Another
important issue of money transfer resides in the privacy associated with money
accounts. This means that a full solution to money transfer must address two
orthogonal issues: synchronization (to guarantee the consistency of the money
accounts) and confidentiality/security (usually solved with cryptography tech-
niques). Here, as in [13], we focus on synchronization.

Content of the article

As previously discussed, and contrarily to a common belief, the result of [13]
shows that agreement (such as consensus) is far from being necessary to im-
plement money transfer. The present article goes even further. It shows that,
contrarily to what is currently accepted, the implementation of a money trans-
fer object does not require the explicit capture of the causality relation linking
individual money transfers.

To this end, we present a surprisingly simple yet efficient and generic money-
transfer algorithm that relies on an underlying reliable-broadcast abstraction. It
is efficient as it only requires a very small amount of meta-data on its messages:
in addition to money-transfer data, the only control information carried by the
messages of our algorithm is reduced to a single sequence number. It is generic
in the sense that it can accommodate different failure models with no modifica-
tion. More precisely, our algorithm inherits the fault-tolerance properties of its

2



underlying reliable broadcast: it tolerates crashes if used with a crash-tolerant
reliable broadcast, and Byzantine faults if used with a Byzantine-tolerant reli-
able broadcast.

Given an n-process system where at most t processes can be faulty, the
proposed algorithm works for t < n in the crash failure model, and t < n/3
in the Byzantine failure model. This has an interesting side effect on the dis-
tributed computability side. Namely, in the crash failure model, money transfer
constitutes a weaker problem than the construction of a read/write register
(where “weaker” means that—unlike a read/write register—it does not require
the “majority of non-faulty processes” assumption).

Roadmap

The article consists of 7 sections. First, Section 2 introduces the distributed
failure-prone computing models in which we are interested, and Section 3 pro-
vides a definition of money transfer suited to these computing models. Then,
Section 4 presents a very simple generic money-transfer algorithm. Its instanti-
ations and the associated proofs are presented in Section 5 for the crash failure
model and in Section 6 for the Byzantine failure model Finally, Section 7 con-
cludes the article.

2 Distributed Computing Models

2.1 Process failure model

Process model

The system comprises a set of n sequential asynchronous processes, denoted p1,
..., pn

1. Sequential means that a process invokes one operation at a time, and
asynchronous means that each process proceeds at its own speed, which can
vary arbitrarily and always remains unknown to the other processes.

Two process failure models are considered. The model parameter t denotes
an upper bound on the number of processes that can be faulty in the considered
model. Given an execution r (run) a process that commits failures in r is said
to be faulty in r, otherwise it is non-faulty (or correct) in r.

Crash failure model

In this model processes may crash. A crash is a premature definitive halt. This
means that, in the crash failure model, a process behaves correctly (i.e., executes
its algorithm) until it possibly crashes. This model is denoted CAMPn,t [∅]
(Crash Asynchronous Message Passing). When t is restricted not to bypass a
bound f(n), the corresponding restricted failure model is denoted CAMPn,t [t ≤
f(n)].

1Hence the system we consider is static (according to the distributed computing community
parlance) or permissioned (according to the blockchain community parlance).

3



Byzantine failure model

In this model, processes can commit Byzantine failures [19, 24], and those that
do so are said to be Byzantine. A Byzantine failure occurs when a process
does not follow its algorithm. Hence a Byzantine process can stop prematurely,
send erroneous messages, send different messages to distinct processes when it is
assumed to send the same message, etc. Let us also observe that, while a Byzan-
tine process can invoke an operation which generates application messages2 it
can also “simulate” this operation by sending fake implementation messages
that give their receivers the illusion that they have been generated by a correct
sender. However, we assume that there is no Sybil attack like most previous
work on byzantine fault tolerance including [13].3

As previously, the notations BAMPn,t [∅] and BAMPn,t [t ≤ f(n)] (Byzan-
tine Asynchronous Message Passing) are used to refer to the corresponding
Byzantine failure models.

2.2 Underlying complete point-to-point network

The processes communicate through an underlying message-passing point-to-
point network in which there exists a bidirectional channel between any pair of
processes. Hence, when a process receives a message, it knows which process
sent this message. For simplicity, in writing the algorithms, we assume that a
process can send messages to itself.

Each channel is reliable and asynchronous. Reliable means that a channel
does not lose, duplicate, or corrupt messages. Asynchronous means that the
transit delay of each message is finite but arbitrary. Moreover, in the case of
the Byzantine failure model, a Byzantine process can read the content of the
messages exchanged through the channels, but cannot modify their content.

To make our algorithm as generic and simple as possible, Section 4 does
not present it in terms of low-level send/receive operations4 but in terms of a
high-level communication abstraction, called reliable broadcast (e.g., [7, 9, 14,
16, 25]). The definition of this communication abstraction appears in Section 5
for the crash failure model and Section 6 for the Byzantine failure model. It
is important to note that the previously cited reliable broadcast algorithms do
not use sequence numbers. They only use different types of implementation
messages which can be encoded with two bits.

3 Money Transfer: a Formal Definition

Money transfer: operations

From an abstract point of view, a money-transfer object can be seen as an ab-
stract array ACCOUNT [1..n] where ACCOUNT [i] represents the current value
of pi’s account. This object provides the processes with two operations denoted

2An application message is a message sent at the application level, while an implementation

is low level message used to ensure the correct delivery of an application message.
3As an example, a Byzantine process can neither spawn new identities, nor assume the

identity of existing processes.
4Actually the send and receive operations can be seen as “machine-level” instructions

provided by the network.

