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ASYMPTOTIC BEHAVIOR OF ORTHOGONAL POLYNOMIALS

WITHOUT THE CARLEMAN CONDITION

D. R. YAFAEV

Abstract. Our goal is to find an asymptotic behavior as n → ∞ of orthogonal polynomials

Pn(z) defined by the Jacobi recurrence coefficients an, bn. We suppose that the off-diagonal

coefficients an grow so rapidly that the series
∑
a−1
n converges, that is, the Carleman condition

is violated. With respect to diagonal coefficients bn we assume that −bn(anan−1)−1/2 → 2β∞
for some β∞ 6= ±1. The asymptotic formulas obtained for Pn(z) are quite different from the case∑
a−1
n = ∞ when the Carleman condition is satisfied. In particular, if

∑
a−1
n < ∞, then the

phase factors in these formulas do not depend on the spectral parameter z ∈ C. The asymptotic
formulas obtained in the cases |β∞| < 1 and |β∞| > 1 are also qualitatively different from each

other. As an application of these results, we find necessary and sufficient conditions for the

essential self-adjointness of the corresponding minimal Jacobi operator.

1. Introduction

1.1. Overview. Orthogonal polynomials Pn(z) can be defined by a recurrence relation

an−1Pn−1(z) + bnPn(z) + anPn+1(z) = zPn(z), n ∈ Z+, z ∈ C, (1.1)

with the boundary conditions P−1(z) = 0, P0(z) = 1. We always suppose that an > 0, bn = b̄n.
Determining Pn(z), n = 1, 2, . . ., successively from (1.1), we see that Pn(z) is a polynomial of
degree n: Pn(z) = γnz

n + · · · where γn = (a0a1 · · · an−1)−1.
We are interested in the asymptotic behavior of the polynomials Pn(z) as n → ∞. This is a

classical problem investigated under various assumptions including usually the condition
∞∑
n=0

a−1
n =∞ (1.2)

introduced by T. Carleman in his book [3]. We are aware of only one paper [14] where the
asymptotics of Pn(z) was studied without assumption (1.2); this paper is discussed at the end of
this subsection. On the contrary, under assumption (1.2) there is an enormous literature on this
subject. Here we mention Nevai’s approach (see his book [8]) which allowed the authors of [7] to
treat the case an → a∞ > 0, bn → 0 as n→∞ in such a way that

∞∑
n=0

(
|an+1 − an|+ |bn+1 − bn|

)
<∞. (1.3)

The asymptotics of the polynomials Pn(z) for real z in case of the coefficients an → ∞ but
satisfying the Carleman condition (1.2) was studied in the papers [5] (see Theorem 3.2) and [2]
(see Theorem 3). The authors of [5] solved equations (1.1) for Pn(z) successively for n = 1, 2, . . .
(the transfer matrix method) which yielded a representation for (Pn(z), Pn+1(z)) as a product of
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2 D. R. YAFAEV

n 2× 2-matrices. The conditions on the coefficients were rather restrictive in [5]; in particular, it
was assumed there that bn = 0 for all n. Under broader assumptions this problem was considered
in [2] where Nevai’s method was used.

Under very general assumptions on the coefficients an, bn the asymptotics of the polynomials
Pn(z) was studied in [14] where however it was assumed that z ∈ R and that the coefficients bn
are small compared to an. The Carleman and non-Carleman cases were treated in [14] at an equal
footing so that the difference in the corresponding asymptotic formulas for Pn(z) was not quite
visible. Among the results of the present paper, Corollary 4.3 seems to be the closest to the main
result, Theorem C, of [14].

I thank G. Świderski for useful discussions.

1.2. Main results. Our goal is to find asymptotic formulas for Pn(z) as n → ∞ without the
Carleman condition (1.2), that is, in the case

∞∑
n=0

a−1
n <∞; (1.4)

then the coefficients an → ∞ faster than n. Astonishingly, the asymptotics of the orthogonal
polynomials in this a priori highly singular case is particularly simple and general. Let us briefly
describe some of our main results omitting minor technical assumptions. In addition to (1.4),
suppose that there exists a finite limit

− bn
2
√
an−1an

=: βn → β∞ where |β∞| 6= 1 (1.5)

as n→∞. We distinguish two cases: |β∞| < 1 and |β∞| > 1.
If |β∞| < 1, we set

φn =

n−1∑
m=0

arccosβm, n ≥ 1, (1.6)

where the sum is restricted to m such that |βm| ≤ 1. For example, φn = πn/2 if bn = 0 for all
n ∈ Z+. We show in Theorem 4.1 that, for an arbitrary z ∈ C, all solutions Fn(z) of the Jacobi
equation

an−1Fn−1(z) + bnFn(z) + anFn+1(z) = zFn(z), n ∈ Z+, (1.7)

have asymptotic behavior

Fn(z) = a−1/2
n

(
k+e

−iφn + k−e
iφn + o(1)

)
, n→∞, (1.8)

with some constants k± ∈ C (depending of course on the solution {Fn(z)}). The equalities k+ =
k− = 0 are possible for the trivial solution Fn(z) = 0 only. Conversely, for all k± ∈ C, there exists
a solution Fn(z) of equation (1.7) with asymptotics (1.8). In particular, formula (1.8) with some
constants k±(z) is true for the orthogonal polynomials Pn(z). Note that due to (1.4) and (1.8) all
solutions of the equation (1.7) belong to `2(Z+).

In the case |β∞| > 1 we set

ϕn =

n−1∑
m=0

arccosh |βm|, n ≥ 1, (1.9)

where the sum is restricted to m such that |βm| ≥ 1. Then for all z ∈ C, we have (see Theorem 4.13)
an asymptotic relation

Pn(z) = k(z)a−1/2
n (sgnβ∞)neϕn(1 + o(1)). (1.10)
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If the Jacobi operator with the coefficients an, bn is essentially self-adjoint, then the coefficient
k(z) 6= 0 unless z is an eigenvalue of this operator. Note that eϕn can be, alternatively, written as
a product

eϕn =

n−1∏
m=0

(
|βm|+

√
β2
n − 1

)
, n ≥ 1.

According to (1.8) and (1.10) the asymptotic behavior of the polynomials Pn(z) is the same for
all z ∈ C, both for real z and for z with Im z 6= 0. The coefficients k±(z) and k(z) can be expressed
via the Wronskians of the solution {Pn(z)} and the Jost solution {fn(z)} (introduced below) of
the Jacobi equation (1.7); these coefficients depend on z.

We emphasize that the asymptotic formulas for the cases (1.2) and (1.4) are qualitatively dif-
ferent from each other. This is discussed in Sect. 5.2 and 5.3.

1.3. Scheme of the approach. We are motivated by an analogy of the difference (1.7) and
differential

−(a(x)f ′(x, z))′ + b(x)f(x, z) = zf(x, z), x > 0, (1.11)

equations where a(x) > 0 and b(x) is real. To a large extent, x, a(x) and b(x) here play the roles
of the parameters n, an and bn in the Jacobi equation (1.7). In the case a(x) = 1, b ∈ L1(R+),

equation (1.11) has a solution f(x, z), known as the Jost solution, behaving like ei
√
zx, Im

√
z ≥ 0,

as x → ∞. For rather general coefficients a(x), b(x), equation (1.11) has solutions f(x, z) with
asymptotics given by the classical Liouville-Green formula (see Chapter 6 of the book [10]). In
the case a(x)→ a∞ > 0, b(x)→ 0, the Liouville-Green formula was simplified in [18] which yields
solutions f(x, z) of (1.11) with asymptotics

f(x, z) ∼ exp
(
−
∫ x

0

(b(y)− z
a(y)

)1/2
dy
)

=: Q(x, z), Re
(b(y)− z

a(y)

)1/2 ≥ 0, (1.12)

as x → ∞. Note that the function Q(x, z) (the Ansatz for the Jost solution f(x, z)) satisfies
equation (1.11) with a sufficiently good accuracy. Formula (1.12) was modified in [19] for Jacobi
equations (1.7) where an → a∞ > 0, bn → 0 as n → ∞ and condition (1.3) is satisfied. This
permitted to find asymptotics of the orthogonal polynomials Pn(z) for such coefficients an, bn in a
very natural way.

We are applying the same scheme in the non-Carleman case. Here, we accept conditions (1.4)
and (1.5). Let us briefly discuss the main steps of our approach.

A. First, we forget about the orthogonal polynomials Pn(z) and distinguish solutions (the Jost
solutions) fn(z) of the difference equation (1.7) by their asymptotics as n → ∞. This requires a
construction of an Ansatz Qn(z) for the Jost solutions.

