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Fast Optimization with Zeroth-Order Feedback
in Distributed, Multi-User MIMO Systems

Olivier Bilenne, Panayotis Mertikopoulos, Member, IEEE and E. Veronica Belmega, Senior Member, IEEE

Abstract—In this paper, we develop a gradient-free optimiza-
tion methodology for efficient resource allocation in Gaussian
MIMO multiple access channels. QOur approach combines two
main ingredients: (i) an entropic semidefinite optimization based
on matrix exponential learning (MXL); and (if) a one-shot gradi-
ent estimator which achieves low variance through the reuse of
past information. This novel algorithm, which we call gradient-
Jree MXL with callbacks (MXLO0"), retains the convergence speed
of gradient-based methods while requiring minimal feedback per
iteration—a single scalar. In more detail, in a MIMO multiple
access channel with K users and M transmit antennas per user,
the MXLO0" algorithm achieves s-optimality within poly(K, M)/&?
iterations (on average and with high probability), even when im-
plemented in a fully distributed, asynchronous manner. For cross-
validation, we also perform a series of numerical experiments
in medium- to large-scale MIMO networks under realistic chan-
nel conditions. Throughout our experiments, the performance
of MXL0O* matches—and sometimes exceeds—that of gradient-
based MXL methods, all the while operating with a vastly re-
duced communication overhead. In view of these findings, the
MXLO0" algorithm appears to be uniquely suited for distributed
massive MIMO systems where gradient calculations can become
prohibitively expensive.

Index Terms—Gradient-free optimization; matrix exponential
learning; multi-user MIMO networks; throughput maximization.

1. INTRODUCTION

HE deployment of multiple-input and multiple-output
(MIMO) terminals at a massive scale has been identified
as one of the key enabling technologies for fifth generation (5G)
wireless networks, and for good reason: massive-MIMO arrays
can increase throughput by a factor of 10x to 100X (or more),
they improve the system’s robustness to ambient noise and
channel fluctuations, and they bring about significant latency
reductions over the air interface [1, 2]. Moreover, ongoing
discussions for the evolution of 5G envision the deployment of
advanced MIMO technologies at an even larger scale in order to
reach the throughput and spectral efficiency required for “speed
of thought” connectivity [3, 4].
In view of this, there have been intense efforts to meet the
complex technological requirements that the massive-MIMO
paradigm entails. At the hardware level, this requires scaling up
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existing multiple-antenna transceivers through the use of inex-
pensive service antennas and/or time-division duplexing (TDD)
[1, 5, 6]. At the same time however, given the vast amount
of resources involved in upgrading an ageing infrastructure, a
brute-force approach based solely on the evolution of wireless
hardware technology cannot suffice. Instead, unleashing the full
potential of massive-MIMO arrays requires a principled ap-
proach with the aim of minimizing computational overhead and
related expenditures as the network scales up to accommodate
more and more users.

In this general multi-user MIMO context, it is crucial to
optimize the input signal covariance matrix of each user, es-
pecially in the moderate (or low) signal to interference-plus-
noise ratio (SINR) regime [7-11]. The conventional approach
to this problem involves the use of water-filling (WF) solu-
tion methods, either iterative (IWF) [8, 12] or simultaneous
(SWF) [13]. In the IWF algorithm only one transmitter up-
dates its input covariance matrix per iteration (selected in a
round-robin fashion); instead, in SWF all transmitters update
their transmission characteristics simultaneously. Owing to this
“parallelizability”, SWF can be deployed in a distributed and
decentralized fashion; on the other hand, because of potential
clashes in the users’ concurrent updates, the SWF algorithm
may fail to converge [13]. By comparison, IWF always con-
verges to an optimal state [8], but this comes at the cost of
centralization (to orchestrate the updating transmitters at each
iteration) and a greatly reduced convergence speed (which is
inversely proportional to the number of users in the system).!

