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ABSTRACT 29 

Telomeres (TLs) are non-coding DNA sequences that are usually shortened with 30 

ageing and/or chemical exposure. Bioindicators such as the land snail can be used to assess 31 

the environmental risk of contaminated soils. As for most invertebrates, the evolution of TLs 32 

with ageing or exposure to contaminants is unknown in this mollusc. The aims of this study 33 

were to explore the relationships between ageing, contaminant exposure, sublethal effects and 34 

TL length in the terrestrial gastropod Cantareus aspersus. TL length was investigated in 35 

haemocytes from five age classes of C. aspersus. The impact of contaminants on sub-adult 36 

snails exposed to Cd, Hg or a mixture of polycyclic aromatic hydrocarbons (PAHs) in soils 37 

for one or two months was studied. Bioaccumulation, growth, sexual maturity and TLs were 38 

measured. TL attrition was significant for the juvenile and sub-adult stages, but not later. 39 

Exposure to Cd increased the mortality (around 30%). Exposure to polluted soils inhibited 40 

growth (19 to 40%) and sexual maturity (6 to 100%). Although the health of the snails 41 

exposed to Cd, Hg and PAHs was altered, TL length in haemocytes was not disturbed, 42 

suggesting a high capacity of this snail species to maintain its TLs in haemocytes under 43 

chemical stress. These results first address TL length in snails and reveal that the relationship 44 

commonly proposed for vertebrates between TL shortening and ageing or exposure to 45 

contaminants cannot be generalized. 46 
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INTRODUCTION 70 

Telomeres (TLs) are highly conserved, repetitive and non-coding DNA sequences 71 

located at the ends of eukaryotic chromosomes (Blackburn, 1991; Traut et al., 2007). Their 72 

main function is to protect the ends of chromosomes from loss during cell division and 73 

degradation (Blackburn, 2005; Oeseburg et al., 2009). Telomeric DNA is progressively lost in 74 

most vertebrates during ageing due to the inability of linear chromosomes to be completely 75 

replicated by DNA polymerases (Blackburn, 1991). This loss can be accelerated by 76 

endogenous and exogenous factors, such as infections (Giraudeau et al., 2019) or 77 

environmental contaminants (metals, polycyclic aromatic hydrocarbons (PAHs), etc.) (Perera 78 

et al., 2018; Louzon et al., 2019; Matzenbacher et al., 2019). Indeed, contaminants can induce 79 

TL alterations according to several mechanisms of action such as DNA strand breakage at the 80 

TL level, deficiencies in DNA repair machinery, oxidative stress, mutations in genes encoding 81 

proteins related to TL maintenance and disturbances in the regulation of participants in TL 82 

maintenance (e.g., telomerase activity or alternative lengthening of TLs pathway) (Louzon et 83 

al., 2019).  84 

Data from longitudinal studies in vertebrates showed a TL loss within individuals with age 85 

(Zeichner et al., 1999; Brümmendorf et al., 2002; Scott et al., 2006; Baerlocher et al., 2007) 
86 

with some exceptions (Ujvari and Madsen, 2009), although great variability exists depending 87 

on the biological tissue (Parolini et al., 2019) and on TL length and loss between age-matched 88 

individuals (Hall et al., 2004). The relationship between TL length and ageing is unknown for 89 

most invertebrates as concluded following a comparative approach between biological groups 
90 

and the few studies on this topic have shown various patterns: either shortening, or no 91 

variation or lengthening (Louzon et al., 2019). For example, for two species of Daphnia, two 92 

different patterns have been reported: the attrition in TLs with ageing in D. pulicaria and no 93 

variation in TL length in D. pulex (Schumpert et al., 2015). These differences were related to 94 

the high telomerase activity that maintains TLs during the life cycle of D. pulex (Schumpert et 95 

al., 2015). Surprisingly, for the gastropod of Baïkal Lake, Kobeltocochlea martensiana, which 96 

has a lifespan of eight years (vs months for some Daphnia spp.), a lengthening of TLs with 97 

ageing was shown, probably due to the high activity of TL maintenance mechanisms 98 