4



balance() and transfer(), whose semantics are defined below. The transfer by a
process of the amount of money v to a process pj is represented by the pair 〈j, v〉.
Without loss of generality, we assume that a process does not transfer money
to itself. It is assumed that each ACCOUNT [i] is initialized to a non-negative
value denoted init[i] (5).

Informally, when pi invokes balance(j) it obtains a value (as defined below)
of ACCOUNT [j], and when it invokes the transfer 〈j, v〉, the amount of money
v is moved from ACCOUNT [i] to ACCOUNT [j].

Histories

The following notations and definitions are inspired from [2].

• A local execution history (or local history) of a process pi, denoted Li,
is a sequence of operations balance() and transfer() issued by pi. If an
operation op1 precedes an operation op2 in Li, we say that “op1 precedes
op2 in process order”, which is denoted op1 →i op2.

• An execution history (or history) H is a set of n local histories, one per
process, H = (L1, · · · , Ln).

• A serialization S of a history H is a sequence that contains all the opera-
tions of H and respects the process order →i of each process pi.

• Given a historyH and a process pi, letAi,T (H) denote the history (L′
1, ..., L

′
n)

such that

– L′
i = Li, and

– For any j 6= i: L′
j contains only the transfer operations of pj.

Notations

• An operation transfer(j, v) invoked by pi is denoted trfi(j, v).

• An invocation of balance(j) that returns the value v is denoted blc(j)/v.

• Let H be a set of operations.

– plus(j,H) = Σtrfk(j,v)∈H v (total of the money given to pj in H).

– minus(j,H) = Σtrfj(k,v)∈H v (total of the money given by pj in H).

– acc(j,H) = init[j]+plus(j,H)−minus(j,H) (value of ACCOUNT [j]
according to H).

• Given a history H and a process pi, let Si be a serialization of Ai,T (H)
(hence, Si respects the n process orders defined by H). Let →Si

denote
the total order defined by Si.

5It is possible to initialize some accounts to negative values. In this case, pos being the
sum of all the positive initial values and neg the sum of all the negative initial values, we have
to assume pos > neg.

5



Money-transfer-compliant serialization

A serialization Si of Ai,T (H) is money-transfer compliant (MT-compliant) if:

• For any operation trfj(k, v) ∈ Si, we have v ≤ acc(j, {op ∈ Si | op →Si

trfj(k, v)}), and

• For any operation blc(j)/v ∈ Si, we have v = acc(j, {op ∈ Si | op →Si

blc(j)/v}).

MT-compliance is the key concept at the basis of the definition of a money-
transfer object. It states that it is possible to associate each process pi with a
total order Si in which (a) each of its invocations of balance(j) returns it the
value v equal to pj ’s account’s current value according to Si, and (b) processes
transfer only money that they have.

Let us observe that the common point among the serializations S1, ..., Sn

lies in the fact that each process sees all the transfer operations of any other
process pj in the order they have been produced (as defined by Lj), and sees its
own transfer and balance operations in the order it produced them (as defined
by Li).

Money transfer in CAMPn,t [∅]

Considering the CAMPn,t [∅] model, a money-transfer object is an object that
provides the processes with balance() and transfer() operations and is such that,
for each of its executions, represented by the corresponding history H , we have:

• All the operations invoked by correct processes terminate.

• For any correct process pi, there is an MT-compliant serialization Si of
Ai,T (H), and

• For any faulty process pi, there is a history H ′ = (L′
1, ..., L

′
n) where (a)

L′
j is a prefix of Lj for any j 6= i, and (b) L′

i = Li, and there is an
MT-compliant serialization of Ai,T (H

′).

An algorithm implementing a money transfer object is correct in CAMPn,t [∅]
and produces only executions as defined above. We then say that the algorithm
is MT-compliant.

Money transfer in BAMPn,t [∅]

The main differences between money transfer in CAMPn,t [∅] and BAMPn,t [∅]
lies in the fact a faulty process can try to transfer money it does not have, and try
to present different behaviors with respect to different correct processes. This
means that, while the notion of a local history Li is still meaningful for a non-
Byzantine process, it is not for a Byzantine process. For a Byzantine process,
we therefore define a mock local history for a process pi as any sequence of
transfer operations from pi’s account

6. In this definition, the mock local history
Li associated with a Byzantine process pi is not necessarily the local history
it produced, it is only a history that it could have produced from the point of

6Let us remind that the operations balance() issued by a Byzantine can return any value.
So they are not considered in the mock histories associated with Byzantine processes.

6



view of the correct processes. The correct processes implement a money-transfer
object if they all behave in a manner consistent with the same set of mock local
histories for the Byzantine processes. More precisely, we define a mock history
associated with an execution on a money transfer object in BAMPn,t [∅] as

H̃ = (L̃1, ..., L̃n) where:

L̃j =

{

Lj if pj is correct,

a mock local history if pj is Byzantine.

Considering the BAMPn,t [∅] model, a money transfer object is such that, for

each of its executions, there exists a mock history H̃ such that for any correct
process pi, there is an MT-compliant serialization Si of Ai,T (H̃). An algorithm
implementing such executions is said to be MT-compliant.