In addition to the above, the authors of [15] proposed the
so-called iterative weighted MMSE (IW-MMSE) algorithm to
solve the (non-convex) throughput maximization problem in
the broadcast channel (downlink). This work was subsequently
extended in [16] to broadcasting in multi-cell interference chan-
nels. This formulation includes as a special case the uplink
multiple access channel (MAC) under the assumption that
(a) all receivers are co-located and act as a single entity;
and (b) this amalgamated entity employs successive interfer-
ence cancellation (SIC) to decode incoming messages. In this
context, IW-MMSE was shown to converge to an optimal
solution in a distributed fashion, without suffering the conver-
gence/distributedness trade-off of water-filling methods.

Importantly, the above schemes rely on each user having
perfect knowledge of (a) their effective channel matrix (which
typically changes from one transmission frame to another);
and/or (b) the global, system-wide signal-plus-noise covariance

I As suggested by one of the referees, it is worth pointing out here that water-
filling has also been applied to a broad range of distributed network paradigms;
see e.g., [14] for an application to cognitive radio OFDM networks.



ALGORITHM [sourcE]  FEEDBACK CONVERGENCE CoNv. SPEED DISTRIBUTED OVERHEAD
IWF [8] FULL MATRIX v O(K log(1/g)) NO O(min{M?,N?})
SWF [13]  FULL MATRIX NO — v O(min{KM?, N*})
IW-MMSE [15,16] FULL MATRIX v — v O(min{KM?, N?})
MXL [17]  FULL MATRIX (IMP.) v O/ v O(min{KM?, N?})
MXLO [THIS PAPER]  SCALAR v O/gh v o)
MXLO0* [THIS PAPER]  SCALAR v O(1/&?) v o)

TABLE I: Overview of related work. For the purposes of this table “full matrix feedback™ refers to the case where the network’s users have
perfect knowledge of a) their effective channel matrices; and/or b) the aggregate signal-plus-noise covariance matrix at the receiver at each
transmission frame. The characterization “imp.” (for “imperfect”) signifies that noisy measurements suffice; on the contrary, “scalar” means that
users only observe their realized utility (in our case, their achieved throughput). The “convergence” and “conv. speed” columns indicate the best

theoretical guarantees for each algorithm: f(g) denotes the maximum number of iterations required to reach an e-optimal state while “—

” means

that no guarantees are known. Finally, the “overhead” column indicates the computation/communication overhead of each iteration; here and
throughout, K is the number of users, M is the maximum number of transmit antennas per user, and N is the number of antennas at the receiver.

matrix at the receiver. These elements are highly susceptible
to observation noise, asynchronicities, and other impediments
that arise in the presence of uncertainty; as a result, algorithms
requiring feedback of this type cannot be reliably implemented
in real-world MIMO systems.

To relax this “perfect matrix feedback™ requirement, [17]
introduced a stochastic, first-order semidefinite optimization
method based on matrix exponential learning (MXL). The
MXL algorithm proceeds incrementally by combining stochas-
tic gradient steps with a matrix exponential mapping that en-
sures feasibility of the users’ signal covariance variables. In
doing so, MXL guarantees fast convergence in cases where WF
methods demonstrably fail: specifically, MXL achieves an &-
optimal state within O(1/ £%) iterations, even in the presence of
noise and uncertainty, in which case water-filling methods are
known to produce suboptimal results [12, 13, 18].

On the negative side, MXL still requires (a) inverting a large
matrix at the receiver; and (b) transmitting the resulting (dense)
matrix to all connected users. In a MIMO array with N = 128
receive antennas, this means 65 kB of data per transmission
frame, thus exceeding typical frame size limitations by a factor
of 50x to 500x (depending on the specific standard) [19].
Coupled with the significant energy expenditures involved in
matrix computations and the fact that entry-level antenna arrays
may be ill-equipped for this purpose, the overhead of MXL
quickly becomes prohibitive as MIMO systems “go large”.