(Maximova et al., 2017).  99 

For terrestrial snails, the relationships between TL dynamics and ageing are unknown, 100 

especially for the soil quality bioindicator, Cantareus aspersus, which have an average life of 101 



five years and which belongs to various food chains at the air-soil-plant interface. It is 102 

consumed by predators and integrates various routes of exposure of contaminants in soils 103 

(digestive, cutaneous, respiratory) (Comfort, 1957; Scheifler et al., 2002; Scheifler et al., 104 

2006). For these ecological reasons, this ubiquitous species is often used in environmental risk 105 

assessment of contaminated soils (Pauget and de Vaufleury, 2015) by combining assessments 106 

of bioavailability (Pauget et al., 2013) and health effects (Baurand et al., 2014).  107 

Based on data showing that chemicals are able to induce premature ageing and decrease the 108 

lifespan of humans (Chen et al., 2013; Puri et al., 2017), it is relevant to explore the 109 

relationships among TL dynamics, health effects and contaminant exposure in C. aspersus. 110 

This could contribute to filling the gap between the molecular and individual effects of 111 

contaminants. Considering this objective, the first aim is to describe how TL dynamics in 112 

haemocytes is affected by ageing in snails living in a safe environment. This study also aimed 113 

to investigate the relationships between the exposure to contaminants in soils (cadmium, 114 

mercury or PAHs), the alteration in health status (by monitoring survival, growth and the 115 

attainment of sexual maturity) and TL length in C. aspersus.  116 

MATERIAL AND METHODS 117 

SNAILS      118 

Breeding snails from a snail farm (CFPPA of Châteaufarine, 25000 Besançon, France) 119 

were used to produce a F1 laboratory generation. The species C. aspersus was verified by 120 

DNA barcoding (Allgenetics, 15008 A Coruña, Spain). After incubating eggs, hatchlings were 121 

reared in the laboratory under controlled conditions (20°C, 80% relative humidity, 122 

photoperiod of 16 h of light and 8 h of dark) (Gomot-de Vaufleury and Pihan, 2000) for two 123 

years. Snails reared of 1 month old were classified as juveniles, 3 months old as sub-adults, 4 124 

months old as young adults, 5 months old as young reproducers and 2 years old as old 125 

reproducers (Figure 1). Eight snails of each age class were selected to investigate the 126 

relationships between ageing and TL length. 127 

To study the effect of exposure to contaminants, only sub-adult snails were used to avoid 128 

confounding factors related to growth and reproduction (Gimbert et al., 2008). Two groups of 129 

sub-adults were exposed in quadruplicate to different contaminants for 1 and 2 months. Snails 130 

were fed with uncontaminated commercial food (Table 1) Helixal® (Berthon S.A., France) ad 131 

libitum during growth and exposure. 132 



SOILS         133 

Snails were exposed to four different soil conditions (ISO, Cd, Hg and PAHs). An 134 

artificial ISO soil was prepared according to the OECD (1984) guidelines (mixture of 70% 135 

fine sand, 20% kaolin clay, and 10% coarse ground sphagnum peat, and the pH was adjusted 136 

to 6.7 ± 0.1 with powdered calcium carbonate, 99.5%, Sigma Aldrich, Lyon, France). The 137 

cation exchange capacity (CEC) was 13.5 cmol kg-1, and the organic matter content 138 

(estimated on the basis of the loss of ignition) was 12%. The ISO substrate was spiked at 139 

13 000 mg.kg Hg.kg-1 dry weight (dw) with a mercury chloride solution (HgCl2, 99.5%, 140 

Sigma Aldrich) or at 1500 mg.kg-1 dw with a cadmium chloride solution (CdCl2, 99.9%, 141 