4 A Simple Generic Money Transfer Algorithm

This section presents a generic algorithm implementing a money transfer object.
As already said, its generic dimension lies in the underlying reliable broadcast
abstraction used to disseminate money transfers to the processes, which depends
on the failure model.

4.1 Reliable broadcast

Reliable broadcast provides two operations denoted r broadcast() and r deliver().
Because a process is assumed to invoke the reliable broadcast each time it issues
a money transfer, we use a multi-shot reliable broadcast, that relies on explicit
sequence numbers to distinguish between its different instances (more on this
below). Following the parlance of [14] we use the following terminology: when a
process invokes r broadcast(sn,m), we say it “r-broadcasts the message m with
sequence number sn”, and when its invocation of r deliver() returns it a pair
(sn,m), we say it “r-delivers m with sequence number sn”. While definitions
of reliable broadcast suited to the crash failure model and the Byzantine failure
model will be given in Section 5 and Section 6, respectively, we state their
common properties below.

• Validity. This property states that there is no message creation. To this
end, it relates the outputs (r-deliveries) to the inputs (r-broadcasts). Ex-
cluding malicious behaviors, a message that is r-delivered has been r-
broadcast.

• Integrity. This property states that there is no message duplication.

• Termination-1. This property states that correct processes r-deliver what
they broadcast.

• Termination-2. This property relates the sets of messages r-delivered by
different processes.

The Termination properties ensure that all the correct processes r-deliver the
same set of messages, and that this set includes at least all the messages that

7



they r-broadcast.

As mentioned above, sequence numbers are used to identify different in-
stances of the reliable broadcast. Instead of using an underlying FIFO-reliable
broadcast in which sequence numbers would be hidden, we expose them in
the input/output parameters of the r broadcast() and r deliver() operations, and
handle their updates explicitly in our generic algorithm. This reification7 allows
us to capture explicitly the complete control related to message r-deliveries re-
quired by our algorithm. As we will see, it follows that the instantiations of the
previous Integrity property (crash and Byzantine models) will explicitly refer to
“upper layer” sequence numbers.

We insist on the fact that the reliable broadcast abstraction that the pro-
posed algorithm depends on does not itself provide the FIFO ordering guaran-
tee. It only uses sequence numbers to identify the different messages sent by
a process. As explained in the next section, the proposed generic algorithm
implements itself the required FIFO ordering property.

4.2 Generic money transfer algorithm: local data struc-
tures

As said in the previous section, init[1..n] is an array of constants, known by
all the processes, such that init[k] is the initial value of pk’s account, and a
transfer of the quantity v from a process pi to a process pk is represented by
the pair 〈k, v〉. Each process pi manages the following local variables:

• sni: integer variable, initialized to 0, used to generate the sequence num-
bers associated with the transfers issued by pi (it is important to notice
that the point-to-point FIFO order realized with the sequence numbers is
the only “causality-related” control information used in the algorithm).

• del i[1..n]: array initialized to [0, · · · , 0] such that deli[j] is the sequence
number of the last transfer issued by pj and locally processed by pi.

• account i[1..n]: array, initialized to init[1..n], that is a local approximate
representation of the abstract array ACCOUNT [1..n], i.e., account i[j] is
the value of pj’s account, as know by pi.

While other local variables containing bookkeeping information can be added
according to the application’s needs, it is important to insist on the fact that the
proposed algorithm needs only the three previous local variables (i.e., (2n+ 1)
local registers) to solve the synchronization issues that arise in fault-tolerant
money transfer.

4.3 Generic money transfer algorithm: behavior of a pro-
cess pi

Algorithm 1 describes the behavior of a process pi. When it invokes balancei(j),
pi returns the current value of account i[j] (line 1).

7Reification is the process by which an implicit, hidden or internal information is explicitly
exposed to a programmer.

8



init: account i[1..n]← init[1..n]; sni ← 0; del i[1..n]← [0, · · · , 0].

operation balance(j) is

(1) return(account [j]).

operation transfer(j, v) is

(2) if (v ≤ account i[i])
(3) then sni ← sni + 1; r broadcast(sni, transfer〈j, v〉);
(4) wait (del i[i] = sni); return(commit)
(5) else return(abort)
(6) end if.

when (sn ,transfer〈k, v〉) is r delivered do

(7) wait
(

(sn = deli[j] + 1) ∧ (account i[j] ≥ v)
)

;
(8) account i[j]← account i[j]− v; account i[k]← account i[k] + v;
(9) deli[j]← sn.

Algorithm 1: Generic broadcast-based money transfer algorithm (code for pi)

When it invokes transfer(j, v), pi first checks if it has enough money in its
account (line 2) and returns abort if it does not (line 5). If it has enough
money, pi computes the next sequence number sni and r-broadcasts the pair
(sni, transfer〈j, v〉) (line 3). Then pi waits until it has locally processed
this transfer (lines 7-9), and finally returns commit. Let us notice that the
predicate at line 7 is always satisfied when pi r-delivers a transfer message it
has r-broadcast.

When pi r-delivers a pair (sn, transfer〈k, v〉) from a process pj , it does
not process it immediately. Instead, pi waits until (i) this is the next message it
has to process from pj (to implement FIFO order) and (ii) its local view of the
money transfers to and from pj (namely the current value of account i[j]) allows
this money transfer to occur (line 7). When this happens, pi locally registers
the transfer by moving the quantity v from account i[j] to account i[k] (line 8)
and increases del i[j] (line 9).