Contributions and related work: Our main objective in
this paper is to lift the requirement that users have access to
full matrix feedback at each transmission frame (e.g., perfect
knowledge of their effective channel matrices or the system-
wide signal-plus-noise covariance matrix). Our main tool to lift
these feedback requirements is the introduction of a “zeroth-
order” optimization framework in which gradients are esti-
mated from observed throughput values using a technique
known as simultaneous perturbation stochastic approximation
(SPSA) [20, 21]. By integrating this SPSA technique in the
chassis of the MXL method, we obtain a novel algorithm, which
we call gradient-free matrix exponential learning (MXLO),
and which we show converges to g-optimality within O(1/&*)
iterations (on average and with high probability).

On the positive side, this analysis shows that MXLO is an
asymptotically optimal algorithm (similarly to MXL, IWF and
IW-MMSE) but without the full matrix feedback requirements

of these methods. On the negative side, despite the vastly
reduced feedback and overhead requirements of MXLO, the
drop in convergence speed relative to the original MXL scheme
is substantial and makes the algorithm ill-suited for practical
systems. In fact, as we show via numerical experiments in real-
istic network conditions, MXLO0 might take up to 10° iterations
to achieve a relative optimality threshold of £ = 10~! (compared
to between 10 and 100 iterations for MXL). This is caused by
the very high variance of the SPSA estimator, which incurs
a significant amount of state space exploration and leads to a
dramatic drop in the algorithm’s convergence speed.

To circumvent this obstacle, we introduce a variance re-
duction mechanism where information from previous transmit
cycles is reused to improve the accuracy of the SPSA gradient
estimator. We call the resulting algorithm gradient-free MXL
with callbacks (MXLO"Y), and we show that it combines the
best of both worlds: it retains the fast O(1/?) convergence
rate of the standard MXL algorithm, despite the fact that it
only requires a single scalar worth of feedback per iteration. In
fact, in many instances, the reuse of past queries is so efficient
that the gradient-free MXLO* algorithm ends up outperforming
even MXL (which requires first-order gradient feedback).

With regard to feedback reduction, the work which is closest
in spirit to our own is the very recent paper [22], where the
authors seek to minimize the informational exchange of MXL
methods applied to the maximization of transmit energy effi-
ciency (as opposed to throughput). There, instead of requiring
an N X N Hermitian matrix as feedback, each transmitter is
assumed to receive a random selection of gradient components.
This (batch) “coordinate descent” approach leads to a trade-
off between signalling overhead and speed of convergence,
but still relies on users having access to first-order gradient
information. In contrast, we do not make any such assumptions
and work solely with throughput observations; in this way, the
communication overhead is reduced to a single scalar, while
retaining the possibility of asynchronous, distributed updates.

Finally, from a beamforming perspective, the algebraic
power method can also be used to iteratively approximate opti-
mal beamformer/combiner pairs without prior knowledge of the
channel matrix. However, this approach requires a stationary
wireless background: in the presence of multiple users, user-to-
user interference can render the estimation of individual chan-
nel matrices impossible. For this reason, we do not consider



such methods in the sequel; for an overview, see [23, 24].

Notation: Throughout the sequel, we use bold symbols for
matrices, saving the letters k, ¢ for user assignments and ¢, s for
time indices, so that e.g., matrix Qy relates to user k, Q; to time
t, and Qg to user k at time ¢. The symbols o(:), O(-), and O(-)
are taken as in the common Bachmann-Landau notation.

II. PROBLEM STATEMENT

In this section, we present two archetypal multi-user MIMO
system models that are at the core of our considerations: a
centralized sum-rate optimization problem, and an individual
rate maximization game. In both cases, the optimization process
is assumed to unfold in a distributed, online manner as follows:

1) At each transmission frame, every user in the network
selects an action (an input signal covariance matrix).

2) This choice generates each user’s utility (their sum- or
individual rate, depending on the problem’s specifics).

3) Based on the observed utilities, the users update their
actions and the process repeats.