Sigma Aldrich), in both cases diluted in a volume of osmotic water needed to achieve 50% of 142 

the soil water holding capacity (Pauget et al., 2012). The soils were then allowed to stabilize 143 

for 5 days prior to the experiment. An anthropogenic French soil (Vieux Charmont, France) 144 

contaminated with PAHs due to past industrial activities of the automobile sector (BASOL 145 

25.0020, 2015) was used under the same preparation conditions (except spiking). 146 

Concentrations were measured by ICP-MS for Cd and Hg (Mariet et al., 2017) and by GC-147 

MS/MS for the 16 PAHs listed by the US EPA (Morin-Crini et al., 2014) (Table 1). 148 

EXPOSURE MODALITIES     149 

Sub-adult snails (3-months old snails) were exposed to Cd or Hg contaminated substrate, 150 

PAHs contaminated soils and or uncontaminated ISO substrate for 1 and 2 months. For each 151 

of the 4 substrates/soils, six snails were exposed in quadruplicate in transparent polystyrene 152 

containers (4032 cm3) (Gomot-de Vaufleury, 2000). Two snails per replicate (n=8 individuals 153 

per exposure conditions) were sampled randomly after 1 and 2 months for analysis of the 154 

visceral concentrations of contaminants and assessment of TL length. Briefly, Helixal® food 155 

was provided in a petri dish left on the bottom of the container, the day/night cycle 156 

photoperiod was 18/6 h, the temperature was 20°C ± 1, and the air relative humidity was 80 ± 157 

10%. Three times a week, the containers were cleaned, the faeces were removed, survival was 158 

monitored, and the food was renewed. At the beginning of exposure (t0), sub-adult snails 159 

weighed 5.22 g ± 0.58, and the internal concentrations of Cd, Hg and PAHs were measured in 160 

the visceral mass from six sub-adult snails (Table 1).  161 

GROWTH AND ATTAINMENT OF SEXUAL MATURITY ASSESSMENTS 162 

Growth was assessed monthly by weighing the fresh mass (whole body) of snails. The 163 

growth inhibition (GI) was calculated as follows (after validation of the absence of abnormal 164 



mortality of snails exposed to the ISO soil): GI = 100-(mean mass of exposed snails / mean 165 

mass of snails exposed to uncontaminated ISO soil)*100. Sexual maturity was assessed 166 

monthly by counting the snails exhibiting a shell with a curled edge, which can be used as an 167 

indicator of the attainment of sexual maturity in snails (Lucarz and Gomot, 1985; Gimbert et 168 

al., 2008; Gimbert et al., 2016). The inhibition of the attainment of sexual maturity was 169 

calculated by the following formula: 100-(number of exposed snails having acquired sexual 170 

maturity/number of snails exposed to uncontaminated ISO substrate having acquired sexual 171 

maturity)*100. 172 

BIOACCUMULATION MEASUREMENT 173 

  Internal concentrations of Cd and Hg were measured according to the 174 

methodology detailed in Pauget and de Vaufleury (2015). Snails were frozen at -80°C. After 175 

thawing, the visceral mass was dissected for each snail and lyophilized for two days before 176 

Cd and Hg analyses. Viscera were digested between 47°C and 98°C for 265 min (DigiPREP 177 

MS, SCP Science, Courtaboeuf, France) in 7 mL of nitric acid (HNO3, 65%, ultratraces 178 

Optima®, FisherScientific, Illkirch, France) that was diluted with 43 mL of Milli-Q water. 179 

Then, samples were filtered through a 1 µm filter and diluted as a function of concentration 180 

between 10 to 100x for Cd and 10 to 10000x for Hg analyses in ICP-MS (Thermo Scientific 181 

X Series II, Courtaboeuf, France). Analyses were validated with a certified material (TORT2, 182 

lobster hepatopancreas, Canada). The recovery rates were 98% and 116% for Cd and Hg, 183 

respectively. For the PAHs analysis, two fresh visceral masses per replicate were dissected 184 

and pooled. Then, pooled samples were mashed with 25 ceramic sphere mills (FastPrep, MP 185 

