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Electron radiation belts are regions surrounding Earth, filled with highly energetic electrons and overlapping the majority of satellite orbits. Their multi-scale and rapidly evolving dynamics are modelled by the mean of a diffusion equation involving a highly anisotropic and inhomogeneous diffusion tensor. Finite difference based methods have been the preferred method of discretization in physical codes, starting from ONERA's Salammbô-Electron model, the pioneering 3-dimensional code in the radiation belts community. This choice however does not prevent several numerically induced constraints impacting the reliability of the code as well as its computational cost.

Thus in this paper we present the outcome of our investigation to improve Salammbô's numerical core. In particular, we present our special diffusion frame and its numerically induced limitations on our finite difference based scheme. Then we test potential alternative finite volume schemes with physically relevant properties and we finally highlight with a real case simulation the contribution of the positivity preserving scheme to evaluate the impact

Introduction

Earth's space environment is a vast dynamic region extending from the upper atmosphere to the interplanetary region. It is constantly disrupted by charged particles, piled up in plasmas and originating from the Sun's activity.

Highly energetic electrons and protons injected near Earth especially, are trapped by the Earth's magnetic field. They form quasi permanent toroidal structures called radiation belts or Van Allen belts [START_REF] Hudson | Relationship of the van allen radiation belts to solar wind drivers[END_REF].

Radiation belts (One proton belt, and two electron belts separated by the Slot region) are located between 700 km and 58000 km of altitudes (Figure 1) and they span the majority of satellite orbits [START_REF] Horne | Space weather impacts on satellites and forecasting the earth's electron radiation belts with spacecast[END_REF]. Due to the trapped particles energy magnitudes (between 100 keV to 10 MeV for electrons) in addition to rapidly varying particle fluxes, satellites crossing them can undergo severe damages on their on-board equipments and their thermal shielding [START_REF] Horne | Space weather impacts on satellites and forecasting the earth's electron radiation belts with spacecast[END_REF]. Thus, to ensure a reliable design for spacecraft, radiation belts require faithful models and a precise understanding of their underlying mechanisms.

The practical difficulty of conducting precise in-situ measurements, and the complexity of understanding several multi-physics drivers, prevents the construction of a unique modelling instrument. Thus, the radiation belts community relies on an arsenal of tools, including empirical models, statistical models and physical codes [START_REF] Bourdarie | complementarity of measurements and models in reproducing earth's radiation belt dynamics[END_REF]. Precisely, the latter have imposed themselves as reliable implements. They are derived from a theoretical approach of the radiation belt dynamics and benefit from the improvement of the physical processes comprehension in addition to more refined measurement data [START_REF] Bourdarie | complementarity of measurements and models in reproducing earth's radiation belt dynamics[END_REF]. The theoretical development of physical codes, as described in [START_REF] Schulz | Particle diffusion in the radiation belts, Physics and chemistry in space[END_REF], is founded on the adiabatic invariants theory. Each trapped particle's motion can be decomposed and associated into 3 conserved quantities or adiabatic invariants [START_REF] Roederer | Dynamics of Magnetically Trapped Particles: Foundations of the Physics of Radiation Belts and Space Plasmas[END_REF]. Using a Hamiltonian formalism on a Boltzmann equation and introducing a Fokker Planck operator to evaluate physical interactions responsible for changing particles trapping state, a 3-dimensional transient diffusion equation is obtained (in the adiabatic invariant phase space).

The near majority of physical codes related to electron radiation belts, starting from ONERA's Salammbô-Electron code [START_REF] Beutier | A three-dimensional analysis of the electron radiation belt by the salammbô code[END_REF], along with Versatile Electron Radiation Belt Code VERB [START_REF] Subbotin | Three-dimensional modeling of the radiation belts using the versatile electron radiation belt (verb) code[END_REF], Storm-Time Evolution of Electron Radiation Belt Code STEERB [START_REF] Su | Steerb: A three-dimensional code for storm-time evolution of electron radiation belt[END_REF] and the British Antarctic Survey (BAS) Radiation Belt model code [START_REF] Glauert | Three-dimensional electron radiation belt simulations using the bas radiation belt model with new diffusion models for chorus, plasmaspheric hiss, and lightning-generated whistlers[END_REF] solve numerically the diffusion equation using a finite difference (FD) based method. However, they differentiate on the temporal integration methods. While VERB,and BAS are fully implicit, Salammbô-Electron is explicit and STEERB uses the Alternating Direction Implicit (ADI) scheme. They also adopt different numerical grid rendering strategies. These differences are mainly motived by computing time optimization, numerical stability arguments, and locally sought accuracy [START_REF] Subbotin | Three-dimensional modeling of the radiation belts using the versatile electron radiation belt (verb) code[END_REF][8][9] [START_REF] Bourdarie | Electron radiation belt data assimilation with an ensemble kalman filter relying on the salammbô code[END_REF]. During the simulation, the numerical resolution is usually correlated to volatile time dependent empirical parameters reflecting the dynamics of the system induced by solar activity. The main proxy for such models is the geomagnetic activity index named Kp and we report in figure 2 an example of its temporal evolution. [START_REF] Herrera | Characterizing magnetopause shadowing effects in the outer electron radiation belt during geomagnetic storms[END_REF] Nevertheless, the numerical resolution of this particular diffusion equation is not straightforward and many challenges need to be tackled. First, the studied diffusion is very inhomogeneous, involving diffusion coefficients with steep spatial evolutions. Second, the diffusion achieves high levels of anisotropy, amplified by cross diffusion terms. When retained, they induce severe numerical instabilities and their presence in the diffusion frame is a subject of study and discussion. These intense aspects impose huge limitations on the numerical stability and generate approximations with a non physical behavior [START_REF] Albert | Comment on "on the numerical simulation of particle dynamics in the radiation belt. part i: Implicit and semi-implicit schemes" and "on the numerical simulation of particle dynamics in the radiation belt. part ii: Procedure based on the diagonalization of the diffusion tensor[END_REF].

Thus, this paper yields the results of the investigation undertaken to rearrange Salammbô-Electron numerical core. From the large panel of numerical schemes, the choice of the new appropriate method has to be motivated by its expected properties and the system constraints. FD methods were usually favoured among the community due to their ease of implementation. They has shown however their limit to contain non-physical numerical deviations.

In fact important properties of positivity and discrete Minimum/Maximum principles are not preserved. Continuous finite element methods, on the other hand have been extensively studied for parabolic equations and applied to diffusion problems [START_REF] Wilson | Application of the finite element method to heat conduction analysis[END_REF]. They satisfy the energy conservation and offer important robustness properties. But apart some particular cases, the Min/Max preserving property is not ensured and strong variations of diffusion coefficients are not well taken into account. Extension to high order and discontinuous coefficients has been reached recently in the frame of Discontinuous Galerkin Method (DGM) [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF]. Hereby we consider fundamental for the new scheme to be adopted, to maintain a physically relevant solution, and we choose to work with Finite Volume (FV) based methods ( that can be considered as a DGM of lowest order). First, they provide the flux conservation property, particularly important to conservation laws like diffusion.