We stress here that we do not assume the existence of a
centralized control hub with access to all the primitives defining
the problem (individual channel matrices, input signal covari-
ance matrices, etc.) and/or the capability of implementing an
offline optimization algorithm to solve it. Instead, we focus
on wireless networks with light-weight deployment and im-
plementation characteristics, such as multi-user MIMO uplink
networks in typical urban environments. In the downlink, the
decision process regarding all transmission aspects (including
the input signal covariance matrices) is inherently centralized
as it takes places at the unique transmitter, which makes the
broadcast setting a more resource-hungry choice compared to
the uplink; nevertheless, the duality between the MAC and
the broadcast channel (BC) [25] can be exploited to solve the
analogous centralized problem in the downlink.

In terms of decoding, we consider two different schemes
at the receiver: (a) successive interference cancellation (SIC),
which is suitable for networks with centralized user admission
and control protocols; and (b) single user decoding (SUD),
which is suitable for more decentralized, ad hoc networks.

A. Centralized sum-rate maximization

Consider a Gaussian vector multiple access channel consist-
ing of K users simultaneously transmitting to a wireless receiver
equipped with N antennas. If the k-th transmitter is equipped
with M, antennas, we get the baseband signal model

K
y=>, Hx+z (1)

where: (a) x;, € CY denotes the signal transmitted by the k-th
user; (b) Hy € CV*M« is the corresponding channel matrix;
(c) y € CV is the aggregate signal reaching the receiver; and
(d) z € CN denotes the ambient noise in the channel, including
thermal and environmental interference effects (and modeled
for simplicity as a zero-mean, circulant Gaussian vector with
identity covariance). In this general model, the transmit power

of the k-th user is given by p; = E[xek]. Then, letting Py
denote the maximum transmit power of user k, we also write

Qi = E[xix[1/Px )

for the normalized signal (or input) covariance matrix of user k.
By definition, Q; is Hermitian and positive-semidefinite, which
we denote by writing Q; € Herm (M;) and Q; > O respectively.
Assuming successive interference cancellation (SIC) at the
receiver, the users’achievable sum rate is given by the familiar

expression
R(Q) =logdetW, 3)

where ©
— _ T
W=WQ =1+  PHQH] “)

is the aggregate signal-plus-noise covariance matrix at the
receiver, and Q = (Qq,...,Qk) denotes the users’ aggregate
signal covariance profile [26]. SIC decoding of this type has
been exploited as a means to control the multi-user interference
in the power-domain non-orthogonal multiple access (NOMA)
technology [27], which provides a better spectrum utilization
and spectral efficiency compared with traditional orthogonal
schemes.

Since R(Q) is increasing in each user’s total transmit power
Pr = Prtr(Qy), the channel’s throughput is maximized when the
users individually saturate their power constraints, i.e., when
tr(Qx) = 1 forall k = 1,...,K. In this way, we obtain the
power-constrained sum-rate optimization problem

maximize R(Q) =R(Qq,...,Qk)
subjectto Qi € Q; forallk=1,...,K,

where each user’s feasible power region Qy is given by
Qk = {Q« € Herm (M) : tr(Qx) = 1,Qy > 0}. )

By definition, each Q is a spectrahedron of (real) dimension
dp, = M,f — 1, so the problem’s dimensionality is ), d; =
O M,%). To avoid trivialities, we will assume in what follows
that each transmitter possesses at least two antennas, so d > 0
forall k = 1,..., K. Also, to further streamline our discussion,
we will state our results in terms of the maximum number
M = max; M; of antennas per transmitter—or, equivalently,
in terms of the larger dimension d = M? — 1.2

(Opt)

B. Distributed individual rate maximization

Moving beyond the sum-rate maximization problem above, if
messages are decoded using single user decoding at the receiver
(i.e., interference by all other users is treated as additive colored
noise), each user’s individual rate will be

Rk(Qk;ka) = R(QI’ .. "QK) _R(Ql’- "70"' 'sQK)’ (6)

where (Qg;Q_x) is shorthand for the covariance profile
Q1,...,Qx, ..., Qk). In turn, this leads to the individual rate
maximization game

maximize Ry(Qx; Q_x)

. (Opty)
subjectto  Qy € QO
>The statement of our results can be fine-tuned at the cost of introducing
further notation for other aggregate statistics of the number of antennas per
transmitter (such as the arithmetic or geometric mean of Mj). The resulting
expressions are fairly cumbersome, so we do not report them here.



to be solved unilaterally by each user k = 1, ..., K.