Biomedicals, Illkirch, France) for two cycles (4.0 m/s, 20 s) interrupted by a pause time of 186 

180 s. PAHs were extracted with QuECHERs methodology from RESTEK (Lisse, France), 187 

and concentrations of the 16 PAHs (Sun et al., 1998) were measured by GC-MS/MS (7890A 188 

GC system, 7000 GC triple quadrupole mass spectrometer, HP5MS column, Agilent, Massy, 189 

France). The bioaccumulated concentrations in the snails and the soil concentrations were 190 

used to calculate the bioaccumulation factors (BAF).   191 

DNA EXTRACTION FROM HAEMOCYTES   192 

The haemolymph of snails was collected by individually puncturing the heart with a 193 

needle (18 G) and was frozen at -20°C in sterile 1.5 mL microtubes (DNase, RNase, 194 

endotoxin free, VWR). After quick thawing at 4°C, DNA extractions were performed using a 195 

preliminary optimized method to isolate DNA with a sufficient amount and quality from 196 



haemolymph. Salting out was the selected methodology (Gentra Puregene Blood Kit, Qiagen, 197 

Courtaboeuf, France). The concentration and purity of extracted DNA were checked with a 198 

NanoDrop 1000 spectrophotometer (ThermoScientific, Illkirch, France) and by fluorescence 199 

(Quantifluor® ONE dsDNA System, Promega, Charbonnière-les-Bains, France). The quality 200 

and the integrity of DNA were confirmed by electrophoresis on 1% agarose gels stained with 201 

ethidium bromide.  202 

TELOMERE LENGTH MEASUREMENT    203 

For quickness and robustness (Nussey et al., 2014), TLs were measured by quantitative 204 

real-time PCR amplification (qPCR) (Cawthon, 2002) using the method described by 205 

Criscuolo et al. (2009) and adapted to land snails. This method amplified telomeric DNA and 206 

expressed its quantity as a T/S ratio, where T was the quantity of telomeric DNA and S was 207 

the quantity of a gene used as a reference (gene that is non-variable in copy number in the 208 

study species) (Reichert et al., 2017). Primers used for the telomeric DNA of snails were the 209 

same as those used for humans (forward: 5’-210 

CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’, reverse: 5’-211 

GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’) because the TL 212 

sequences of C. aspersus are the same as those of humans (Vitturi et al., 2005). To identify 213 

the most appropriate reference gene, we conducted preliminary analyses considering a variety 214 

of candidate reference genes and primer pairs. The most consistent amplification profile and 215 

cleanest melting curve was obtained using Eurofins Genomics primers targeting the β-actin 216 

gene, which we selected as our reference gene (forward: 5’-217 

GCTGGTCGTGACCTCACAGAT-3’, reverse: 5’-AGCTTCTCCTTGATGTCACGAAC-3’). 218 

The TL and β-actin primers were used at a concentration of 4 pmol for a final volume of 10 219 

µL containing 5 µL of GoTaq® qPCR master mix (Promega, Charbonnière-les-Bains, France). 220 

Real-time amplification of TL and β-actin sequences was performed in separate 384 well 221 

plates filled by an automated liquid handling workstation (epmotion, Eppendorf, Montesson, 222 

France). The TL thermal profile was 2 min at 95°C, followed by 27 cycles of 15 s at 95°C, 30 223 

s at 56°C and 30 s at 72°C. The β-actin thermal profile was 2 min at 95°, followed by 40 224 

cycles of 30 s at 95°C, 30 s at 60°C and 1 min at 72°C. Both assays were followed by melting 225 

curve analysis (60-95°C; 1°C/5 s ramp). Due to the different thermal profiles between TL and 226 

β-actin, two 384 well plates were used in our study to measure TL length of all our samples. 227 

