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Our goal is to find an asymptotic behavior as n → ∞ of orthogonal polynomials Pn(z) defined by the Jacobi recurrence coefficients an, bn. We suppose that the off-diagonal coefficients an grow so rapidly that the series a -1 n converges, that is, the Carleman condition is violated. With respect to diagonal coefficients bn we assume that -bn(ana n-1 ) -1/2 → 2β∞ for some β∞ = ±1. The asymptotic formulas obtained for Pn(z) are quite different from the case a -1 n = ∞ when the Carleman condition is satisfied. In particular, if a -1 n < ∞, then the phase factors in these formulas do not depend on the spectral parameter z ∈ C. The asymptotic formulas obtained in the cases |β∞| < 1 and |β∞| > 1 are also qualitatively different from each other. As an application of these results, we find necessary and sufficient conditions for the essential self-adjointness of the corresponding minimal Jacobi operator.

1. Introduction 1.1. Overview. Orthogonal polynomials P n (z) can be defined by a recurrence relation

a n-1 P n-1 (z) + b n P n (z) + a n P n+1 (z) = zP n (z), n ∈ Z + , z ∈ C, (1.1) 
with the boundary conditions P -1 (z) = 0, P 0 (z) = 1. We always suppose that a n > 0, b n = bn . Determining P n (z), n = 1, 2, . . ., successively from (1.1), we see that P n (z) is a polynomial of degree n: P n (z) = γ n z n + • • • where γ n = (a 0 a 1 • • • a n-1 ) -1 . We are interested in the asymptotic behavior of the polynomials P n (z) as n → ∞. This is a classical problem investigated under various assumptions including usually the condition

∞ n=0 a -1 n = ∞ (1.2)
introduced by T. Carleman in his book [START_REF] Carleman | Les fonctions quasi-analytiques[END_REF]. We are aware of only one paper [START_REF] Świderski | Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients[END_REF] where the asymptotics of P n (z) was studied without assumption (1.2); this paper is discussed at the end of this subsection. On the contrary, under assumption (1.2) there is an enormous literature on this subject. Here we mention Nevai's approach (see his book [START_REF] Nevai | Orthogonal polynomials[END_REF]) which allowed the authors of [START_REF] Máté | Asymptotics for orthogonal polynomials defined by a recurrence relation[END_REF] to treat the case a n → a ∞ > 0, b n → 0 as n → ∞ in such a way that

∞ n=0 |a n+1 -a n | + |b n+1 -b n | < ∞. (1.
3)

The asymptotics of the polynomials P n (z) for real z in case of the coefficients a n → ∞ but satisfying the Carleman condition (1.2) was studied in the papers [START_REF] Janas | Jacobi matrices with power-like weights -grouping in blocks approach[END_REF] (see Theorem 3.2) and [START_REF] Aptekarev | Measures for orthogonal polynomials with unbounded recurrence coefficients[END_REF] (see Theorem 3). The authors of [START_REF] Janas | Jacobi matrices with power-like weights -grouping in blocks approach[END_REF] solved equations (1.1) for P n (z) successively for n = 1, 2, . . . (the transfer matrix method) which yielded a representation for (P n (z), P n+1 (z)) as a product of n 2 × 2-matrices. The conditions on the coefficients were rather restrictive in [START_REF] Janas | Jacobi matrices with power-like weights -grouping in blocks approach[END_REF]; in particular, it was assumed there that b n = 0 for all n. Under broader assumptions this problem was considered in [START_REF] Aptekarev | Measures for orthogonal polynomials with unbounded recurrence coefficients[END_REF] where Nevai's method was used.

Under very general assumptions on the coefficients a n , b n the asymptotics of the polynomials P n (z) was studied in [START_REF] Świderski | Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients[END_REF] where however it was assumed that z ∈ R and that the coefficients b n are small compared to a n . The Carleman and non-Carleman cases were treated in [START_REF] Świderski | Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients[END_REF] at an equal footing so that the difference in the corresponding asymptotic formulas for P n (z) was not quite visible. Among the results of the present paper, Corollary 4.3 seems to be the closest to the main result, Theorem C, of [START_REF] Świderski | Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients[END_REF].

I thank G. Świderski for useful discussions.

1.2. Main results. Our goal is to find asymptotic formulas for P n (z) as n → ∞ without the Carleman condition (1.2), that is, in the case

∞ n=0 a -1 n < ∞; (1.4)
then the coefficients a n → ∞ faster than n. Astonishingly, the asymptotics of the orthogonal polynomials in this a priori highly singular case is particularly simple and general. Let us briefly describe some of our main results omitting minor technical assumptions. In addition to (1.4), suppose that there exists a finite limit

- b n 2 √ a n-1 a n =: β n → β ∞ where |β ∞ | = 1 (1.5)
as n → ∞. We distinguish two cases:

|β ∞ | < 1 and |β ∞ | > 1. If |β ∞ | < 1, we set φ n = n-1 m=0 arccos β m , n ≥ 1, (1.6) 
where the sum is restricted to m such that |β m | ≤ 1. For example, φ n = πn/2 if b n = 0 for all n ∈ Z + . We show in Theorem 4.1 that, for an arbitrary z ∈ C, all solutions F n (z) of the Jacobi equation

a n-1 F n-1 (z) + b n F n (z) + a n F n+1 (z) = zF n (z), n ∈ Z + , (1.7) 
have asymptotic behavior

F n (z) = a -1/2 n k + e -iφn + k -e iφn + o(1) , n → ∞, (1.8) 
with some constants k ± ∈ C (depending of course on the solution {F n (z)}). The equalities k + = k -= 0 are possible for the trivial solution F n (z) = 0 only. Conversely, for all k ± ∈ C, there exists a solution F n (z) of equation (1.7) with asymptotics (1.8). In particular, formula (1.8) with some constants k ± (z) is true for the orthogonal polynomials P n (z). Note that due to (1.4) and (1.8) all solutions of the equation (1.7) belong to 2 (Z + ).

In the case |β ∞ | > 1 we set

ϕ n = n-1 m=0 arccosh |β m |, n ≥ 1, (1.9) 
where the sum is restricted to m such that |β m | ≥ 1. Then for all z ∈ C, we have (see Theorem 4.13) an asymptotic relation P n (z) = k(z)a -1/2 n (sgn β ∞ ) n e ϕn (1 + o(1)).

(1.10)

If the Jacobi operator with the coefficients a n , b n is essentially self-adjoint, then the coefficient k(z) = 0 unless z is an eigenvalue of this operator. Note that e ϕn can be, alternatively, written as a product

e ϕn = n-1 m=0 |β m | + β 2 n -1 , n ≥ 1.
According to (1.8) and (1.10) the asymptotic behavior of the polynomials P n (z) is the same for all z ∈ C, both for real z and for z with Im z = 0. The coefficients k ± (z) and k(z) can be expressed via the Wronskians of the solution {P n (z)} and the Jost solution {f n (z)} (introduced below) of the Jacobi equation (1.7); these coefficients depend on z.

We emphasize that the asymptotic formulas for the cases (1.2) and (1.4) are qualitatively different from each other. This is discussed in Sect. 5.2 and 5.3.

1.3. Scheme of the approach. We are motivated by an analogy of the difference (1.7) and differential -(a(x)f (x, z)) + b(x)f (x, z) = zf (x, z), x > 0, (1.11) equations where a(x) > 0 and b(x) is real. To a large extent, x, a(x) and b(x) here play the roles of the parameters n, a n and b n in the Jacobi equation (1.7). In the case a(x) = 1, b ∈ L 1 (R + ), equation (1.11) has a solution f (x, z), known as the Jost solution, behaving like e i √ zx , Im √ z ≥ 0, as x → ∞. For rather general coefficients a(x), b(x), equation (1.11) has solutions f (x, z) with asymptotics given by the classical Liouville-Green formula (see Chapter 6 of the book [START_REF] Olver | Introduction to asymptotics and special functions[END_REF]). In the case a(x) → a ∞ > 0, b(x) → 0, the Liouville-Green formula was simplified in [START_REF] Yafaev | A note on the Schrödinger operator with a long-range potential[END_REF] which yields solutions f (x, z) of (1.11) with asymptotics

f (x, z) ∼ exp - x 0 b(y) -z a(y) 1/2 dy =: Q(x, z), Re b(y) -z a(y) 1/2 ≥ 0, (1.12) 
as x → ∞. Note that the function Q(x, z) (the Ansatz for the Jost solution f (x, z)) satisfies equation (1.11) with a sufficiently good accuracy. Formula (1.12) was modified in [START_REF] Yafaev | Semiclassical asymptotic behavior of orthogonal polynomials[END_REF] for Jacobi equations (1.7) where a n → a ∞ > 0, b n → 0 as n → ∞ and condition (1.3) is satisfied. This permitted to find asymptotics of the orthogonal polynomials P n (z) for such coefficients a n , b n in a very natural way. We are applying the same scheme in the non-Carleman case. Here, we accept conditions (1.4) and (1.5). Let us briefly discuss the main steps of our approach.

A. First, we forget about the orthogonal polynomials P n (z) and distinguish solutions (the Jost solutions) f n (z) of the difference equation (1.7) by their asymptotics as n → ∞. This requires a construction of an Ansatz Q n (z) for the Jost solutions.