Besides, positivity preserving and Minimum/Maximum principle preserving FV variants exist [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF] and have been tested for reservoir engineering applications [START_REF] Schneider | Comparison of finitevolume schemes for diffusion problems[END_REF]. This paper is organized as follows : Section 2 is devoted to the presentation of the general 3D diffusion frame in radiation belts and the numerically challenging 2D diffusion case that retain most of the numerical constraints that we were interested in. Then we present some aspects of the implementation in Salammbô-Electron. We also present qualitatively some of the overriding aspects of the studied diffusion and their induced constraints. Section 3 is related to explaining the methodology we followed to identify alternative schemes, suitable for our application. In particular, we present two FV schemes, a non-linear monotone FV scheme and a non-linear extremum preserving FV scheme. We show later several numerical test results of both schemes, solving a steady state diffusion problem with real life mimicking conditions. Section 4 then presents a transient diffusion study case involving a "physical" diffusion tensor with the aim to compare both schemes on the computational cost side for different time steps. We compare the simulations results of a typical FD and the monotone non-linear scheme, and evaluate the effect of cross diffusion in the case of the latter scheme. Finally Section 5 summarizes and concludes our work.

Electron Radiation belt dynamics modelling : a typical diffusion

problem but many challenges due to harsh environment

A multi scale diffusion problem

The evolution of the Phase Space Density (PSD) function f , picturing the statistical distribution of trapped electrons, is expressed in the following 3 dimension diffusion equation in its canonical form :

∂f ∂t = 3 i=1 3 j=1 ∂ 2 ∂J i ∂J j (D J i J j f ) ( 1 
)
where t is time, J 1 , J 2 , J 3 , the three adiabatic invariants, and D J i J j for i, j ∈ {1, 2, 3} × {1, 2, 3} the diffusion coefficients. The first and second invariant J 1 , J 2 are highly coupled, while J 3 is decoupled from the two first invariants [START_REF] Albert | Multidimensional quasi-linear diffusion of radiation belt electrons[END_REF]. This can be seen in the different characteristic time scales τ 1 , τ 2 , τ 3 associated respectively to J 1 , J 2 , J 3 reported in table 1. This aspect, among other assumptions, leads to a diffusion tensor without cross-diffusion terms associating the J 3 direction (D 

J 1 J 3 = D J 2 J 3 = D J 3 J 2 = D J 3 J 1 = 0).
(s) τ 2 (s) τ 3 (s) E = 1 MeV 1 • 10 -2 1 1020
The latter equation, is usually transformed and solved in the (y,E,L * ) space [START_REF] Varotsou | Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves[END_REF] where :

• y = sin(α eq ) with α eq the particle's equatorial pitch angle, the angle between its velocity vector and the magnetic field at the equator.

• E is the particle's kinetic energy, expressed in eV .

• L * is the radial distance at the equator of the field line (dipole approximation) travelled by the trapped particle, from the center of Earth [START_REF] Roederer | Dynamics of Magnetically Trapped Particles: Foundations of the Physics of Radiation Belts and Space Plasmas[END_REF],

expressed in Earth's radii .

This transformation allows the representation of the PSD function f in a more tangible space, rather than the abstract adiabatic invariants space, and permits a convenient estimation of the physical diffusion terms :

D EE ,D yy ,D yE and D L * L * .
Same as in the invariant space for J 3 , the radial diffusion (i.e. diffusion along the L * direction) is decorrelated and operates on a global scale. It originates from magnetic and electric perturbations [START_REF] Schulz | Particle diffusion in the radiation belts, Physics and chemistry in space[END_REF] and is responsible for shifting injected particles in the outer boundary at L * max toward Earth. On the other hand, diffusion occurring in the (y, E) plane operates on a local scale. D EE , D yy and D yE terms embody the effects of resonant wave-particle and particle-particle interactions [START_REF] Varotsou | Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves[END_REF]. They are sensitive to the various diffusion mediums crossed by the trapped electron, characterized by abrupt transitions due to an uneven distribution of different types of plasma waves (with different amplitudes and resonance frequencies). They are mainly responsible for scattering electrons into the loss cone, the inner boundary of the radiation belt at y min , modelling electron loss due to atmospheric precipitations.

Thereby, the 3D diffusion equation is usually solved separately between these two sets of diffusions [START_REF] Subbotin | Three-dimensional modeling of the radiation belts using the versatile electron radiation belt (verb) code[END_REF][8] [START_REF] Glauert | Three-dimensional electron radiation belt simulations using the bas radiation belt model with new diffusion models for chorus, plasmaspheric hiss, and lightning-generated whistlers[END_REF]. In this paper, we will focus, on the much more numerically challenging 2D diffusion occurring in the (y, E) plane, reported in equation [START_REF] Horne | Space weather impacts on satellites and forecasting the earth's electron radiation belts with spacecast[END_REF].

∂f ∂t = 1 G ∂ ∂y | y,L * (G(D yy ∂f ∂y | E,L * + D yE ∂f ∂E | y,L * ))+ 1 G ∂ ∂E | E,L * (G(D EE ∂f ∂E | y,L * + D yE ∂f ∂y | E,L )) (2) 
G is the Jacobian of the (J 

G ∂f ∂t = div(T ∇f ) (3) 

The Salammbô model implementation

Salammbô-Electron code has been developed at ONERA since the 90's [START_REF] Beutier | A three-dimensional analysis of the electron radiation belt by the salammbô code[END_REF] and coded on FORTRAN. Figure 3 reports the operating scheme of Salammbô-Electron where the numerical core plays a central role (central box). It also includes other important branches. They consist in modules for wave-particle interactions [START_REF] Sicard-Piet | Wapi : A new model for the wave particle interaction[END_REF] or Columbian interactions estimation from which the shape and amplitude of the diffusion coefficients are statistically determined. It also integrates modules taking into account the radiation belts limits and environment such as : Earth's magnetic field or the particle densities at the upper end of the atmosphere. The whole set is parametrized and piloted by proxies and indexes such as Kp.