5 Instantiation and Proof in the Crash Failure
Model

This section presents first the crash-tolerant reliable broadcast abstraction whose
operations instantiate the r broadcast() and r deliver() operations used in the
generic algorithm. Then, using the MT-compliance notion, it proves that Algo-
rithm 1 combined with a crash-tolerant reliable broadcast implements a money
transfer object in CAMPn,t [∅]. It also shows that, in this model, money trans-
fer is weaker than the construction of an atomic read/write register. Finally, it
presents a simple weakening of the FIFO requirement that works in the model
CAMPn,t [∅].

5.1 Multi-shot reliable broadcast abstraction in the crash
failure model

This communication abstraction, named CR-Broadcast, is defined by the two
operations cr broadcast() and cr deliver(). Hence, we use the terminology “to

9



cr-broadcast a message”, and “to cr-deliver a message”.

• CRB-Validity. If a process pi cr-delivers a message with sequence number
sn from a process pj , then pj cr-broadcast it with sequence number sn.

• CRB-Integrity. For each sequence number sn and sender pj a process pi
cr-delivers at most one message with sequence number sn from pj .

• CRB-Termination-1. If a correct process cr-broadcasts a message, it cr-
delivers it.

• CRB-Termination-2. If a process cr-delivers a message from a (correct or
faulty) process pj , then all correct processes cr-deliver it.

CRB-Termination-1 and CRB-Termination-2 capture the “strong” reliability
property of CR-Broadcast, namely: all the correct processes cr-deliver the same
set S of messages, and this set includes at least the messages they cr-broadcast.
Moreover, a faulty process cr-delivers a subset of S. Algorithms implementing
the CR-Broadcast abstraction in CAMPn,t [∅] are described in [14, 25].

5.2 Proof of Algorithm 1 in CAMPn,t [∅]

Lemma 1. Any invocation of balance() or transfer() issued by a correct process
terminates.

Proof. The fact that any invocation of balance() terminates follows immediately
from the code of the operation.

When a process pi invokes transfer(j, v), it r-broadcasts a message and the
local predicate (sn = del i[i]+1)∧(v ≤ account i[i]) is satisfied. Due to the CRB-
Termination properties, pi receives its own transfer message and the predicate
(line 7) is necessarily satisfied. This is because (i) only pi can transfer its
own money, a (ii) the wait statement of line 4 ensures the current invocation
of transfer(j, v) does not return until the corresponding transfer message is
processed at lines 8-9, and (iii) the fact that account i[i] cannot decrease between
the execution of line 3 and the one of line 7. It follows that pi terminates its
invocation of transfer(j, v).

The safety proof is more involved. It consists in showing that any execution
satisfies MT-compliance as defined in Section 3.

Notation and definition

• Let trfsnj (k, v) denote the operation trf(k, v) issued by pj with sequence
number sn.

• We say a process pi processes the transfer trf
sn

j (k, v) if, after it cr-delivered
the associated message transfer〈k, v〉 with sequence number sn, pj exits
the wait statement at line 7 and executes the associated statements at
lines 8-9. The moment at which these lines are executed is referred to
as the moment when the transfer is processed by pi. (These notions are
related to the progress of processes.)

10



• If the message transfer cr-broadcast by a process is cr-delivered by a
correct process, we say that the transfer is successful. (Let us notice that
a message cr-broadcast by a correct process is always successful.)

Lemma 2. If a process pi processes trfsnℓ (k, v), then any correct process pro-
cesses trfsnℓ (k, v).

Proof. Let m1, m2, ... be the sequence of transfers processed by pi and let pj
be a correct process. We show by induction on z that, for all z, pj processes all
the messages m1, m2, ...,mz.

Base case z = 0. As the sequence of transfers is empty, the proposition is
trivially satisfied.

Induction. Taking z ≥ 0, suppose pj processed all the transfersm1, m2, ...,mz.
We have to show that pj processes mz+1. Note that m1, m2, ...,mz do not typi-
cally originate from the same sender, and are therefore normally processed by pj
in a different order than pi, possibly mixed with other messages. This also ap-
plies to mz+1. If mz+1 was processed by pj before mz, we are done. Otherwise
there is a time τ at which pj processed all the transfers m1, m2, ...,mz (case
assumption), cr-delivered mz+1 (CBR-Termination-2 property), but has not yet
processed mz+1. Let mz+1 = trfsnℓ (k, v). At time τ , we have the following.

• On one side, del j [ℓ] ≤ sn − 1 since messages are processed in FIFO order
and mz+1 has not yet been processed. On the other side, del j [ℓ] ≥ sn − 1
because either sn = 1 or trfsn−1

ℓ (−,−) ∈ m1, ...,mz, where trf
sn−1
ℓ (−,−) is

the transfer issued by pℓ just beforemz+1 = trfsnℓ (k, v) (otherwise pi would
not have processed mz+1 just after m1, ...,mz). Thus del j [ℓ] = sn − 1.