B. Under assumption (1.4) this construction (see Sect. 2.3) is very explicit and, in particular, does not depend on z ∈ C. In the case |β ∞ | < 1, we set

Q n = a -1/2 n e -iφn (1.13)
with the phase φ n defined by formula (1.6). In the case |β ∞ | > 1, the Ansatz equals

Q n = a -1/2 n (sgn β ∞ ) n e -ϕn (1.14)
where the phase ϕ n is given by (1.9). It is shown in Sect. 2.4 that in both cases the relative remainder

r n (z) := ( √ a n-1 a n Q n ) -1 a n-1 Q n-1 + (b n -z)Q n + a n Q n+1 , n ≥ 1, (1.15) 
belongs to 1 (Z + ). At an intuitive level, the fact that the Ansätzen (1.13) and (1.14) do not depend on z ∈ C can be explained by the fast growth of the coefficients a n which makes the spectral parameter z negligible.

Actually, the Ansätzen we use (especially, the amplitude factor a -1/2 n

) are only distantly similar to the Liouville-Green Ansatz for the Schrödinger equation (1.11).

C. Then we make in Sect. 2.5 a multiplicative change of variables In the case |β ∞ | > 1, a solution g n (z) of (1.7) linearly independent with f n (z) can be constructed by an explicit formula

f n (z) = Q n u n (z) (1.
g n (z) = f n (z) n m=n0 (a m-1 f m-1 (z)f m (z)) -1 , n ≥ n 0 , (1.17) 
where n 0 = n 0 (z) is a sufficiently large number. This solution grows exponentially as n → ∞,

g n (z) = 1 2 β 2 ∞ -1 a 1/2 n (sgn β ∞ ) n+1 e ϕn (1 + o(1)).
Since g n (z) is linearly independent with f n (z), the polynomials P n (z) are linear combinations of f n (z) and g n (z) which leads to the formula (1.10). Note that (1.17) is a discrete analogue of formula (1.36) in Chapter 4 of the book [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF] for the Schrödinger equation. The scheme described briefly above seems to be quite different from [START_REF] Świderski | Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients[END_REF] where the first step was a study of the Turán determinants P n (z) 2 -P n-1 (z)P n+1 (z).

1.4. Jacobi operators. It is natural (see the book [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF]) to associate with the coefficients a n , b n a three-diagonal matrix

J =        b 0 a 0 0 0 0 • • • a 0 b 1 a 1 0 0 • • • 0 a 1 b 2 a 2 0 • • • 0 0 a 2 b 3 a 3 • • • . . . . . . . . . . . . . . . . . .        (1.18)
known as the Jacobi matrix. Then equation (1.1) with the boundary condition P -1 (z) = 0 is equivalent to the equation J P (z) = zP (z) for the vector P (z) = {P n (z)} ∞ n=0 . Thus P (z) is the "eigenvector" of the matrix J corresponding to the "eigenvalue" z.

Let us now consider Jacobi operators defined by matrix (1.18) in the canonical basis e 0 , e 1 , . . . of the space 2 (Z + ). The minimal Jacobi operator J 0 is defined by the formula

J 0 f = J f on a set D ⊂ 2 (Z + ) of vectors f = {f n } ∞
n=0 such that f n = 0 for sufficiently large n. It is symmetric in the space 2 (Z + ), and its adjoint operator J * 0 is given by the same formula J * 0 f = J f on all vectors f ∈ 2 (Z + ) such that J f ∈ 2 (Z + ). The deficiency indices of the operator J 0 are either (0, 0) (the limit point case) or (1, 1) (the limit circle case). If the Carleman condition (1.2) holds, then (see, e.g., the book [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF]) for all b n the operator J 0 is essentially self-adjoint on D so that J 0 has the unique self-adjoint extension J = clos J 0 (the closure of J 0 ). On the contrary, under assumption (1.4) the deficiency indices of J 0 depend on the value of

|β ∞ |. If |β ∞ | < 1,
then it follows from (1.8) that all solutions of equation (1.7) are in 2 (Z + ), and hence the deficiency indices of the operator J 0 are [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF][START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF]. In this case the operator J 0 has a one-parameter family of self-adjoint extensions J ⊂ J * 0 . Their domains can be described explicitly (see Sect. 6.5 of [START_REF] Schmüdgen | The moment problem[END_REF] or §2 of [START_REF] Simon | The classical moment problem as a self-adjoint finite difference operator[END_REF]) in terms of the orthogonal polynomials P n (z) (of first kind) and P n (z) (of second kind). We recall that P n (z) are defined by equations (1.1) where n ≥ 1 with the boundary conditions P 0 (z) = 0, P 1 (z) = a -1 0 ; clearly, P n (z) is a polynomial of degree n -1. In the case |β ∞ | > 1 we show that the operator J 0 is essentially self-adjoint if and only if

∞ n=0 a -1 n e 2ϕn = ∞ (1.19)
where ϕ n is defined by (1.9); otherwise the deficiency indices of J 0 are [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF][START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF]. This result may be compared with the Berezanskii theorem (see, e.g., page 26 in the book [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF]) stating that the Carleman condition (1.2) is necessary for the essential self-adjointness of J 0 provided b n = 0 and a n-1 a n+1 ≤ a 2 n . The spectra of all self-adjoint Jacobi operators J are simple with e 0 = (1, 0, 0, . . .) being a generating vector. Therefore it is natural to define the spectral measure of J by the relation dρ J (λ) = d(E J (λ)e 0 , e 0 ) where dE J (λ) is the spectral family of the operator J. For all extensions J of the operator J 0 , the polynomials P n (λ) are orthogonal and normalized in the spaces L 2 (R; dρ J ):

∞ -∞ P n (λ)P m (λ)dρ J (λ) = δ n,m ;
as usual, δ n,n = 1 and δ n,m = 0 for n = m.

We also note a link with a moment problem

s n = ∞ -∞ λ n dρ(λ)
where s n are given and the measure dρ(λ) has to be found. A moment problem is called determinate if its solution dρ(λ) is unique. In the opposite case it is called indeterminate. Suppose that s n = (J n 0 e 0 , e 0 ). Then

s n = (J n e 0 , e 0 ) = ∞ -∞ λ n dρ J (λ)
for all self-adjoint extensions J of the operator J 0 . It is known (see, e.g., Theorem 2 in [START_REF] Simon | The classical moment problem as a self-adjoint finite difference operator[END_REF]) that the moment problem with the coefficients s n = (J n 0 e 0 , e 0 ) is determinate if and only if the operator J 0 is essentially self-adjoint.

The comprehensive presentation of the results described in this subsection can be found in the books [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF][START_REF] Schmüdgen | The moment problem[END_REF] or the survey [START_REF] Simon | The classical moment problem as a self-adjoint finite difference operator[END_REF]. We rely essentially on a direct study of the difference equation (1.7) and practically do not use operator methods. So, the above information was given mainly to put our results into the right framework.

Ansatz

In this section, we calculate the remainder (1.15) for the Ansatz Q n defined by formulas (1.13) or (1.14). Then we make substitution (1.16).

2.1. Preliminaries. Let us consider equation (1.7). Note that the values of F N -1 and F N for some N ∈ Z + determine the whole sequence F n satisfying the difference equation (1.7).

Let f = {f n } ∞ n=-1 and g = {g n } ∞ n=-1 be two solutions of equation (1.7). A direct calculation shows that their Wronskian {f, g}

:= a n (f n g n+1 -f n+1 g n ) (2.1)
does not depend on n = -1, 0, 1, . . .. In particular, for n = -1 and n = 0, we have

{f, g} = 2 -1 (f -1 g 0 -f 0 g -1 )
and {f, g} = a 0 (f 0 g 1 -f 1 g 0 )

(we put a -1 = 1/2). Clearly, the Wronskian {f, g} = 0 if and only if the solutions f and g are proportional.

It is convenient to introduce a notation

x n = x n+1 -x n (2.2)
for the "derivative" of a sequence x n . Note the Abel summation formula ("integration by parts"):

M n=N x n y n = x M y M +1 -x N -1 y N - M n=N x n-1 y n ; (2.3)
here M ≥ N ≥ 0 are arbitrary, but we have to set x -1 = 0 so that x -1 = x 0 if N = 0. It follows from equation (1.1) that if P n (z) are the orthogonal polynomials corresponding to coefficients (a n , b n ), then the polynomials (-1) n P n (-z) correspond to the coefficients (a n , -b n ). Therefore without loss of generality, we could have assumed that β ∞ ≥ 0.

To emphasize the analogy between differential and difference operators, we often use "continuous" terminology (Volterra integral equations, integration by parts, etc.) for sequences labelled by the discrete variable n. Below C, sometimes with indices, and c are different positive constants whose precise values are of no importance.

In all our constructions below, it suffices to consider the Jacobi equation (1.7) for large n only.

2.2.

Assumptions. In addition to (1.4) and (1.5), we need some mild conditions on a regularity of behavior of the sequences a n and b n as n → ∞. Let us set

κ n = a n+1 a n , k n = κ n-1 κ n = a n √ a n-1 a n+1 . (2.4)
With respect to a n , we assume that

{k n -1} ∈ 1 (Z + ) (2.5)
which implies also the following properties of the numbers κ n .

Lemma 2.1. Under assumption (2.5) there exists a finite limit

lim n→∞ κ n =: κ ∞ , (2.6 
)

and κ ∞ ≥ 1 if condition (1.4) is satisfied. Moreover, {κ n } ∈ 1 (Z + ) (2.7)
if both (1.4) and (2.5) are true.

Proof. By definition (2.4) of k n , we have ln

k n = ln κ n-1 -ln κ n whence ln κ n = ln κ 0 - n m=1 ln k m .
It follows from (2.5) that the series on the right converges which implies the existence of the limit (2.6). If κ ∞ < 1, then, by definition (2.4) of κ n , we would have a n ≤ γa n-1 for some γ < 1 and all n ≥ n 0 if n 0 is sufficiently large. Thus, a -1 n ≥ a -1 n0 γ n0 γ -n so that the series in (1.4) diverges. Since

κ n -κ n-1 = κ 2 n κ n + κ n-1 (1 + k n )(1 -k n ), relation (2.7
) is a direct consequence of assumption (2.5).