Salammbô's numerical scheme is based on a finite difference 2nd order discretization for space derivation and a first order explicit time integration scheme [10][21]. It uses a logarithmic grid in L * , a non uniform grid in E with a high refinement at low energy and a non-uniform y grid with a high refinement near y = 1 as shown in figure 4. The 3D solving domain can be mapped with a refined grid having 133 × 49 × 133 nodes as well as a reduced grid made of 34 × 25 × 34 nodes and the time steps adopted for each grid is respectively ∆t = 5 • 10 -2 s and ∆t = 1s. In practice, the reduced 3Dgrid is the usual adopted grid allowing reasonable computing times. Inputs and coefficients are updated and re-estimated each hour according to the 10 evolution of the proxies. Cross diffusion DyE terms are omitted for numerical stability considerations [START_REF] Varotsou | Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions[END_REF]. Table 2 presents the usual boundary conditions adopted in the code, among them the 2D (y, E) plan boundary conditions that will be considered later in this paper.

A reconstruction of the electron radiation belt dynamics at the timescale of a geomagnetic storm, which is a temporary disruption of the Earth's magnetic field, will require at least 10 days of simulation time, while a solar cycle long evolution requires a simulation time of 11 years to capture the 

y min f = 0 y max ∂f ∂y = 0 E min f = g(y, E min , L, t) or ∂f ∂E = 0 E max f = 0 L * min = 1 f = 0 L * max = 8 f = h(y, L * max , t)
long-term effect of Sun-Earth connection. For information, 1 day simulation with Salammbô-Electron on the 3D refined grid requires a time calculation of several hours on a machine with 8Gb RAM memory and a 3.5GHz processor (Serial computing).

Salammbô underwent several incremental improvements to its physical depiction and was validated each time against in situ measurements from satellites and/or empirical models. Especially, it manages to reproduce very well the stationnary state and the dynamic of electron belts during and after a geomagnetic storm with concluding comparison with CRRES satellite measurements [START_REF] Bourdarie | Magnetic storm modeling in the earth's electron belt by the salammbô code[END_REF]. Extensive comparisons with other data have been conducted and results show great consistency of the code with measurements [START_REF] Bourdarie | Radiation belt representation of the energetic electron environment: Model and data synthesis using the salammbô radiation belt transport code and los alamos geosynchronous and gps energetic particle data[END_REF]. Salammbô also proved its aptitude to evaluate the importance of space plasma trapped wave types and isolate their impact [18][21]. More recently, Salammbô-Electron has been upgraded to take into account non-linear losses induced by magnetopause shadowing during severe disturbed periods [START_REF] Herrera | Characterizing magnetopause shadowing effects in the outer electron radiation belt during geomagnetic storms[END_REF].

Numerical caveats and limitations seen from Salammbô's scope

As stated before, radiation belts physics involve multi-scale, localized physical processes with different characteristic times and magnitudes. Forcibly, one can observe these local space disparities in the shape taken by the diffusion coefficients and the diffusion tensor in general. notice high levels of anisotropy that are also unequally distributed. Figure 7 shows for L * = 4.49 a substantial layout of ratios bigger that 10 2 , which represents a significant anisotropy ratio when studying diffusion problems [16] [24]. This ratio is even exceeding 10 7 near y = 1 and E = E min . In addition to these space evolution particularities, the diffusion tensor is also impacted by the time evolution of the rapidly changing physical processes.

Yet, the diffusion tensor form for Kp = 6 presented above, can be considered as a worst case.

This form of the diffusion tensor imposes hard constrains on Salammbô numerical resolution. They are reported in the following paragraphs : First, in view of the coefficients spatial inhomogeneity, the finite difference discretization adopted generates numerical instabilities as it evaluates the diffusion coefficient derivatives. Overshoots of the PSD function f are sometimes observed inside areas where the coefficient evolution is steep. Second, the diffusion coefficient amplitude and the small mesh size needed at low E imposes a very restrictive CFL condition for the actual explicit scheme. This results in long calculation times, that comes with other time consuming operations (interpolation, input loading). Besides, the range of very small time steps imposed by the explicit method won't add a substantial gain in precision as the numerical error is largely dominated by the grid error. Last, but not least, cross diffusion presence is an underlined issue. Their presence is subject to discussion [START_REF] Glauert | Three-dimensional electron radiation belt simulations using the bas radiation belt model with new diffusion models for chorus, plasmaspheric hiss, and lightning-generated whistlers[END_REF] and some studies were conducted to evaluate their physical impact [START_REF] Albert | Multidimensional quasi-linear diffusion of radiation belt electrons[END_REF][25] [START_REF] Tao | Stochastic modeling of multidimensional diffusion in the radiation belts[END_REF][27] [START_REF] Su | Numerical simulations of storm-time outer radiation belt dynamics by wave-particle interactions including cross diffusion[END_REF]. However, the radiation belt diffusion community is unanimous as regards to their spurious numerical impact [17][29]. In fact, no clear theoretical stability condition can be properly drawn when they are included in an explicit FD scheme and including them in the current version of Salammbô-Electron, will instantly generate numerical instabilities [START_REF] Varotsou | Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions[END_REF].

Until recently, they have been ignored in Salammbô's communicated simulations [START_REF] Varotsou | Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves[END_REF][20][21] [START_REF] Bourdarie | Radiation belt representation of the energetic electron environment: Model and data synthesis using the salammbô radiation belt transport code and los alamos geosynchronous and gps energetic particle data[END_REF] and in many other model codes [7][9]. As, they are now regaining great care, they have been integrated to several physical codes, advocating for a complete description of the diffusion. Their integration is conduected by either performing a numerical diagonalization process [START_REF] Albert | Multidimensional quasi-linear diffusion of radiation belt electrons[END_REF],

shifting to a stochastic formulation of the diffusion problem [START_REF] Tao | Numerical modeling of multidimensional diffusion in the radiation belts using layer methods[END_REF], or adopting an implicit/semi-implicit integration [START_REF] Subbotin | Three-dimensional verb radiation belt simulations including mixed diffusion[END_REF][27] [START_REF] Camporeale | On the numerical simulation of particle dynamics in the radiation belt: 2. procedure based on the diagonalization of the diffusion tensor[END_REF]. Yet, cross diffusion terms issue, which can be included in the anisotropy problematic, remains present even when adopting implicit schemes. Indeed, the latter time integration method won't prevent the appearance of negative and non-physical solution values that deteriorates the simulation. In general, typical finite difference methods, even when associated to unconditionnaly stable time integration schemes don't hold an upstream argument preventing this behavior or a strategy to contain its propagation and impact. In that event, the resolution needs the introduction of "ad hoc fixes", that modify locally the solving domain properties to limit these numerical artefacts [START_REF] Albert | Comment on "on the numerical simulation of particle dynamics in the radiation belt. part i: Implicit and semi-implicit schemes" and "on the numerical simulation of particle dynamics in the radiation belt. part ii: Procedure based on the diagonalization of the diffusion tensor[END_REF]. Regarding Salammbô's case, we propose exploring a new direction based on finite volume methods, given its promising potential to tackle properly those caveats.