B. Under assumption (1.4) this construction (see Sect. 2.3) is very explicit and, in particular,
does not depend on z ∈ C. In the case |β∞| < 1, we set

Qn = a−1/2
n e−iφn (1.13)

with the phase φn defined by formula (1.6). In the case |β∞| > 1, the Ansatz equals

Qn = a−1/2
n (sgnβ∞)ne−ϕn (1.14)

where the phase ϕn is given by (1.9). It is shown in Sect. 2.4 that in both cases the relative
remainder

rn(z) := (
√
an−1anQn)−1

(
an−1Qn−1 + (bn − z)Qn + anQn+1

)
, n ≥ 1, (1.15)

belongs to `1(Z+). At an intuitive level, the fact that the Ansätzen (1.13) and (1.14) do not
depend on z ∈ C can be explained by the fast growth of the coefficients an which makes the
spectral parameter z negligible.
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Actually, the Ansätzen we use (especially, the amplitude factor a
−1/2
n ) are only distantly similar

to the Liouville-Green Ansatz for the Schrödinger equation (1.11).
C. Then we make in Sect. 2.5 a multiplicative change of variables

fn(z) = Qnun(z) (1.16)

which permits us to reduce the difference equation (1.7) for fn(z) to a Volterra “integral” equation
for the sequence un(z). This equation depends of course on the parameters an, bn. In particular,
it is somewhat different in the cases |β∞| < 1 and |β∞| > 1. However in both cases this Volterra
equation is standardly solved by iterations in Sect. 3.1 and 3.2. This allows us to prove the existence
of solutions un(z) of this equation such that un(z) → 1 as n → ∞. According to (1.13) or (1.14)
and (1.16) this yields (see Sect. 3.3) asymptotics of the Jost solutions fn(z). The functions fn(z)
turn out to be analytic in z ∈ C

D. We come back to the orthogonal polynomials Pn(z) in Sect. 4. First, we observe that the
sequence

f̃n(z) = fn(z̄)

also satisfies the equation (1.7). In the case |β∞| < 1, the solutions fn(z) and f̃n(z) are linearly
independent. Therefore it follows from (1.13) that all solutions of the Jacobi equation (1.7) have
asymptotic behavior (1.8). In particular, formula (1.8) is true for the orthogonal polynomials
Pn(z).

In the case |β∞| > 1, a solution gn(z) of (1.7) linearly independent with fn(z) can be constructed
by an explicit formula

gn(z) = fn(z)

n∑
m=n0

(am−1fm−1(z)fm(z))−1, n ≥ n0, (1.17)

where n0 = n0(z) is a sufficiently large number. This solution grows exponentially as n→∞,

gn(z) =
1

2
√
β2
∞ − 1

a1/2
n (sgnβ∞)n+1eϕn(1 + o(1)).

Since gn(z) is linearly independent with fn(z), the polynomials Pn(z) are linear combinations of
fn(z) and gn(z) which leads to the formula (1.10). Note that (1.17) is a discrete analogue of
formula (1.36) in Chapter 4 of the book [16] for the Schrödinger equation.

The scheme described briefly above seems to be quite different from [14] where the first step
was a study of the Turán determinants Pn(z)2 − Pn−1(z)Pn+1(z).

1.4. Jacobi operators. It is natural (see the book [1]) to associate with the coefficients an, bn a
three-diagonal matrix

J =


b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
...

...
...

. . .
. . .

. . .

 (1.18)

known as the Jacobi matrix. Then equation (1.1) with the boundary condition P−1(z) = 0 is
equivalent to the equation JP (z) = zP (z) for the vector P (z) = {Pn(z)}∞n=0. Thus P (z) is the
“eigenvector” of the matrix J corresponding to the “eigenvalue” z.

Let us now consider Jacobi operators defined by matrix (1.18) in the canonical basis e0, e1, . . .
of the space `2(Z+). The minimal Jacobi operator J0 is defined by the formula J0f = J f on a
set D ⊂ `2(Z+) of vectors f = {fn}∞n=0 such that fn = 0 for sufficiently large n. It is symmetric
in the space `2(Z+), and its adjoint operator J∗0 is given by the same formula J∗0 f = J f on all
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vectors f ∈ `2(Z+) such that J f ∈ `2(Z+). The deficiency indices of the operator J0 are either
(0, 0) (the limit point case) or (1, 1) (the limit circle case). If the Carleman condition (1.2) holds,
then (see, e.g., the book [1]) for all bn the operator J0 is essentially self-adjoint on D so that J0

has the unique self-adjoint extension J = clos J0 (the closure of J0).
On the contrary, under assumption (1.4) the deficiency indices of J0 depend on the value of

|β∞|. If |β∞| < 1, then it follows from (1.8) that all solutions of equation (1.7) are in `2(Z+),
and hence the deficiency indices of the operator J0 are (1, 1). In this case the operator J0 has a
one-parameter family of self-adjoint extensions J ⊂ J∗0 . Their domains can be described explicitly
(see Sect. 6.5 of [12] or §2 of [13]) in terms of the orthogonal polynomials Pn(z) (of first kind) and

P̃n(z) (of second kind). We recall that P̃n(z) are defined by equations (1.1) where n ≥ 1 with the

boundary conditions P̃0(z) = 0, P̃1(z) = a−1
0 ; clearly, P̃n(z) is a polynomial of degree n− 1.

In the case |β∞| > 1 we show that the operator J0 is essentially self-adjoint if and only if

∞∑
n=0

a−1
n e2ϕn =∞ (1.19)

where ϕn is defined by (1.9); otherwise the deficiency indices of J0 are (1, 1). This result may
be compared with the Berezanskii theorem (see, e.g., page 26 in the book [1]) stating that the
Carleman condition (1.2) is necessary for the essential self-adjointness of J0 provided bn = 0 and
an−1an+1 ≤ a2

n.
The spectra of all self-adjoint Jacobi operators J are simple with e0 = (1, 0, 0, . . .)> being

a generating vector. Therefore it is natural to define the spectral measure of J by the relation
dρJ(λ) = d(EJ(λ)e0, e0) where dEJ(λ) is the spectral family of the operator J . For all extensions J
of the operator J0, the polynomials Pn(λ) are orthogonal and normalized in the spaces L2(R; dρJ):∫ ∞

−∞
Pn(λ)Pm(λ)dρJ(λ) = δn,m;

as usual, δn,n = 1 and δn,m = 0 for n 6= m.
We also note a link with a moment problem

sn =

∫ ∞
−∞

λndρ(λ)

where sn are given and the measure dρ(λ) has to be found. A moment problem is called determinate
if its solution dρ(λ) is unique. In the opposite case it is called indeterminate. Suppose that
sn = (J n0 e0, e0). Then

sn = (Jne0, e0) =

∫ ∞
−∞

λndρJ(λ)

for all self-adjoint extensions J of the operator J0. It is known (see, e.g., Theorem 2 in [13]) that
the moment problem with the coefficients sn = (Jn0 e0, e0) is determinate if and only if the operator
J0 is essentially self-adjoint.

The comprehensive presentation of the results described in this subsection can be found in the
books [1, 12] or the survey [13]. We rely essentially on a direct study of the difference equation
(1.7) and practically do not use operator methods. So, the above information was given mainly to
put our results into the right framework.

2. Ansatz

In this section, we calculate the remainder (1.15) for the Ansatz Qn defined by formulas (1.13)
or (1.14). Then we make substitution (1.16).
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2.1. Preliminaries. Let us consider equation (1.7). Note that the values of FN−1 and FN for
some N ∈ Z+ determine the whole sequence Fn satisfying the difference equation (1.7).

Let f = {fn}∞n=−1 and g = {gn}∞n=−1 be two solutions of equation (1.7). A direct calculation
shows that their Wronskian

{f, g} := an(fngn+1 − fn+1gn) (2.1)

does not depend on n = −1, 0, 1, . . .. In particular, for n = −1 and n = 0, we have

{f, g} = 2−1(f−1g0 − f0g−1) and {f, g} = a0(f0g1 − f1g0)

(we put a−1 = 1/2). Clearly, the Wronskian {f, g} = 0 if and only if the solutions f and g are
proportional.

It is convenient to introduce a notation

x′n = xn+1 − xn (2.2)

for the “derivative” of a sequence xn. Note the Abel summation formula (“integration by parts”):

M∑
n=N

xny
′
n = xMyM+1 − xN−1yN −

M∑
n=N

x′n−1yn; (2.3)

here M ≥ N ≥ 0 are arbitrary, but we have to set x−1 = 0 so that x′−1 = x0 if N = 0.
It follows from equation (1.1) that if Pn(z) are the orthogonal polynomials corresponding to

coefficients (an, bn), then the polynomials (−1)nPn(−z) correspond to the coefficients (an,−bn).
Therefore without loss of generality, we could have assumed that β∞ ≥ 0.

To emphasize the analogy between differential and difference operators, we often use “contin-
uous” terminology (Volterra integral equations, integration by parts, etc.) for sequences labelled
by the discrete variable n. Below C, sometimes with indices, and c are different positive constants
whose precise values are of no importance.

In all our constructions below, it suffices to consider the Jacobi equation (1.7) for large n only.

2.2. Assumptions. In addition to (1.4) and (1.5), we need some mild conditions on a regularity
of behavior of the sequences an and bn as n→∞. Let us set

κn =

√
an+1

an
, kn =

κn−1

κn
=

an√
an−1an+1

. (2.4)

With respect to an, we assume that

{kn − 1} ∈ `1(Z+) (2.5)

which implies also the following properties of the numbers κn.

Lemma 2.1. Under assumption (2.5) there exists a finite limit

lim
n→∞

κn =: κ∞, (2.6)

and κ∞ ≥ 1 if condition (1.4) is satisfied. Moreover,

{κ′n} ∈ `1(Z+) (2.7)

if both (1.4) and (2.5) are true.

Proof. By definition (2.4) of kn, we have ln kn = lnκn−1 − lnκn whence

lnκn = lnκ0 −
n∑

m=1

ln km.
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It follows from (2.5) that the series on the right converges which implies the existence of the limit
(2.6). If κ∞ < 1, then, by definition (2.4) of κn, we would have an ≤ γan−1 for some γ < 1 and
all n ≥ n0 if n0 is sufficiently large. Thus, a−1

n ≥ a−1
n0
γn0γ−n so that the series in (1.4) diverges.