Example 2.2. Both conditions (1.4) and (2.5) are satisfied for a n = γn p where γ > 0, p > 1 and for a n = γx n q where x > 1, q < 1. In these cases κ ∞ = 1. For a n = γx n , conditions (1.4) and (2.5) are also satisfied but κ ∞ = √ x. On the contrary, condition (2.5) fails if a n = γx n q with q > 1.

With respect to the coefficients b n or, more precisely, the ratios β n defined by (1.5), we assume that 

{β n } ∈ 1 (Z + ). ( 2 
(Z + ). Put ζ n = κ n Q n+1 Q -1 n
and introduce notation

α n = 1 2 √ a n-1 a n , β n = - b n 2 √ a n-1 a n , n ∈ Z + ;
for definiteness, we set

a -1 = 1/2 and Q 0 = a -1/2 0
. Then

Q n = 1 √ a n ζ 0 • • • ζ n-1 , n ≥ 1, (2.9) 
and (1.15) can be rewritten as

r n (z) = ζ -1 n-1 -2β n + k n ζ n -2zα n .
(2.10)

We have to find ζ n such that {r n (z)} ∈ 1 (Z + ). In principle, the numbers ζ n can be successively determined from the equations r n (z) = 0 which leads of course to very complicated expressions. Fortunately the construction of ζ n becomes quite explicit if one neglects in (2.10) the terms from 1 (Z + ). Obviously, the term 2zα n in the right-hand side of (2.10) can be omitted if condition (1.4) is satisfied. Furthermore, under the assumptions below ζ -1 n-1 can be replaced by ζ -1 n and k n -by 1 which allows us to define ζ n from the equation 

ζ n + ζ -1 n = 2β n . ( 2 
r n (z) = ζ -1 n-1 -ζ -1 n + (k n -1)ζ n -2zα n . (2.12)
Solutions of (2.11) are obviously given by the equalities

ζ n = β n -i 1 -β 2 n = (β n + i 1 -β 2 n ) -1 (2.13) if |β n | ≤ 1 and ζ n = sgn β n (|β n | -β 2 n -1) = sgn β n (|β n | + β 2 n -1) -1 (2.14) if |β n | > 1.
Of course, the numbers ζ -1 n also satisfy (2.11). In the case |β n | ≤ 1, we choose formula (2.13) for definiteness only. On the contrary, in the case

|β n | > 1, the condition |ζ n | ≤ 1 will be important below. It is convenient to set θ n = arccos β n ∈ [0, π] (2.15) for |β n | ≤ 1 and ϑ n = arccosh |β n | = ln |β n | + β 2 n -1 > 0 (2.16) for |β n | > 1. Then ζ n = e -iθn for |β n | ≤ 1 and ζ n = sgn β n e -ϑn for |β n | ≥ 1. It follows from condition (1.5) that ζ n → β ∞ -i 1 -β 2 ∞ =: ζ ∞ = e -iθ∞ if |β ∞ | < 1 (2.17) and ζ n → sgn β ∞ (|β ∞ | -β 2 ∞ -1) =: ζ ∞ = sgn β ∞ e -ϑ∞ if |β ∞ | > 1 (2.18) as n → ∞.
Here θ ∞ and ϑ ∞ are defined by formulas (2.15) and (2.16) where n = ∞, that is,

θ ∞ = arccos β ∞ ∈ (0, π) and ϑ ∞ = ln |β ∞ | + β 2 ∞ -1 > 0. (2.19) Obviously, |ζ ∞ | = 1 and ζ 2 ∞ = 1 if |β ∞ | < 1 and ζ ∞ ∈ (-1, 1) but ζ ∞ = 0 if |β ∞ | > 1. For |β n | ≥ 1 in the case |β ∞ | < 1 and for |β n | ≤ 1 in the case |β ∞ | > 1,
the numbers θ n and ϑ n can be chosen in an arbitrary way; for definiteness, we set θ n = 0 and ϑ n = 0. Now the Ansatz (2.9) can be written as

Q n = 1 √ a n e -iφn if |β ∞ | < 1 (2.20) and Q n = 1 √ a n (sgn β ∞ ) n e -ϕn if |β ∞ | > 1.
(2.21)

Here 

φ n = n-1 m=0 θ m , ϕ n = n-1 m=0 ϑ m (2.
φ n = θ ∞ n + o(n) and ϕ n = ϑ ∞ n + o(n) as n → ∞ (2.23)
with θ ∞ and ϑ ∞ given by formulas (2.19). Moreover, we have the following statement.

Lemma 2.4. Assume that ∞ n=0 |β n -β ∞ | < ∞. ( 2 

.24)

Then the sequences φ n -θ ∞ n and ϕ n -ϑ ∞ n have finite limits as n → ∞.

Proof. Observe that

φ n -θ ∞ n = n-1 m=0 (θ n -θ ∞ ) (2.25)
where, by definition (2.15),

|θ n -θ ∞ | = | arccos β n -arccos β ∞ | ≤ C|β n -β ∞ |.
Here n is sufficiently large and the condition |β ∞ | < 1 is taken into account. Therefore assumption (2.24) implies that the series in the right-hand side of (2.25) converges. The difference ϕ n -ϑ ∞ n can be considered quite similarly. 

ζ -1 n-1 -ζ -1 n = (β n-1 -β n ) 1 -i β n-1 + β n 1 -β 2 n-1 + 1 -β 2 n , |β ∞ | < 1,
and

ζ -1 n-1 -ζ -1 n = (β n-1 -β n ) 1 + sgn β ∞ β n-1 + β n β 2 n-1 -1 + β 2 n -1 , |β ∞ | > 1.
According to (2.26) each of these identities yields an estimate

|ζ -1 n-1 -ζ -1 n | ≤ C|β n-1 -β n |.
(2.27) Therefore (2.12) implies that

|r n (z)| ≤ C|β n-1 -β n | + |k n -1| + 2α n |z| (2.28)
where the constant C does not depend on z. This leads to the following assertion.

Lemma 2.5. Let conditions (1.4) and (1.5) be satisfied. Then estimate (2.28) for the remainder (2.12) is true for all z ∈ C. Under additional assumptions (2.5) and (2.8), we have

{r n (z)} ∈ 1 (Z + ).
(2.29) 2.5. Multiplicative substitution. Let the sequence Q n be given by formulas (2.20) or (2.21). We are looking for solutions f n (z) of the difference equation (1.7) satisfying the condition

f n (z) = Q n (1 + o(1)), n → ∞.
(2.30)

The uniqueness of such solutions is almost obvious.

Lemma 2.6. Equation (1.7) may have only one solution f n (z) satisfying condition (2.30).

Proof. Let f n (z) be another solution of (1.7) satisfying (2.30). It follows from (2.20) or (2.21) that the Wronskian (2.1) of these solutions calculated for n → ∞ equals

{f, f} = a n Q n Q n+1 o(1) = o(1)κ -1 n e -i(φn-1+φn) , |β ∞ | < 1 sgn β ∞ e -ϕn-1-ϕn , |β ∞ | > 1
so that {f, f} = 0 according to (2.6). Thus f = Cf where C = 1 by virtue again of condition (2.30).

Remark 2.7. For the calculation of the Wronskian {f, f}, it is essential that the power of a n in (2.9) equals -1/2.

For construction of f n (z), we will reformulate the problem introducing a sequence 

u n (z) = Q -1 n f n (z), n ∈ Z + . ( 2 
k n ζ n (u n+1 (z) -u n (z)) -ζ -1 n-1 (u n (z) -u n-1 (z)) = -r n (z)u n (z), n ∈ Z + , (2.33) 
for sequence (2.31).

Proof. Substituting expression f n = Q n u n into (1.7) and using the equality

Q n+1 Q n = a n a n+1 ζ n ,
we see that

( √ a n-1 a n Q n ) -1 a n-1 f n-1 + (b n -z)f n + a n f n+1 = a n-1 a n Q n-1 Q n u n-1 -2(α n z + β n )u n + a n a n-1 Q n+1 Q n u n+1 = ζ -1 n-1 u n-1 -2(α n z + β n )u n + k n ζ n u n+1 .
In view of (2.11) the right-hand side here equals

k n ζ n (u n+1 -u n ) -ζ -1
n-1 (u n -u n-1 ) + r n u n with r n defined by (2.12). Therefore equations (1.7) and (2.33) are equivalent.

Modified Jost solutions

In this section, we reduce the Jacobi difference equation (1.7) for Jost solutions f n (z) to a Volterra equation for functions u n (z) defined by formula (2.31) and satisfying the condition (2.32). Solutions u n (z) of the Volterra equation can be constructed by iterations. At this point, there is almost no difference between the cases |β ∞ | < 1 and |β ∞ | > 1. Finally, formula (2.31) yields asymptotics of f n (z) as n → ∞.

