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Abstract

Electron radiation belts are regions surrounding Earth, filled with highly

energetic electrons and overlapping the majority of satellite orbits. Their

multi-scale and rapidly evolving dynamics are modelled by the mean of a dif-

fusion equation involving a highly anisotropic and inhomogeneous diffusion

tensor. Finite difference based methods have been the preferred method of

discretization in physical codes, starting from ONERA’s Salammbô-Electron

model, the pioneering 3-dimensional code in the radiation belts commu-

nity. This choice however does not prevent several numerically induced con-

straints impacting the reliability of the code as well as its computational cost.

Thus in this paper we present the outcome of our investigation to improve

Salammbô’s numerical core. In particular, we present our special diffusion

frame and its numerically induced limitations on our finite difference based

scheme. Then we test potential alternative finite volume schemes with phys-

ically relevant properties and we finally highlight with a real case simulation

the contribution of the positivity preserving scheme to evaluate the impact
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of cross diffusion.

Keywords: Radiation belts; Finite volume method; Anisotropic diffusion

equation; Monotony; Discrete maximum principle.

1. Introduction

Earth’s space environment is a vast dynamic region extending from the

upper atmosphere to the interplanetary region. It is constantly disrupted by

charged particles, piled up in plasmas and originating from the Sun’s activity.

Highly energetic electrons and protons injected near Earth especially, are

trapped by the Earth’s magnetic field. They form quasi permanent toroidal

structures called radiation belts or Van Allen belts [1].

Radiation belts (One proton belt, and two electron belts separated by

the Slot region) are located between 700 km and 58000 km of altitudes (Fig-

ure 1) and they span the majority of satellite orbits [2]. Due to the trapped

particles energy magnitudes (between 100 keV to 10 MeV for electrons) in ad-

dition to rapidly varying particle fluxes, satellites crossing them can undergo

severe damages on their on-board equipments and their thermal shielding

[2]. Thus, to ensure a reliable design for spacecraft, radiation belts require

faithful models and a precise understanding of their underlying mechanisms.

The practical difficulty of conducting precise in-situ measurements, and

the complexity of understanding several multi-physics drivers, prevents the

construction of a unique modelling instrument. Thus, the radiation belts

community relies on an arsenal of tools, including empirical models, statisti-

cal models and physical codes [3]. Precisely, the latter have imposed them-

selves as reliable implements. They are derived from a theoretical approach
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of the radiation belt dynamics and benefit from the improvement of the phys-

ical processes comprehension in addition to more refined measurement data

[3].

Figure 1: Inner and outer electron radiation belts extending over several satellite orbits,

reproduced from [2]

The theoretical development of physical codes, as described in [4], is

founded on the adiabatic invariants theory. Each trapped particle’s motion

can be decomposed and associated into 3 conserved quantities or adiabatic

invariants [5]. Using a Hamiltonian formalism on a Boltzmann equation

and introducing a Fokker Planck operator to evaluate physical interactions

responsible for changing particles trapping state, a 3-dimensional transient

diffusion equation is obtained (in the adiabatic invariant phase space).

The near majority of physical codes related to electron radiation belts,

starting from ONERA’s Salammbô-Electron code [6], along with Versatile
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Electron Radiation Belt Code VERB [7], Storm-Time Evolution of Elec-

tron Radiation Belt Code STEERB [8] and the British Antarctic Survey

(BAS) Radiation Belt model code [9] solve numerically the diffusion equa-

tion using a finite difference (FD) based method. However, they differenti-

ate on the temporal integration methods. While VERB,and BAS are fully

implicit, Salammbô-Electron is explicit and STEERB uses the Alternating

Direction Implicit (ADI) scheme. They also adopt different numerical grid

rendering strategies. These differences are mainly motived by computing

time optimization, numerical stability arguments, and locally sought accu-

racy [7][8][9][10]. During the simulation, the numerical resolution is usually

correlated to volatile time dependent empirical parameters reflecting the dy-

namics of the system induced by solar activity. The main proxy for such

models is the geomagnetic activity index named Kp and we report in figure

2 an example of its temporal evolution.

Figure 2: Kp index time evolution for 1 month reproduced from [11]

Nevertheless, the numerical resolution of this particular diffusion equa-

tion is not straightforward and many challenges need to be tackled. First,

the studied diffusion is very inhomogeneous, involving diffusion coefficients

with steep spatial evolutions. Second, the diffusion achieves high levels of
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anisotropy, amplified by cross diffusion terms. When retained, they induce

severe numerical instabilities and their presence in the diffusion frame is a

subject of study and discussion. These intense aspects impose huge limi-

tations on the numerical stability and generate approximations with a non

physical behavior [12].

Thus, this paper yields the results of the investigation undertaken to rear-

range Salammbô-Electron numerical core. From the large panel of numerical

schemes, the choice of the new appropriate method has to be motivated by

its expected properties and the system constraints. FD methods were usually

favoured among the community due to their ease of implementation. They

has shown however their limit to contain non-physical numerical deviations.

In fact important properties of positivity and discrete Minimum/Maximum

principles are not preserved. Continuous finite element methods, on the

other hand have been extensively studied for parabolic equations and ap-

plied to diffusion problems [13]. They satisfy the energy conservation and

offer important robustness properties. But apart some particular cases, the

Min/Max preserving property is not ensured and strong variations of diffu-

sion coefficients are not well taken into account. Extension to high order and

discontinuous coefficients has been reached recently in the frame of Discon-

tinuous Galerkin Method (DGM) [14]. Hereby we consider fundamental for

the new scheme to be adopted, to maintain a physically relevant solution,

and we choose to work with Finite Volume (FV) based methods ( that can

be considered as a DGM of lowest order). First, they provide the flux con-

servation property, particularly important to conservation laws like diffusion.

Besides, positivity preserving and Minimum/Maximum principle preserving
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FV variants exist [15] and have been tested for reservoir engineering appli-

cations [16].

This paper is organized as follows : Section 2 is devoted to the presenta-

tion of the general 3D diffusion frame in radiation belts and the numerically

challenging 2D diffusion case that retain most of the numerical constraints

that we were interested in. Then we present some aspects of the implemen-

tation in Salammbô-Electron. We also present qualitatively some of the over-

riding aspects of the studied diffusion and their induced constraints. Section

3 is related to explaining the methodology we followed to identify alterna-

tive schemes, suitable for our application. In particular, we present two FV

schemes, a non-linear monotone FV scheme and a non-linear extremum pre-

serving FV scheme. We show later several numerical test results of both

schemes, solving a steady state diffusion problem with real life mimicking

conditions. Section 4 then presents a transient diffusion study case involving

a ”physical” diffusion tensor with the aim to compare both schemes on the

computational cost side for different time steps. We compare the simulations

results of a typical FD and the monotone non-linear scheme, and evaluate

the effect of cross diffusion in the case of the latter scheme. Finally Section

5 summarizes and concludes our work.