Toward a new numerical core for Salammbô

This section presents the steps that we followed to identify the new suitable numerical method. First we list the expected numerical properties to be ensured as regards to our diffusion frame. Then we present the selected FV methods, ensuring the latter properties. Finally we present the results of the numerical tests we conducted to examine their performances.

Numerical properties expected from schemes solving a typical diffusion problem

We consider the following general steady state diffusion problem :

         • (D f ) + S = 0 in Ω f = f on ∂Ω 1 φ • n = D f • n = 0 on ∂Ω 2 (4) 
with Ω ⊂ R 2 a rectangular domain and ∂Ω its boundary. Problem ( 4) is tied to several mathematical properties that ensure a physically acceptable continuous solution. The minimum, maximum principles marks off the solution within its values in the boundary [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF] For

∂Ω = ∂Ω 1 ∪ ∂Ω 2 is Ω domain frontier,
S = 0 ⇒ inf ∂Ω f ≤ f ≤ sup ∂Ω f (5) 
The monotony property, guarantees a physically acceptable positive solution (positivity property) inside the domain Ω [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF] :

For S ≥ 0 and f ≥ 0 ⇒ f ≥ 0 (6) 
On the numerical level, ensuring the discrete formulation of these principles is not straightforward. For instance, in case of high levels of anisotropy (like those we observe in our case), numerical schemes produce numerical solutions with negative values and spurious oscillations [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF]. Dealing with this problematic sometimes requires a compromise, depending on the studied application and its requirements [START_REF] Schneider | Comparison of finitevolume schemes for diffusion problems[END_REF]. In our case, we considered positivity as the most primordial property to be ensured by the upgraded scheme. The selected scheme must also retain basic numerical standards of consistency and convergence with a 2nd order convergence rate. The latter properties are automatically extended to the transient problem when they are ensured for the steady state diffusion in (4), with the addition of the initial condition to the limits to be respected.

Alternative Finite volume methods

Finite volume based methods, are recommended for mass conservation problems [START_REF] Eymard | Finite volume methods[END_REF]. The integration of equation ( 4) over an elementary volume K ∈ Ω yields the local conservation equation.It states the equilibrium in K, between the "volume" creation S and the sum of fluxes F K,σ crossing through the interfaces or edges σ ∈ ∂K.

-

∂K D f • ndl = K SdV = σ∈∂K F K,σ (7) 
F K,σ = - σ D f • n σ,K dl (8) 
n is the normal vector to ∂K, and n σ,K is the normal vector to σ edge.

In the finite volume framework, the equation is discretized in a mesh cell and F K,σ is approached by a consistent expression. For the rest of the paper, K designates a mesh cell, represented by its center. K ∈ T with T the set of mesh cells mapping Ω. ε represents the domain boundary edge set. f K denotes the discrete approximation of f on the K cell, associated with its center. From now on F K,σ is merged with its numerical approximation. The FV method offers a significant property specially adapted for conservation laws, which is the conservation of flux :

F K,σ + F L,σ = 0 (9)
σ is the edge shared by K and L neighbouring cells.

FV litterature presents many variants of the method. [START_REF] Schneider | Comparison of finitevolume schemes for diffusion problems[END_REF] suggest a classification depending on the type of the computed values of the solution f .

Cell centred methods such as Linear Two-Points Flux Approximation/TPFA or Linear Multi-Points Flux Approximation/MPFA compute cell center unknowns. Hybrid Mimetic Mixed schemes (HMM), on the other hand compute cell and edge unknowns. Theoretical convergence arguments can be obtained by construction for HMM [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF] and conditionally for MPFA [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF]. But according to several benchmarks and research works [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF][16] [START_REF] Herbin | Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids[END_REF], none of these linear schemes are at least positivity preserving for our anisotropy magnitudes.

This is mainly why they were not pre-selected for our investigation.

Non-linear schemes are on the contrary serious candidates [15][16]. We selected for our tests, the monotony preserving Non-Linear Two-Point Flux Approximation scheme, which we will denote as NLTPFA and the Min/Max principles preserving Non-Linear Multi-Point Flux Approximation scheme which we will denote as NLMPFA. We choose to pre-select these two schemes as, unlike linear schemes, non-linear schemes do not ensure equivalence between monotony and Minimum and maximum principles [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF].

The main idea of both schemes is based on expressing the discrete flux F K,σ through a convex combination of two discrete linear de-centred fluxes F 1 and F 2 expressed on K and L neighbouring cells, sharing the σ edge.

F K,σ = µ 1 F 1 -µ 2 F 2 (10) 
µ 1 and µ 2 are well defined to preserve flux continuity and genuinely constructed to achieve a property longed for in each scheme.

In case of the NLTPFA, µ 1 and µ 2 are constructed to achieve a two point flux structure :

F K,σ = α K,L (f )f L -β K,L (f )f K (11) with α K,L (f ) ≥ 0,β K,L (f ) ≥ 0. The equality α K,L (f ) = β L,K (f ) imposed by
the flux conservation on σ along with the particular two point structure of the scheme, grants its discretization matrix M the M-matrix property. Therefore

M -1 has only positive entries, and for a positive second member vector, the scheme ensures f ≥ 0. We followed the development of the method presented in [START_REF] Guangwei | Monotone finite volume schemes for diffusion equations on polygonal meshes[END_REF] for a polygonal mesh and the special adaptation of the method for a

Cartesian grid is presented in Appendix A.

In the NLMPFA scheme, the goal is to express the flux in a multi point structure :

F K,σ = M τ K,M (f M -f K ) (12) 
M refers to K's neighbouring cells and τ K,M ≥ 0. The multipoint structure ( 12) is fundamental to preserve extremum principles and the theorem demonstrated in [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF][34] proves its ability to prevent internal oscillations inside the domain. We followed the development of the method presented in [START_REF] Zhiqiang | The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[END_REF] for a polygonal mesh and the special adaptation of the method for a Cartesian grid is presented in Appendix B.

Picard algorithm method as adopted for both methods in [START_REF] Guangwei | Monotone finite volume schemes for diffusion equations on polygonal meshes[END_REF][34] is used to solve the non-linear system of equations by following these instructions :

-Initialize f 0 -Loop on n : solve M(f n )f n+1 = S n -Exit loop if residue ||f n+1 -f n || < = 10 -6

Numerical experiments

To analyse the performance of the latter alternative schemes, several numerical tests or "toy cases" were established. They consist in different configurations of analytical diffusion tensors (gathered in the literature or self-constructed) reproducing real case aspects and include different sets of boundary conditions. These tests also served to verify the prototypes of the new numerical solvers before testing them in real case simulations. In this subsection, we present two numerical studies : the first one focuses on measuring the effect of high levels of anisotropy. We present there 3 different test results related to positivity, the minimum principle and the Min/Max principles. The second numerical study is related to measuring the effect of steep coefficients on accuracy.