Since

κn − κn−1 =
κ2
n

κn + κn−1
(1 + kn)(1− kn),

relation (2.7) is a direct consequence of assumption (2.5). �

Example 2.2. Both conditions (1.4) and (2.5) are satisfied for an = γnp where γ > 0, p > 1 and
for an = γxn

q

where x > 1, q < 1. In these cases κ∞ = 1. For an = γxn, conditions (1.4) and (2.5)
are also satisfied but κ∞ =

√
x. On the contrary, condition (2.5) fails if an = γxn

q

with q > 1.

With respect to the coefficients bn or, more precisely, the ratios βn defined by (1.5), we assume
that

{β′n} ∈ `1(Z+). (2.8)

2.3. Construction. Let us construct an Ansatz Qn such that the corresponding remainder (1.15)
belongs to `1(Z+). Put

ζn = κnQn+1Q
−1
n

and introduce notation

αn =
1

2
√
an−1an

, βn = − bn
2
√
an−1an

, n ∈ Z+;

for definiteness, we set a−1 = 1/2 and Q0 = a
−1/2
0 . Then

Qn =
1
√
an
ζ0 · · · ζn−1, n ≥ 1, (2.9)

and (1.15) can be rewritten as

rn(z) = ζ−1
n−1 − 2βn + knζn − 2zαn. (2.10)

We have to find ζn such that {rn(z)} ∈ `1(Z+). In principle, the numbers ζn can be successively
determined from the equations rn(z) = 0 which leads of course to very complicated expressions.
Fortunately the construction of ζn becomes quite explicit if one neglects in (2.10) the terms from
`1(Z+). Obviously, the term 2zαn in the right-hand side of (2.10) can be omitted if condition (1.4)
is satisfied. Furthermore, under the assumptions below ζ−1

n−1 can be replaced by ζ−1
n and kn – by

1 which allows us to define ζn from the equation

ζn + ζ−1
n = 2βn. (2.11)

Putting together relations (2.10) and (2.11), we can state an intermediary result.

Lemma 2.3. Let numbers ζn satisfy equation (2.11), and let Qn be defined by relation (2.9). Then
the remainder (1.15) admits the representation

rn(z) =
(
ζ−1
n−1 − ζ−1

n

)
+ (kn − 1)ζn − 2zαn. (2.12)

Solutions of (2.11) are obviously given by the equalities

ζn = βn − i
√

1− β2
n = (βn + i

√
1− β2

n)−1 (2.13)

if |βn| ≤ 1 and

ζn = sgnβn(|βn| −
√
β2
n − 1) = sgnβn(|βn|+

√
β2
n − 1)−1 (2.14)
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if |βn| > 1. Of course, the numbers ζ−1
n also satisfy (2.11). In the case |βn| ≤ 1, we choose formula

(2.13) for definiteness only. On the contrary, in the case |βn| > 1, the condition |ζn| ≤ 1 will be
important below. It is convenient to set

θn = arccosβn ∈ [0, π] (2.15)

for |βn| ≤ 1 and

ϑn = arccosh |βn| = ln
(
|βn|+

√
β2
n − 1

)
> 0 (2.16)

for |βn| > 1. Then

ζn = e−iθn for |βn| ≤ 1 and ζn = sgnβne
−ϑn for |βn| ≥ 1.

It follows from condition (1.5) that

ζn → β∞ − i
√

1− β2
∞ =: ζ∞ = e−iθ∞ if |β∞| < 1 (2.17)

and

ζn → sgnβ∞(|β∞| −
√
β2
∞ − 1) =: ζ∞ = sgnβ∞e

−ϑ∞ if |β∞| > 1 (2.18)

as n→∞. Here θ∞ and ϑ∞ are defined by formulas (2.15) and (2.16) where n =∞, that is,

θ∞ = arccosβ∞ ∈ (0, π) and ϑ∞ = ln
(
|β∞|+

√
β2
∞ − 1

)
> 0. (2.19)

Obviously, |ζ∞| = 1 and ζ2
∞ 6= 1 if |β∞| < 1 and ζ∞ ∈ (−1, 1) but ζ∞ 6= 0 if |β∞| > 1. For |βn| ≥ 1

in the case |β∞| < 1 and for |βn| ≤ 1 in the case |β∞| > 1, the numbers θn and ϑn can be chosen
in an arbitrary way; for definiteness, we set θn = 0 and ϑn = 0.

Now the Ansatz (2.9) can be written as

Qn =
1
√
an
e−iφn if |β∞| < 1 (2.20)

and

Qn =
1
√
an

(sgnβ∞)ne−ϕn if |β∞| > 1. (2.21)

Here

φn =

n−1∑
m=0

θm, ϕn =

n−1∑
m=0

ϑm (2.22)

and θn, ϑn are defined by (2.15), (2.16). Obviously, formulas (2.20), (2.21) coincide with (1.13),
(1.14), respectively.

Since θn → θ∞ and ϑn → ϑ∞ as n→∞, it follows from (2.22) that

φn = θ∞n+ o(n) and ϕn = ϑ∞n+ o(n) as n→∞ (2.23)

with θ∞ and ϑ∞ given by formulas (2.19). Moreover, we have the following statement.

Lemma 2.4. Assume that
∞∑
n=0

|βn − β∞| <∞. (2.24)

Then the sequences φn − θ∞n and ϕn − ϑ∞n have finite limits as n→∞.

Proof. Observe that

φn − θ∞n =

n−1∑
m=0

(θn − θ∞) (2.25)

where, by definition (2.15),

|θn − θ∞| = | arccosβn − arccosβ∞| ≤ C|βn − β∞|.
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Here n is sufficiently large and the condition |β∞| < 1 is taken into account. Therefore assumption
(2.24) implies that the series in the right-hand side of (2.25) converges. The difference ϕn − ϑ∞n
can be considered quite similarly. �

2.4. Estimates of the remainder. Our goal here is to estimate expression (2.12). Under as-
sumption (1.5) we have

|1− β2
n| ≥ c > 0 (2.26)

for sufficiently large n. It follows from definitions (2.13) and (2.14) that

ζ−1
n−1 − ζ−1

n = (βn−1 − βn)
(

1− i βn−1 + βn√
1− β2

n−1 +
√

1− β2
n

)
, |β∞| < 1,

and

ζ−1
n−1 − ζ−1

n = (βn−1 − βn)
(

1 + sgnβ∞
βn−1 + βn√

β2
n−1 − 1 +

√
β2
n − 1

)
, |β∞| > 1.

According to (2.26) each of these identities yields an estimate

|ζ−1
n−1 − ζ−1

n | ≤ C|βn−1 − βn|. (2.27)

Therefore (2.12) implies that

|rn(z)| ≤ C|βn−1 − βn|+ |kn − 1|+ 2αn|z| (2.28)

where the constant C does not depend on z. This leads to the following assertion.

Lemma 2.5. Let conditions (1.4) and (1.5) be satisfied. Then estimate (2.28) for the remainder
(2.12) is true for all z ∈ C. Under additional assumptions (2.5) and (2.8), we have

{rn(z)} ∈ `1(Z+). (2.29)

2.5. Multiplicative substitution. Let the sequence Qn be given by formulas (2.20) or (2.21).
We are looking for solutions fn(z) of the difference equation (1.7) satisfying the condition

fn(z) = Qn(1 + o(1)), n→∞. (2.30)

The uniqueness of such solutions is almost obvious.

Lemma 2.6. Equation (1.7) may have only one solution fn(z) satisfying condition (2.30).

Proof. Let fn(z) be another solution of (1.7) satisfying (2.30). It follows from (2.20) or (2.21) that
the Wronskian (2.1) of these solutions calculated for n→∞ equals

{f, f} = anQnQn+1o(1) = o(1)κ−1
n

{
e−i(φn−1+φn), |β∞| < 1

sgnβ∞e
−ϕn−1−ϕn , |β∞| > 1

so that {f, f} = 0 according to (2.6). Thus f = Cf where C = 1 by virtue again of condition
(2.30). �

Remark 2.7. For the calculation of the Wronskian {f, f}, it is essential that the power of an in
(2.9) equals −1/2.

For construction of fn(z), we will reformulate the problem introducing a sequence

un(z) = Q−1
n fn(z), n ∈ Z+. (2.31)

Then (2.30) is equivalent to the condition

lim
n→∞

un(z) = 1. (2.32)

Let us derive a difference equation for un(z).
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Lemma 2.8. Let z ∈ C, let ζn be defined by formulas (2.13) or (2.14), and let the remainder rn(z)
be given by formula (2.12). Then equation (1.7) for a sequence fn(z) is equivalent to the equation

knζn(un+1(z)− un(z))− ζ−1
n−1(un(z)− un−1(z)) = −rn(z)un(z), n ∈ Z+, (2.33)

for sequence (2.31).

Proof. Substituting expression fn = Qnun into (1.7) and using the equality

Qn+1

Qn
=

√
an
an+1

ζn,

we see that

(
√
an−1anQn)−1

(
an−1fn−1 + (bn − z)fn + anfn+1

)
=

√
an−1

an

Qn−1

Qn
un−1 − 2(αnz + βn)un +

√
an
an−1

Qn+1

Qn
un+1

= ζ−1
n−1un−1 − 2(αnz + βn)un + knζnun+1.