2. Electron Radiation belt dynamics modelling : a typical diffusion

problem but many challenges due to harsh environment

2.1. A multi scale diffusion problem

The evolution of the Phase Space Density (PSD) function f , picturing

the statistical distribution of trapped electrons, is expressed in the following
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3 dimension diffusion equation in its canonical form :

∂f

∂t
=

3∑
i=1

3∑
j=1

∂2

∂Ji∂Jj
(DJiJjf) (1)

where t is time, J1, J2, J3, the three adiabatic invariants, and DJiJj for i, j ∈

{1, 2, 3} × {1, 2, 3} the diffusion coefficients. The first and second invariant

J1, J2 are highly coupled, while J3 is decoupled from the two first invariants

[17]. This can be seen in the different characteristic time scales τ1, τ2, τ3

associated respectively to J1, J2, J3 reported in table 1. This aspect, among

other assumptions, leads to a diffusion tensor without cross-diffusion terms

associating the J3 direction (DJ1J3 = DJ2J3 = DJ3J2 = DJ3J1 = 0).

Table 1: Magnitude time of the decomposed motions of trapped electrons, at different

energies and altitudes.

2000 Km τ1 (s) τ2 (s) τ3 (s)

E = 50 keV 2.5 · 10−6 0.25 41400

E = 1 MeV 7 · 10−6 0.1 3180

13000 Km τ1 (s) τ2 (s) τ3 (s)

E = 1 MeV 1 · 10−2 1 1020

The latter equation, is usually transformed and solved in the (y,E,L∗)

space [18] where :

• y = sin(αeq) with αeq the particle’s equatorial pitch angle, the angle

between its velocity vector and the magnetic field at the equator.
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• E is the particle’s kinetic energy, expressed in eV .

• L∗ is the radial distance at the equator of the field line (dipole approxi-

mation) travelled by the trapped particle, from the center of Earth [5],

expressed in Earth’s radii .

This transformation allows the representation of the PSD function f in a

more tangible space, rather than the abstract adiabatic invariants space, and

permits a convenient estimation of the physical diffusion terms : DEE,Dyy,DyE

and DL∗L∗ .

Same as in the invariant space for J3, the radial diffusion (i.e. diffusion

along the L∗ direction) is decorrelated and operates on a global scale. It

originates from magnetic and electric perturbations [4] and is responsible for

shifting injected particles in the outer boundary at L∗max toward Earth. On

the other hand, diffusion occurring in the (y, E) plane operates on a local

scale. DEE, Dyy and DyE terms embody the effects of resonant wave-particle

and particle-particle interactions [18]. They are sensitive to the various dif-

fusion mediums crossed by the trapped electron, characterized by abrupt

transitions due to an uneven distribution of different types of plasma waves

(with different amplitudes and resonance frequencies). They are mainly re-

sponsible for scattering electrons into the loss cone, the inner boundary of

the radiation belt at ymin, modelling electron loss due to atmospheric pre-

cipitations.

Thereby, the 3D diffusion equation is usually solved separately between

these two sets of diffusions [7][8][9]. In this paper, we will focus, on the

much more numerically challenging 2D diffusion occurring in the (y, E) plane,

reported in equation (2).

8



∂f

∂t
=

1

G

∂

∂y
|y,L∗(G(Dyy

∂f

∂y
|E,L∗ +DyE

∂f

∂E
|y,L∗))+

1

G

∂

∂E
|E,L∗(G(DEE

∂f

∂E
|y,L∗ +DyE

∂f

∂y
|E,L))

(2)

G is the Jacobian of the (J1, J2) → (y, E) transformation. A conservative

form of the 2D equation can be retrieved, by multiplying it with G and

adopting T = G

Dyy DyE

DyE DEE

 as the effective diffusion tensor. The retained

2D equation becomes:

G
∂f

∂t
= div(T∇f) (3)

2.2. The Salammbô model implementation

Salammbô-Electron code has been developed at ONERA since the 90’s

[6] and coded on FORTRAN. Figure 3 reports the operating scheme of

Salammbô-Electron where the numerical core plays a central role (central

box). It also includes other important branches. They consist in modules

for wave-particle interactions [19] or Columbian interactions estimation from

which the shape and amplitude of the diffusion coefficients are statistically

determined. It also integrates modules taking into account the radiation

belts limits and environment such as : Earth’s magnetic field or the particle

densities at the upper end of the atmosphere. The whole set is parametrized

and piloted by proxies and indexes such as Kp.

Salammbô’s numerical scheme is based on a finite difference 2nd order

discretization for space derivation and a first order explicit time integration

scheme [10][21]. It uses a logarithmic grid in L∗, a non uniform grid in E
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Figure 3: Operating scheme of the Salammbô code for electrons, with its different compo-

nents and their connections adapted from [20].

with a high refinement at low energy and a non-uniform y grid with a high

refinement near y = 1 as shown in figure 4. The 3D solving domain can be

mapped with a refined grid having 133× 49× 133 nodes as well as a reduced

grid made of 34 × 25 × 34 nodes and the time steps adopted for each grid

is respectively ∆t = 5 · 10−2s and ∆t = 1s. In practice, the reduced 3D-

grid is the usual adopted grid allowing reasonable computing times. Inputs

and coefficients are updated and re-estimated each hour according to the

10



evolution of the proxies. Cross diffusion DyE terms are omitted for numerical

stability considerations [21].

Figure 4: 2D (y,E) finite difference refined (blue) and coarse (red) grids adopted in

Salammbô-Electron at L∗ = 4.49.

Table 2 presents the usual boundary conditions adopted in the code,

among them the 2D (y, E) plan boundary conditions that will be considered

later in this paper.

A reconstruction of the electron radiation belt dynamics at the time-

scale of a geomagnetic storm, which is a temporary disruption of the Earth’s

magnetic field, will require at least 10 days of simulation time, while a solar

cycle long evolution requires a simulation time of 11 years to capture the
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Table 2: Typical boundary conditions used in Salammbô-Electron 3D simulations

Boundary location Boundary conditions

ymin f = 0

ymax
∂f
∂y

= 0

Emin f = g(y, Emin, L, t) or ∂f
∂E

= 0

Emax f = 0

L∗min = 1 f = 0

L∗max = 8 f = h(y, L∗max, t)

long-term effect of Sun-Earth connection. For information, 1 day simulation

with Salammbô-Electron on the 3D refined grid requires a time calculation of

several hours on a machine with 8Gb RAM memory and a 3.5GHz processor

(Serial computing).