• Let us now shown that, at time τ , account j [ℓ] ≥ v. To this end let
plusz+1

i (ℓ) denote the money transferred to pℓ as seen by pi just before pi
processes mz+1, and minusz+1

i (ℓ) denote the money transferred from pℓ as
seen by pi just before pi processes mz+1. Similarly, let plusz+1

j (ℓ) denote

the money transferred to pℓ as seen by pj at time τ and minusz+1
j (ℓ) denote

the money transferred from pℓ as seen by pj at time τ . Let us consider
the following sums:

– On the side of the money transferred to pℓ as seen by pj. Due to in-
duction, all the transfers to pℓ included inm1, m2, . . . ,mz (and possi-
bly more transfers to pℓ) have been processed by pj , thus plus

z+1
j (ℓ) ≥

Σtrfk′(ℓ,w)∈{m1, m2,...,mz}w and, as pi processed the messages in the or-

derm1, m2, ...,mz,mz+1 (assumption), we have plusz+1
i (ℓ) = Σtrfk′ (ℓ,w)∈{m1, m2,...,mz}w.

Hence, plusz+1
j (ℓ) ≥ plusz+1

i (ℓ).

– On the side of the money transferred from pℓ as seen by pj . Let us
observe that pj has processed all the transfers from pℓ with a sequence
number smaller than sn and no transfer from pℓ with a sequence
number greater than or equal to sn, thus we have minusz+1

j (ℓ) =

Σtrfℓ(k′,w)∈{m1, m2,...,mz}w = minusz+1
i (ℓ).

Let accountz+1
i [ℓ] be the value of account i[ℓ] just before pi processesmz+1,

and accountz+1
j [ℓ] be the value of accountj [ℓ] at time τ . As accountz+1

j [ℓ] =

init[ℓ]+plusz+1
j (ℓ)−minusz+1

j (ℓ) and accountz+1
i [ℓ] = init[ℓ]+plusz+1

i (ℓ)−

11



minusz+1
i (ℓ), it follows that account j [ℓ] is greater than or equal to the value

of account i[ℓ] just before pi processes mz+1, which was itself greater than
or equal to v (otherwise pi would not have processed mz+1 at that time).
It follows that accountj [ℓ] ≥ v.

The two predicates of line 7 are therefore satisfied, and will remain so until mz+1

is processed (due to the FIFO order on transfers issued by pℓ), thus ensuring
that process pj processes the transfer mz+1.

Lemma 3. If a process pi issues a successful money transfer trfsni (k, v) (execu-
tion of line 3) any correct process eventually processes the money transfer.

Proof. When process pi cr-broadcast money transfer trfsni (k, v), the local pred-
icate (sn = deli[i] + 1) ∧ (account i[i] ≥ v) was true at pi. When pi cr-delivers
its own transfer message, the predicate is still true at line 7 and pi processes
its transfer (if pi crashes after having cr-broadcast the transfer and before pro-
cessing it, we extend its execution—without loss of correctness—by assuming it
crashed just after processing the transfer). It follows from Lemma 2 that any
correct process processes trfsni (k, v).

Theorem 4. Algorithm 1 instantiated with CR-Broadcast implements a money
transfer object in the system model CAMPn,t [∅], and ensures that all operations
by correct processes terminate.

Proof. Lemma 1 proved that the invocations of the operations balance() and
transfer() by the correct processes terminate. Let us now consider MT-compliance.

Considering any execution of the algorithm, captured as historyH = (L1, ..., Ln),
let us first consider a correct process pi. Let Si be the sequence of the following
events happening at pi (these events are “instantaneous” in the sense pi is not
interrupted when it produces each of them):

• the event blc(j)/v occurs when pi invokes balance(j) and obtains v (line 1),
and

• the event trfsnj (k, v) occurs when pi processes the corresponding transfer
(lines 8-9 executed without interruption).

We show that Si is an MT-compliant serialization of Ai,T (H). When considering
the construction of Si, we have the following:

• For all trfsnj (k, v) ∈ Lj we have that pj cr-broadcast this transfer and
that (sn, transfer〈k, v〉) was received by pj and was therefore success-
ful : it follows from Lemma 3 that pi processes this money transfer, and
consequently we have trfsnj (k, v) ∈ Si.

• For all op1 = trfsnj (k, v) and op2 = trfsn
′

j (k′, v′) in Si (two transfers issued
by pj) such that op1 →j op2, we have sn < sn ′. Consequently pi processes
op1 before op2, and we have op1 →Si

op2.

• For all pairs op1 and op2 belonging to Li, their serialization order is the
same in Li and Si.

It follows that Si is a serialization of Ai,T (H). Let us now show that Si is
MT-compliant.

12



• Case where the event in Si is trfsnj (k, v). In this case we have v ≤
acc(j, {op ∈ Si | op →Si

trfj(k, v)} because this condition is directly en-
coded at pi in the waiting predicate that precedes the processing of op.

• Case where the event in Si is blc(j)/v. In this case we have v = acc(j, {op ∈
Si | op →Si

blc(j)/v}, because this is exactly the way how the returned
value v is computed in the algorithm.

This terminates the proof for the correct processes.
For a process pi that crashes, the sequence of money transfers from a process

pj that is processed by pi is a prefix of the sequence of money transfers issued
by pj (this follows from the FIFO processing order, line 7). Hence, for each
process pi that crashes there is a history H ′ = (L′

1, ..., L
′
n) where L′

j is a prefix
of Lj for each j 6= i and L′

i = Li, such that, following the same reasoning, the
construction Si given above is an MT-compliant serialization of Ai,T (H

′), which
concludes the proof of the theorem.