In view of (2.11) the right-hand side here equals

knζn(un+1 − un)− ζ−1
n−1(un − un−1) + rnun

with rn defined by (2.12). Therefore equations (1.7) and (2.33) are equivalent. �

3. Modified Jost solutions

In this section, we reduce the Jacobi difference equation (1.7) for Jost solutions fn(z) to a
Volterra equation for functions un(z) defined by formula (2.31) and satisfying the condition (2.32).
Solutions un(z) of the Volterra equation can be constructed by iterations. At this point, there
is almost no difference between the cases |β∞| < 1 and |β∞| > 1. Finally, formula (2.31) yields
asymptotics of fn(z) as n→∞.

3.1. Volterra integral equation. The sequence un(z) satisfying the difference equation (2.33)
will be constructed as a solution of an appropriate “Volterra integral” equation. We set

σn = ζnζn−1, Sn = σ1σ2 · · ·σn−1, n ≥ 2, (3.1)

and, for n < m,

Gn,m = −(κm−1ζm)−1Sm+1

m∑
p=n+1

κp−1S
−1
p = −(κm−1ζm)−1

m∑
p=n+1

κp−1σp · · ·σm. (3.2)

Note that the kernel Gn,m does not depend on z. Let us consider an equation

un(z) = 1 +

∞∑
m=n+1

Gn,mrm(z)um(z) (3.3)

where the sequence rm(z) is defined by formula (2.12).
Our first goal is to estimate the matrix elements Gn,m. This is quite straightforward in the case

|β∞| > 1.

Lemma 3.1. Let the assumptions (1.4), (1.5) where |β∞| > 1 and (2.5) be satisfied. Then kernel
(3.2) is bounded uniformly in m > n ≥ 0:

|Gn,m| ≤ C <∞. (3.4)
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Proof. By virtue of (2.18), we have

|σn| ≤ s∞ < 1 (3.5)

if s∞ ∈ (ζ2
∞, 1) and n is sufficiently large, say, n ≥ n0. Moreover, {κn} ∈ `∞(Z+) and {κ−1

n } ∈
`∞(Z+) according to Lemma 2.1. Therefore it follows from (3.2) that

|Gn,m| ≤ C
m∑

p=n+1

sm−p+1
∞ = C

1− sm−n∞

s−1
∞ − 1

≤ C s∞
1− s∞

, n < m,

if n ≥ n0.
Let now n < n0. If n < m ≤ n0, then the sum (3.2) consists of at most n0 terms. If m > n,

then

Gn,m = Gn,n0
+Gn0,m

is a sum of two bounded terms. �

In the case |β∞| < 1 we have to “integrate by parts”.

Lemma 3.2. Let the assumptions (1.4), (1.5) where |β∞| < 1 and (2.5), (2.8) be satisfied. Then
kernel (3.2) is bounded uniformly in m > n ≥ 0, that is, estimate (3.4) holds.

Proof. As in the previous lemma, we can suppose that n ≥ n0 where n0 is sufficiently large. Since
|ζp| = 1 according to (2.13), it follows from definition (3.1) that

|Sm+1S
−1
p | = |σp · · ·σm| = 1, p ≤ m. (3.6)

Relation (2.17) where ζ2
∞ 6= 1 implies that

|σn − 1| ≥ c > 0. (3.7)

By definitions (2.2) and (3.1) we have

(S−1
p )′ = S−1

p+1 − S−1
p = (σ−1

p − 1)S−1
p ,

and hence integrating by parts (that is, using formula (2.3)), we find that

m∑
p=n+1

κp−1S
−1
p =

m∑
p=n+1

κp−1(σ−1
p − 1)−1(S−1

p )′

= κm−1(σ−1
m − 1)−1S−1

m+1 − κn−1(σ−1
n − 1)−1S−1

n+1 −
m∑

p=n+1

(κp−2(σ−1
p−2 − 1)−1)′S−1

p . (3.8)

Note that

((σ−1
p−1 − 1)−1)′ = (σp−1 − 1)−1(σp − 1)−1σ′p−1

where σ′p ∈ `1(Z+) by virtue of (2.27) and (2.8). Using also (2.7) and (3.7), we see that this

sequence belongs to `1(Z+) whence

(κp−1(σ−1
p−1 − 1)−1)′ ∈ `1(Z+).

Let us multiply identity (3.8) by Sm+1. According to (3.6) and (3.7) all three terms in the right-
hand side of the equality obtained are bounded for n ≥ n0. �
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3.2. Successive approximations. Let us come back to the Volterra equation (3.3). Lemma 2.5
ensures inclusion (2.29), and Lemmas 3.1 or 3.2 show that the kernels Gn,m are bounded. This
allows us to estimate iterations of equation (3.3) and then solve it.

Lemma 3.3. Let the assumptions (1.4), (1.5) as well as (2.5), (2.8) be satisfied. Set u
(0)
n = 1 and

u(k+1)
n (z) =

∞∑
m=n+1

Gn,mrm(z)u(k)
m (z), k ≥ 0, (3.9)

for all n ∈ Z+. Then the estimates

|u(k)
n (z)| ≤ Ck

k!

( ∞∑
m=n+1

|rm(z)|
)k
, ∀k ∈ Z+. (3.10)

are true for all sufficiently large n with the same constant C as in (3.4).

Proof. Suppose that (3.10) is satisfied for some k ∈ Z+. We have to check the same estimate (with

k replaced by k + 1 in the right-hand side) for u
(k+1)
n . Set

Rm =
∞∑

p=m+1

|rp|.

According to definition (3.9), it follows from estimate (3.4) and (3.10) that

|u(k+1)
n | ≤ Ck+1

k!

∞∑
m=n+1

|rm|Rkm. (3.11)

Observe that

Rk+1
m + (k + 1)|rm|Rkm ≤ Rk+1

m−1,

and hence, for all N ∈ Z+,

(k + 1)

N∑
m=n+1

|rm|Rkm ≤
N∑

m=n+1

(Rk+1
m−1 −Rk+1

m ) = Rk+1
n −Rk+1

N ≤ Rk+1
n .

Substituting this bound into (3.11), we obtain estimate (3.10) for u
(k+1)
n . �

Now we are in a position to solve equation (3.3) by iterations.

Theorem 3.4. Let the assumptions (1.4), (1.5) as well as (2.5), (2.8) be satisfied. Then equation
(3.3) has a unique bounded solution un(z). Moreover,

|un(z)− 1| ≤ eCεn(z) − 1, n ≥ 0, (3.12)

where the constant C does not depend on z ∈ C and

εn(z) =

∞∑
m=n+1

(
|βm−1 − βm|+ |km − 1|+ αm|z|

)
→ 0 as n→∞. (3.13)

For all n ∈ Z+, the functions un(z) are entire functions of z ∈ C.

Proof. Set

un =

∞∑
k=0

u(k)
n (3.14)
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where u
(k)
0 = 1 and u

(k)
n , k ≥ 1, are defined by recurrence relations (3.9). Estimate (3.10) shows

that this series is absolutely convergent. Using the Fubini theorem to interchange the order of
summations in m and k, we see that

∞∑
m=n+1

Gn,mrmum =

∞∑
k=0

∞∑
m=n+1

Gn,mrmu
(k)
m = −

∞∑
k=0

u(k+1)
n = 1−

∞∑
k=0

u(k)
n = 1− un.

This is equation (3.3) for sequence (3.14). Estimate (3.12) for the sequence (3.14) also follows from
(3.10) where rn(z) satisfies (2.28).

According to (2.12) the remainder rm(z) and hence the kernels Gn,mrm(z) are linear functions

of z. Therefore recurrence arguments show that all successive approximations u
(k)
n (z) are analytic

functions of z ∈ C. The same assertion is of course true for the series (3.14). �

Corollary 3.5. We have an estimate

|un(z)− 1| ≤ Cεn(z) (3.15)

where εn(z)→ 0 uniformly on compact subsets of C.

It turns out that the construction above yields a solution of the difference equation (2.33).

Lemma 3.6. Let rn(z) and Gn,m be given by formulas (2.12) and (3.2), respectively. Then a
solution un(z) of integral equation (3.3) satisfies also the difference equation (2.33).

Proof. It follows from (3.3) that

un+1 − un =

∞∑
m=n+2

(Gn+1,m −Gn,m)rmum −Gn,n+1rn+1un+1. (3.16)

Since according to (3.2)

Gn+1,m −Gn,m = −κn(κm−1ζm)−1S−1
n+1Sm+1 and Gn,n+1 = ζ−1

n+1Sn+2S
−1
n+1,

equality (3.16) can be rewritten as

κ−1
n (un+1 − un) = −

∞∑
m=n+1

S−1
n+1Sm+1(κm−1ζm)−1rmum. (3.17)

Putting together this equality with the same equality for n+ 1 replaced by n, we see that

κ−1
n (un+1 − un)− σ−1

n κ−1
n−1(un − un−1)

=

∞∑
m=n+1

S−1
n+1Sm+1rm(κm−1ζm)−1um − σ−1

n

∞∑
m=n

S−1
n Sm+1rm(κm−1ζm)−1um.

Since Sn+1 = σnSn, the right-hand side here equals −(κn−1ζn)−1rnun, and hence the equation
obtained coincides with (2.33). �

The above arguments show also that the functions un(z) are of minimal exponential type.