3.1. Volterra integral equation. The sequence u n (z) satisfying the difference equation (2.33) will be constructed as a solution of an appropriate "Volterra integral" equation. We set

σ n = ζ n ζ n-1 , S n = σ 1 σ 2 • • • σ n-1 , n ≥ 2, ( 3.1) 
and, for n < m,

G n,m = -(κ m-1 ζ m ) -1 S m+1 m p=n+1 κ p-1 S -1 p = -(κ m-1 ζ m ) -1 m p=n+1 κ p-1 σ p • • • σ m . (3.2)
Note that the kernel G n,m does not depend on z. Let us consider an equation

u n (z) = 1 + ∞ m=n+1 G n,m r m (z)u m (z) (3.3)
where the sequence r m (z) is defined by formula (2.12). Our first goal is to estimate the matrix elements G n,m . This is quite straightforward in the case 

|β ∞ | > 1.
|G n,m | ≤ C < ∞. (3.4)
Proof. By virtue of (2.18), we have

|σ n | ≤ s ∞ < 1 (3.5) if s ∞ ∈ (ζ 2 ∞ , 1)
and n is sufficiently large, say, n ≥ n 0 . Moreover, {κ n } ∈ ∞ (Z + ) and {κ -1 n } ∈ ∞ (Z + ) according to Lemma 2.1. Therefore it follows from (3.2) that

|G n,m | ≤ C m p=n+1 s m-p+1 ∞ = C 1 -s m-n ∞ s -1 ∞ -1 ≤ C s ∞ 1 -s ∞ , n < m, if n ≥ n 0 . Let now n < n 0 . If n < m ≤ n 0 , then the sum (3.2) consists of at most n 0 terms. If m > n, then G n,m = G n,n0 + G n0,m
is a sum of two bounded terms.

In the case |β ∞ | < 1 we have to "integrate by parts". Proof. As in the previous lemma, we can suppose that n ≥ n 0 where n 0 is sufficiently large. Since |ζ p | = 1 according to (2.13), it follows from definition (3.1) that

|S m+1 S -1 p | = |σ p • • • σ m | = 1, p ≤ m. (3.6) 
Relation (2.17) where

ζ 2 ∞ = 1 implies that |σ n -1| ≥ c > 0. (3.7)
By definitions (2.2) and (3.1) we have

(S -1 p ) = S -1 p+1 -S -1 p = (σ -1 p -1)S -1 p ,
and hence integrating by parts (that is, using formula (2.3)), we find that

m p=n+1 κ p-1 S -1 p = m p=n+1 κ p-1 (σ -1 p -1) -1 (S -1 p ) = κ m-1 (σ -1 m -1) -1 S -1 m+1 -κ n-1 (σ -1 n -1) -1 S -1 n+1 - m p=n+1 (κ p-2 (σ -1 p-2 -1) -1 ) S -1 p . (3.8) Note that ((σ -1 p-1 -1) -1 ) = (σ p-1 -1) -1 (σ p -1) -1 σ p-1
where σ p ∈ 1 (Z + ) by virtue of (2.27) and (2.8). Using also (2.7) and (3.7), we see that this sequence belongs to 1 (Z + ) whence 

(κ p-1 (σ -1 p-1 -1) -1 ) ∈ 1 (Z + ).
u (k+1) n (z) = ∞ m=n+1 G n,m r m (z)u (k) m (z), k ≥ 0, (3.9) 
for all n ∈ Z + . Then the estimates

|u (k) n (z)| ≤ C k k! ∞ m=n+1 |r m (z)| k , ∀k ∈ Z + . (3.10)
are true for all sufficiently large n with the same constant C as in (3.4).

Proof. Suppose that (3.10) is satisfied for some k ∈ Z + . We have to check the same estimate (with k replaced by k + 1 in the right-hand side) for u

(k+1) n . Set R m = ∞ p=m+1 |r p |.
According to definition (3.9), it follows from estimate (3.4) and (3.10) that

|u (k+1) n | ≤ C k+1 k! ∞ m=n+1 |r m |R k m . (3.11) 
Observe that

R k+1 m + (k + 1)|r m |R k m ≤ R k+1 m-1
, and hence, for all N ∈ Z + , (k + 1)

N m=n+1 |r m |R k m ≤ N m=n+1 (R k+1 m-1 -R k+1 m ) = R k+1 n -R k+1 N ≤ R k+1 n .
Substituting this bound into (3.11), we obtain estimate (3.10) for u 

|u n (z) -1| ≤ e Cεn(z) -1, n ≥ 0, (3.12) 
where the constant C does not depend on z ∈ C and

ε n (z) = ∞ m=n+1 |β m-1 -β m | + |k m -1| + α m |z| → 0 as n → ∞. (3.13)
For all n ∈ Z + , the functions u n (z) are entire functions of z ∈ C.

Proof.

Set

u n = ∞ k=0 u (k) n (3.14)
where u

(k) 0 = 1 and u (k)
n , k ≥ 1, are defined by recurrence relations (3.9). Estimate (3.10) shows that this series is absolutely convergent. Using the Fubini theorem to interchange the order of summations in m and k, we see that

∞ m=n+1 G n,m r m u m = ∞ k=0 ∞ m=n+1 G n,m r m u (k) m = - ∞ k=0 u (k+1) n = 1 - ∞ k=0 u (k) n = 1 -u n .
This is equation (3.3) for sequence (3.14). Estimate (3.12) for the sequence (3.14) also follows from (3.10) where r n (z) satisfies (2.28).

According to (2.12) the remainder r m (z) and hence the kernels G n,m r m (z) are linear functions of z. Therefore recurrence arguments show that all successive approximations u Corollary 3.5. We have an estimate

|u n (z) -1| ≤ Cε n (z) (3.15)
where ε n (z) → 0 uniformly on compact subsets of C.

It turns out that the construction above yields a solution of the difference equation (2.33).

Lemma 3.6. Let r n (z) and G n,m be given by formulas (2.12) and (3.2), respectively. Then a solution u n (z) of integral equation (3.3) satisfies also the difference equation (2.33).

Proof. It follows from (3.3) that

u n+1 -u n = ∞ m=n+2 (G n+1,m -G n,m )r m u m -G n,n+1 r n+1 u n+1 . (3.16) 
Since according to (3.2)

G n+1,m -G n,m = -κ n (κ m-1 ζ m ) -1 S -1 n+1 S m+1 and G n,n+1 = ζ -1 n+1 S n+2 S -1 n+1
, equality (3.16) can be rewritten as

κ -1 n (u n+1 -u n ) = - ∞ m=n+1 S -1 n+1 S m+1 (κ m-1 ζ m ) -1 r m u m . (3.17) 
Putting together this equality with the same equality for n + 1 replaced by n, we see that

κ -1 n (u n+1 -u n ) -σ -1 n κ -1 n-1 (u n -u n-1 ) = ∞ m=n+1 S -1 n+1 S m+1 r m (κ m-1 ζ m ) -1 u m -σ -1 n ∞ m=n S -1 n S m+1 r m (κ m-1 ζ m ) -1 u m .
Since S n+1 = σ n S n , the right-hand side here equals -(κ n-1 ζ n ) -1 r n u n , and hence the equation obtained coincides with (2.33).

The above arguments show also that the functions u n (z) are of minimal exponential type. where m → 0 as m → ∞. On the other hand, it follows from equation (1.7) for function (1.16) that Proof. Let us proceed from expression (3.17) for u n+1 -u n . It follows from (3.1) and (3.5) that

|u n (z)| ≤ C n |z|(|u n+1 (z)| + |u n+2 (z)|) ≤ • • • ≤ C n,k |z| k (|u n+k (z)| + |u n+k+1 (z)|) (3.
|S -1 n+1 S m+1 | = |σ n+1 • • • σ m | ≤ s m-n ∞
for sufficiently large n and m ≥ n whence

|u n+1 -u n | ≤ C ∞ m=n+1 s m-n ∞ |r m u m |.
So we only have to take the sum over n here. Then we use that s ∞ < 1 and {r m u m } ∈ 1 (Z + ). 

f n (z) = Q n u n (z) (3.21)
satisfies equation (1.7). This leads to the following results. We state them separately for the cases

|β ∞ | < 1 and |β ∞ | > 1.
Theorem 3.9. Let the assumptions (1.4), (1.5) with |β ∞ | < 1 as well as (2.5), (2.8) be satisfied.

Then, for all z ∈ C, the equation (1.7) has a solution {f n (z)} with asymptotics

f n (z) = 1 √ a n e -iφn 1 + O(ε n (z)) , n → ∞, (3.22) 
where φ n and ε n (z) are given by formulas (1.6) and (3.13), respectively. Asymptotics (3.22) is uniform in z from compact subsets of the complex plane C. For all n ∈ Z + , the functions f n (z) are entire functions of z ∈ C of minimal exponential type.

Corollary 3.10. Suppose that b n = 0, at least for sufficiently large n. Let the assumptions (1.4) and (2.5) be satisfied. Then, for all z ∈ C, the equation (1.7) has a solution {f n (z)} with asymptotics

f n (z) = 1 √ a n (-i) n 1 + O(ε n (z)) , n → ∞.
By analogy with the continuous case, the sequence {f n (z)} ∞ n=-1 will be called the (modified) Jost solution of equation (1.7). Additionally, we define the conjugate Jost solution by the formula fn (z) = f n (z). 

(z) = 1 √ a n e iφn 1 + O(ε n ) , n → ∞, (3.24) 
Using asymptotic formulas (3.22), (3.24) and definition (2.15), we can calculate the Wronskian (2.1) of the solutions f (z), f (z):

{f (z), f (z)} = lim n→∞ κ -1 n (e iθn -e -iθn ) = κ -1 ∞ (e iθ∞ -e -iθ∞ ) = 2iκ -1 ∞ 1 -β 2 ∞ = 0 (3.25)
according to (2.17). Note that the amplitude factors a Thus, in the case |β ∞ | < 1 for all z ∈ C, we have two linearly independent oscillating solutions f n (z) and fn (z). Under assumption (1.4) both of them belong to 2 (Z + ). This leads to the following result.

Corollary 3.11. Under the assumptions of Theorem 3.9 the minimal Jacobi operator J 0 has deficiency indices (1, 1).