5.3 Money transfer vs atomic read/write register in the
crash failure model

It is shown in [5] that it is impossible to implement an atomic read/write reg-
ister in the distributed system model CAMPn,t [t∅], i.e., when, in addition to
asynchrony, any number of processes may crash. On the positive side, several
algorithms implementing such a register in CAMPn,t [t < n/2] have been pro-
posed, each with its own features (see for example [4, 5, 20] to cite a few). As
CAMPn,t [t < n/2] is a more constrained model than CAMPn,t [∅], it follows
that, from a CAMPn,t computability point of view, atomic read/write register
is a stronger problem than money transfer.

6 Instantiation and Proof in the Byzantine Fail-
ure Model

This section presents first the reliable broadcast abstraction whose operations
instantiate the r broadcast() and r deliver() operations used in the generic al-
gorithm. Then, it proves that the resulting algorithm correctly implements a
money transfer object in BAMPn,t [t < n/3].

6.1 Reliable broadcast abstraction in the Byzantine fail-
ure model

The communication abstraction, denoted BR-Broadcast, was introduced in [7].
It is defined by two operations denoted br broadcast() and br deliver() (hence
we use the terminology “br-broadcast a message” and “br-deliver a message”).
The difference between this communication abstraction and CR-Broadcast lies
in the nature of failures. Namely, as a Byzantine process can behave arbitrarily,
CRB-Validity, CRB-Integrity, and CRB-Termination-2 cannot be ensured. As
an example, it is not possible to ensure that if a Byzantine process br-delivers
a message, all correct processes br-deliver it. BR-Broadcast is consequently

13



defined by the following properties. Termination-1 is the same in both commu-
nication abstractions, while Integrity, Validity and Termination-2 consider only
correct processes (the difference lies in the added constraint written in italics).

• BRB-Validity. If a correct process pi br-delivers a message from a correct
process pj with sequence number sn, then pj br-broadcast it with sequence
number sn.

• BRB-Integrity. For each sequence number sn and sender pj a correct
process pi br-delivers at most one message with sequence number sn from
sender pj.

• BRB-Termination-1. If a correct process br-broadcasts a message, it br-
delivers it.

• BRB-Termination-2. If a correct process br-delivers a message from a
(correct or faulty) process pj , then all correct processes br-deliver it.

It is shown in [8, 25] that t < n/3 is a necessary requirement to imple-
ment BR-Broadcast. Several algorithms implementing this abstraction have
been proposed. Among them, the one presented in [7] is the most famous. It
works in the model BAMPn,t [t < n/3], and requires three consecutive commu-
nication steps. The one presented in [16] works in the more constrained model
BAMPn,t [t < n/5], but needs only two consecutive communication steps. These
algorithms show a trade-off between optimal t-resilience and time-efficiency.

6.2 Proof of Algorithm 1 in BAMPn,t [t < n/3]

The proof has the same structure, and is nearly the same, as the one for the
process-crash model presented in Section 5.2.

Notation

trfsnj (k, v) now denotes a money transfer (or the associated processing event
by a process) that correct processes br-deliver from pj with sequence number
sn. If pj is a correct process, this definition is the same as the one used in
the model CAMPn,t [∅]. If pj is Byzantine, transfer messages from pj do
not necessarily correspond to actual transfer() invocations by pj , but the BRB-
Termination-2 property guarantees that all correct processes br-deliver the same
set of transfer messages (with the same sequence numbers), and therefore
agree on how pj ’s behavior should be interpreted. The reliable broadcast thus
ensures a form of weak agreement among correct processes in spite of Byzantine
failures. This weak agreement is what allows us to move almost seamlessly from
a crash-failure model to a Byzantine model, with no change to the algorithm,
and only a limited adaptation of its proof.

More concretely, Lemma 2 (for crash failures) becomes the next lemma
whose proof is the same as for Lemma 2 in which the reference to the CBR-
Termination-2 property is replaced by a reference to its BRB counterpart.

Lemma 5. If a correct process pi processes trf
sn

j (k, v), then any correct process
processes it.

14



Lemma 6. If a correct process pi br-broadcasts a money transfer, all the correct
processes br-deliver and process it.

Proof. When a correct process pi br-broadcasts a money transfer trfsni (k, v),
we have (sn = deli[i] + 1) ∧ (account i[i] ≥ v), thus when it br-delivers it the
predicate of line 7 is satisfied. By Lemma 5, all the correct processes process
this money transfer.

Theorem 7. Algorithm 1 instantiated with BR-Broadcast implements a money
transfer object in the system model BAMPn,t [t < n/3], and ensures that all
operations by correct processes terminate.

The model constraint t < n/3 is due only to the fact that Algorithm 1 uses
BR-broadcast (for which t < n/3 is both necessary and sufficient). As the invo-
cations of balance() by Byzantine processes may return arbitrary values and do
not impact the correct processes, they are not required to appear in their local
histories.

Proof. The proof that the operations issued by the correct processes terminate
is the same as in Lemma 1 where the CRB-Termination properties are replaced
by their BRB-Termination counterparts.

To prove MT-compliance, let us first construct mock local histories for
Byzantine processes: the mock local history Li associated with a Byzantine
process pj is the sequence of money transfers from pj that the correct processes
br-deliver from pj and that they process. (By Lemma 5 all correct processes
process the same set of money transfers from pj).