Lemma 3.7. Under the assumptions of Theorem 3.4, for an arbitrary ε > 0 and some constants
Cn(ε) (that do not depend on z ∈ C), every function un(z) satisfies an estimate

|un(z)| ≤ Cn(ε)eε|z|. (3.18)
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Proof. It suffices to check (3.18) for |z| ≥ 1. According to (3.12) and (3.13) we have an estimate

|um(z)| ≤ eεm|z| (3.19)

where εm → 0 as m → ∞. On the other hand, it follows from equation (1.7) for function (1.16)
that

|un(z)| ≤ Cn|z|(|un+1(z)|+ |un+2(z)|) ≤ · · · ≤ Cn,k|z|k(|un+k(z)|+ |un+k+1(z)|) (3.20)

for every k = 1, 2, . . .. For a given ε > 0, choose k such that 2εn+k ≤ ε, 2εn+k+1 ≤ ε. Then putting
estimates (3.19) and (3.20) together, we see that

|un(z)| ≤ 4Cn,k|z|keε|z|/2.

Since |z|k ≤ ck(ε)eε|z|/2, this proves (3.18). �

In the case |β∞| > 1, we also need estimates on u′n.

Lemma 3.8. Let |β∞| > 1. Under the assumptions of Theorem 3.4, we have {u′n} ∈ `1(Z+).

Proof. Let us proceed from expression (3.17) for un+1 − un. It follows from (3.1) and (3.5) that

|S−1
n+1Sm+1| = |σn+1 · · ·σm| ≤ sm−n∞

for sufficiently large n and m ≥ n whence

|un+1 − un| ≤ C
∞∑

m=n+1

sm−n∞ |rmum|.

So we only have to take the sum over n here. Then we use that s∞ < 1 and {rmum} ∈ `1(Z+). �

3.3. Jost solutions. Now we are in a position to construct solutions of the difference equation
(1.7) with asymptotics (2.30) as n → ∞. Recall that the sequence Qn was defined by formulas
(2.20) or (2.21). According to Lemma 2.6, equation (1.7) may have only one solution with such
asymptotics. By Theorem 3.4 and Corollary 3.5, equation (3.3) has a solution un(z) satisfying
estimate (3.12) with the remainder εn(z) given by formula (3.13). By Lemma 3.6 the difference
equation (2.33) is also true for this solution. It follows from Lemma 2.8 that

fn(z) = Qnun(z) (3.21)

satisfies equation (1.7).
This leads to the following results. We state them separately for the cases |β∞| < 1 and |β∞| > 1.

Theorem 3.9. Let the assumptions (1.4), (1.5) with |β∞| < 1 as well as (2.5), (2.8) be satisfied.
Then, for all z ∈ C, the equation (1.7) has a solution {fn(z)} with asymptotics

fn(z) =
1
√
an
e−iφn

(
1 +O(εn(z))

)
, n→∞, (3.22)

where φn and εn(z) are given by formulas (1.6) and (3.13), respectively. Asymptotics (3.22) is
uniform in z from compact subsets of the complex plane C. For all n ∈ Z+, the functions fn(z)
are entire functions of z ∈ C of minimal exponential type.

Corollary 3.10. Suppose that bn = 0, at least for sufficiently large n. Let the assumptions
(1.4) and (2.5) be satisfied. Then, for all z ∈ C, the equation (1.7) has a solution {fn(z)} with
asymptotics

fn(z) =
1
√
an

(−i)n
(
1 +O(εn(z))

)
, n→∞.
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By analogy with the continuous case, the sequence {fn(z)}∞n=−1 will be called the (modified)
Jost solution of equation (1.7). Additionally, we define the conjugate Jost solution by the formula

f̃n(z) = fn(z̄). (3.23)

It also satisfies equation (1.7) because the coefficients an and bn are real, and it has the asymptotics

f̃n(z) =
1
√
an
eiφn

(
1 +O(εn)

)
, n→∞, (3.24)

Using asymptotic formulas (3.22), (3.24) and definition (2.15), we can calculate the Wronskian

(2.1) of the solutions f(z), f̃(z):

{f(z), f̃(z)} = lim
n→∞

κ−1
n (eiθn − e−iθn) = κ−1

∞ (eiθ∞ − e−iθ∞) = 2iκ−1
∞
√

1− β2
∞ 6= 0 (3.25)

according to (2.17). Note that the amplitude factors a
−1/2
n in (3.22) and (3.24) are quite natural

(cf. Remark 2.7) because their product should cancel an in the Wronskian (3.25).
Thus, in the case |β∞| < 1 for all z ∈ C, we have two linearly independent oscillating solutions

fn(z) and f̃n(z). Under assumption (1.4) both of them belong to `2(Z+). This leads to the
following result.

Corollary 3.11. Under the assumptions of Theorem 3.9 the minimal Jacobi operator J0 has
deficiency indices (1, 1).

Let us show that, even in the case bn = 0, assumption (2.5) cannot be omitted in Theorem 3.9.
The example below was considered in [6], Example 2, and in [4], Lemma 2.3.

Example 3.12. Suppose that bn = 0 and that an = np(1 + c1n
−1) if n is odd and an = np(1 +

c2n
−1) if n is even for p > 1 and sufficiently large n. Corollary 3.11 does not apply in this case

because
an√

an−1an+1
= 1 + (−1)n

c2 − c1
n

+O(
1

n2
), n→∞, (3.26)

so that condition (2.5) breaks down unless c1 = c2. Actually, it was proven in [6, 4] that the
corresponding Jacobi operator J0 is essentially adjoint if |c2 − c1| ≥ p− 1.

In the case |β∞| > 1, we have the following result.

Theorem 3.13. Let the assumptions (1.4), (1.5) with |β∞| > 1 as well as (2.5), (2.8) be satisfied.
Then, for all z ∈ C, the equation (1.7) has a solution {fn(z)} with asymptotics

fn(z) =
1
√
an

(sgnβ∞)ne−ϕn
(
1 +O(εn)

)
, n→∞, (3.27)

where ϕn and εn(z) are given by formulas (1.9) and (3.13), respectively. Asymptotics (3.27) is
uniform in z from compact subsets of the complex plane C. For all n ∈ Z+, the functions fn(z)
are entire functions of z ∈ C of minimal exponential type.

According to (2.19) and (2.23) the solution (3.27) tends to zero exponentially as n → ∞. It
will also be called the (modified) Jost solution of equation (1.7). However, in contrast to the case
|β∞| < 1, for |β∞| > 1 the construction of Theorem 3.13 yields only one solution fn(z) of the
Jacobi equation (1.7).

Remark 3.14. Suppose that instead of (2.8), a stronger assumption (2.24) holds and use
Lemma 2.4. Then taking into account relations (2.15) and (2.16), we can replace e−iφn in (3.22)
and e−ϕn in (3.27) by

e−inθ∞ = (β∞ − i
√

1− β2
∞)n and e−nϑ∞ = (|β∞|+

√
β2
∞ − 1)−n, (3.28)

respectively. In this case the remainders O(εn) should be replaced by o(1).
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3.4. Example. Suppose that (for sufficiently large n)

an = γnp and bn = −δnp(1 + σn−1), p > 1,

where γ > 0 and δ, σ are arbitrary real numbers. Then

βn =
δ

2γ
(1 + σn−1)(1− n−1)−p/2 =

δ

2γ

(
1 + (σ +

p

2
)n−1 +O(n−2)

)
and β∞ = δ(2γ)−1. The assumptions of Theorem 3.9 (of Theorem 3.13) are satisfied if |δ| < 2γ
(resp., |δ| > 2γ). Since

βn − β∞ = (2γ)−1δ(σ + p/2)n−1 +O(n−2), (3.29)

the condition (2.24) fails unless σ + p/2 = 0.
According to (2.15) for |β∞| < 1, we now have

θn = arccosβ∞ + νn−1 +O(n−2), ν = − δ(σ + p/2)√
|δ2 − 4γ2|

,

so that according to (2.22) the sequence

φn − n arccosβ∞ − ν lnn

has a finite limit as n→∞. Therefore formula (3.22) in Theorem 3.9 can be replaced by a simpler
one

fn(z) = n−p/2−iν (β∞ − i
√

1− β2
∞)n

(
1 + o(1)

)
, n→∞.

Quite similarly, in the case |β∞| > 1, it follows from definitions (2.16), (2.22) and formula (3.29)
that the sequence

ϕn − n arccosh |β∞| − ν sgnβ∞ lnn

has a finite limit as n→∞. Therefore formula (3.27) in Theorem 3.13 can be replaced by a simpler
one

fn(z) = n−p/2+ν sgn δ (sgn δ)n (|β∞|+
√
β2
∞ − 1)−n

(
1 + o(1)

)
, n→∞.

4. Orthogonal polynomials

4.1. Small diagonal elements. Here we suppose that |β∞| < 1. Recall that the Jost solution

f(z) = {fn(z)} was constructed in Theorem 3.9 and f̃(z) was defined by relation (3.23). By virtue
of (3.25), an arbitrary solution F (z) = {Fn(z)} of the Jacobi equation (1.7) is a linear combination

of the Jost solutions f(z) and f̃(z), that is

Fn(z) = k+(z)fn(z) + k−(z)f̃n(z), (4.1)

where the constants can be expressed via the Wronskians:

k+(z) = κ∞
{F (z), f̃(z)}
2i
√

1− β2
∞
, k−(z) = −κ∞

{F (z), f(z)}
2i
√

1− β2
∞
. (4.2)

According to (4.1) the following result is a direct consequence of Theorem 3.9. Recall that the
phase φn is defined by (1.6) and the remainder εn(z) is given by (3.13).