The first is for the amplification of TL and the second is for the amplification of the β-actin 228 

gene. Each DNA extract was tested in duplicate due to the use of the calibrated automated 229 



liquid handling workstation and to the fact that mean coefficient of variation intra-run were 230 

0.51% ± 0.05 and 1.07% ± 0.09 for Cq-β-actin and Cq-TL, respectively. Moreover, the 231 

intraclass correlation coefficient intra plate for the T/S ratio was ranked excellent, 0.949 232 

(Cicchetti, 1994; Nettle et al., 2019). Relative TL length (RTL) was calculated for each 233 

sample by the ratio of T/S. DNA from the same reference snail was used as a golden sample 234 

and to generate a reference curve to control for the amplifying efficiency of the qPCR 235 

between various 384 well plates (based on a standard range of 7 points, the amplification 236 

efficiencies for TL and β-actin amplification were 99.3% and 99.7%, respectively).  237 

DATA ANALYSIS    238 

All statistical analyses were performed with R (version 3.4.2.). Normality and 239 

homogeneity of variances were checked with Shapiro-Wilk and Bartlett tests, respectively. 240 

The relationship between ageing and TL length was fitted with a non-linear model using the 241 

nlme (nonlinear mixed effect) procedure (Lindstrom and Bates, 1990) (package nlme). The 242 

adequacy and quality of the model were compared (package pgirmess) according to the 243 

Akaike information criterion (AICc) (Akaike, 1998) to select the best model. Then, 244 

differences in TL length between age classes or control (ISO) vs contaminated soils were 245 

assessed with a non-parametric Kruskal-Wallis test followed by the multiple pairwise 246 

comparison test (Magniez et al., 2018). The Wilcoxon test was used to distinguish significant 247 

differences of mortality, growth inhibition and the inhibition of the attainment of the sexual 248 

maturity between the different soils (control ISO vs contaminated) after transforming data 249 

with log10 (x+1). 250 

RESULTS AND DISCUSSION 251 

RELATIONSHIPS BETWEEN AGEING AND TELOMERE LENGTH 252 

TLs were studied in the haemocytes of a C. aspersus population because they are involved 253 

in immune functions of gastropods (Pila et al., 2016) and haemolymph sampling is a non-254 

lethal way in snails. The relationship between TL length in haemocytes and ageing in C. 255 

aspersus was studied for five age classes, from juveniles to old adults (Figure 1). The attrition 256 

in TLs in haemocytes (p-value < 0.001, r² adjusted = 0.364) (Figure 2a) was significant 257 

between juveniles and all other stages (p-values < 0.05) (Figure 2b). Indeed, TL length 258 

decreased rapidly in C. aspersus haemocytes during the first phase of growth before the 259 

maturation of the genital tract (Gimbert et al., 2008) and then, was stable from sub-adults to 260 

old reproducers (Figure 2b). TL attrition is one of the nine hallmarks of ageing identified in 261 



most organisms (Lopez-Otin et al., 2013) because chromosomes lose telomeric patterns 262 

(Harley et al., 1992) at each cell division. This attrition in TLs was detected at a different 263 

magnitude in the foot of the freshwater mollusc Benedictia fragilis, in which TL length 264 

decreased progressively during approximately 0 to 5 years for males (studied over 8 years) 
265 

(Maximova et al., 2017). However, for two other long-lived freshwater molluscs studied from 266 

0 to 8 years, Benedictia baicalensis and K. martensiana, the patterns were different and sex-267 

specific, with an increase in TL length in the foot with ageing (Maximova et al., 2017). 268 

Notably, the influence of gender is irrelevant to study for C. aspersus due to its protandrous 269 

hermaphroditic reproductive system (Bride and Gomot, 1991). These various patterns can 270 

possibly be explained by a higher telomerase activity in tissues that maintain TL length 271 

(Greider and Blackburn, 1985; Greider and Blackburn, 1989) during ageing (Goyns and 272 