Given that R(Q) is concave in Q and Ry (Qy; Q_x) is concave
in Qy, it follows that the decentralized problem (Opt;) defines
a concave potential game whose Nash equilibria coincide with
the solutions of (Opt) [17, 28, 29]. In view of this, the gradient-
free optimization framework and algorithms derived in this pa-
per and designed to solve the centralized sum-rate optimization
(Opt) will also solve the game (Opty); conversely, (Opt) is
amenable to a distributed approach where it is treated as the
aggregation of the unilateral sub-problems (Opty), to be solved
in parallel by the network’s users. We revisit this distributed
approach in Section V.

C. Water-filling and matrix exponential learning

A basic online solution method for (Opt) is the water-filling
(WF) algorithm [7, 8, 18] and its variants—iterative or simul-
taneous [12, 13, 30]. In WF schemes, transmitters are tacitly
assumed to have full knowledge of their channel matrices Hy as
well as the multi-user interference-plus-noise (MUI) covariance
matrix

W, =1+ ZM PH,QH!. 7)

These matrices are then used to “water-fill”’ the users’ effective
channel matrices

~ -1/2

H, = W, '°H, ®

either iteratively (i.e., in a round-robin fashion), or simulta-
neously (all transmitters at the same time); the corresponding
implementations are called iterative water-filling (IWF) and
simultaneous water-filling (SWF) respectively.

We stress here that the users’ effective channel matrices
may change over time, even when the actual channel matrix
H, is static: this is because Hj depends on the transmission
characteristics of all other users in the network (via the MUI
matrix W;), and these typically evolve over time according to
each user’s optimization policy.

In this context, IWF converges always (but slowly if the
number of users is large), whereas SWF may fail to converge
altogether [13, 31]. In addition, as we discussed in the in-
troduction, water-filling is highly susceptible to observation
noise, asynchronicities, and other impediments that arise in
real-world systems, so the solution of (Opt) in the presence of
uncertainty requires a different approach (see also the numerical
experiments presented in Section VI).

These limitations are overcome by the matrix exponential
learning (MXL) algorithm [17, 32], which will serve both as
a reference and an entry point for our analysis. Heuristically,
MXL proceeds by aggregating incremental gradient steps (pos-
sibly evaluated with imperfect channel state and MUI estima-
tions), and then using a suitable matrix exponential mapping
to convert these steps into a positive-semidefinite matrix that
meets the transmit power constraints of (Opt) and/or (Opty).

More formally, let

s K +]7!
ViR(Q) = PH] [I +>  PCHQH]| He (9

denote the individual gradient of R (or Ry) relative to the signal
covariance matrix of the k-th user, and let

Vi = {Yr € Herm (M) : tr(Yy) = 0} (10)

denote the subspace tangent to Q. Then, given an initialization
Y, € YV = [y Mk, the MXL algorithm is defined via the basic

recursion
Qt = A(Yz),

(MXL)
Y =Y +vV,

where:

i) Q; denotes the users’ input signal covariance profile at the
t-th iteration of the algorithm (# = 1,2,...).
ii) V, = (Vi4,...,Vk,) is an estimate of the tangent compo-
nent of the gradient VR relative to Q.
iii) y; > 0 is a non-increasing sequence of step-sizes whose
role is examined in detail below.
iv) Y, is an auxiliary matrix that aggregates gradient steps.
v) A(Y) = (A1(Y1),...,Ak(Yg)) denotes the matrix expo-
nential mapping given in (block) components by

exp(Yy)
tr(exp(Yy))”