Theorem 4.1. Let the assumptions of Theorem 3.9 be satisfied. Choose some z ∈ C. Then an
arbitrary solution Fn of the Jacobi equation (1.7) has asymptotics

Fn = a−1/2
n

(
k+e

−iφn + k−e
iφn
)(

1 +O(εn(z))
)
, n→∞, (4.3)

for some k± ∈ C. Conversely, for arbitrary k± ∈ C, there exists a solution Fn of the equation
(1.7) with asymptotics (4.3).
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Recall that the polynomials Pn(z) are solutions of the Jacobi equation (1.7) satisfying the
conditions P−1(z) = 0, P0(z) = 1. Relations (4.1), (4.2) and Theorem 4.1 remain of course true in
this case. Moreover, the corresponding asymptotic coeficients

k+(z) = κ∞
{P (z), f̃(z)}
2i
√

1− β2
∞
, k−(z) = −κ∞

{P (z), f(z)}
2i
√

1− β2
∞

(4.4)

satisfy the relations k−(z) = k+(z̄) because Pn(z) = Pn(z̄). Of course, k+(z) and k−(z) are analytic
functions of z ∈ C. Set κ(z) = |k+(z)|. Then

k+(z) = κ(z)eiη(z), η(z) ∈ R/2πZ and k−(z) = κ(z̄)e−iη(z̄).

Observe that the equalities κ(z) = κ(z̄) = 0 are impossible, since otherwise relation (4.1) for Pn(z)
would imply that Pn(z) = 0 for all n but P0 = 1.

The next result is a particular case of Theorem 4.1.

Theorem 4.2. Let the assumptions of Theorem 3.9 be satisfied. Then, for all z ∈ C, the sequence
of the orthogonal polynomials Pn(z) has asymptotics

Pn(z) = a−1/2
n

(
κ(z)e−iφn+iη(z) + κ(z̄)eiφn−iη(z̄) +O(εn(z))

)
, n→∞. (4.5)

Asymptotics (4.5) is uniform in z from compact subsets of the complex plane C.

If z = λ ∈ R, then relation (4.1) for Pn(z) reduces to

Pn(λ) = 2 Re
(
k+(λ)fn(λ)

)
, (4.6)

and (4.5) yields the following result.

Corollary 4.3. If λ ∈ R, then

Pn(λ) = 2a−1/2
n

(
κ(λ) cos

(
φn − η(λ)

)
+O(εn)

)
, n→∞. (4.7)

Asymptotics (4.7) is uniform in λ from compact subsets of the line R.

Observe that κ(λ) 6= 0, since otherwise (4.6) would imply that Pn(λ) = 0 for all n but P0 = 1.

4.2. An identity for asymptotic amplitudes. Here we suppose that Im z 6= 0. Multiplying
equation (1.1) for Pn(z) by its complex conjugate P̄n(z) and taking the sum over n = 0, 1, . . . , N ,
we find that

N∑
n=0

an−1Pn−1(z)P̄n(z) +

N∑
n=0

anPn+1(z)P̄n(z) +

N∑
n=0

bn|Pn(z)|2 = z

N∑
n=0

|Pn(z)|2. (4.8)

Since P−1(z) = 0, the first sum on the left equals

N∑
n=0

anPn(z)P̄n+1(z)− aNPN (z)P̄N+1(z).

Therefore taking the imaginary part of (4.8), we see that

aN Im
(
PN+1(z)P̄N (z)

)
= Im z

N∑
n=0

|Pn(z)|2. (4.9)

According to (4.5) the left-hand side here equals

κ−1
N Im

((
κ(z)e−iφN+1+iη(z) + κ(z̄)eiφN+1−iη(z̄)

)(
κ(z)eiφN−iη(z) + κ(z̄)e−iφN+iη(z̄)

))
+ o(1) (4.10)
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with κN defined by (2.4). Observe that the sum

κ(z)e−iφN+1+iη(z)κ(z̄)e−iφN+iη(z̄) + κ(z̄)eiφN+1−iη(z̄)κ(z)eiφN−iη(z)

= 2κ(z)κ(z̄) cos
(
φN + φN+1 − η(z)− η(z̄)

)
is real. Therefore taking relations and (2.6), (2.13) and (2.22) into account, we see that expression
(4.10) equals

κ−1
N Im

(
κ(z)2e−iθN + κ(z̄)2eiθN

)
+ o(1) = κ−1

∞
(
κ(z̄)2 − κ(z)2

)
sin θ∞ + o(1)

where sin θ∞ =
√

1− β2
∞. Replacing the left-hand side of (4.9) by this expression, we obtain an

identity for the asymptotic amplitude κ(z) = |k+(z)| where k+(z) is defined by (4.4). We also
recall that the number κ∞ is given by (2.6).

Theorem 4.4. Under the assumptions of Theorem 3.9 the identity

κ(z̄)2 − κ(z)2 = Im z κ∞(1− β2
∞)−1/2

∞∑
n=0

|Pn(z)|2

holds.

Corollary 4.5. If Im z > 0, then κ(z) < κ(z̄). Equivalently, κ(z) > κ(z̄) if Im z < 0.

4.3. Large diagonal elements. Here we consider the case |β∞| > 1. Choose an arbitrary z ∈ C.
By Theorem 3.13, the sequence fn(z) defined by equality (3.21) satisfies equation (1.7), and it
has exponentially decaying asymptotics (3.27) where the phase ϕn is given by (1.9). In particular,
fn(z) 6= 0 for sufficiently large n, say, n ≥ n0 = n0(z). Now we have to construct a solution gn(z)
of (1.7) linearly independent with fn(z). We define it by the formula (1.17), that is,

gn(z) = fn(z)Gn(z) (4.11)

where

Gn(z) =

n∑
m=n0

(am−1fm−1(z)fm(z))−1, n ≥ n0. (4.12)

Theorem 4.6. Suppose that a sequence f(z) = {fn(z)} satisfies the Jacobi equation (1.7). Then
the sequence g(z) = {gn(z)} defined by formulas (4.11) and (4.12) satisfies the same equation and
the Wronskian {f(z), g(z)} = 1. In particular, the solutions f(z) and g(z) are linearly independent.

Proof. First, we check equation (1.7) for gn. Observe that

an−1fn−1Gn−1 + (bn − z)fnGn + anfn+1Gn+1

=
(
an−1fn−1 + (bn − z)fn + anfn+1

)
Gn + an−1fn−1(Gn−1 −Gn) + anfn+1(Gn+1 −Gn).

The first term here is zero because equation (1.7) is true for the sequence fn. According to definition
(4.12)

Gn+1 = Gn + (anfnfn+1)−1, (4.13)

so that the second and third terms equal −f−1
n and f−1

n , respectively. This proves equation (1.7)
for gn.

It also follows from (4.13) that the Wronskian (2.1) equals

{f(z), g(z)} = anfn(z)fn+1(z)(Gn+1(z)−Gn(z)) = 1,

whence the solutions f(z) and g(z) are linearly independent. �
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Theorem 4.11 below shows that the solution gn(z) of equation (1.7) exponentially grows as
n→∞. For a proof of this result, we will have to integrate by parts in (4.12). It is convenient to
start with a simple technical assertion. Recall that σm = ζm−1ζm = e−ϑm−1−ϑm , the numbers κn
were defined in formula (2.4) and the sequence un(z) was constructed in Theorem 3.4.

Lemma 4.7. Let

vm(z) = sgnβ∞κm−1(σ−1
m − 1)−1(um−1(z)um(z))−1 (4.14)

and

tm = eϕm−1+ϕm . (4.15)

Then

(am−1fm−1(z)fm(z))−1 = vm(z)t′m. (4.16)

Proof. It follows from formulas (2.21) and (3.21) that

am−1fm−1fm = sgnβ∞
am−1√
am−1am

um−1umt
−1
m ,

whence

(am−1fm−1fm)−1 = sgnβ∞κm−1(um−1um)−1tm.

By definitions (2.22) and (4.15), we have

t′m = tm(σ−1
m − 1).

Putting together the last two formulas with the definition (4.14) of vm, we arrive at (4.16). �

Using (4.16) and integrating by parts in (4.12), we find that

Gn =

n∑
m=n0

vmt
′
m = vntn+1 − vn0−1tn0

− G̃n where G̃n =

n∑
m=n0

v′m−1tm. (4.17)

We will see that the asymptotics of sequence (4.11) as n → ∞ is determined by the first term in
the right-hand side of (4.17). Let us calculate it.

Lemma 4.8. The asymptotic relation

lim
n→∞

√
ane
−ϕn(sgnβ∞)nfn(z)vn(z)tn+1 =

sgnβ∞

2
√
β2
∞ − 1

κ∞ (4.18)

holds.

Proof. It follows from Theorem 3.13 that
√
an(sgnβ∞)nfn(z) = e−ϕn(1 + o(1)).

Using definition (4.14) of vn, Lemma 2.1 and Theorem 3.4 we find that

vn(z) = sgnβ∞κ∞(ζ−2
∞ − 1)−1(1 + o(1)).

Since according to (4.15)

tn+1 = e2ϕn+ϑn = e2ϕnζ−1
∞ (1 + o(1)),

the limit (4.18) equals sgnβ∞κ∞ζ−1
∞ (ζ−2

∞ − 1)−1 which in view of (2.18) coincides with the right-
hand side of (4.18). �

Next we show that the remainder G̃n(z) in (4.17) is negligible. We use the following technical
assertions.