We present in the following paragraph, the notations used to present the following numerical results. N u is the number of cell center unknowns, f min and f max , the extremal values of f inside the solving domain and N iter is the number of non-linear iterations to reach convergence. Ru = N 1 Nu is the ratio of undershoots, with N 1 the number of grid cells where f K < 0 when testing positivity and is equal to the number of grid cells where f < f min when testing the minimum principle preserving property. To evaluate the rate of convergence, we use the discrete counter part of L 2 norm ||.|| 2 :

||.|| D 2 = K∈T f 2 K m(K) (13) 
T is the set of mesh cells, m is the K cell "volume". The relative approxi-mation error is calculated based on the previously defined norm :

Err 2 = 100 × ||f -f ref || D 2 ||f ref || D 2 ( 14 
)
f ref is the reference solution chosen when evaluating the schemes accuracy by the method of manufactured solution MMS [START_REF] Salari | Code verification by the method of manufactured solutions[END_REF]. This method consists in manufacturing a source term for a given function f ref verifying the boundary conditions and a given diffusion tensor. The source term is then computed analytically, knowing the diffusion coefficient and f ref analytical expressions.

All the presented tests were conducted on uniform cartesian grids. To solve non-linear systems, we used picard algorithm. This choice, adopted in [START_REF] Guangwei | Monotone finite volume schemes for diffusion equations on polygonal meshes[END_REF][34] will preserve monotony of the NLTPFA scheme at each iteration and prevent the appearance of undershoots for the NLMPFA scheme [START_REF] Schneider | Comparison of finitevolume schemes for diffusion problems[END_REF] .

Initialisation of the non-linear resolution is performed by the solution of a linear finite volume scheme, filtered from overshoots and undershoots. All the numerical tests were conducted using serial codes developed on a Python environment and run on a 12 Gb RAM memory machine with a 2.6 GHz processor. Matrix are filled sparsely and the scipy.sparse package is used for efficient matrix operations and inversions. We used sympy, a symbolic calculation python library to evaluate the analytical expressions of the source term for the MMS method.

Positivity and Min/Max preserving tests

In this primary numerical study, we measure the effect of typical radiation belts anisotropy on NLTPFA and NLMPFA schemes. We established three sub-cases, in which we test both schemes in case of a highly anisotropic analytical tensor. The first one is related to positivity, the second one to minimum principle preserving and the third one to test Min/Max principles preserving. In each sub-case we measure their computational performances with respect to non-linear convergence and we report the output of a typical 2nd order linear finite difference scheme, to reflect the behaviour of the current Salammbô scheme.

In the three studied cases, the diffusion tensor D is taken as:

1 x 2 + y 2 •   αx 2 + y 2 (α -1)xy (α -1)xy x 2 + αy 2   (15) 
D has 1 and α as eigenvalues, thus an anisotropy ratio equal to 1 α that we choose equal to 10 9 . This analytical tensor has also negative coss diffusion Positivity testing results are synthesized in table 3 The f min row in table 3 for NLTPFA and NLMPFA shows how they maintain positivity as expected. For both methods, non-linear convergence is achieved after a relatively high number of iterations. The number of iterations increased for both schemes when the grid was refined. Nonetheless NLTPFA is more competitive than NLMPFA with around 2 times less iter- FD results on the other hand confirm the strong limitations of the method to preserve positivity with a typical anisotropy ratio as its f min row reports negative values with not negligible magnitudes. Moreover, the appearance of negative values is not contained as the ratio of negative values Ru increased when the grid was refined.

We switch to the second, minimum preserving test, by adopting a full domain Dirichlet boundary condition f = 1 on ∂Ω with the same S term.Minimum preserving testing results are synthesized in table 4 The f min row of NLMPFA in table 4 shows the preservation of the minimum principle by the scheme. NLTPFA results however, shows the opposite, with minimum values under 1. This particular behaviour is expected as minimum principle and monotony are no not equivalent in case of non-linear schemes [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF]. Other minimum principle violation cases are also reported in [START_REF] Schneider | Comparison of finitevolume schemes for diffusion problems[END_REF]. Nevertheless, this issue will not impact our application. In fact, due to the permanent presence of f = 0 boundary at y min , the minimum principles implies positivity and so, both properties are the same. Although NLTPFA remains the fastest method, iterations numbers difference between the two methods are not as wide as in the previous sub-case. The previously mentioned behaviour of iterations number increase when the grid is refined, is also observed in this second study. But a small decrease in iteration numbers is observed in NLTPFA when the number of grid cells is quadrupled (from 5 for both schemes show the preservation of the minimum and the maximum principle. This is expected from the NLMPFA, but achieved with a very high computational cost (over 600 iterations for a 80 × 80 cells grid). No overshoots were observed in the NLTPFA results, despite this scheme not holding a maximum preserving property [START_REF] Schneider | Comparison of finitevolume schemes for diffusion problems[END_REF].

N u =
NLTPFA scheme shows a better computational efficiency and thus a better match to our application . The same failure of the FD scheme to tackle anisotropy is also observed in this test case.

Accuracy and precision tests

In the following numerical study, we evaluate the accuracy of both schemes.

We measure their precision and convergence rate in case of a steep diagonal diffusion tensor, and in case of the previously used anisotropic diffusion tensor. In both test cases, the solving domain Ω = [0..0, 5] × [0..0, 5] and S is manufactured to have f ref = sin(πx) × sin(πy) (MMS). The results of the steep coefficients sub-case are synthesized in table 6 and the results of the anisotropic tensor sub-case are synthesized in table 7. 

         D xx = 10 2 + 10 6 • exp -10x 2 D yy = 10 + 10 3 • exp -2•10 2 (y-0.5) 2 D yx = 0 (17) 

Transient study results with a real diffusion tensor

We move now to a real physical configuration. As a consequence, the diffusion problem ((4)) is extended to the transient case, the source term is put at zero (S = 0) and and we adopt a real life diffusion tensor. In this section we present the results of 2D real life simulations. First, we report a computational cost study of NLTPFA and NLMPFA schemes, both associated to an Euler implicit time integration. Then we evaluate the effect of the FD/FV transition, by comparing a NLTPFA + Euler implicit solver to a FD + Euler explicit solver. Finally, we compare NLTPFA + Euler implicit transient simulations with and without cross diffusion to characterize their effect in the diffusion frame.

All transient simulations, are operated at the L * = 4.49 plane, so that the adopted tensor is the same one presented in section 2.3. It also remains time-independent (Kp = 6). We simulate for each case, the diffusion process until T simu = 90000 s, starting from a constant initial state f init = 10 30 .