Salammbô underwent several incremental improvements to its physical

depiction and was validated each time against in situ measurements from

satellites and/or empirical models. Especially, it manages to reproduce very

well the stationnary state and the dynamic of electron belts during and af-

ter a geomagnetic storm with concluding comparison with CRRES satellite

measurements [22]. Extensive comparisons with other data have been con-

ducted and results show great consistency of the code with measurements

[23]. Salammbô also proved its aptitude to evaluate the importance of space

plasma trapped wave types and isolate their impact [18][21]. More recently,

Salammbô-Electron has been upgraded to take into account non-linear losses

induced by magnetopause shadowing during severe disturbed periods [11].
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2.3. Numerical caveats and limitations seen from Salammbô’s scope

As stated before, radiation belts physics involve multi-scale, localized

physical processes with different characteristic times and magnitudes. Forcibly,

one can observe these local space disparities in the shape taken by the diffu-

sion coefficients and the diffusion tensor in general.

Figure 5 shows the evolution of Dyy and DEE in a 2D (y, E) reference

space for fixed L∗ value to 4.49 and for Kp equal to 6. One can clearly

see that Dyy and DEE adopt a highly inhomogeneous behaviour. They vary

along several orders of magnitude in the logarithmic color bar range. DEE

2D profile shows several narrow sharp resonances around E = 10−2 MeV,

and a concentric behaviour in the top-right corner at higher E. Dyy 2D

profile exhibits high stiffness overall, with several trays of high diffusion and

a sudden slope near the y = 1 boundary. The 2D plots also show a big

imbalance in certain regions between the two coefficients, often in favour of

Dyy, the latter dominating especially the loss cone region at ymin and the

Emin boundary. Moreover, 1D cut plots presented in the same figure, show

how the coefficient evolution near the boundaries can adopt radically different

behaviours.

Cross diffusion terms DyE, on the other side, reproduce the steepness seen

in Dyy and DEE. They change sign promptly in certain areas (especially near

y = 1 and E = Emin ) as it can be seen in Figure 6. If we look closely to the

effective full 2D diffusion tensor T and map its maximum/minimum eigen-

values ratio i.e. the anisotropy ratio at each point in the 2D domain, we can

notice high levels of anisotropy that are also unequally distributed. Figure

7 shows for L∗ = 4.49 a substantial layout of ratios bigger that 102, which
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Figure 5: 2D plots and 1D cut plots of Dyy and DEE diffusion coefficients at L∗ = 4.49.

2D plots are represented in the (y,E) space and the 1D plots cut are performed along the

diffusion direction of the coefficient at different locations.

represents a significant anisotropy ratio when studying diffusion problems

[16] [24]. This ratio is even exceeding 107 near y = 1 and E = Emin. In

addition to these space evolution particularities, the diffusion tensor is also

impacted by the time evolution of the rapidly changing physical processes.

Yet, the diffusion tensor form for Kp = 6 presented above, can be considered

as a worst case.

This form of the diffusion tensor imposes hard constrains on Salammbô
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Figure 6: DyE cross diffusion coefficient 2D evolution at L∗ = 4.49. The right 2D profile

reports the absolute value of the coefficient, and the left one shows the sign profile of the

coefficient, with cyan for negative and beige for positive values.

numerical resolution. They are reported in the following paragraphs : First,

in view of the coefficients spatial inhomogeneity, the finite difference dis-

cretization adopted generates numerical instabilities as it evaluates the diffu-

sion coefficient derivatives. Overshoots of the PSD function f are sometimes

observed inside areas where the coefficient evolution is steep. Second, the dif-

fusion coefficient amplitude and the small mesh size needed at low E imposes

a very restrictive CFL condition for the actual explicit scheme. This results

in long calculation times, that comes with other time consuming operations

(interpolation, input loading). Besides, the range of very small time steps

imposed by the explicit method won’t add a substantial gain in precision

as the numerical error is largely dominated by the grid error. Last, but not

least, cross diffusion presence is an underlined issue. Their presence is subject

to discussion [9] and some studies were conducted to evaluate their physical

impact [17][25][26][27][28]. However, the radiation belt diffusion community
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Figure 7: Anisotropy ratio for L∗ = 4.49

is unanimous as regards to their spurious numerical impact[17][29]. In fact,

no clear theoretical stability condition can be properly drawn when they are

included in an explicit FD scheme and including them in the current version

of Salammbô-Electron, will instantly generate numerical instabilities [21].

Until recently, they have been ignored in Salammbô’s communicated simula-

tions [18][20][21][23] and in many other model codes [7][9]. As, they are now

regaining great care, they have been integrated to several physical codes,

advocating for a complete description of the diffusion. Their integration is
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conduected by either performing a numerical diagonalization process [17],

shifting to a stochastic formulation of the diffusion problem[30], or adopting

an implicit/semi-implicit integration [25][27][31]. Yet, cross diffusion terms

issue, which can be included in the anisotropy problematic, remains present

even when adopting implicit schemes. Indeed, the latter time integration

method won’t prevent the appearance of negative and non-physical solution

values that deteriorates the simulation. In general, typical finite difference

methods, even when associated to unconditionnaly stable time integration

schemes don’t hold an upstream argument preventing this behavior or a strat-

egy to contain its propagation and impact. In that event, the resolution needs

the introduction of ”ad hoc fixes”, that modify locally the solving domain

properties to limit these numerical artefacts [12]. Regarding Salammbô’s

case, we propose exploring a new direction based on finite volume methods,

given its promising potential to tackle properly those caveats.

3. Toward a new numerical core for Salammbô

This section presents the steps that we followed to identify the new suit-

able numerical method. First we list the expected numerical properties to

be ensured as regards to our diffusion frame. Then we present the selected

FV methods, ensuring the latter properties. Finally we present the results

of the numerical tests we conducted to examine their performances.

3.1. Numerical properties expected from schemes solving a typical diffusion

problem

We consider the following general steady state diffusion problem :
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
O · (DOf) + S = 0 in Ω

f = f on ∂Ω1

φ · n = DOf · n = 0 on ∂Ω2

(4)

with Ω ⊂ R2 a rectangular domain and ∂Ω its boundary. ∂Ω = ∂Ω1 ∪ ∂Ω2 is

Ω domain frontier, with ∂Ω1 related to Dirichlet type boundary conditions

and ∂Ω2 related to Neumann boundary conditions. φ is the boundary flux

defined at ∂Ω2 and n is ∂Ω2 exterior normal. S ∈ L(Ω2) is the source term

and D a symmetric tensor.

Problem (4) is tied to several mathematical properties that ensure a phys-

ically acceptable continuous solution. The minimum, maximum principles

marks off the solution within its values in the boundary [15]

For S = 0⇒ inf
∂Ω
f ≤ f ≤ sup

∂Ω
f (5)

The monotony property, guarantees a physically acceptable positive solu-

tion (positivity property) inside the domain Ω [15] :

For S ≥ 0 and f ≥ 0⇒ f ≥ 0 (6)

On the numerical level, ensuring the discrete formulation of these princi-

ples is not straightforward. For instance, in case of high levels of anisotropy

(like those we observe in our case), numerical schemes produce numerical

solutions with negative values and spurious oscillations [15]. Dealing with

this problematic sometimes requires a compromise, depending on the studied

application and its requirements [16]. In our case, we considered positivity

as the most primordial property to be ensured by the upgraded scheme. The

selected scheme must also retain basic numerical standards of consistency
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and convergence with a 2nd order convergence rate. The latter properties

are automatically extended to the transient problem when they are ensured

for the steady state diffusion in (4), with the addition of the initial condition

to the limits to be respected.