Lemma 4.9. The sequence vn(z) defined by (4.14) satisfies the condition {v′n} ∈ `1(Z+).
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Proof. According to (2.14) we have

|ζn| = (|βn|+
√
β2
n − 1)−1 < |β∞|−1 < 1

for sufficiently large n. Moreover, it follows from (2.27) that {ζ ′n} ∈ `1(Z+) if {β′n} ∈ `1(Z+)
whence (

(σ−1
n − 1)−1

)′ ∈ `1(Z+).

Putting together Theorem 3.4 and Lemma 3.8 we see that

(u−1
n−1u

−1
n )′ ∈ `1(Z+).

Now the inclusion {v′n} ∈ `1(Z+) is a direct consequence of definition (4.14). �

Lemma 4.10. Let G̃n(z) be defined in formula (4.17). Then

lim
n→∞

√
ane
−ϕnfn(z)G̃n(z) = 0. (4.19)

Proof. Using Theorem 3.13 and definition (4.15), we see that

√
ane
−ϕn |fnG̃n| ≤ 2e−2ϕn

n∑
m=n0

|v′m−1|eϕm−1+ϕm

≤ 2e−ϕn

∑
n0≤m<[n/2]

|v′m−1|+ 2
∑

[n/2]≤m≤n

|v′m−1|.

Since ϕn →∞ as n→∞, relation (4.19) follows from Lemma 4.9. �

Let us come back to the representations (4.11) and (4.17). Putting together Lemmas 4.8, 4.10
and taking into account that the term vn0−1tn0 is negligible, we obtain the asymptotics of gn(z).

Theorem 4.11. Under the assumptions of Theorem 3.13 the solution (1.17) of the Jacobi equation
(1.7) satisfies for all z ∈ C the relation

lim
n→∞

√
ane
−ϕn(sgnβ∞)n+1gn(z) =

κ∞
2
√
β2
∞ − 1

. (4.20)

Convergence here is uniform on compact subsets of C.

It follows from (4.20) that {gn(z)} ∈ `2(Z+) (for all z ∈ C) if and only if
∞∑
n=0

a−1
n e2ϕn <∞. (4.21)

In this case all solutions of equation (1.7) are in `2(Z+). Therefore we can state

Corollary 4.12. Under the assumptions of Theorem 3.13 the minimal Jacobi operator J0 is essen-
tially self-adjoint if and only if condition (1.19) is satisfied. Otherwise, that is under assumption
(4.21), the operator J0 has deficiency indices (1, 1).

For an arbitrary ε > 0 and sufficiently large n, it follows from (2.23) that ϑ∞n − ε ≤ ϕn ≤
ϑ∞n + ε. Therefore under the assumptions of Theorem 3.13, the operator J0 is essentially self-
adjoint if an ≤ cnp for some c > 0, p <∞ and all n ≥ 1. On the contrary, J0 has deficiency indices
(1, 1) if an ≥ cxn

p

(1 + o(1)) where x > 1 and p > 1.
Since the Wronskian {f(z), g(z)} = 1 by Theorem 4.6, we see that

Pn(z) = ω(z)fn(z)− Ω(z)gn(z)

where ω(z) = {P (z), g(z)} and

Ω(z) := {P (z), f(z)} = −2−1f−1(z) (4.22)
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is the Jost function. Obviously, ω(z) 6= 0 if Ω(z) = 0. Therefore Theorems 3.13 and 4.11 imply
the following result.

Theorem 4.13. Under the assumptions of Theorem 3.13 the relation

Pn(z) = −κ∞Ω(z)
(sgnβ∞)n+1

2
√
β2
∞ − 1

eϕn

√
an

(1 + o(1)), n→∞, (4.23)

is true for all z ∈ C with convergence uniform on compact subsets of C. Moreover, if Ω(z) = 0,
then

lim
n→∞

√
ane

ϕn(sgnβ∞)nPn(z) = {P (z), g(z)} 6= 0.

Remark 4.14. Let assumption (2.24) be satisfied. Similarly to Remark 3.14, we can replace
e−iφn and e−ϕn by expressions (3.28) in all assertions of this section. In particular, this is true for
asymptotic formulas for orthogonal polynomials Pn(z) and condition (4.21) reduces to

∞∑
n=0

a−1
n (|β∞|+

√
β2
∞ − 1)2n <∞.

4.4. Resolvent. If condition (1.19) is satisfied, then the closure J of the minimal Jacobi operator
J0 is self-adjoint. In this case Ω(z) = 0 if and only if z is an eigenvalue of J . The resolvent of
the operator J can be constructed by the standard (cf. Lemma 2.6 in [17] or Lemma 5.1 in [19])
formulas. Recall that en, n ∈ Z+, is the canonical basis in `2(Z+), fn(z) is the Jost solution of the
equation (1.7) constructed in Theorem 3.13 and Ω(z) is the Wronskian (4.22).

Proposition 4.15. Under the assumptions of Theorem 3.13 suppose also that condition (1.19)
holds. Then the resolvent (J − z)−1 of the Jacobi operator J satisfies the relations

((J − z)−1en, em) = Ω(z)−1Pn(z)fm(z), Im z 6= 0, (4.24)

if n ≤ m and ((J − z)−1en, em) = ((J − z)−1em, en).

Since in view of Theorem 3.13, fn(z) and hence Ω(z) are entire functions of z ∈ C, we can state

Corollary 4.16. The spectrum of the operator J is discrete, and its eigenvalues λ1, · · · , λk, . . .
are given by the equation Ω(λk) = 0. The resolvent (J − z)−1 is an analytic function of z ∈ C with
poles in the points λ1, · · · , λk, . . ..

A much more general result of this type is stated below as Proposition 5.1.
In view of formula (4.22) and equation (1.7) where n = 0 for the Jost solution fn(z), the equation

for eigenvalues of J can be also written as

(b0 − λk)f0(λk) + a0f1(λk) = 0.

It follows from representation (4.24) where n = m = 0 and formula (4.22) that, up to terms
regular in a neighborhood of the point λk,

((J − z)−1e0, e0) = 2
f0(λk)

ḟ−1(λk)

1

λk − z
, where ḟ−1(λ) =

d f−1(λ)

dλ
. (4.25)

On the other hand, since

((J − z)−1e0, e0) =

∫ ∞
−∞

dρ(λ)

λ− z
by the definition of the spectral measure, we see that

((J − z)−1e0, e0) =
ρ({λk})
λk − z

,
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again up to terms regular in a neighborhood of the point λk. Comparing this expression with
(4.25), we arrive to a standard formula

ρ({λk}) = 2
f0(λk)

ḟ−1(λk)
.

Another well known formula

ρ({λ}) =
( ∞∑
n=0

Pn(λ)2
)−1

(4.26)

for the spectral measure at an eigenvalue λ of a self-adjoint Jacobi operator J can be ob-
tained in the following way. Let Jψ = λψ where the eigenvector ψ = (ψ0, . . . , ψn, . . .)

> is
normalized. Necessarily, ψn = cPn(λ) and, by the normalization, c2

∑
Pn(λ)2 = 1. Therefore

ρ({λ}) = (ψ, e0)2 = ψ2
0 = c2 is given by formula (4.26). Formula (4.26) is true without any as-

sumptions on the coefficients an, bn for an arbitrary self-adjoint extension J of the minimal Jacobi
operator J0. Note however that in the essentially self-adjoint case the condition

∑
Pn(λ)2 < ∞

determines eigenvalues of the operator J = clos J0. This is not true if the deficiency indices are
(1, 1) when

∑
Pn(λ)2 <∞ for all λ.

5. Discussion

5.1. Operators with discrete spectrum. We start with a very general result which, in partic-
ular, applies to Jacobi operators. An assertion below is essentially known, and we give it mainly
for completeness of our presentation. The operator J will be defined via its quadratic form

(Ju, u) =

∞∑
n=0

bn|un|2 + 2 Re

∞∑
n=0

anunūn+1 (5.1)

where an are complex and bn are real numbers.

Proposition 5.1. Suppose that bn →∞ (or bn → −∞) and that

|an−1|+ |an| ≤ ε|bn| (5.2)

for some ε < 1 and all sufficiently large n. Then the spectrum of the operator J is discrete and is
semi-bounded from below (resp., from above).

Proof. Since finite-rank perturbations cannot change the discreteness of spectrum, we can suppose
that estimate (5.2) is true for all n. Let B be the operator corresponding to the form

(Bu, u) =

∞∑
n=0

bn|un|2. (5.3)

Evidently, its spectrum is discrete and is semi-bounded from below (resp., from above). For a
proof of the same result for the operator J , it suffices to check that the forms (5.1) and (5.3) are
equivalent or that

2
∣∣Re

∞∑
n=0

anunūn+1

∣∣ ≤ ε ∞∑
n=0

|bn||un|2 (5.4)

for some ε < 1. Let us use the following obvious inequality

2
∣∣ ∞∑
n=0

anunūn+1

∣∣ ≤ 2

√√√√ ∞∑
n=0

|an||un|2
∞∑
n=0

|an||un+1|2 ≤
∞∑
n=0

(|an−1|+ |an|)|un|2.

Therefore estimate (5.4) is a direct consequence of the condition (5.2). �
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Proposition 5.1 holds, in particular, for semi-bounded Jacobi operators when an > 0. It applies
directly to the Friedrichs’ extension of the operator J0, but its conclusion remains true for all
extensions J of J0 because the deficiency indices of J0 are finite. In particular, condition (5.2)
is satisfied with any ε ∈ (|β∞|−1, 1) under the assumptions of Theorem 3.13. Thus, we recover
the result of Corollary 4.16. Moreover, the corresponding operator J is semi-bounded from below
(from above) if β∞ < −1 (if β∞ > 1, respectively).