Table 8 presents the limits of our solving domain, as well as the adopted boundary conditions. The 133 × 49 (y, E) 2D Salammbô full grid is used in 

Boundary location

Boundary conditions

y min = 0.0862 f = 0 y max = 1.0 No-flux boundary E min = 5.66 • 10 -4 MeV f = 1 • 10 30 E max = 12.56 MeV f = 0
FD simulations, from which we generate the FV grid by merging FD nodes with FV grid interfaces.

A convergence study was conducted on both schemes to verify their first order time accuracy using the MMS method with f ref = sin(πx) sin(πy) exp(-t) with t simu = 2.0, for the highly anisotropic diffusion tensor case (15) on a 100 × 100 uniform grid. The results are reported in table 9. For this study case, we conducted several transient simulations with different time steps. We measure the calculation time required for each simulation and the average number of non-linear iterations required for the convergence.

NLTPFA scheme converged with all the time steps. But, we observed an odd behaviour from the NLMPFA scheme as it could not reach convergence in some time steps, even after a very high non-linear iteration number (> 500).

We observed the oscillation of the residue around a fixed value, when the convergence was not achieved. It was also observed in simulations conducted at other L * planes. When the no-flux boundary condition at y min is replaced by a homogeneous dirichlet condition, the scheme overcome the oscillatory behaviour. We also considered loosening the residue and the exit criteria of the non-linear algorithm, which allowed the non-linear convergence.

In the table 10, we report the results of the NLTPFA simulations in case of the natural boundary conditions, and the NLMPFA simulations results

(denoted as NLMPFA*) when substituting the no-flux boundary conditions at y max with a homogeneous Dirichlet condition, using the same residue formula. N i is the average number of non-linear iterations, T c is the calculation time.

One can see, in table 10 that the smaller the time steps are, the smaller non-linear iteration numbers are. In fact, for a smaller ∆t, the evolution of the dynamic at each iteration is slower and the change in the numerical solution profile for successive time steps is smaller, thus less non-linear iterations are needed for convergence. For both schemes, the increasing ratio of T c is not equal to the increasing ratio of the time step. When ∆t = 10000s is We observed in the NLTPFA solution profile a violation of the maximum principle with some PSD values exceeding the E min upper limit and the f init initial value. These overshoots are located near the E min limit boundary.

We report in figure 8 the evolution of the overshoots ratio in % as function of time, when ∆t = 1000s. We can clearly observe their decrease during the course of the simulation. Regarding their magnitude, they exceeded the maximum by at most three digits for all the NLTPFA simulation.

FV to FD transition

From now on, we adopt the NLTPFA + Euler implicit solver as the reference solver and we use ∆t = 1000s as the time integration step. In this section, we compare the latter FV scheme simulation results to those of a FD explicit scheme, representing Salammbô's behaviour and coded on the The PSD distribution around E min and E max is relatively flat, due to the imbalance between the diffusion directions usually in favour to y.

When looking to their relative difference in figure 11, we see how the diagonal diffusion coefficient steepness is principally driving the difference between the two profiles. This can be seen near E = 2M eV , where D EE presents a spread peak. It is also seen in the region located between (y, E) ∈ [0.7..0.9] × [10 -2 ..10 -1 ] and at higher energies where D yy . The difference observed at y min originates mainly from the interpolation performed between the finite difference and finite volume grids. 

Measuring the effect of cross diffusion

As the NLTPFA scheme allows now the full description of the 2D diffusion frame, without a degrading impact on the numerical solution, we are now able to quantify the effect of cross diffusion.

Figure 12 shows the relative difference of the numerical solution for the NLTPFA scheme with and without cross diffusion. Figure 13 reports also 1D cut plots at several energy and pitch angle locations. One can notice that the energy domain located between E = 10 -2 MeV and E = 0.6 MeV for almost all equatorial pitch angles, shows higher PSD magnitude in presence of cross diffusion with relative differences around 60%. This domain is at the radiation belt border and largely influenced by the lower energy boundary.

Outside this location, and especially in regions where cross diffusion terms are negative (around the E min boundary), the relative difference stayed at very low levels. We can note that near the y = 1 boundary, at E = 1

MeV, representing equatorial highly energetic particles, we observe lower PSD magnitudes in presence of the cross diffusion.

Summary and conclusion

The prime objective of this investigation was to discuss the complexity of developing a robust and personalized numerical scheme in order to tackle the numerical challenges involved in radiation belts modelling. We presented those challenges originating from our multi-scale physics and embodied by a highly inhomogeneous and anisotropic diffusion tensor.Thus we provide an interesting field of benchmarking for numerical schemes, in addition to reservoir engineering, radionuclide migration and multiphase flow.

We identified finite volume method alternatives , suitable for our constraints, the NLTPFA scheme and the NLMPFA scheme. They presented satisfying results when tested in real case mimicking analytical tests, with a computational cost advantage to the NLTPFA method. We tested these schemes (associated to an Euler implicit scheme) in case of a real life transient diffusion tensor. Unfortunately NLMPFA was not able to converge. We plan on conducting further studies to identify the reason of this behaviour, while we suspect that the residue formula is too restrictive with respect to our high levels of inhomogeneity. On the other hand the NLTPFA scheme associated to the Euler implicit scheme presented a better performance for a full tensor compared to an explicit finite difference scheme. That's why we choose to adopt it for the new Salammbô core, and more specifically to integrate it in the 3D splited transient resolution. Using a finite volume method to solve radiation belts dynamics has not been made so far as well as defining a relevant benchmarking package in our community.

Next step, will consist in optimizing the NLTPFA resolution algorithm as it will be applied in each 2D plan, hence rapidly increasing the computational cost. This optimization is all the more important as Salammbô has been associated recently to data assimilation tools requiring several parallel computing loops.

Numerical uncertainties and challenges being put aside, the radiation belt study community still has to master the physical ones, coming from the complex coefficients estimation. In fact, their accuracy may have a noticeable impact on the solving output and their effects still need to be well estimated and minimized on the equation resolution.

Considering our rectangular cell case, the direction is expressed in the Cartesian (e x , e y ) base reported in the figure A.14, and the projected gradient is evaluated through cell center and edge points, whom sector is crossed by In the end, and in our special Cartesian case, the expression of F 1 and F 2 will depend on the sign of D yx in each cell. Thereby we have :

         F 1 = D xx (K) • fσ-f K xσ-x K + D yx (K) • fσ 1 -f K yσ 1 -y K if D yx (K) ≥ 0 or F 1 = D xx (K) • fσ-f K xσ-x K + D yx (K) • f K -f σ 1 y K -y σ 1 if D yx (K) < 0 (A.1)
and

         F 2 = -D xx (L) • f L -fσ x L -xσ -D yx (L) • f L -fσ 2 y L -yσ 2 if D yx (L) ≥ 0 or F 2 = -D xx (L) • f L -fσ x L -xσ -D yx (L) • f σ 2 -f L yσ 2 -y L if D yx (L) < 0 (A.2)
As represented in figure A.14, the solid yellow and solid green segments embody the gradient projection on the diagonal direction or the normal direction of the studied edge. While the solid blue and solid red segments are related to the off diagonal direction in case of a positive cross diffusion term.