The intuition behind (MXL) is that the exponential mapping
assigns more power to the spatial directions that are aligned
to the objective’s gradient (as estimated via V;). In fact, the
MXL algorithm can be explained as a matrix-valued instance
of Nesterov’s dual averaging method [33]; the key innovation
of MXL is the matrix exponentiation step which lifts the need
to do a costly projection on the users’ feasible region (a trace-
constrained spectrahedron). The output of each iteration of the
algorithm is a positive-semidefinite matrix with unit trace, so
the problem’s constraints are automatically satisfied. We defer
the details of this derivation to Appendix A.

As was shown in [17], the MXL algorithm achieves an &-
optimal signal covariance profile within O(1/g?) iterations.
However, to do so, the algorithm still requires access to noisy
observations of the gradient matrices (9). Typically, this in-
volves inverting a (dense) N X N Hermitian matrix at a central
hub and subsequently transmitting the result to the network’s
users, so the algorithm’s computation and communication over-
head is considerable (see Table I). On that account, our main
focus in the sequel will be to lift the assumption that the
network’s users have access to the gradient matrices (9), all the
while maintaining the O(1/g%) convergence speed of (MXL).

A(Yi) = (1)

D. Technical preliminaries and notation

For the analysis to come, it will be convenient to introduce
the following constants. First, we will write @ = []; Qy for the
feasible region of (Opt), and we will denote by L the Lipschitz
constant of R over Q relative to the nuclear norm; specifically,
this means that:

IRQ) - RQH < LIQ-Q'|l forallQ,Q" € Q.

Moreover, we will also write A4, for the user-specific Lipschitz
constants of ViR, understood in the following sense:

IViR(Qe; Q-¢) — ViR(QF; QoI < AellQr = Qfll2,

(12)

13)

3More precisely, (MXL) only requires estimates of VR : Q +— ), which
here denotes the tangent component of the gradient VR relative to O, given by
VR = (ViR,..., VkR) where ViR = ViR — tr(ViR) 1. All technical details in
regards to (MXL) are deferred to the appendix.



for all Qg, QQ, € Qr, Q€ O, = Hj#, Qj, and all k,{ =
1,...,K.Wealsolet 4, = (1/K) Zle Ay denote the “averaged”
Lipschitz constant of user k, and we write 4 = (1/K) Z,’le Ay for
the overall “mean” Lipschitz constant. For a detailed discussion
of the nuclear norm || - || and its dual || - ||, we refer the reader to
Appendix A.

III. MXL witHOUT GRADIENT INFORMATION

As we noted above, the existing implementations of MXL
invariably rely on the availability of gradient feedback—full
[32], noisy [17], or partial [22]. Our aim in this section is
to show that this requirement can be obviated by means of
a (possibly biased) gradient estimator, which only requires
observations of a single scalar—the users’ achieved throughput.
Our approach builds on the method of simultaneous pertur-
bation stochastic approximation (SPSA), a gradient estimation
procedure which has been studied extensively in the context of
large-scale, derivative-free optimization [20, 21], and which we
discuss in detail below.

A. Gradient estimation: intuition and formal construction

We start by providing some intution behind the SPSA
method. For this, consider the scalar case and a simple differen-
tiable function f : R +— IR. Then, by definition, the derivative
of f at any point x satisfies

Jx+6) - fx-9)
26

Therefore, if § > 0 is small enough, an estimate for f’(x) can be
obtained from two queries of the value of f at the neighboring
points x — ¢ and x + § as follows:

Jx+6) - fx-9)
26 '

Thus, if f” is A-Lipschitz continuous on the search domain, it
is easy to see that the error of the estimator #(x) is uniformly
bounded as [0(x) — f'(x)] < 46/2, i.e., the estimator (15) is
accurate up to O(6).