Lavery, 2000; Shay, 2016), as demonstrated by Schumpert et al. (2015) for the aquatic 273 

arthropod Daphnia pulex and for the marine bivalve Arctica islandica (Gruber et al., 2014). 274 

Although rapid attrition during growth seems not to be a general rule for invertebrates 275 

excepted for some organisms such as the Sydney rock oyster (Saccostrea glomerata) (Godwin 276 

et al., 2012), this pattern is often found in vertebrate species (Angelier et al., 2018; Dugdale et 277 

al., 2018) (e.g., Acrocephalus sechellensis, Spurgin et al. (2018)). The stability of TL length 278 

after the initial growth of land snails is similar to the TL dynamics described in invertebrates 279 

that have a long lifespan and high telomerase activity, such as lobster (Klapper et al., 1998). 280 

This finding is also consistent with the hypothesis of Schumpert et al. (2015) who assumed 281 

that the differences in TL length dynamics with ageing between the short and long lifespans 282 

of Daphnia spp. were associated with an enhanced ability to protect individuals from 283 

proteotoxicity with chaperone HSP70 (Schumpert et al., 2014). 284 

LETHAL AND SUBLETHAL EFFECTS OF CONTAMINANTS  285 

The mortality rates we measured in the snails exposed to the uncontaminated ISO 286 

substrate, 4.25% and 8.50% after one and two months of experiment, respectively, were 287 

closed to that reported for snails reared on uncontaminated ISO substrates for 168 days (i.e., 288 

4%) in the study of Gimbert et al. (2016). For the soils contaminated with Hg and PAHs 289 

(Table 1), the survival rates were similar to those of the ISO groups (p-values > 0.05), while 290 

it was lower for Cd-exposed snails compared to controls (p-value = 0.011), reaching 20.5% 291 

after two months of exposure (Figure 3a). This high mortality of Cd exposed snails is in 292 

accordance with the literature, notably after Cd ingestion (Gomot, 1997). Snail growth was 293 

inhibited after one and two months of exposure to all of the contaminated soils, with 294 



inhibitions of 34.4% ± 10.5, 39.3% ± 4.95, and 18.5% ± 5.04 for snails in Cd, Hg and PAHs 295 

substrates/soils, respectively (Figure 3b). Such inhibition in the sub-adults was in the same 296 

range as that reported for juvenile C. aspersus (Coeurdassier et al., 2002; Gimbert et al., 297 

2016). Some contaminants, such as Cd or Hg, are also known to cause reproductive disorders 298 

in snails (de Vaufleury and Kerhoas, 2000; Gimbert et al., 2016), especially Cd, which is an 299 

endocrine disruptor (Sabir et al., 2019) for pulmonate molluscs (Lagadic et al., 2007). All the 300 

studied contaminants inhibited sexual maturity after one and two months of exposure, 301 

whereas 100% of snails were sexually mature after one month of exposure on the control 302 

substrate (ISO). No snail exposed to Cd or Hg was mature after one month of exposure, while 303 

only a few individuals matured (12.5%) on Cd substrate after two months of exposure (Figure 304 

3c). In PAHs soil, maturity was also strongly inhibited after one and two months of exposure 305 

but was significantly lower than the inhibition of maturity in the snails exposed to the Cd and 306 

Hg soils (Figure 3c). The disruption of growth and sexual maturity can be the result of the 307 

reallocation of energy to excretion and repair systems, a decrease in metabolic performance, 308 

behaviour alterations for food intake and neuro-endocrine disruption (Gomot et al., 1992; 309 

Gomot and Gomot, 1995; Matthiessen and Gibbs, 1998; Lagadic et al., 2007; Druart et al., 310 

2017; Sabir et al., 2019). Because the concentration of Hg-contaminated substrate reflects 311 

those of contaminated soils found in anthropic areas as the mining district of Almaden (Spain) 
312 

(Molina et al., 2006), the inhibition of growth and sexual maturity can impact the snail 313 

population size and dynamic. The sub-lethal effects we measured showed that the health 314 

status of snails exposed to contaminated substrates/soils in this study was strongly altered. 315 