Their dashed counter parts are related to the case where cross diffusion is negative.

Getting back to the general development of the method as shown in [START_REF] Guangwei | Monotone finite volume schemes for diffusion equations on polygonal meshes[END_REF],

to get to the two point approximation as presented in ((11)), ((A. 

F 2 = -D xx (L) • f L -f K x L -x K -D yx (L) • f M 4 -f L y M 4 -y L if D yx (L) < 0 (B.3)
As represented in figure B.15, the solid green segment embody the gradient projection on the diagonal direction or the normal direction of the studied edge. While the solid blue and red segments are related to the off diagonal direction in case of a positive cross diffusion terms. Their dashed counter parts are related to the case where cross diffusion is negative.

F 1 and F 2 can then be expressed according to this multipoint form : shown in [START_REF] Zhiqiang | The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[END_REF] and to ensure (( 9)), µ 1 and µ 2 are chosen depending on the sign of F 1 and F 2 :

   F 1 = M ν 1 K,M (f M -f K ) F 2 = M ν 2 K,M (f M -f L ) (B.
-if F 1 F 2 ≤ 0 : -if F 1 F 2 > 0 then we define sub-fluxes G 1 and G 2 such as :

   µ 1 = |F 2 | |F 1 |+|F 2 | µ 2 = |F 1 | |F 1 |+|F 2 | if |F 1 | + |F 2 | =
                   F 1 = λ 1 (f L -f K ) + M =L ν 1 K,M (f M -f K ) G 1 F 2 = λ 2 (f K -f L ) + M =K ν 2 K,M (f M -f L ) G 2 (B.6)
With this new configuration and depending on the sign of G 1 and G 2 we have :

-if G 1 G 2 > 0 then F K,σ = (µ 1 λ 1 + µ 2 λ 2 )(f L -f K ) -if G 1 G 2 ≤ 0 then F K,σ = (µ 1 λ 1 + µ 2 λ 2 )(f L -f K ) + 2µ 1 G 1    µ 1 = |G 2 | |G 1 |+|G 2 | µ 2 = |G 1 | |G 1 |+|G 2 | if |G 1 | + |G 2 | = 0 else µ 1 = µ 2 = 0.5 (B.7)
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 1 Figure 1: Inner and outer electron radiation belts extending over several satellite orbits, reproduced from [2]

Figure 2 :

 2 Figure 2: Kp index time evolution for 1 month reproduced from[START_REF] Herrera | Characterizing magnetopause shadowing effects in the outer electron radiation belt during geomagnetic storms[END_REF] 

Figure 3 :

 3 Figure 3: Operating scheme of the Salammbô code for electrons, with its different components and their connections adapted from [20].

Figure 4 :

 4 Figure 4: 2D (y,E) finite difference refined (blue) and coarse (red) grids adopted in Salammbô-Electron at L * = 4.49.

Figure 5

 5 Figure 5 shows the evolution of D yy and D EE in a 2D (y, E) reference space for fixed L * value to 4.49 and for Kp equal to 6. One can clearly see that D yy and D EE adopt a highly inhomogeneous behaviour. They vary along several orders of magnitude in the logarithmic color bar range. D EE 2D profile shows several narrow sharp resonances around E = 10 -2 MeV, and a concentric behaviour in the top-right corner at higher E. D yy 2D profile exhibits high stiffness overall, with several trays of high diffusion and a sudden slope near the y = 1 boundary. The 2D plots also show a big imbalance in certain regions between the two coefficients, often in favour of D yy , the latter dominating especially the loss cone region at y min and the E min boundary. Moreover, 1D cut plots presented in the same figure, show how the coefficient evolution near the boundaries can adopt radically different behaviours. Cross diffusion terms D yE , on the other side, reproduce the steepness seen in D yy and D EE . They change sign promptly in certain areas (especially near y = 1 and E = E min ) as it can be seen in Figure 6. If we look closely to the effective full 2D diffusion tensor T and map its maximum/minimum eigenvalues ratio i.e. the anisotropy ratio at each point in the 2D domain, we can

Figure 5 :

 5 Figure 5: 2D plots and 1D cut plots of D yy and D EE diffusion coefficients at L * = 4.49. 2D plots are represented in the (y, E) space and the 1D plots cut are performed along the diffusion direction of the coefficient at different locations.

Figure 6 :

 6 Figure 6: D yE cross diffusion coefficient 2D evolution at L * = 4.49. The right 2D profile reports the absolute value of the coefficient, and the left one shows the sign profile of the coefficient, with cyan for negative and beige for positive values.

Figure 7 :

 7 Figure 7: Anisotropy ratio for L * = 4.49

  terms, same as what one can find in a real case diffusion tensor. We start with the first, positivity testing case, by adopting the following solving domain Ω = [0..1] × [0..1] \ {(0, 0)}. We fix a homogeneous Dirichlet condition on x = 0,y = 0,y = 1 and a no-flux boundary at x = 1 to reflect typical real boundary conditions of radiation belts models. S adopt the following form : S(x, y) =    1 if (x, y) ∈ [0.25..0.75] × [0.25..0.75]

1 (

 1 40 × 40 to N u = 80 × 80). This might be explained by our initialization procedure, based a more refined solution. FD results shows the violation of the minimum principle and a consequent ratio of undershoots, increasing when the grid is refined.For the third, Min/Max preserving test, the solving domain is shrinked to Ω = [0..0.5] × [0..0.5] \ {(0, 0)}, f = sin(πx) sin(πy) on x = 0,y = 0,y = Dirichlet condition) and we adopt a no flux condition on x = 1 with S = 0. Min/Max testing results are synthesized in table5

Figure 8 :Figure 9 :

 89 Figure 8: ratio of maximum principle violating points in 2D PSD function profile at L * = 4.49 in function of time, for ∆t = 1000s using the NLTPFA scheme

Figure 9

 9 Figure 9 reports the PSD function 2D profile for the NLTPFA scheme, at t = T simu and figure 10 reports the PSD function 2D profile for the FD scheme. We notice that the two 2D profiles are similar. We observe rapidly decaying values near the loss cone at y min on the entire energy direction. A local minimum zone spreads over the entire y direction, around E = 1M eV that merges totally with the D yy maximum zone. The same behaviour is

Figure 10 :

 10 Figure 10: PSD function 2D profile at L * = 4.49 and T simu = 90000s using a finite difference scheme

Figure 11 :

 11 Figure 11: NTPFA and FD relative difference profile at L * = 4.49 and T simu = 90000s without cross diffusion

Figure 12 :Figure 13 :

 1213 Figure 12: Relative difference profile for the NLTPFA scheme in regards to cross diffusion at L * = 4.49 and T simu = 90000s

  K and D T n σ,L respectively for F 1 and F 2 .