Taking this idea further, it is possible to estimate f’(x) using
only a single function query at either of the test points x — ¢,
or x + d, chosen uniformly at random. To carry this out, let
z be a random variable taking the value —1 or +1 with equal
probability 1/2, and define the one-shot SPSA estimator

_ flx+62)
=5 %

Then, a straightforward calculation gives E[v(x)] = 0(x), i.e., v
is a stochastic estimator of f” with accuracy

fx) =

+ 0(6). (14)

B(x) =

5)

v(x) (16)

[E[v(x) — f' ()1l = [0(x) = f'(0I < 26/2=0©). (A7)

The SPSA approach described above can be applied to our
MIMO setting as follows. First, each user k draws, randomly
and independently, a matrix Z; from the unit sphere*

SU = {Zi € Vit 1Zulla = 1. (18)

4Note that the dimension of $%~! as a manifold is dr—1,i.e., one lower than
that of the feasible region Qy; this is due to the unit norm constraint ||Z||, = 1.

Then, translating (16) to the distributed, Hermitian setting of
Section Il yields, for all k = 1, ..., K, the gradient estimator

d
Vi(Q) = gkR(Q +62) 7y, (19)

where Z = (Z4, ..

Remark 1. The factor d;, = M,f —11in (19) has a geometric inter-
pretation as the ratio between the volumes of the sphere $%!
(where Z is drawn from) and the containing dj-dimensional
ball B% = {Z; € Vi : | Zll» < 1}. Its presence is due to Stokes’
theorem, as detailed in Lemma B.1.

., L) collects the random shifts of all users.

A further complication that arises in our constrained setting
is that the query point Q+6Z in (19) may lie outside the feasible
set Q if Q is too close to the boundary of Q. To avoid such
an occurrence, we introduce below a “safety net” mechanism
which systematically carries back the pivot points Q; towards
the “prox-center” Cy = Iy, /M; of Qi before applying the
random shift Z;. Specifically, taking r;, > O sufficiently small
so that the Frobenius ball centered at C; lies entirely in Qy, we
consider the homothetic adjustment

A )
Qr=Qr+ I’_k(Ck = Qi) + 6Zy. (20)
By an elementary geometric argument, it suffices to take
re =1/ VMM = 1). 2D

With this choice of 7y, it is easy to show that, for 6 < ry, the
adjusted query point Qy lies in Oy forall k = 1,..., K. On that
account, we redefine the SPSA estimator for (Opt) as

ViQ) = %R(Q) Zy, (SPSA)
where, in obvious notation, we set Q = (Ql,...,QK). The
distinguishing feature of (SPSA) is that it is well-posed: any
query point Q is feasible under (SPSA). Thus, extending the
one-dimensional analysis in the beginning of this section,
Lemma B.1 claims that the accuracy of the estimator (SPSA) is
uniformly bounded as ||[E[V(Q) — VR(Q)]|. = O(9). In the rest
of this section, we exploit this property to derive and analyze a
first gradient-free variant of (MXL).

B. A gradient-free matrix exponential learning scheme

To integrate the gradient estimator (SPSA) in the chassis of
(MXL), we will use a (non-increasing) query radius sequence
o, satisfying the basic feasibility condition:

Oy <mingry =1/M(M —1) forallz>1.

Then, under (MXL), the task of user k at the #-th stage of the
algorithm will be given by the following sequence of events:

(HO)

1) Draw a random direction Z;, € Gl

2) Transmit with the covariance matrix Qk,, given by (20).

3) Get the achieved throughput R, = R(Q)).

4) Construct the gradient estimate Vi, given by (SPSA).

5) Update Yi, and Qy, in accordance with (MXL).
The resulting algorithm will be referred to as gradient-free
matrix exponential learning (MXLO0); for a pseudocode imple-
mentation, see Alg. 1 above.



Algorithm 1: Gradient-free matrix exponential learning (MXLO0)

Parameters: vy, o;
Initialization:r <« 1,Y « O;
Vk: Qp « (Pr/Mp) 1,
1: Repeat
2: For ke{l,...,K}do MXL@(y;,d;) in parallel
3: te—1t+1

P

outine MXLOy(y,9) :

Sample Z; uniformly over $%-!