Let us show that, even in the case b n = 0, assumption (2.5) cannot be omitted in Theorem 3.9. The example below was considered in [START_REF] Kostyuchenko | Generalized Jacobi matrices and deficiency indices of differential operators with polynomial coefficients[END_REF], Example 2, and in [START_REF] Janas | Spectral properties of Jacobi matrices by asymptotic analysis[END_REF], Lemma 2.3.

Example 3.12. Suppose that b n = 0 and that a n = n p (1 + c 1 n -1 ) if n is odd and a n = n p (1 + c 2 n -1 ) if n is even for p > 1 and sufficiently large n. Corollary 3.11 does not apply in this case because

a n √ a n-1 a n+1 = 1 + (-1) n c 2 -c 1 n + O( 1 n 2 ), n → ∞, (3.26) 
so that condition (2.5) breaks down unless c 1 = c 2 . Actually, it was proven in [START_REF] Kostyuchenko | Generalized Jacobi matrices and deficiency indices of differential operators with polynomial coefficients[END_REF][START_REF] Janas | Spectral properties of Jacobi matrices by asymptotic analysis[END_REF] that the corresponding Jacobi operator J 0 is essentially adjoint if |c 2 -c 1 | ≥ p -1.

In the case |β ∞ | > 1, we have the following result.

Theorem 3.13. Let the assumptions (1.4), (1.5) with |β ∞ | > 1 as well as (2.5), (2.8) be satisfied.

Then, for all z ∈ C, the equation (1.7) has a solution {f n (z)} with asymptotics

f n (z) = 1 √ a n (sgn β ∞ ) n e -ϕn 1 + O(ε n ) , n → ∞, (3.27) 
where ϕ n and ε n (z) are given by formulas (1.9) and (3.13), respectively. Asymptotics (3.27) is uniform in z from compact subsets of the complex plane C. For all n ∈ Z + , the functions f n (z) are entire functions of z ∈ C of minimal exponential type.

According to (2.19) and (2.23) the solution (3.27) tends to zero exponentially as n → ∞. It will also be called the (modified) Jost solution of equation (1.7). However, in contrast to the case where γ > 0 and δ, σ are arbitrary real numbers. Then

|β ∞ | < 1, for |β ∞ | > 1 the
-inθ∞ = (β ∞ -i 1 -β 2 ∞ ) n and e -nϑ∞ = (|β ∞ | + β 2 ∞ -1) -n , ( 3 
β n = δ 2γ (1 + σn -1 )(1 -n -1 ) -p/2 = δ 2γ 1 + (σ + p 2 )n -1 + O(n -2 )
and β ∞ = δ(2γ) -1 . The assumptions of Theorem 3.9 (of Theorem 3.13) are satisfied if |δ| < 2γ (resp., |δ| > 2γ). Since 

β n -β ∞ = (2γ) -1 δ(σ + p/2)n -1 + O(n -2 ), ( 3 
θ n = arccos β ∞ + νn -1 + O(n -2 ), ν = - δ(σ + p/2) |δ 2 -4γ 2 | ,
so that according to (2.22) the sequence φ n -n arccos β ∞ -ν ln n has a finite limit as n → ∞. Therefore formula (3.22) in Theorem 3.9 can be replaced by a simpler one 

f n (z) = n -p/2-iν (β ∞ -i 1 -β 2 ∞ ) n 1 + o(1) , n → ∞. Quite similarly, in the case |β ∞ | > 1,
(z) = n -p/2+ν sgn δ (sgn δ) n (|β ∞ | + β 2 ∞ -1) -n 1 + o(1) , n → ∞.

Orthogonal polynomials

4.1. Small diagonal elements. Here we suppose that |β ∞ | < 1. Recall that the Jost solution f (z) = {f n (z)} was constructed in Theorem 3.9 and f (z) was defined by relation (3.23). By virtue of (3.25), an arbitrary solution F (z) = {F n (z)} of the Jacobi equation (1.7) is a linear combination of the Jost solutions f (z) and f (z), that is

F n (z) = k + (z)f n (z) + k -(z) fn (z), (4.1) 
where the constants can be expressed via the Wronskians:

k + (z) = κ ∞ {F (z), f (z)} 2i 1 -β 2 ∞ , k -(z) = -κ ∞ {F (z), f (z)} 2i 1 -β 2 ∞ . (4.2)
According to (4.1) the following result is a direct consequence of Theorem 3.9. Recall that the phase φ n is defined by (1.6) and the remainder ε n (z) is given by (3.13).

Theorem 4.1. Let the assumptions of Theorem 3.9 be satisfied. Choose some z ∈ C. Then an arbitrary solution F n of the Jacobi equation (1.7) has asymptotics

F n = a -1/2 n k + e -iφn + k -e iφn 1 + O(ε n (z)) , n → ∞, (4.3) 
for some k ± ∈ C. Conversely, for arbitrary k ± ∈ C, there exists a solution F n of the equation (1.7) with asymptotics (4.3).

Recall that the polynomials P n (z) are solutions of the Jacobi equation (1.7) satisfying the conditions P -1 (z) = 0, P 0 (z) = 1. Relations (4.1), (4.2) and Theorem 4.1 remain of course true in this case. Moreover, the corresponding asymptotic coeficients z) .

k + (z) = κ ∞ {P (z), f (z)} 2i 1 -β 2 ∞ , k -(z) = -κ ∞ {P (z), f (z)} 2i 1 -β 2 ∞ (4.
k + (z) = κ(z)e iη(z) , η(z) ∈ R/2πZ and k -(z) = κ(z)e -iη(
Observe that the equalities κ(z) = κ(z) = 0 are impossible, since otherwise relation (4.1) for P n (z) would imply that P n (z) = 0 for all n but P 0 = 1. The next result is a particular case of Theorem 4.1.

Theorem 4.2. Let the assumptions of Theorem 3.9 be satisfied. Then, for all z ∈ C, the sequence of the orthogonal polynomials P n (z) has asymptotics

P n (z) = a -1/2 n κ(z)e -iφn+iη(z) + κ(z)e iφn-iη(z) + O(ε n (z)) , n → ∞. (4.5)
Asymptotics (4.5) is uniform in z from compact subsets of the complex plane C.

If z = λ ∈ R, then relation (4.1) for P n (z) reduces to

P n (λ) = 2 Re k + (λ)f n (λ) , (4.6) 
and (4.5) yields the following result.

Corollary 4.3. If λ ∈ R, then P n (λ) = 2a -1/2 n κ(λ) cos φ n -η(λ) + O(ε n ) , n → ∞. (4.7)
Asymptotics (4.7) is uniform in λ from compact subsets of the line R.

Observe that κ(λ) = 0, since otherwise (4.6) would imply that P n (λ) = 0 for all n but P 0 = 1.

4.2.

An identity for asymptotic amplitudes. Here we suppose that Im z = 0. Multiplying equation (1.1) for P n (z) by its complex conjugate Pn (z) and taking the sum over n = 0, 1, . . . , N , we find that

N n=0 a n-1 P n-1 (z) Pn (z) + N n=0 a n P n+1 (z) Pn (z) + N n=0 b n |P n (z)| 2 = z N n=0 |P n (z)| 2 . ( 4.8) 
Since P -1 (z) = 0, the first sum on the left equals

N n=0 a n P n (z) Pn+1 (z) -a N P N (z) PN+1 (z).
Therefore taking the imaginary part of (4.8), we see that

a N Im P N +1 (z) PN (z) = Im z N n=0 |P n (z)| 2 . (4.9)
According to (4.5) the left-hand side here equals

κ -1 N Im κ(z)e -iφ N +1 +iη(z) + κ(z)e iφ N +1 -iη(z) κ(z)e iφ N -iη(z) + κ(z)e -iφ N +iη(z) + o(1) (4.10)
with κ N defined by (2.4). Observe that the sum

κ(z)e -iφ N +1 +iη(z) κ(z)e -iφ N +iη(z) + κ(z)e iφ N +1 -iη(z) κ(z)e iφ N -iη(z) = 2κ(z)κ(z) cos φ N + φ N +1 -η(z) -η(z)
is real. Therefore taking relations and (2.6), (2.13) and (2.22) into account, we see that expression (4.10) equals

κ -1 N Im κ(z) 2 e -iθ N + κ(z) 2 e iθ N + o(1) = κ -1 ∞ κ(z) 2 -κ(z) 2 sin θ ∞ + o(1)
where sin

θ ∞ = 1 -β 2 ∞ .
Replacing the left-hand side of (4.9) by this expression, we obtain an identity for the asymptotic amplitude κ(z) = |k + (z)| where k + (z) is defined by (4.4). We also recall that the number κ ∞ is given by (2.6).

Theorem 4.4. Under the assumptions of Theorem 3.9 the identity ) where the phase ϕ n is given by (1.9). In particular, f n (z) = 0 for sufficiently large n, say, n ≥ n 0 = n 0 (z). Now we have to construct a solution g n (z) of (1.7) linearly independent with f n (z). We define it by the formula (1.17), that is,

κ(z) 2 -κ(z) 2 = Im z κ ∞ (1 -β 2 ∞ ) -1/2 ∞ n=0 |P n (z)| 2 holds. Corollary 4.5. If Im z > 0, then κ(z) < κ(z). Equivalently, κ(z) > κ(z) if Im z < 0.
g n (z) = f n (z)G n (z) (4.11) 
where

G n (z) = n m=n0 (a m-1 f m-1 (z)f m (z)) -1 , n ≥ n 0 . (4.12) 
Theorem 4.6. Suppose that a sequence f (z) = {f n (z)} satisfies the Jacobi equation (1.7). Then the sequence g(z) = {g n (z)} defined by formulas (4.11) and (4.12) satisfies the same equation and the Wronskian {f (z), g(z)} = 1. In particular, the solutions f (z) and g(z) are linearly independent.