  1)) and ((A.2)) expressions are injected in ((10)) then cell centred terms and edge terms are regrouped separately:

Figure B. 15 :F 2 =

 152 Figure B.15: Construction of NLMPFA stencil on a rectangular conforming mesh

4 )

 4 With M neighbouring cells of the studied cell i.e: L,M 1 or M 2 (depending on the sign of D yx (K)) for F 1 and K, M 3 or M 4 (depending on the sign of D yx (L)) for F 2 . Getting back to the general development of the method as

0 else µ 1 =

 1 µ 2 = 0.5 (B.5) making F K,σ = 2µ 1 F 1 .

  

Table 1 :

 1 Magnitude time of the decomposed motions of trapped electrons, at different energies and altitudes.

	2000 Km	τ 1 (s)	τ 2 (s) τ 3 (s)
	E = 50 keV 2.5 • 10 -6 0.25 41400
	E = 1 MeV 7 • 10 -6	0.1	3180
	13000 Km	τ 1	

Table 2 :

 2 Typical boundary conditions used in Salammbô-Electron 3D simulations

	Boundary location	Boundary conditions

  with ∂Ω 1 related to Dirichlet type boundary conditions and ∂Ω 2 related to Neumann boundary conditions. φ is the boundary flux

defined at ∂Ω 2 and n is ∂Ω 2 exterior normal. S ∈ L(Ω 2 ) is the source term and D a symmetric tensor.

Table 3 :

 3 NLTPFA, NLMPFA and FD results as regards to positivity preserving

	Scheme	N u	20 × 20	40 × 40	80 × 80
	NLTPFA f min 6.44 • 10 -10 7.55 • 10 -15 2.52 • 10 -23
		N iter	81	141	222
	NLMPFA f min 2.82 • 10 -7 9.15 • 10 -10 2.71 • 10 -13
		N iter	153	310	433
	FD	f min	-0.00083	-0.00064	-0.00041
		Ru	0.04	0.06	0.05

ations. Other numerical results with higher levels of anisotropy showed that a higher number of non-linear iterations is required to reach convergence.

Table 4 :

 4 NLTPFA, NLMPFA and FD results as regards to the minimum principle pre-

	serving			
	Scheme	N u 20 × 20 40 × 40 80 × 80
	NLTPFA f min 0.9983 0.9984 0.9987
		N iter	62	83	66
		Ru	0.1425 0.1431 0.1396
	NLMPFA f min	1.00	1.00	1.00
		N iter	66	107	201
	FD	f min 0.9981 0.9983 0.9987
		Ru	0.090	0.127	0.128

Table 5 :

 5 NLTPFA, NLMPFA and FD results as regards to extremum principles preserving min 2.22 • 10 -15 4.67 • 10 -27 3.60 • 10 -44 min 2.10 • 10 -9 1.63 • 10 -13 3.73 • 10 -18

	Scheme	N u	20 × 20	40 × 40	80 × 80
	NLTPFA f f max	0.9955	0.9988	0.9997
		N iter	95	181	338
	NLMPFA f f max	0.9950	0.9988	0.9995
		N iter	126	250	606
	FD	f min	-0.023	-0.021	-0.0187
		f max	0.9872	0.9968	0.9992
		Ru	0.121	0.124	0.132
	f				

min and f max rows in table

Table 6 :

 6 Error and convergence rate results for the diagonal inhomogeneous diffusion Err 2 2.99 • 10 -1 7.49 • 10 -2 1.87 • 10 -2

	tensor case			
	Scheme N u	20 × 20	40 × 40	80 × 80
	NLTPFA Err 2 2.99 • 10 -1 7.49 • 10 -2 1.87 • 10 -2
	Order	-	1.99	2.00
	NLMPFA Order	-	1.99	2.00
	Table 6 and table 7 results show a 2nd order convergence rates for both
	schemes. For the diagonal diffusion tensor sub-case, both methods present
	equal error magnitudes. In case of the full anisotropic tensor, NLTPFA is
	more precise. For the first two columns, NLMPFA is slightly more competi-
	tive than NLTPFA.			

Table 7 :

 7 Error and convergence rate results for the high anisotropy diffusion tensor case Err 2 3.00 • 10 -1 7.66 • 10 -2 1.94 • 10 -2

	Scheme N u	20 × 20	40 × 40	80 × 80
	NLTPFA Err 2 6.53 • 10 -2 2.06 • 10 -2 5.55 • 10 -3
	Order	-	1.66	1.92
	N iter	39	41	21
	NLMPFA Order	-	1.97	1.98
	N iter	32	32	30

Table 8 :

 8 Boundary conditions used in Salammbô-Electron

Table 9 :

 9 Time order verification for the studied schemes

	Scheme	∆t	0.5	0.25 0.125
	NLTPFA + Euler implicit Err 2 1.034 0.469 0.223
		Order	-	1.14 1.073
	NLMPFA + Euler implicit Err 2 1.029 0.468 0.222
		Order	-	1.14 1.073

Table 10 :

 10 Real case transient results T c is multiplied by around 5 times for NLTPFA and around 7 times for NLMPFA*, making the choice of smaller time steps less cheaper that in linear schemes. Nevertheless, the simulation cost overall, and for the same time step is higher than for a linear scheme, that requires only one iteration per time step.

	Scheme	∆t	100s	1000s 10000s
	NLTPFA	N iter	7.99	20.98	39.55
		T c (s) 4978.92 1526.67 336.45
	NLMPFA* N iter	19.69	33.18	59.66
		T c (s) 21928.78 4272.83 636.43
	divided by 10,				
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Appendix A. NLTPFA development for a Cartesian grid

We show here, the numerical flux F K,σ construction, in the NLTPFA method [START_REF] Guangwei | Monotone finite volume schemes for diffusion equations on polygonal meshes[END_REF] 

where a 1 and a 2 contain edge terms and we impose a 1 (f )µ 1 -a 2 (f )µ 2 = 0. µ 1 and µ 2 are then computed based on this system :

Edge values intervening in a 1 and a 2 expression are interpolated from cell unknowns.

Appendix B. NLMPFA development for a Cartesian grid

To achieve the NLMPFA form, we start from the expression of F 1 and F 2 previously defined and replace edge values directly with convex combination of neighbouring cell unknowns. For instance :

Thereby (A.1) and (A.2) are expressed in the Cartesian grid reported in the figure B.15 as follows :

The multipoint structure (( 12)) is fundamental to preserve extremum principles and the theorem demonstrated in [START_REF] Zhiqiang | The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[END_REF] proves its ability to prevent internal oscillations inside the domain.