3.2. Alternative Finite volume methods

Finite volume based methods, are recommended for mass conservation

problems [32]. The integration of equation (4) over an elementary volume

K ∈ Ω yields the local conservation equation.It states the equilibrium in K,

between the ”volume” creation S and the sum of fluxes FK,σ crossing through

the interfaces or edges σ ∈ ∂K.

−
∫
∂K

DOf · ndl =

∫
K

SdV =
∑
σ∈∂K

FK,σ (7)

FK,σ = −
∫
σ

DOf · nσ,Kdl (8)

n is the normal vector to ∂K, and nσ,K is the normal vector to σ edge.

In the finite volume framework, the equation is discretized in a mesh cell

and FK,σ is approached by a consistent expression. For the rest of the paper,

K designates a mesh cell, represented by its center. K ∈ T with T the set

of mesh cells mapping Ω. ε represents the domain boundary edge set. fK

denotes the discrete approximation of f on the K cell, associated with its

center. From now on FK,σ is merged with its numerical approximation. The

FV method offers a significant property specially adapted for conservation

laws, which is the conservation of flux :

FK,σ + FL,σ = 0 (9)
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σ is the edge shared by K and L neighbouring cells.

FV litterature presents many variants of the method. [16] suggest a clas-

sification depending on the type of the computed values of the solution f .

Cell centred methods such as Linear Two-Points Flux Approximation/TPFA

or Linear Multi-Points Flux Approximation/MPFA compute cell center un-

knowns. Hybrid Mimetic Mixed schemes (HMM), on the other hand compute

cell and edge unknowns. Theoretical convergence arguments can be obtained

by construction for HMM [15] and conditionally for MPFA [15]. But accord-

ing to several benchmarks and research works [15][16][24], none of these lin-

ear schemes are at least positivity preserving for our anisotropy magnitudes.

This is mainly why they were not pre-selected for our investigation.

Non-linear schemes are on the contrary serious candidates [15][16]. We

selected for our tests, the monotony preserving Non-Linear Two-Point Flux

Approximation scheme, which we will denote as NLTPFA and the Min/Max

principles preserving Non-Linear Multi-Point Flux Approximation scheme

which we will denote as NLMPFA. We choose to pre-select these two schemes

as, unlike linear schemes, non-linear schemes do not ensure equivalence be-

tween monotony and Minimum and maximum principles [15].

The main idea of both schemes is based on expressing the discrete flux

FK,σ through a convex combination of two discrete linear de-centred fluxes

F1 and F2 expressed on K and L neighbouring cells, sharing the σ edge.

FK,σ = µ1F1 − µ2F2 (10)

µ1 and µ2 are well defined to preserve flux continuity and genuinely con-

structed to achieve a property longed for in each scheme.
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In case of the NLTPFA, µ1 and µ2 are constructed to achieve a two point

flux structure :

FK,σ = αK,L(f)fL − βK,L(f)fK (11)

with αK,L(f) ≥ 0,βK,L(f) ≥ 0. The equality αK,L(f) = βL,K(f) imposed by

the flux conservation on σ along with the particular two point structure of the

scheme, grants its discretization matrix M the M-matrix property. Therefore

M−1 has only positive entries, and for a positive second member vector, the

scheme ensures f ≥ 0. We followed the development of the method presented

in [33] for a polygonal mesh and the special adaptation of the method for a

Cartesian grid is presented in Appendix A.

In the NLMPFA scheme, the goal is to express the flux in a multi point

structure :

FK,σ =
∑
M

τK,M(fM − fK) (12)

M refers to K’s neighbouring cells and τK,M ≥ 0. The multipoint struc-

ture (12) is fundamental to preserve extremum principles and the theorem

demonstrated in [15][34] proves its ability to prevent internal oscillations in-

side the domain. We followed the development of the method presented in

[34] for a polygonal mesh and the special adaptation of the method for a

Cartesian grid is presented in Appendix B.

Picard algorithm method as adopted for both methods in [33][34] is used

to solve the non-linear system of equations by following these instructions :

- Initialize f 0

- Loop on n : solve M(fn)fn+1 = Sn

- Exit loop if residue ||fn+1 − fn|| < ε = 10−6
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3.3. Numerical experiments

To analyse the performance of the latter alternative schemes, several

numerical tests or ”toy cases” were established. They consist in different

configurations of analytical diffusion tensors (gathered in the literature or

self-constructed) reproducing real case aspects and include different sets of

boundary conditions. These tests also served to verify the prototypes of the

new numerical solvers before testing them in real case simulations. In this

subsection, we present two numerical studies : the first one focuses on mea-

suring the effect of high levels of anisotropy. We present there 3 different

test results related to positivity, the minimum principle and the Min/Max

principles. The second numerical study is related to measuring the effect of

steep coefficients on accuracy.

We present in the following paragraph, the notations used to present the

following numerical results. Nu is the number of cell center unknowns, fmin

and fmax, the extremal values of f inside the solving domain and Niter is

the number of non-linear iterations to reach convergence. Ru = N1

Nu
is the

ratio of undershoots, with N1 the number of grid cells where fK < 0 when

testing positivity and is equal to the number of grid cells where f < fmin

when testing the minimum principle preserving property. To evaluate the

rate of convergence, we use the discrete counter part of L2 norm ||.||2 :

||.||D2 =

√∑
K∈T

f 2
Km(K) (13)

T is the set of mesh cells, m is the K cell ”volume”. The relative approxi-
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mation error is calculated based on the previously defined norm :

Err2 = 100× ||f − fref ||
D
2

||fref ||D2
(14)

fref is the reference solution chosen when evaluating the schemes accuracy

by the method of manufactured solution MMS [35]. This method consists in

manufacturing a source term for a given function fref verifying the boundary

conditions and a given diffusion tensor. The source term is then computed

analytically, knowing the diffusion coefficient and fref analytical expressions.

All the presented tests were conducted on uniform cartesian grids. To

solve non-linear systems, we used picard algorithm. This choice, adopted

in [33][34] will preserve monotony of the NLTPFA scheme at each iteration

and prevent the appearance of undershoots for the NLMPFA scheme [16] .

Initialisation of the non-linear resolution is performed by the solution of a

linear finite volume scheme, filtered from overshoots and undershoots. All

the numerical tests were conducted using serial codes developed on a Python

environment and run on a 12 Gb RAM memory machine with a 2.6 GHz

processor. Matrix are filled sparsely and the scipy.sparse package is used

for efficient matrix operations and inversions. We used sympy, a symbolic

calculation python library to evaluate the analytical expressions of the source

term for the MMS method.