Proof. First, we check equation (1.7) for g n . Observe that

a n-1 f n-1 G n-1 + (b n -z)f n G n + a n f n+1 G n+1 = a n-1 f n-1 + (b n -z)f n + a n f n+1 G n + a n-1 f n-1 (G n-1 -G n ) + a n f n+1 (G n+1 -G n ).
The first term here is zero because equation (1.7) is true for the sequence f n . According to definition (4.12)

G n+1 = G n + (a n f n f n+1 ) -1 , (4.13) 
so that the second and third terms equal -f -1 n and f -1 n , respectively. This proves equation (1.7) for g n .

It also follows from (4.13) that the Wronskian (2.1) equals

{f (z), g(z)} = a n f n (z)f n+1 (z)(G n+1 (z) -G n (z)) = 1,
whence the solutions f (z) and g(z) are linearly independent.

Theorem 4.11 below shows that the solution g n (z) of equation (1.7) exponentially grows as n → ∞. For a proof of this result, we will have to integrate by parts in (4.12). It is convenient to start with a simple technical assertion. Recall that σ m = ζ m-1 ζ m = e -ϑm-1-ϑm , the numbers κ n were defined in formula (2.4) and the sequence u n (z) was constructed in Theorem 3.4.

Lemma 4.7. Let v m (z) = sgn β ∞ κ m-1 (σ -1 m -1) -1 (u m-1 (z)u m (z)) -1 (4.14) 
and t m = e ϕm-1+ϕm . (4.15)

Then (a m-1 f m-1 (z)f m (z)) -1 = v m (z)t m . (4.16) 
Proof. It follows from formulas (2.21) and (3.21) that

a m-1 f m-1 f m = sgn β ∞ a m-1 √ a m-1 a m u m-1 u m t -1 m , whence (a m-1 f m-1 f m ) -1 = sgn β ∞ κ m-1 (u m-1 u m ) -1 t m .
By definitions (2.22) and (4.15), we have

t m = t m (σ -1 m -1)
. Putting together the last two formulas with the definition (4.14) of v m , we arrive at (4.16).

Using (4.16) and integrating by parts in (4.12), we find that

G n = n m=n0 v m t m = v n t n+1 -v n0-1 t n0 -G n where G n = n m=n0 v m-1 t m . (4.17) 
We will see that the asymptotics of sequence (4.11) as n → ∞ is determined by the first term in the right-hand side of (4.17). Let us calculate it.

Lemma 4.8. The asymptotic relation

lim n→∞ √ a n e -ϕn (sgn β ∞ ) n f n (z)v n (z)t n+1 = sgn β ∞ 2 β 2 ∞ -1 κ ∞ (4.18) holds. 
Proof. It follows from Theorem 3.13 that

√ a n (sgn β ∞ ) n f n (z) = e -ϕn (1 + o(1)).
Using definition (4.14) of v n , Lemma 2.1 and Theorem 3.4 we find that

v n (z) = sgn β ∞ κ ∞ (ζ -2 ∞ -1) -1 (1 + o(1)
). Since according to (4.15)

t n+1 = e 2ϕn+ϑn = e 2ϕn ζ -1 ∞ (1 + o(1)), the limit (4.18) equals sgn β ∞ κ ∞ ζ -1 ∞ (ζ -2 ∞ -1) -1
which in view of (2.18) coincides with the righthand side of (4.18).

Next we show that the remainder G n (z) in (4.17) is negligible. We use the following technical assertions.

Lemma 4.9. The sequence v n (z) defined by (4.14) satisfies the condition {v n } ∈ 1 (Z + ).

Proof. According to (2.14) we have

|ζ n | = (|β n | + β 2 n -1) -1 < |β ∞ | -1 < 1 for sufficiently large n. Moreover, it follows from (2.27) that {ζ n } ∈ 1 (Z + ) if {β n } ∈ 1 (Z + ) whence (σ -1 n -1) -1 ∈ 1 (Z + )
. Putting together Theorem 3.4 and Lemma 3.8 we see that

(u -1 n-1 u -1 n ) ∈ 1 (Z + ). Now the inclusion {v n } ∈ 1 (Z + ) is a direct consequence of definition (4.14).
Lemma 4.10. Let G n (z) be defined in formula (4.17). Then

lim n→∞ √ a n e -ϕn f n (z) G n (z) = 0. (4.19) 
Proof. Using Theorem 3.13 and definition (4.15), we see that

√ a n e -ϕn |f n G n | ≤ 2e -2ϕn n m=n0 |v m-1 |e ϕm-1+ϕm ≤ 2e -ϕn n0≤m<[n/2] |v m-1 | + 2 [n/2]≤m≤n |v m-1 |.
Since ϕ n → ∞ as n → ∞, relation (4.19) follows from Lemma 4.9.

Let us come back to the representations (4.11) and (4.17). Putting together Lemmas 4.8, 4.10 and taking into account that the term v n0-1 t n0 is negligible, we obtain the asymptotics of g n (z). a n e -ϕn (sgn For an arbitrary ε > 0 and sufficiently large n, it follows from (2.23) that ϑ ∞ n -ε ≤ ϕ n ≤ ϑ ∞ n + ε. Therefore under the assumptions of Theorem 3.13, the operator J 0 is essentially selfadjoint if a n ≤ cn p for some c > 0, p < ∞ and all n ≥ 1. On the contrary, J 0 has deficiency indices (1, 1) if a n ≥ cx n p (1 + o(1)) where x > 1 and p > 1.

β ∞ ) n+1 g n (z) = κ ∞ 2 β 2 ∞ -1 . ( 4 
Since the Wronskian {f (z), g(z)} = 1 by Theorem 4.6, we see that

P n (z) = ω(z)f n (z) -Ω(z)g n (z)
where ω(z) = {P (z), g(z)} and

Ω(z) := {P (z), f (z)} = -2 -1 f -1 (z) (4.22)
is the Jost function. Obviously, ω(z) = 0 if Ω(z) = 0. Therefore Theorems 3.13 and 4.11 imply the following result.

Theorem 4.13. Under the assumptions of Theorem 3.13 the relation

P n (z) = -κ ∞ Ω(z) (sgn β ∞ ) n+1 2 β 2 ∞ -1 e ϕn √ a n (1 + o(1)), n → ∞, (4.23) 
is true for all z ∈ C with convergence uniform on compact subsets of C. Moreover, if Ω(z) = 0, then lim n→∞ √ a n e ϕn (sgn β ∞ ) n P n (z) = {P (z), g(z)} = 0.

Remark 4.14. Let assumption (2.24) be satisfied. Similarly to Remark 3.14, we can replace e -iφn and e -ϕn by expressions (3.28) in all assertions of this section. In particular, this is true for asymptotic formulas for orthogonal polynomials P n (z) and condition (4.21) reduces to holds. Then the resolvent (J -z) -1 of the Jacobi operator J satisfies the relations

∞ n=0 a -1 n (|β ∞ | + β 2 ∞ -1) 2n < ∞.
((J -z) -1 e n , e m ) = Ω(z) -1 P n (z)f m (z), Im z = 0, (4.24) 
if n ≤ m and ((J -z) -1 e n , e m ) = ((J -z) -1 e m , e n ).

Since in view of Theorem 3.13, f n (z) and hence Ω(z) are entire functions of z ∈ C, we can state In view of formula (4.22) and equation (1.7) where n = 0 for the Jost solution f n (z), the equation for eigenvalues of J can be also written as

(b 0 -λ k )f 0 (λ k ) + a 0 f 1 (λ k ) = 0.
It follows from representation (4.24) where n = m = 0 and formula (4.22) that, up to terms regular in a neighborhood of the point λ k ,

((J -z) -1 e 0 , e 0 ) = 2 f 0 (λ k ) ḟ-1 (λ k ) 1 λ k -z , where ḟ-1 (λ) = d f -1 (λ) dλ . (4.25)
On the other hand, since

((J -z) -1 e 0 , e 0 ) = ∞ -∞
dρ(λ) λ -z by the definition of the spectral measure, we see that

((J -z) -1 e 0 , e 0 ) = ρ({λ k }) λ k -z ,
again up to terms regular in a neighborhood of the point λ k . Comparing this expression with (4.25), we arrive to a standard formula

ρ({λ k }) = 2 f 0 (λ k ) ḟ-1 (λ k ) .
Another well known formula

ρ({λ}) = ∞ n=0 P n (λ) 2 -1 (4.26)
for the spectral measure at an eigenvalue λ of a self-adjoint Jacobi operator J can be obtained in the following way. Let Jψ = λψ where the eigenvector ψ = (ψ 0 , . . . , ψ n , . . .) is normalized. Necessarily, ψ n = cP n (λ) and, by the normalization, c 2 P n (λ) 2 = 1. Therefore ρ({λ}) = (ψ, e 0 ) 2 = ψ 2 0 = c 2 is given by formula (4.26). Formula (4.26) is true without any assumptions on the coefficients a n , b n for an arbitrary self-adjoint extension J of the minimal Jacobi operator J 0 . Note however that in the essentially self-adjoint case the condition P n (λ) 2 < ∞ determines eigenvalues of the operator J = clos J 0 . This is not true if the deficiency indices are (1, 1) when P n (λ) 2 < ∞ for all λ.

Discussion

5.1.

Operators with discrete spectrum. We start with a very general result which, in particular, applies to Jacobi operators. An assertion below is essentially known, and we give it mainly for completeness of our presentation. The operator J will be defined via its quadratic form

(Ju, u) = ∞ n=0 b n |u n | 2 + 2 Re ∞ n=0 a n u n ūn+1 (5.1) 
where a n are complex and b n are real numbers. for some < 1 and all sufficiently large n. Then the spectrum of the operator J is discrete and is semi-bounded from below (resp., from above).