Let pi be a correct process and Si be the sequence of operations occurring at
pi defined in the same way as in the crash failure model. In this construction,
the following properties are respected:

• For all, trfsnj (k, v) ∈ Lj then

– if pj is correct, it br-broadcast this money transfer and, due to
Lemma 6, pi processes it, hence trfsnj (k, v) ∈ Si.

– if pj is Byzantine, due to the definition of Lj (sequence of money
transfers that correct processes br-delivers from pj and process), we
have trfsnj (k, v) ∈ Si.

• For all op1 = trfsnj (k, v) and op2 = trfsn
′

j (k′, v′) (two transfers in Lj ⊆ Si)
such that op1 →j op2, we have sn < sn ′, consequently pi processes op1
before op2, and we have op1 →Si

op2.

• For all both op1 and op2 belonging to Li, their serialization order is the
same in Li as in Si (same as for the crash case).

It follows that Si is a serialization of Ai,T (H̃) where H̃ = (L1, .., Ln), Li being
the sequence of its operations if pi is correct, and a mock sequence of money
transfers, if it is Byzantine. The same arguments that were used in the crash
failure model can be used here to prove that Si is MT-compliant. Since all
correct processes observe the same mock sequence of operations Lj for any
given Byzantine process pj , it follows that the algorithm implements an MT-
compliant money transfer object in BAMPn,t [t < n/3].

15



6.3 Extending to incomplete Byzantine Networks

An algorithm is described in [26] which simulates a fully connected (point-to-
point) network on top of an asynchronous Byzantine message-passing system in
which, while the underlying communication network is incomplete (not all the
pairs of processes are connected by a channel), it is (2t+1)-connected (i.e., any
pair of processes is connected by (2t+1) disjoint paths8). Moreover, it is shown
that this connectivity requirement is both necessary and sufficient.9

Hence, denoting BAMPn,t [t < n/3, (2t+1)-connected] such a system model,
this algorithm builds BAMPn,t [t < n/3] on top BAMPn,t [t < n/3, (2t+1)-connected]
(both models have the same computability power). It follows that the previous
money-transfer algorithm works in incomplete (2t+1)-connected asynchronous
Byzantine systems where t < n/3.

7 Conclusion

The article has revisited the synchronization side of the money-transfer prob-
lem in failure-prone asynchronous message-passing systems. It has presented a
generic algorithm that solves money transfer in asynchronous message-passing
systems where processes may experience failures. This algorithm uses an un-
derlying reliable broadcast communication abstraction, which differs according
to the type of failures (process crashes or Byzantine behaviors) that processes
can experience.

In addition to its genericity (hence modular) dimension, the proposed algo-
rithm is surprisingly simple10 and particularly efficient (in addition to money-
transfer data, each message generated by the algorithm only carries one sequence
number). As a side effect, this algorithm has shown that, in the crash failure
model, money transfer is a weaker problem than the construction of a read/write
register. As far as the Byzantine failure model is concerned, we conjecture that
t < n/3 is a necessary requirement for money transfer (as it is for the construc-
tion of a read/write register [15]).

For the interested reader, a slightly weaker version of money transfer (which
can be built from a message ordering weaker than FIFO) is presented in an
Appendix. Finally, it is worth noticing that this article adds one more member
to the family of algorithms that strive to “unify” the crash failure model and
the Byzantine failure model as studied in [6, 11, 17, 22].

Acknowledgments

This work was partially supported by the French ANR project 16-CE40-0023-03
DESCARTES devoted to layered and modular structures in distributed com-
puting.

8“Disjoint” means that, given any pair of processes p and q, any two paths connecting p

and q share no process other than p and q. Actually, the (2t+1)-connectivity is required only
for any pair of correct processes (which are not known in advance).

9This algorithm is a simple extension to asynchronous systems of a result first established
in [10] in the context of synchronous Byzantine systems.

10Let us recall that, in sciences, simplicity is a first class property [3]. As stated by A. Perlis
— recipient of the first Turing Award — “Simplicity does not precede complexity, but follows
it”.

16



References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873-890 (1993)

[2] Ahamad M., Neiger G., Burns J.E., Hutto P.W., and Kohli P., Causal memory:
definitions, implementation and programming. Distributed Computing, 9:37–49
(1995)

[3] Aigner M. and Ziegler G., Proofs from THE BOOK (4th edition). Springer,
274 pages, ISBN 978-3-642-00856-6 (2010)

[4] Attiya H., Efficient and robust sharing of memory in message-passing systems.
Journal of Algorithms, 34(1):109-127 (2000)

[5] Attiya H., Bar-Noy A., and Dolev D., Sharing memory robustly in message-
passing systems. Journal of the ACM, 42(1):121-132 (1995)

[6] Bazzi, R. and Neiger, G.. Optimally simulating crash failures in a byzantine en-
vironment. Proc. 6th Workshop on Distributed Algorithms (WDAG’91), Springer
LNCS 579, pp. 108128 (1991)

[7] Bracha G., Asynchronous Byzantine agreement protocols. Information & Com-
putation, 75(2):130-143 (1987)

[8] Bracha G. and Toueg S., Asynchronous consensus and broadcast protocols. Jour-
nal of the ACM, 32(4):824-840 (1985)

[9] Cachin Ch., Guerraoui R., and Rodrigues L., Reliable and secure distributed pro-
gramming, Springer, 367 pages, ISBN 978-3-642-15259-7 (2011)