BIOACCUMULATION 316 

 Bioaccumulation measurements at 0, 1 and 2 months are presented in Table 1. The 317 

results showed high internal concentrations of Cd, Hg and PAHs after exposure to 318 

contaminated substrates/soils, while they remained low in the control snails (Table 1). 319 

Bioaccumulation factors (BAFs) at 1 and 2 months for Cd- and Hg-contaminated soils were 320 

0.434, 0.518, 0.159, and 0.183, respectively. These results were in accordance with those 321 

obtained by Coeurdassier et al. (2002) after exposing juvenile snails to 1000 mg kg-1 Cd for 322 

28 days in artificial ISO substrate (BAF = 0.290). BAFs were lower for PAHs (for one and 323 

two months: 0.004 and 0.003, respectively) than for Cd and Hg, probably due to the low 324 

contamination of the soil used (9.36 mg kg-1) and possible metabolization of PAHs (Ismert et 325 

al., 2002; Sverdrup et al., 2006). Measured internal concentrations may result of the digestive 326 

and cutaneous exposure of snails to metals and PAHs in soils (Gomot et al., 1989; Gomot-de 327 



Vaufleury and Pihan, 2000; de Vaufleury, 2015; Bamze Attoumani et al., 2020). The results 328 

reveal bioaccumulation of the studied compounds associated to damage on some 329 

physiological endpoints (survival, growth).  330 

EFFECTS OF CONTAMINANTS ON TELOMERE LENGTH IN HAEMOCYTES 331 

Based on the bioaccumulation level and the sub-lethal effects we measured, the health 332 

status of snails exposed to contaminated substrates/soils was altered. Additionally, some 333 

molecular markers can be used as early indicators of the alteration in health status (Mleiki et 334 

al., 2018), TLs are commonly proposed as good candidates to reveal exposure and deleterious 335 

effects of environmental contaminants on individuals and their populations (Louzon et al., 336 

2019). However,  no significant difference (p-value > 0.05, Figure 4) in RTLs was detected 337 

between the snails exposed to contaminated substrates/soils and the snails exposed to 338 

uncontaminated substrates for one or two months. Snails have been previously described as 339 

sensitive to oxidative stress and have exhibited genotoxic damages notably on haemocytes 340 

when exposed to soils contaminated with inorganic and organic compounds, such as Cd, 341 

glyphosate, and PAHs (Regoli et al., 2006; Itziou et al., 2011; Abdel-Halim et al., 2013; 342 

Angeletti et al., 2013; Baurand et al., 2014; Baurand et al., 2015). However, C. aspersus 343 

seems to have a strong ability to maintain its TL length in haemolymph even under chemical 344 

stress. This can possibly be linked to telomerase activity and alternative lengthening of TLs 345 

pathway activities or to the induction of other mechanisms to protect and repair TLs, such as 346 

DNA repair mechanisms. In any case, the mechanisms underlying sublethal effects observed 347 

on the growth or sexual maturation of snails exposed to Cd, Hg and PAHs (at least at the 348 

tested concentrations and durations of exposure) do not indicate TL alteration in haemocytes 349 

of surviving snails. Moreover, although the lifespan and TL length of vertebrates can be 350 

modified (shortened or lengthened) by chemicals (Louzon et al., 2019), some studies have 351 

shown that TL length is not altered by pollutants, despite cytotoxic and genotoxic damages 352 

occurred, notably for soybean farmers exposed to various pesticides (de Oliveira et al., 2019). 353 