5.2. The Carleman case. In this subsection we still consider the case an →∞ but assume that
the Carleman condition (1.2) holds. Other assumptions on an and bn are essentially the same as
in the main part of this paper. In particular, we suppose that condition (1.5) is satisfied. Recall
that under the Carleman condition the minimal Jacobi operator J0 is essentially self-adjoint. The
results stated here will be published elsewhere, but some of them are close to the papers [5, 2, 14].

Now the term 2zαn in the right-hand side of (2.10) cannot be neglected and the numbers ζn
have to be defined as approximate solutions of the equation

ζn + ζ−1
n = 2βn + 2zαn.

For simplicity of our discussion, we assume here that
∞∑
n=0

a−3
n (1 + |bn|) <∞. (5.5)

Conditions (1.2) and (5.5) admit a growth of the off-diagonal coefficients an as np for p ∈ (1/2, 1]
and even for p ∈ (1/3, 1] if bn = 0.

Suppose first that |β∞| < 1. As before, the Ansatz Qn(z) is defined by formula (2.9), but,
instead of (2.13), we now set

ζn = (βn − i
√

1− β2
n) exp

(
iz

αn√
1− β2

n

)
. (5.6)

An easy calculation shows that the corresponding remainder (2.10) is in `1(Z+). Therefore repeat-
ing the arguments of Sect. 2 and 3, we find that equation (1.7) has a solution (the Jost solution)
fn(z) distinguished by the asymptotics

fn(z) = a−1/2
n e−iφn+izψn(1 + o(1)), Im z ≥ 0, n→∞, (5.7)

where the phase φn is defined by formula (1.6) and

ψn =

n−1∑
m=0

αm√
|1− β2

m|
. (5.8)

Observe that ψn → ∞ as n → ∞ according to (1.2), (1.5), but ψn = O(n2/3) under assumption
(5.5). It now follows from (2.23) that the phase ψn is negligible compared to φn. It is easy to
see that fn(z) ∈ `2(Z+) for Im z > 0. The Jost functions fn(z) are now analytic in the half-plane

Im z > 0 and are continuous up to the real line. We set fn(z) = fn(z̄) for Im z ≤ 0. Then the
functions fn(z) are analytic in the complex plane with the cut along R and are continuous up the
cut.

If z = λ ∈ R, we have two Jost solutions fn(λ + i0) and fn(λ − i0) = fn(λ+ i0) of equation
(1.7). Their Wronskian is the same as (3.25) (where κ∞ = 1):

{f(λ+ i0), f(λ− i0)} = 2i
√

1− β2
∞ 6= 0.

Therefore the polynomials Pn(λ) are linear combinations of f(λ+ i0) and f(λ− i0):

Pn(λ) =
Ω(λ− i0)fn(λ+ i0)− Ω(λ+ i0)fn(λ− i0)

2i
√

1− β2
∞

, n = 0, 1, 2, . . . , λ ∈ R, (5.9)
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where Ω(z) is defined by formula (4.22). Note that Ω(λ± i0) 6= 0 for all λ ∈ R according to (5.9).
It now follows from (5.7) for z = λ ∈ R that the polynomials Pn(λ) have asymptotics

Pn(λ) = −a−1/2
n

(
|Ω(λ+ i0)|(1−β2

∞)−1/2 sin(φn−λψn + arg Ω(λ+ i0)) + o(1)
)
, n→∞. (5.10)

If Im z 6= 0, then by virtue of Theorem 4.6 a solution gn(z) of the Jacobi equation (1.7) linear
independent with fn(z) can be constructed by explicit formula (1.17). Similarly to Theorem 4.11,
it can be checked that

gn(z) =
1

2i
√

1− β2
∞

1
√
an
eiφn−izψn(1 + o(1)), Im z > 0, n→∞,

so that gn(z) grows faster than any power of n as n→∞. Since the Wronskian {f(z), g(z)} = 1,
the asymptotics of the orthonormal polynomials can be easily derived from this result:

Pn(z) =
iΩ(z)

2
√

1− β2
∞

1
√
an
eiφn−izψn(1 + o(1)), Im z > 0, n→∞. (5.11)

Now the Jacobi operator J = clos J0 is self-adjoint, and its resolvent (J − z)−1 is given by the
general formula (4.24). Since the Jost solutions fn(z) are continuous functions of z up to the real
axis and Ω(λ± i0) 6= 0 for λ ∈ R, the spectrum of the Jacobi operator J is absolutely continuous.
Moreover, using relation (5.9), it is easy to deduce from (4.24) a representation for the spectral
family dE(λ) of the operator J :

d(E(λ)en, em)

dλ
= π−1

√
1− β2

∞ |Ω(λ+ i0)|−2Pn(λ)Pm(λ).

In particular, for the spectral measure, we have the expression

dρ(λ) = π−1
√

1− β2
∞ |Ω(λ+ i0)|−2dλ.

It follows that the spectrum of J coincides with the whole real axis.
Formulas (5.10) and (5.11) are consistent with the classical asymptotic expressions for the

Hermite polynomials when an =
√

(n+ 1)/2 and bn = 0 (see, e.g., Theorems 8.22.6 and 8.22.7
in the G. Szegő’s book [15]). Asymptotics (5.10) was obtained earlier in [5, 2, 14], but as far as
(5.11) is concerned, we are aware only of the paper [11] where an asymptotics of |Pn(z)| as n→∞
was found in terms of a behavior of the corresponding absolutely continuous spectral measure for
|λ| → ∞.

The cases |β∞| > 1 and |β∞| < 1 are technically rather similar, but the asymptotic behavior of
orthogonal polynomials and spectral properties of the Jacobi operators are quite different in these
cases. If |β∞| > 1, we set (cf. (5.6))

ζn = sgnβn(|βn| −
√
β2
n − 1) exp

(
− z αn√

β2
n − 1

)
.

Then again the corresponding remainder (2.10) is in `1(Z+). Therefore repeating the arguments
of Sect. 2 and 3, we find that equation (1.7) has a solution (the Jost solution) fn(z) distinguished
by the asymptotics

fn(z) = a−1/2
n (sgnβ∞)ne−ϕn−zψn(1 + o(1)), n→∞,

where ϕn and ψn are defined by formulas (1.9) and (5.8), respectively. Now the functions fn(z)
are analytic in the whole complex plane. The second solution gn(z) of the Jacobi equation (1.7) is
again given by equality (1.17) which leads to the asymptotic formula

Pn(z) = −Ω(z)
(sgnβ∞)n+1

2
√
β2
∞ − 1

eϕn+zψn

√
an

(1 + o(1)), n→∞. (5.12)
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As in Sect. 4.4, the resolvent of J is determined by formula (4.24), but, in contrast to the case
|β∞| < 1, its singularities are due to zeros of the denominator Ω(z) only. Therefore the spectrum
of J is discrete which is consistent with Proposition 5.1.

5.3. The non-Carleman case versus Carleman one. Let us now compare the results of this
paper for the non-Carleman case (1.4) with those described in the previous subsection.

Suppose first that |β∞| < 1. According to Theorem 3.9 all solutions of equation (1.7) for every
z ∈ C belong to `2(Z+) so that the Jacobi operator J0 has a one parameter family of self-adjoint
extensions J . In this case formula (1.7) for the resolvents of the operators J makes no sense.
Nevertheless the scalar products ((J − z)−1e0, e0), that is, the Cauchy-Stieltjes transforms of the
corresponding spectral measures dρJ(λ), can be expressed via the orthogonal polynomials of the

first Pn(z) and of the second P̃n(z) kinds by the Nevanlinna formula obtained by him in [9] (see,
e.g., formulas (2.31), (2.32) in the book [1]). This remarkable formula implies, in particular, that
the spectra of all self-adjoint extensions J of J0 are discrete. The spectral measure at eigenvalues
of J is given by formula (4.26). Our construction is quite independent of the Nevanlinna theory,
but if some link with this theory exists, it would be desirable to find it.

Asymptotic formulas (4.7) and (5.10) look rather similar although the phase in (5.10) contains

an additional term λψn. The amplitude factor a
−1/2
n in (4.7) and (5.10) is the same. However,

under assumption (1.2) the sequence (5.10) never belongs to `2(Z+) while under assumption (1.4)
the sequence (4.7) belongs to this space for all λ ∈ R.

The difference between the Carleman and non-Carleman cases is even more obvious for Im z 6= 0.
According to Theorem 4.1 in the non-Carleman case, all solutions of the Jacobi equation oscillate

as n → ∞, but they are in `2(Z+) due to the amplitude factor a
−1/2
n . In the Carleman case, the

solution fn(z) exponentially decays while the solution gn(z) exponentially grows as n→∞.
In the case |β∞| > 1, the asymptotic formulas (4.23) and (5.12) for orthogonal polynomials are

close to each other, but the first of them contains an additional factor κ∞ while (5.12) contains a
factor ezψn . We emphasize that in the Carleman case (1.2) the Jacobi operators J0 are essentially
self-adjoint for all sequences bn while in the non-Carleman case (1.4) the Jacobi operators J0 are
essentially self-adjoint if and only if condition (1.19) is satisfied (see Corollary 4.12).
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