Proof. Since finite-rank perturbations cannot change the discreteness of spectrum, we can suppose that estimate (5.2) is true for all n. Let B be the operator corresponding to the form

(Bu, u) = ∞ n=0 b n |u n | 2 . (5.3)
Evidently, its spectrum is discrete and is semi-bounded from below (resp., from above). For a proof of the same result for the operator J, it suffices to check that the forms (5.1) and (5. 

∞ n=0 a n u n ūn+1 ≤ 2 ∞ n=0 |a n ||u n | 2 ∞ n=0 |a n ||u n+1 | 2 ≤ ∞ n=0 (|a n-1 | + |a n |)|u n | 2 .
Therefore estimate (5.4) is a direct consequence of the condition (5.2).

Proposition 5.1 holds, in particular, for semi-bounded Jacobi operators when a n > 0. It applies directly to the Friedrichs' extension of the operator J 0 , but its conclusion remains true for all extensions J of J 0 because the deficiency indices of J 0 are finite. In particular, condition (5.2) is satisfied with any ∈ (|β ∞ | -1 , 1) under the assumptions of Theorem 3.13. Thus, we recover the result of Corollary 4.16. Moreover, the corresponding operator J is semi-bounded from below (from above) if β ∞ < -1 (if β ∞ > 1, respectively). 5.2. The Carleman case. In this subsection we still consider the case a n → ∞ but assume that the Carleman condition (1.2) holds. Other assumptions on a n and b n are essentially the same as in the main part of this paper. In particular, we suppose that condition (1.5) is satisfied. Recall that under the Carleman condition the minimal Jacobi operator J 0 is essentially self-adjoint. The results stated here will be published elsewhere, but some of them are close to the papers [START_REF] Janas | Jacobi matrices with power-like weights -grouping in blocks approach[END_REF][START_REF] Aptekarev | Measures for orthogonal polynomials with unbounded recurrence coefficients[END_REF][START_REF] Świderski | Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients[END_REF]. Now the term 2zα n in the right-hand side of (2.10) cannot be neglected and the numbers ζ n have to be defined as approximate solutions of the equation

ζ n + ζ -1 n = 2β n + 2zα n .
For simplicity of our discussion, we assume here that

∞ n=0 a -3 n (1 + |b n |) < ∞. (5.5) 
Conditions (1.2) and (5.5) admit a growth of the off-diagonal coefficients a n as n p for p ∈ (1/2, 1] and even for p ∈

(1/3, 1] if b n = 0. Suppose first that |β ∞ | < 1.
As before, the Ansatz Q n (z) is defined by formula (2.9), but, instead of (2.13), we now set

ζ n = (β n -i 1 -β 2 n ) exp iz α n 1 -β 2 n . (5.6) 
An easy calculation shows that the corresponding remainder (2.10) is in 1 (Z + ). Therefore repeating the arguments of Sect. 2 and 3, we find that equation (1.7) has a solution (the Jost solution) f n (z) distinguished by the asymptotics

f n (z) = a -1/2 n e -iφn+izψn (1 + o(1)), Im z ≥ 0, n → ∞, (5.7) 
where the phase φ n is defined by formula (1.6) and

ψ n = n-1 m=0 α m |1 -β 2 m | . ( 5.8) 
Observe that ψ n → ∞ as n → ∞ according to (1.2), (1.5), but ψ n = O(n 2/3 ) under assumption (5.5). It now follows from (2.23) that the phase ψ n is negligible compared to φ n . It is easy to see that f n (z) ∈ 2 (Z + ) for Im z > 0. The Jost functions f n (z) are now analytic in the half-plane Im z > 0 and are continuous up to the real line. We set f n (z) = f n (z) for Im z ≤ 0. Then the functions f n (z) are analytic in the complex plane with the cut along R and are continuous up the cut.

If z = λ ∈ R, we have two Jost solutions f n (λ + i0) and f n (λ -i0) = f n (λ + i0) of equation (1.7). Their Wronskian is the same as (3.25) (where κ ∞ = 1):

{f (λ + i0), f (λ -i0)} = 2i 1 -β 2 ∞ = 0.
Therefore the polynomials P n (λ) are linear combinations of f (λ + i0) and f (λ -i0):

P n (λ) = Ω(λ -i0)f n (λ + i0) -Ω(λ + i0)f n (λ -i0) 2i 1 -β 2 ∞ , n = 0, 1, 2, . . . , λ ∈ R, (5.9) 
where Ω(z) is defined by formula (4.22). Note that Ω(λ ± i0) = 0 for all λ ∈ R according to (5.9). It now follows from (5.7) for z = λ ∈ R that the polynomials P n (λ) have asymptotics

P n (λ) = -a -1/2 n |Ω(λ + i0)|(1 -β 2 ∞ ) -1/2 sin(φ n -λψ n + arg Ω(λ + i0)) + o(1) , n → ∞. (5.10)
If Im z = 0, then by virtue of Theorem 4.6 a solution g n (z) of the Jacobi equation (1.7) linear independent with f n (z) can be constructed by explicit formula (1.17). Similarly to Theorem 4.11, it can be checked that

g n (z) = 1 2i 1 -β 2 ∞ 1 √ a n
e iφn-izψn (1 + o(1)), Im z > 0, n → ∞, so that g n (z) grows faster than any power of n as n → ∞. Since the Wronskian {f (z), g(z)} = 1, the asymptotics of the orthonormal polynomials can be easily derived from this result:

P n (z) = iΩ(z) 2 1 -β 2 ∞ 1 √ a n
e iφn-izψn (1 + o(1)), Im z > 0, n → ∞.

(5.11)

Now the Jacobi operator J = clos J 0 is self-adjoint, and its resolvent (J -z) -1 is given by the general formula (4.24). Since the Jost solutions f n (z) are continuous functions of z up to the real axis and Ω(λ ± i0) = 0 for λ ∈ R, the spectrum of the Jacobi operator J is absolutely continuous. Moreover, using relation (5.9), it is easy to deduce from (4.24) a representation for the spectral family dE(λ) of the operator J: d(E(λ)e n , e m ) dλ = π -1 1 -β 2 ∞ |Ω(λ + i0)| -2 P n (λ)P m (λ).

In particular, for the spectral measure, we have the expression

dρ(λ) = π -1 1 -β 2 ∞ |Ω(λ + i0)| -2
dλ. It follows that the spectrum of J coincides with the whole real axis.

Formulas (5.10) and (5.11) are consistent with the classical asymptotic expressions for the Hermite polynomials when a n = (n + 1)/2 and b n = 0 (see, e.g., Theorems 8.22.6 and 8.22.7 in the G. Szegő's book [START_REF] Szegő | Orthogonal polynomials[END_REF]). Asymptotics (5.10) was obtained earlier in [START_REF] Janas | Jacobi matrices with power-like weights -grouping in blocks approach[END_REF][START_REF] Aptekarev | Measures for orthogonal polynomials with unbounded recurrence coefficients[END_REF][START_REF] Świderski | Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients[END_REF], but as far as (5.11) is concerned, we are aware only of the paper [START_REF] Rakhmanov | On asymptotic properties of polynomials orthogonal on the real axis[END_REF] where an asymptotics of |P n (z)| as n → ∞ was found in terms of a behavior of the corresponding absolutely continuous spectral measure for |λ| → ∞.

The where ϕ n and ψ n are defined by formulas (1.9) and (5.8), respectively. Now the functions f n (z) are analytic in the whole complex plane. The second solution g n (z) of the Jacobi equation (1.7) is again given by equality (1.17) which leads to the asymptotic formula

P n (z) = -Ω(z) (sgn β ∞ ) n+1 2 β 2 ∞ -1
e ϕn+zψn √ a n (1 + o(1)), n → ∞.

(5.12)

As in Sect. 4.4, the resolvent of J is determined by formula (4.24), but, in contrast to the case |β ∞ | < 1, its singularities are due to zeros of the denominator Ω(z) only. Therefore the spectrum of J is discrete which is consistent with Proposition 5.1.

5.3.

The non-Carleman case versus Carleman one. Let us now compare the results of this paper for the non-Carleman case (1.4) with those described in the previous subsection. Suppose first that |β ∞ | < 1. According to Theorem 3.9 all solutions of equation (1.7) for every z ∈ C belong to 2 (Z + ) so that the Jacobi operator J 0 has a one parameter family of self-adjoint extensions J. In this case formula (1.7) for the resolvents of the operators J makes no sense. Nevertheless the scalar products ((J -z) -1 e 0 , e 0 ), that is, the Cauchy-Stieltjes transforms of the corresponding spectral measures dρ J (λ), can be expressed via the orthogonal polynomials of the first P n (z) and of the second P n (z) kinds by the Nevanlinna formula obtained by him in [START_REF] Nevanlinna | Asymptotische Entwickelungen beschränkter Funktionen und das Stieltjessche Momentenproblem[END_REF] (see, e.g., formulas (2.31), (2.32) in the book [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF]). This remarkable formula implies, in particular, that the spectra of all self-adjoint extensions J of J 0 are discrete. The spectral measure at eigenvalues of J is given by formula (4.26). Our construction is quite independent of the Nevanlinna theory, but if some link with this theory exists, it would be desirable to find it.

Asymptotic formulas (4.7) and (5.10) look rather similar although the phase in (5.10) contains an additional term λψ n . The amplitude factor a -1/2 n in (4.7) and (5.10) is the same. However, under assumption (1.2) the sequence (5.10) never belongs to 2 (Z + ) while under assumption (1.4) the sequence (4.7) belongs to this space for all λ ∈ R.