Nevertheless, as it has been shown that TL length varied across somatic tissues suggesting 354 

independent TL dynamics (Parolini et al., 2019), further measurements of TLs on other 355 

biological tissues may be considered in the future.  356 

CONCLUSIONS 357 

This study provides the first results on the TL length dynamic in terrestrial gastropods 358 

according to ageing or chemical exposure to contaminated soils. TL attrition was observed 359 



only during the first phase of growth suggesting that TL length in the haemocytes of C. 360 

aspersus is not a specific marker of ageing for this invertebrate. The health of the snails 361 

exposed to Cd, Hg or PAHs was altered (survival, growth and sexual maturity) but TL length 362 

in haemocytes was not changed, suggesting the high capacity of this snail species to maintain 363 

its TLs in haemocytes under chemical stress. Present results first address TL length in land 364 

snails and reveal that the relationship proposed for vertebrates between TL shortening and 365 

ageing or exposure to contaminants cannot be generalized to the terrestrial gastropods.  366 
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Figure 1: The investigated C. aspersus age classes. 

Figure 2: A: Relationship between the relative telomere length (RTL) in haemocytes and age 

of C. aspersus (n=8 snails per age class represented by black dots); B: RTL in haemocytes of 

C. aspersus of different age classes (statistically significant differences are indicated by letters 

when p-values < 0.05). 

Figure 3: A: Percentage of mortality of snails (mean and standard deviation), B: percentage of 

growth and C: sexual maturity inhibition (mean and standard deviation) after exposure to 

contaminated (Cd, Hg, PAHs) or uncontaminated soils (ISO) for 1 and 2 months (statistically 

significant differences are indicated by letters with p-value < 0.05). 

Figure 4: Relative telomere length (RTL) in the haemocytes of snails (n=8 per condition) 

exposed to contaminated (Cd, Hg, PAHs) or uncontaminated soils (ISO) for 1 and 2 months 

(no statistically significant differences between soils and/or exposure durations). 
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Figure 2: A: Relationship between the relative telomere length (RTL) in haemocytes and age 

of C. aspersus (n=8 snails per age class represented by black dots); B: RTL in haemocytes of 

C. aspersus of different age classes (statistically significant differences are indicated by letters 

when p-values < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3: A: Percentage of mortality of snails (mean and standard deviation), B: percentage of 

growth and C: sexual maturity inhibition (mean and standard deviation) after exposure to 

contaminated (Cd, Hg, PAHs) or uncontaminated soils (ISO) for 1 and 2 months (statistically 

significant differences are indicated by letters with p-value < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4: Relative telomere length (RTL) in the haemocytes of snails (n=8 per condition) 

exposed to contaminated (Cd, Hg, PAHs) or uncontaminated soils (ISO) for 1 and 2 months 

(no statistically significant differences between soils and/or exposure durations). 

 











Table 1: Concentration of Cd, Hg and sum of the 16 PAHs in uncontaminated commercial 

food (Helixal®), soils and snails before exposure (t0) and after 1 month (t1) and 2 months 

(t2) exposure to Cd, Hg or PAHs in soils (mean and standard deviation for Cd, Hg and PAHs 

concentrations, expressed in mg kg-1 dry weight (dw) for Cd or Hg in the soils, food and snails; 

while PAHs are expressed in mg kg-1 fresh weight (fw) of snails and dw of the food and soils). 

 

 

 

 Cd (mg kg-1 dw) Hg (mg kg-1 dw) ΣPAHs (mg kg-1) 

Food Helixal® 0.430 0.490 < 1.00 

Soil 

ISO soil 0.315 0.029 0.044 

Cd soil 1508 - - 

Hg soil - 13410 - 

PAHs soil - - 9.36 

Snails 

T0 t0  3.57 ± 4.83  0.017 ± 0.014 0.016 ± 0.003 

ISO 
t1 1.84 ± 0.021 0.009 ± 0.000 0.017 ± 0.002 

t2 4.08 ± 1.72 0.009 ± 0.000 0.017 ± 0.002 

Cd 
t1 654 ± 275 - - 

t2 781 ± 243 - - 

Hg 
t1 - 2136 ± 754 - 

t2 - 2458 ± 714 - 

PAHs 
t1 - - 0.035 ± 0.021 

t2 - - 0.026 ± 0.011 

 

 