3.3.1. Positivity and Min/Max preserving tests

In this primary numerical study, we measure the effect of typical radia-

tion belts anisotropy on NLTPFA and NLMPFA schemes. We established

three sub-cases, in which we test both schemes in case of a highly anisotropic

analytical tensor. The first one is related to positivity, the second one to
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minimum principle preserving and the third one to test Min/Max principles

preserving. In each sub-case we measure their computational performances

with respect to non-linear convergence and we report the output of a typi-

cal 2nd order linear finite difference scheme, to reflect the behaviour of the

current Salammbô scheme.

In the three studied cases, the diffusion tensor D is taken as:

1

x2 + y2
·

 αx2 + y2 (α− 1)xy

(α− 1)xy x2 + αy2

 (15)

D has 1 and α as eigenvalues, thus an anisotropy ratio equal to 1
α

that we

choose equal to 109. This analytical tensor has also negative coss diffusion

terms, same as what one can find in a real case diffusion tensor.

We start with the first, positivity testing case, by adopting the following

solving domain Ω = [0..1]× [0..1] \ {(0, 0)}. We fix a homogeneous Dirichlet

condition on x = 0,y = 0,y = 1 and a no-flux boundary at x = 1 to reflect

typical real boundary conditions of radiation belts models. S adopt the

following form :

S(x, y) =

 1 if (x, y) ∈ [0.25..0.75]× [0.25..0.75]

0 otherwise
(16)

Positivity testing results are synthesized in table 3

The fmin row in table 3 for NLTPFA and NLMPFA shows how they

maintain positivity as expected. For both methods, non-linear convergence

is achieved after a relatively high number of iterations. The number of it-

erations increased for both schemes when the grid was refined. Nonetheless

NLTPFA is more competitive than NLMPFA with around 2 times less iter-
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Table 3: NLTPFA, NLMPFA and FD results as regards to positivity preserving

Scheme Nu 20× 20 40× 40 80× 80

NLTPFA fmin 6.44 · 10−10 7.55 · 10−15 2.52 · 10−23

Niter 81 141 222

NLMPFA fmin 2.82 · 10−7 9.15 · 10−10 2.71 · 10−13

Niter 153 310 433

FD fmin −0.00083 −0.00064 −0.00041

Ru 0.04 0.06 0.05

ations. Other numerical results with higher levels of anisotropy showed that

a higher number of non-linear iterations is required to reach convergence.

FD results on the other hand confirm the strong limitations of the method

to preserve positivity with a typical anisotropy ratio as its fmin row reports

negative values with not negligible magnitudes. Moreover, the appearance of

negative values is not contained as the ratio of negative values Ru increased

when the grid was refined.

We switch to the second, minimum preserving test, by adopting a full do-

main Dirichlet boundary condition f = 1 on ∂Ω with the same S term.Minimum

preserving testing results are synthesized in table 4

The fmin row of NLMPFA in table 4 shows the preservation of the mini-

mum principle by the scheme. NLTPFA results however, shows the opposite,

with minimum values under 1. This particular behaviour is expected as min-

imum principle and monotony are no not equivalent in case of non-linear

schemes[15]. Other minimum principle violation cases are also reported in
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Table 4: NLTPFA, NLMPFA and FD results as regards to the minimum principle pre-

serving

Scheme Nu 20× 20 40× 40 80× 80

NLTPFA fmin 0.9983 0.9984 0.9987

Niter 62 83 66

Ru 0.1425 0.1431 0.1396

NLMPFA fmin 1.00 1.00 1.00

Niter 66 107 201

FD fmin 0.9981 0.9983 0.9987

Ru 0.090 0.127 0.128

[16]. Nevertheless, this issue will not impact our application. In fact, due to

the permanent presence of f = 0 boundary at ymin, the minimum principles

implies positivity and so, both properties are the same. Although NLTPFA

remains the fastest method, iterations numbers difference between the two

methods are not as wide as in the previous sub-case. The previously men-

tioned behaviour of iterations number increase when the grid is refined, is

also observed in this second study. But a small decrease in iteration numbers

is observed in NLTPFA when the number of grid cells is quadrupled (from

Nu = 40×40 to Nu = 80×80). This might be explained by our initialization

procedure, based a more refined solution. FD results shows the violation

of the minimum principle and a consequent ratio of undershoots, increasing

when the grid is refined.

For the third, Min/Max preserving test, the solving domain is shrinked
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to Ω = [0..0.5]× [0..0.5] \ {(0, 0)}, f = sin(πx) sin(πy) on x = 0,y = 0,y = 1

(Dirichlet condition) and we adopt a no flux condition on x = 1 with S = 0.

Min/Max testing results are synthesized in table 5

Table 5: NLTPFA, NLMPFA and FD results as regards to extremum principles preserving

Scheme Nu 20× 20 40× 40 80× 80

NLTPFA fmin 2.22 · 10−15 4.67 · 10−27 3.60 · 10−44

fmax 0.9955 0.9988 0.9997

Niter 95 181 338

NLMPFA fmin 2.10 · 10−9 1.63 · 10−13 3.73 · 10−18

fmax 0.9950 0.9988 0.9995

Niter 126 250 606

FD fmin −0.023 −0.021 −0.0187

fmax 0.9872 0.9968 0.9992

Ru 0.121 0.124 0.132

fmin and fmax rows in table 5 for both schemes show the preservation

of the minimum and the maximum principle. This is expected from the

NLMPFA, but achieved with a very high computational cost (over 600 iter-

ations for a 80× 80 cells grid). No overshoots were observed in the NLTPFA

results, despite this scheme not holding a maximum preserving property [16].

NLTPFA scheme shows a better computational efficiency and thus a better

match to our application . The same failure of the FD scheme to tackle

anisotropy is also observed in this test case.
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3.3.2. Accuracy and precision tests

In the following numerical study, we evaluate the accuracy of both schemes.