The difference between the Carleman and non-Carleman cases is even more obvious for Im z = 0. According to Theorem 4.1 in the non-Carleman case, all solutions of the Jacobi equation oscillate as n → ∞, but they are in 2 (Z + ) due to the amplitude factor a -1/2 n . In the Carleman case, the solution f n (z) exponentially decays while the solution g n (z) exponentially grows as n → ∞.

In the case |β ∞ | > 1, the asymptotic formulas (4.23) and (5.12) for orthogonal polynomials are close to each other, but the first of them contains an additional factor κ ∞ while (5.12) contains a factor e zψn . We emphasize that in the Carleman case (1.2) the Jacobi operators J 0 are essentially self-adjoint for all sequences b n while in the non-Carleman case (1.4) the Jacobi operators J 0 are essentially self-adjoint if and only if condition (1.19) is satisfied (see Corollary 4.12).

Lemma 3 . 1 .

 31 Let the assumptions (1.4), (1.5) where |β ∞ | > 1 and (2.5) be satisfied. Then kernel (3.2) is bounded uniformly in m > n ≥ 0:

Lemma 3 . 2 .

 32 Let the assumptions (1.4),(1.5) where |β ∞ | < 1 and (2.5), (2.8) be satisfied. Then kernel (3.2) is bounded uniformly in m > n ≥ 0, that is, estimate (3.4) holds.

Let us multiply identity ( 3 . 8 ) 3 . 2 .Lemma 3 . 3 .

 383233 by S m+1 . According to(3.6) and (3.7) all three terms in the righthand side of the equality obtained are bounded for n ≥ n 0 . Successive approximations. Let us come back to the Volterra equation (3.3). Lemma 2.5 ensures inclusion (2.29), and Lemmas 3.1 or 3.2 show that the kernels G n,m are bounded. This allows us to estimate iterations of equation(3.3) and then solve it. Let the assumptions (1.4), (1.5) as well as (2.5), (2.8) be satisfied. Set u

.Theorem 3 . 4 .

 34 Now we are in a position to solve equation (3.3) by iterations. Let the assumptions (1.4), (1.5) as well as (2.5), (2.8) be satisfied. Then equation (3.3) has a unique bounded solution u n (z). Moreover,

n

  (z) are analytic functions of z ∈ C. The same assertion is of course true for the series (3.14).

Lemma 3 . 7 .

 37 Under the assumptions of Theorem 3.4, for an arbitrary > 0 and some constants C n (ε) (that do not depend on z ∈ C), every function u n (z) satisfies an estimate|u n (z)| ≤ C n ( )e |z| . (3.18) Proof. It suffices to check (3.18) for |z| ≥ 1. According to (3.12) and (3.13) we have an estimate |u m (z)| ≤ e m|z| (3.19)

  equation (1.7) because the coefficients a n and b n are real, and it has the asymptotics fn

-1/ 2 n

 2 in (3.22) and (3.24) are quite natural (cf. Remark 2.7) because their product should cancel a n in the Wronskian (3.25).

  .28) respectively. In this case the remainders O(ε n ) should be replaced by o(1). D. R. YAFAEV 3.4. Example. Suppose that (for sufficiently large n) a n = γn p and b n = -δn p (1 + σn -1 ), p > 1,

4 )

 4 satisfy the relations k -(z) = k + (z) because P n (z) = P n (z). Of course, k + (z) and k -(z) are analytic functions of z ∈ C. Set κ(z) = |k + (z)|. Then

4. 3 .

 3 Large diagonal elements. Here we consider the case |β ∞ | > 1. Choose an arbitrary z ∈ C. By Theorem 3.13, the sequence f n (z) defined by equality (3.21) satisfies equation (1.7), and it has exponentially decaying asymptotics (3.27

Theorem 4 . 11 .

 411 Under the assumptions of Theorem 3.13 the solution (1.17) of the Jacobi equation (1.7) satisfies for all z ∈ C the relation lim n→∞ √

Corollary 4 . 16 .

 416 The spectrum of the operator J is discrete, and its eigenvalues λ 1 , • • • , λ k , . . . are given by the equation Ω(λ k ) = 0. The resolvent (J -z) -1 is an analytic function of z ∈ C with poles in the points λ 1 , • • • , λ k , . . .. A much more general result of this type is stated below as Proposition 5.1.

Proposition 5 . 1 .

 51 Suppose that b n → ∞ (or b n → -∞) and that |a n-1 | + |a n | ≤ |b n | (5.2)

a n u n ūn+1 ≤ ∞ n=0 |b n ||u n | 2 ( 5 . 4 )

 254 for some < 1. Let us use the following obvious inequality 2

n β 2 n - 1 . 2 n(

 12 cases |β ∞ | > 1 and |β ∞ | < 1 are technically rather similar, but the asymptotic behavior of orthogonal polynomials and spectral properties of the Jacobi operators are quite different in these cases. If |β ∞ | > 1, we set (cf. (5.6)) ζ n = sgn β n (|β n | -β 2 n -1) exp -z α Then again the corresponding remainder (2.10) is in 1 (Z + ). Therefore repeating the arguments of Sect. 2 and 3, we find that equation (1.7) has a solution (the Jost solution) f n (z) distinguished by the asymptotics f n (z) = a -1/sgn β ∞ ) n e -ϕn-zψn (1 + o(1)), n → ∞,

  [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF] which permits us to reduce the difference equation (1.7) for f n (z) to a Volterra "integral" equation for the sequence u n (z). This equation depends of course on the parameters a n , b n . In particular, it is somewhat different in the cases |β ∞ | < 1 and |β ∞ | > 1. However in both cases this Volterra equation is standardly solved by iterations in Sect. 3.1 and 3.2. This allows us to prove the existence of solutions u n (z) of this equation such that u n (z) → 1 as n → ∞. According to(1.13) or(1.14) and(1.16) this yields (see Sect. 3.3) asymptotics of the Jost solutions f n (z). The functions f n (z) turn out to be analytic in z ∈ C D. We come back to the orthogonal polynomials P n (z) in Sect. 4. First, we observe that the sequence fn (z) = f

n (z) also satisfies the equation (1.7). In the case |β ∞ | < 1, the solutions f n (z) and fn (z) are linearly independent. Therefore it follows from (1.13) that all solutions of the Jacobi equation (1.7) have asymptotic behavior

(1.8)

. In particular, formula (1.8) is true for the orthogonal polynomials P n (z).

  Lemma 2.8. Let z ∈ C, let ζ n be defined by formulas (2.13) or (2.14), and let the remainder r n (z) be given by formula (2.12). Then equation (1.7) for a sequence f n (z) is equivalent to the equation

			.31)
	Then (2.30) is equivalent to the condition		
	lim n→∞	u n (z) = 1.	(2.32)
	Let us derive a difference equation for u n (z).	

  20)for every k = 1, 2, . . .. For a given > 0, choose k such that 2 n+k ≤ , 2 n+k+1 ≤ . Then putting estimates(3.19) and (3.20) together, we see that|u n (z)| ≤ 4C n,k |z| k e |z|/2 . Since |z| k ≤ c k ( )e |z|/2, this proves (3.18).In the case |β ∞ | > 1, we also need estimates on u n .

Lemma 3.8. Let |β ∞ | > 1.

Under the assumptions of Theorem 3.4, we have {u n } ∈ 1 (Z + ).

  construction of Theorem 3.13 yields only one solution f n (z) of the Jacobi equation (1.7).

	Remark 3.14. Suppose that instead of (2.8), a stronger assumption (2.24) holds and use
	Lemma 2.4. Then taking into account relations (2.15) and (2.16), we can replace e -iφn in (3.22)
	and e -ϕn in (3.27) by
	e

  it follows from definitions (2.16), (2.22) and formula (3.29) that the sequence ϕ n -n arccosh |β ∞ | -ν sgn β ∞ ln n has a finite limit as n → ∞. Therefore formula (3.27) in Theorem 3.13 can be replaced by a simpler one f n

  In this case all solutions of equation (1.7) are in 2 (Z + ). Therefore we can state Corollary 4.12. Under the assumptions of Theorem 3.13 the minimal Jacobi operator J 0 is essentially self-adjoint if and only if condition (1.19) is satisfied. Otherwise, that is under assumption (4.21), the operator J 0 has deficiency indices (1, 1).

		.20)
	Convergence here is uniform on compact subsets of C.	
	It follows from (4.20) that {g n (z)} ∈ 2 (Z + ) (for all z ∈ C) if and only if	
	∞	
	a -1 n e 2ϕn < ∞.	(4.21)
	n=0	

  4.4.Resolvent. If condition(1.19) is satisfied, then the closure J of the minimal Jacobi operator J 0 is self-adjoint. In this case Ω(z) = 0 if and only if z is an eigenvalue of J. The resolvent of the operator J can be constructed by the standard (cf. Lemma 2.6 in[START_REF] Yafaev | Analytic scattering theory for Jacobi operators and Bernstein-Szegő asymptotics of orthogonal polynomials[END_REF] or Lemma 5.1 in[START_REF] Yafaev | Semiclassical asymptotic behavior of orthogonal polynomials[END_REF]) formulas. Recall that e n , n ∈ Z + , is the canonical basis in 2 (Z + ), f n (z) is the Jost solution of the equation (1.7) constructed in Theorem 3.[START_REF] Simon | The classical moment problem as a self-adjoint finite difference operator[END_REF] and Ω(z) is the Wronskian (4.22). Proposition 4.15. Under the assumptions of Theorem 3.13 suppose also that condition(1.19) 
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