[10] Dolev D., The Byzantine general strike again. Journal of Algorithms, 3:14-30
(1982)

[11] Dolev D. and Gafni E., Some garbage in - some garbage out: asynchronous t-
Byzantine as asynchronous benign t-resilient system with fixed t-Trojan horse
inputs. Tech Report, arXiv:1607.01210, 14 pages (2016)

[12] Fernández Anta A., Konwar M.K., Georgiou Ch., and Nicolaou N.C., Formalizing
and implementing distributed ledger objects, SIGACT News, 49(2):58-76 (2018)

[13] Guerraoui R., Kuznetsov P., Monti M.,Pavlovic M., Seredinschi D.A., The con-
sensus number of a cryptocurrency. Proc. 38th ACM Symposium on Principles of
Distributed Computing (PODC’19), ACM Press, pp. 307–316 (2019)

[14] Hadzilacos V. and Toueg S., A modular approach to fault-tolerant broadcasts
and related problems. Tech Report 94-1425, 83 pages, Cornell University (1994)

[15] Imbs D., Rajsbaum S., Raynal M., and Stainer J., Read/write shared memory ab-
straction on top of an asynchronous Byzantine message-passing system. Journal
of Parallel and Distributed Computing, 93-94:1-9 (2016)

[16] Imbs D. and Raynal M., Trading t-resilience for efficiency in asynchronous Byzan-
tine reliable broadcast. Parallel Processing Letters, Vol. 26(4), 8 pages (2016)

[17] Imbs D., Raynal M., and Stainer J., Are Byzantine failures really different from
crash failures? Proc. 30th Symp. on Distr. Computing (DISC’16), Springer LNCS
9888, pp. 215-229 (2016)

17



[18] Knuth D.E., Ancient Babylonian algorithms. Comm. of the ACM, 15(7):671-677
(1972)

[19] Lamport L., Shostack R., and Pease M., The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3)-382-401 (1982)

[20] Mostéfaoui A. and Raynal M., Two-bit messages are sufficient to implement
atomic read/write registers in crash-prone systems. Proc. 35th ACM Symposium
on Principles of Distributed Computing (PODC’16), ACM Press, pp. 381-390
(2016)

[21] Nakamoto S., Bitcoin: a peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf (2008) [last accessed March 31, 2020]

[22] Neiger, G. and Toueg, S., Automatically increasing the fault-tolerance of dis-
tributed algorithms. Journal of Algorithms; 11(3): 374-419 (1990)

[23] Neugebauer O., The exact sciences in antiquity. Brown University press, 240
pages (1957)

[24] Pease M., Shostak R., and Lamport L., Reaching agreement in the presence of
faults. Journal of the ACM, 27:228-234 (1980)

[25] Raynal M., Fault-tolerant message-passing distributed systems: an algorithmic
approach. Springer, 550 pages, ISBN: 978-3-319-94140-0 (2018)

[26] Raynal M., From incomplete to complete networks in asynchronous Byzantine
systems. Tech report, 10 pages (2020)

[27] Riesen A., Satoshi Nakamoto and the financial crisis of 2008.
https://andrewriesen.me/2017/12/18/2017-12-18-satoshi-nakamoto-and-the-
financial-crisis-of-2008/ [last accessed April 22, 2020]

18



A Replacing FIFO by a weaker ordering require-

ment in CAMPn,t [∅]

An interesting question is the following one: is the FIFO order necessary to
implement money transfer in the model CAMPn,t [∅]? While we conjecture it
is, it appears that, a small change in the specification of money transfer allows
us to use a weakened FIFO order, as shown below.

Weakened money transfer specification

The change in the specification presented in Section 3 concerns the definition
of the serialisation Si associated with each process pi. In this modified version
the serialization Si associated with each process pi is no longer required to
respect the process order on the operations issued by pj , j 6= i. This means that
two different process pi and pk may observe the transfer() operations issued
by a process pj in different orders (which captures the fact that some transfer
operations by a process pj are commutative with respect to its current account).

Modification of the algorithm

Let k be a constant integer ≥ 1. Let sni(j) be the highest sequence number
such that all the transfer messages from pj whose sequence numbers belong
to {1, · · · , .sni(j)} have been cr-delivered and processed by a certain process
pi (i.e., lines 8-9 have been executed for these messages). Initially we have
sni(j) = 0.

Let sn be the sequence number of a message cr-delivered by pi from pj. At
line 7 the predicate sn = del i[j] + 1 can be replaced by the predicate sn ∈
{sni(j) + 1, · · · , sni(j) + k}. Let us notice that this predicate boils down to
sn = del i[j] + 1 when k = 1. More generally the set of sequence numbers
{sni(j)+1, · · · , sni(j)+k} defines a sliding window for sequence numbers which
allows the corresponding messages to be processed.

The important point here is the fact that messages can be processed in
an order that does not respect their sending order as long as all the messages
are processed, which is not guaranteed when k = +∞. Assuming pj issues
an infinite number of transfers, if k = +∞ it is possible that, while all these
messages are cr-delivered by pi, some of them are never processed at lines 8-
9 (their processing being always delayed by other messages that arrived after
them). The finiteness of the value k prevents this unfair message processing
order from occurring.

The proof of Section 5.2 must be appropriately adapted to show that this
modification implements the weakened money transfer specification.

i