We measure their precision and convergence rate in case of a steep diagonal

diffusion tensor, and in case of the previously used anisotropic diffusion ten-

sor. In both test cases, the solving domain Ω = [0..0, 5] × [0..0, 5] and S is

manufactured to have fref = sin(πx) × sin(πy) (MMS). The results of the

steep coefficients sub-case are synthesized in table 6 and the results of the

anisotropic tensor sub-case are synthesized in table 7.
Dxx = 102 + 106 · exp−10x2

Dyy = 10 + 103 · exp−2·102(y−0.5)2

Dyx = 0

(17)

Table 6: Error and convergence rate results for the diagonal inhomogeneous diffusion

tensor case

Scheme Nu 20× 20 40× 40 80× 80

NLTPFA Err2 2.99 · 10−1 7.49 · 10−2 1.87 · 10−2

Order - 1.99 2.00

NLMPFA Err2 2.99 · 10−1 7.49 · 10−2 1.87 · 10−2

Order - 1.99 2.00

Table 6 and table 7 results show a 2nd order convergence rates for both

schemes. For the diagonal diffusion tensor sub-case, both methods present

equal error magnitudes. In case of the full anisotropic tensor, NLTPFA is

more precise. For the first two columns, NLMPFA is slightly more competi-

tive than NLTPFA.
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Table 7: Error and convergence rate results for the high anisotropy diffusion tensor case

Scheme Nu 20× 20 40× 40 80× 80

NLTPFA Err2 6.53 · 10−2 2.06 · 10−2 5.55 · 10−3

Order - 1.66 1.92

Niter 39 41 21

NLMPFA Err2 3.00 · 10−1 7.66 · 10−2 1.94 · 10−2

Order - 1.97 1.98

Niter 32 32 30

4. Transient study results with a real diffusion tensor

We move now to a real physical configuration. As a consequence, the

diffusion problem ((4)) is extended to the transient case, the source term

is put at zero (S = 0) and and we adopt a real life diffusion tensor. In

this section we present the results of 2D real life simulations. First, we

report a computational cost study of NLTPFA and NLMPFA schemes, both

associated to an Euler implicit time integration. Then we evaluate the effect

of the FD/FV transition, by comparing a NLTPFA + Euler implicit solver to

a FD + Euler explicit solver. Finally, we compare NLTPFA + Euler implicit

transient simulations with and without cross diffusion to characterize their

effect in the diffusion frame.

All transient simulations, are operated at the L∗ = 4.49 plane, so that

the adopted tensor is the same one presented in section 2.3. It also remains

time-independent (Kp = 6). We simulate for each case, the diffusion process

until Tsimu = 90000 s, starting from a constant initial state finit = 1030.
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Table 8 presents the limits of our solving domain, as well as the adopted

boundary conditions. The 133× 49 (y, E) 2D Salammbô full grid is used in

Table 8: Boundary conditions used in Salammbô-Electron

Boundary location Boundary conditions

ymin = 0.0862 f = 0

ymax = 1.0 No-flux boundary

Emin = 5.66 · 10−4 MeV f = 1 · 1030

Emax = 12.56 MeV f = 0

FD simulations, from which we generate the FV grid by merging FD nodes

with FV grid interfaces.

A convergence study was conducted on both schemes to verify their first

order time accuracy using the MMS method with fref = sin(πx) sin(πy) exp(−t)

with tsimu = 2.0, for the highly anisotropic diffusion tensor case (15) on a

100× 100 uniform grid. The results are reported in table 9.

Table 9: Time order verification for the studied schemes

Scheme ∆t 0.5 0.25 0.125

NLTPFA + Euler implicit Err2 1.034 0.469 0.223

Order - 1.14 1.073

NLMPFA + Euler implicit Err2 1.029 0.468 0.222

Order - 1.14 1.073
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4.1. NLTPFA and NLMPFA computation cost comparison

For this study case, we conducted several transient simulations with differ-

ent time steps. We measure the calculation time required for each simulation

and the average number of non-linear iterations required for the convergence.

NLTPFA scheme converged with all the time steps. But, we observed an odd

behaviour from the NLMPFA scheme as it could not reach convergence in

some time steps, even after a very high non-linear iteration number (> 500).

We observed the oscillation of the residue around a fixed value, when the

convergence was not achieved. It was also observed in simulations conducted

at other L∗ planes. When the no-flux boundary condition at ymin is replaced

by a homogeneous dirichlet condition, the scheme overcome the oscillatory

behaviour. We also considered loosening the residue and the exit criteria of

the non-linear algorithm, which allowed the non-linear convergence.

In the table 10, we report the results of the NLTPFA simulations in case

of the natural boundary conditions, and the NLMPFA simulations results

(denoted as NLMPFA*) when substituting the no-flux boundary conditions

at ymax with a homogeneous Dirichlet condition, using the same residue for-

mula. Ni is the average number of non-linear iterations, Tc is the calculation

time.

One can see, in table 10 that the smaller the time steps are, the smaller

non-linear iteration numbers are. In fact, for a smaller ∆t, the evolution of

the dynamic at each iteration is slower and the change in the numerical solu-

tion profile for successive time steps is smaller, thus less non-linear iterations

are needed for convergence. For both schemes, the increasing ratio of Tc is

not equal to the increasing ratio of the time step. When ∆t = 10000s is
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Table 10: Real case transient results

Scheme ∆t 100s 1000s 10000s

NLTPFA Niter 7.99 20.98 39.55

Tc(s) 4978.92 1526.67 336.45

NLMPFA* Niter 19.69 33.18 59.66

Tc(s) 21928.78 4272.83 636.43

divided by 10, Tc is multiplied by around 5 times for NLTPFA and around

7 times for NLMPFA*, making the choice of smaller time steps less cheaper

that in linear schemes. Nevertheless, the simulation cost overall, and for the

same time step is higher than for a linear scheme, that requires only one

iteration per time step.

We observed in the NLTPFA solution profile a violation of the maximum

principle with some PSD values exceeding the Emin upper limit and the finit

initial value. These overshoots are located near the Emin limit boundary.

We report in figure 8 the evolution of the overshoots ratio in % as function

of time, when ∆t = 1000s. We can clearly observe their decrease during

the course of the simulation. Regarding their magnitude, they exceeded the

maximum by at most three digits for all the NLTPFA simulation.

4.2. FV to FD transition

From now on, we adopt the NLTPFA + Euler implicit solver as the ref-

erence solver and we use ∆t = 1000s as the time integration step. In this

section, we compare the latter FV scheme simulation results to those of a

FD explicit scheme, representing Salammbô’s behaviour and coded on the
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Figure 8: ratio of maximum principle violating points in 2D PSD function profile at

L∗ = 4.49 in function of time, for ∆t = 1000s using the NLTPFA scheme
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Figure 9: PSD function 2D profile at L∗ = 4.49 and Tsimu = 90000s using the NLTPFA

scheme

same python environment for the sake of a fair comparison. We used for the

explicit simulation a time step of ∆t = 50ms, for which it required 11685s

of calculation time. Both simulation were operated without cross diffusion

terms to compare both solver in the same diffusion frame.

Figure 9 reports the PSD function 2D profile for the NLTPFA scheme,

at t = Tsimu and figure 10 reports the PSD function 2D profile for the FD

scheme. We notice that the two 2D profiles are similar. We observe rapidly

decaying values near the loss cone at ymin on the entire energy direction. A

local minimum zone spreads over the entire y direction, around E = 1MeV

that merges totally with the Dyy maximum zone. The same behaviour is
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Figure 10: PSD function 2D profile at L∗ = 4.49 and Tsimu = 90000s using a finite

difference scheme

observed with less importance and on a wider zone, around E = 0.1 MeV.

The PSD distribution around Emin and Emax is relatively flat, due to the

imbalance between the diffusion directions usually in favour to y.

When looking to their relative difference in figure 11, we see how the

diagonal diffusion coefficient steepness is principally driving the difference

between the two profiles. This can be seen near E = 2MeV , where DEE

presents a spread peak. It is also seen in the region located between (y, E) ∈

[0.7..0.9] × [10−2..10−1] and at higher energies where Dyy. The difference

observed at ymin originates mainly from the interpolation performed between

the finite difference and finite volume grids.
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Figure 11: NTPFA and FD relative difference profile at L∗ = 4.49 and Tsimu = 90000s

without cross diffusion

4.3. Measuring the effect of cross diffusion

As the NLTPFA scheme allows now the full description of the 2D diffusion

frame, without a degrading impact on the numerical solution, we are now able

to quantify the effect of cross diffusion.

Figure 12 shows the relative difference of the numerical solution for the

NLTPFA scheme with and without cross diffusion. Figure 13 reports also 1D

cut plots at several energy and pitch angle locations. One can notice that

the energy domain located between E = 10−2 MeV and E = 0.6 MeV for

almost all equatorial pitch angles, shows higher PSD magnitude in presence
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Figure 12: Relative difference profile for the NLTPFA scheme in regards to cross diffusion

at L∗ = 4.49 and Tsimu = 90000s
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Figure 13: 1D cut plots of the relative error difference for the NLTPFA scheme in regards

to cross diffusion at L∗ = 4.49 and Tsimu = 90000s.

of cross diffusion with relative differences around 60%. This domain is at the

radiation belt border and largely influenced by the lower energy boundary.

Outside this location, and especially in regions where cross diffusion terms

are negative (around the Emin boundary), the relative difference stayed at

very low levels. We can note that near the y = 1 boundary, at E = 1

MeV, representing equatorial highly energetic particles, we observe lower

PSD magnitudes in presence of the cross diffusion.

5. Summary and conclusion

The prime objective of this investigation was to discuss the complexity

of developing a robust and personalized numerical scheme in order to tackle

the numerical challenges involved in radiation belts modelling. We presented

those challenges originating from our multi-scale physics and embodied by

a highly inhomogeneous and anisotropic diffusion tensor.Thus we provide

38



an interesting field of benchmarking for numerical schemes, in addition to

reservoir engineering, radionuclide migration and multiphase flow.

We identified finite volume method alternatives , suitable for our con-

straints, the NLTPFA scheme and the NLMPFA scheme. They presented

satisfying results when tested in real case mimicking analytical tests, with

a computational cost advantage to the NLTPFA method. We tested these

schemes (associated to an Euler implicit scheme) in case of a real life tran-

sient diffusion tensor. Unfortunately NLMPFA was not able to converge. We

plan on conducting further studies to identify the reason of this behaviour,

while we suspect that the residue formula is too restrictive with respect to

our high levels of inhomogeneity. On the other hand the NLTPFA scheme

associated to the Euler implicit scheme presented a better performance for a

full tensor compared to an explicit finite difference scheme. That’s why we

choose to adopt it for the new Salammbô core, and more specifically to inte-

grate it in the 3D splited transient resolution. Using a finite volume method

to solve radiation belts dynamics has not been made so far as well as defining

a relevant benchmarking package in our community.

Next step, will consist in optimizing the NLTPFA resolution algorithm

as it will be applied in each 2D plan, hence rapidly increasing the compu-

tational cost. This optimization is all the more important as Salammbô has

been associated recently to data assimilation tools requiring several parallel

computing loops.

Numerical uncertainties and challenges being put aside, the radiation

belt study community still has to master the physical ones, coming from the

complex coefficients estimation. In fact, their accuracy may have a noticeable
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impact on the solving output and their effects still need to be well estimated

and minimized on the equation resolution.
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Appendix A. NLTPFA development for a Cartesian grid

We show here, the numerical flux FK,σ construction, in the NLTPFA

method [33], in case of a full 2D tensor D =

Dxx Dyx

Dyx Dyy

 and on a Cartesian

mesh (rectangular and conforming), same as for Salammbô-Electron mesh.

Figure A.14: Construction of NLTPFA stencil on a Cartesian mesh

To express the numerical fluxes F1 and F2, we need a discrete expression

of the gradient Of projected on the DK

T
·nσ,K and DL

T
·nσ,L directions (see

((8)) and knowing that DOfn = Of ·D
T
n). DK and DL are evaluations of

the diffusion tensor in K and L.
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Considering our rectangular cell case, the direction is expressed in the

Cartesian (ex, ey) base reported in the figure A.14, and the projected gradient

is evaluated through cell center and edge points, whom sector is crossed by

D
T
nσ,K and D

T
nσ,L respectively for F1 and F2.

In the end, and in our special Cartesian case, the expression of F1 and F2

will depend on the sign of Dyx in each cell. Thereby we have :


F1 = Dxx(K) · fσ−fK

xσ−xK
+Dyx(K) · fσ1−fK

yσ1−yK
if Dyx(K) ≥ 0

or

F1 = Dxx(K) · fσ−fK
xσ−xK

+Dyx(K) ·
fK−fσ′1
yK−yσ′1

if Dyx(K) < 0

(A.1)

and 
F2 = −Dxx(L) · fL−fσ

xL−xσ
−Dyx(L) · fL−fσ2

yL−yσ2
if Dyx(L) ≥ 0

or

F2 = −Dxx(L) · fL−fσ
xL−xσ

−Dyx(L) ·
fσ′2
−fL

yσ′2−yL
if Dyx(L) < 0

(A.2)

As represented in figure A.14, the solid yellow and solid green segments

embody the gradient projection on the diagonal direction or the normal di-

rection of the studied edge. While the solid blue and solid red segments are

related to the off diagonal direction in case of a positive cross diffusion term.

Their dashed counter parts are related to the case where cross diffusion is

negative.

Getting back to the general development of the method as shown in [33],

to get to the two point approximation as presented in ((11)), ((A.1)) and

((A.2)) expressions are injected in ((10)) then cell centred terms and edge

terms are regrouped separately:
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FK,σ = αfL − βfK + a1(f)µ1 − a2(f)µ2 (A.3)

where a1 and a2 contain edge terms and we impose a1(f)µ1−a2(f)µ2 = 0.

µ1 and µ2 are then computed based on this system :

 a1µ1 − a2µ2 = 0

µ1 + µ2 = 1
(A.4)

Thus

 µ1 = a2
a1+a2

µ2 = a1
a1+a2

if a1 + a2 6= 0 else µ1 = µ2 = 0.5 (A.5)

Edge values intervening in a1 and a2 expression are interpolated from cell

unknowns.

Appendix B. NLMPFA development for a Cartesian grid

To achieve the NLMPFA form, we start from the expression of F1 and F2

previously defined and replace edge values directly with convex combination

of neighbouring cell unknowns. For instance :

fσ =
xL − xσ
xL − xK

fK +
xσ − xK
xL − xK

fL (B.1)

Thereby (A.1) and (A.2) are expressed in the Cartesian grid reported in the

figure B.15 as follows :
F1 = Dxx(K) · fL−fK

xL−xK
+Dyx(K) · fM1

−fK
yM1
−yK

if Dyx(K) ≥ 0

or

F1 = Dxx(K) · fL−fK
xL−xK

+Dyx(K) · fK−fM2

yK−yM2
if Dyx(K) < 0

(B.2)
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Figure B.15: Construction of NLMPFA stencil on a rectangular conforming mesh

and 
F2 = −Dxx(L) · fL−fK

xL−xK
−Dyx(L) · fL−fM3

yL−yM3
if Dyx(L) ≥ 0

or

F2 = −Dxx(L) · fL−fK
xL−xK

−Dyx(L) · fM4
−fL

yM4
−yL

if Dyx(L) < 0

(B.3)

As represented in figure B.15, the solid green segment embody the gradient

projection on the diagonal direction or the normal direction of the studied

edge. While the solid blue and red segments are related to the off diagonal

direction in case of a positive cross diffusion terms. Their dashed counter

parts are related to the case where cross diffusion is negative.
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F1 and F2 can then be expressed according to this multipoint form : F1 =
∑

M ν1
K,M(fM − fK)

F2 =
∑

M ν2
K,M(fM − fL)

(B.4)

With M neighbouring cells of the studied cell i.e: L,M1 or M2 (depending

on the sign of Dyx(K)) for F1 and K, M3 or M4 (depending on the sign of

Dyx(L)) for F2. Getting back to the general development of the method as

shown in [34] and to ensure ((9)), µ1 and µ2 are chosen depending on the

sign of F1 and F2 :

- if F1F2 ≤ 0 :

 µ1 = |F2|
|F1|+|F2|

µ2 = |F1|
|F1|+|F2|

if |F1|+ |F2| 6= 0 else µ1 = µ2 = 0.5 (B.5)

making FK,σ = 2µ1F1.

- if F1F2 > 0 then we define sub-fluxes G1 and G2 such as :



F1 = λ1(fL − fK) +
∑
M 6=L

ν1
K,M(fM − fK)︸ ︷︷ ︸

G1

F2 = λ2(fK − fL) +
∑
M 6=K

ν2
K,M(fM − fL)︸ ︷︷ ︸

G2

(B.6)

With this new configuration and depending on the sign of G1 and G2 we

have : - if G1G2 > 0 then FK,σ = (µ1λ
1 + µ2λ

2)(fL − fK)

- if G1G2 ≤ 0 then FK,σ = (µ1λ
1 + µ2λ

2)(fL − fK) + 2µ1G1 µ1 = |G2|
|G1|+|G2|

µ2 = |G1|
|G1|+|G2|

if |G1|+ |G2| 6= 0 else µ1 = µ2 = 0.5 (B.7)
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The multipoint structure ((12)) is fundamental to preserve extremum

principles and the theorem demonstrated in [34] proves its ability to prevent

internal oscillations inside the domain.

References

[1] M. K. Hudson, B. T. Kress, M. H. R., J. A. Zastrow, J. B. Blake, Re-

lationship of the van allen radiation belts to solar wind drivers, Journal

of Atmospheric and Solar-Terrestrial Physics 70 (5) (2008) 708 – 729.

doi:https://doi.org/10.1016/j.jastp.2007.11.003.

[2] R. B. Horne, S. A. Glauert, N. P. Meredith, D. Boscher, V. Maget,

D. Heynderickx, D. Pitchford, Space weather impacts on satellites and

forecasting the earth’s electron radiation belts with spacecast, Space

Weather 11 (4) (2013) 169–186. doi:10.1002/swe.20023.

[3] S. Bourdarie, V. Maget, R. Friedel, D. Boscher, A. Sicard, D. Lazaro,

”complementarity of measurements and models in reproducing earth’s

radiation belt dynamics”, in: J. ”Lilensten (Ed.), ”Space Weather : Re-

search Towards Applications in Europe”, Springer Netherlands, ”2007”,

pp. ”219–229”.

[4] M. Schulz, L. J. Lanzerotti, Particle diffusion in the radiation belts,

Physics and chemistry in space, Springer-Verlag, 1974.

[5] J. Roederer, H. Zhang, Dynamics of Magnetically Trapped Particles:

Foundations of the Physics of Radiation Belts and Space Plasmas, 2014.

doi:10.1007/978-3-642-41530-2.

45



[6] T. Beutier, D. Boscher, A three-dimensional analysis of the electron
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and los alamos geosynchronous and gps energetic particle data, Space

Weather 3 (4) (2005). doi:10.1029/2004SW000065.

[24] R. Herbin, F. Hubert, Benchmark on Discretization Schemes for

Anisotropic Diffusion Problems on General Grids, in: ISTE (Ed.), Finite

48



volumes for complex applications V, Wiley, France, 2008, pp. 659–692.

URL https://hal.archives-ouvertes.fr/hal-00429843

[25] D. Subbotin, Y. Shprits, B. Ni, Three-dimensional verb radiation belt

simulations including mixed diffusion, Journal of Geophysical Research:

Space Physics 115 (A3) (2010). doi:10.1029/2009JA015070.

[26] X. Tao, A. A. Chan, J. M. Albert, J. A. Miller, Stochastic modeling of

multidimensional diffusion in the radiation belts, Journal of Geophysical

Research: Space Physics (1978–2012) 113 (A7) (7 2008).

[27] F. Xiao, Z. Su, H. Zheng, S. Wang, Modeling of outer radiation belt

electrons by multidimensional diffusion process, Journal of Geophysical

Research: Space Physics 114 (A3) (2009). doi:10.1029/2008JA013580.

[28] Z. Su, H. Zheng, L. Chen, S. Wang, Numerical simulations of storm-time

outer radiation belt dynamics by wave–particle interactions including

cross diffusion, Journal of Atmospheric and Solar-Terrestrial Physics

73 (1) (2011) 95 – 105.

[29] J. M. Albert, Using quasi-linear diffusion to model acceleration and loss

from wave-particle interactions, Space Weather 2 (9) (9 2004).

[30] X. Tao, J. M. Albert, A. A. Chan, Numerical modeling of mul-

tidimensional diffusion in the radiation belts using layer methods,

Journal of Geophysical Research: Space Physics 114 (A2) (2009).

doi:10.1029/2008JA013826.

[31] E. Camporeale, G. Delzanno, S. Zaharia, J. Koller, On the numerical

simulation of particle dynamics in the radiation belt: 2. procedure based

49



on the diagonalization of the diffusion tensor, Journal of Geophysical

Research: Space Physics 118 (06 2013). doi:10.1002/jgra.50278.
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