Transmit with Q¢ « Qi+ 2(C — Q) +6Z;
Get R — R(Q)

Set Vk — %k Zk

Set Yk — Yk + ’)/Vk

Set Qr « Ax(Yr)

AU

Our first convergence result for MXLO is as follows:

Theorem 1 (Convergence of MXLO0). Suppose that MXLO
(Alg. 1) is run with non-increasing step-size and query-radius
policies satisfying (HO) and

@) Y,y =00, (b) 3,76 <00, (c) X,¥?/6? <0, (22)

Then, with probability 1, the sequence of the users’ transmit
covariance matrices Q, converges to the solution set of (Opt).

Theorem 1 provides a strong asymptotic convergence result,
but it does not give any indication of the algorithm’s conver-
gence speed. To fill this gap, our next result focuses on the
algorithm’s value convergence rate relative to the maximum
achievable transmission rate R* = max R of (Opt).

Theorem 2 (Convergence rate of MXL0). Suppose that MXLO
(Alg. 1) is run for T iterations with constant step-size and query
radius parameters of the formy, = y/T3* and 6, = §/T"*, 6 <
1/\M(M = 1). Then, the algorithm’s ergodic average Qr =
(1/7) Zthl Q; enjoys the bounds:

(a) In expectation,

T .
EIR" - ROQp)] < ;71/4) =0(T7,

(23)

where A(y,6) = (K/y)log M + 4K?26 + 2'2K(R*d)* Ky k6>

(b) In probability, for any small enough tolerance € > 0,

A(y, 6) N - 22K_56282T1/2
& eXp\l—-———————"
T1/4 = exp (R*Kd)z

IP(R* -RQr) > ) (24)

In words, Theorem 2 shows that Alg. 1 converges at a rate
of O(T~'#) on average, and the probability of deviating by
more than € from this rate is exponentially small in & and 7.
Compared to (MXL), this indicates an increase in the number
of iterations required to achieve s-optimality from O(1/&?) to
O(1/&%). As we illustrate in detail in Section VI, this perfor-
mance drop is quite significant and makes MXLO0 prohibitively

slow in practice. The rest of our paper is devoted precisely to
bridging this vital performance gap.

IV. AcciELERATED MXL wiTHOUT GRADIENT INFORMATION

Going back to the heuristic discussion of MXLO in the pre-
vious section, we see that the one-shot estimator v is bounded
as |v| < supl|fl/6 = O(1/6). This unveils a significant trade-
off between the (O(6) bias of the estimator and its O(1/6)
deviation from the true derivative: the more accurate v becomes
(smaller bias), the less precise it will be (higher variance). In the
context of iterative optimization algorithms, this bias—variance
dilemma induces strict restrictions on the design of the query-
radius and step-size policies, with deleterious effects on the al-
gorithm’s convergence rate (cf. Sections III and VI). Motivated
by this drawback of the SPSA approach, we proceed in the
sequel to design a gradient estimator which requires a single
function query per iteration, whilst at the same time enjoying a
uniform bound on the norms of the estimates.

A. SPSA with callbacks

To proceed with our construction, let z take the value —1
or +1 with equal probability, and consider the estimator

fx+6z)—p
Jwroy=p

5 (25)

Up(x) =
The offset value p is decided a priori, independently of the
random variable z, so that E[pz] = pE[z] = 0. In turn, this
implies that [E[v,(x)] = d(x), and hence:

[E[v,(x) — f' (0]l < 26/2 (26)
i.e., the accuracy (bias) of v,(x) is again O(6).

The novelty of (25) is as follows: if we take p = f(x),
then [v,(x)| = (1/0)|f(x +6z) — f(x)| £ L where L denotes
the Lipschitz constant of f, so the choice p = f(x) would
be ideally suited for our purposes; however, taking p = f(x)
would also involve an additional function query. To circumvent
this, we will instead approximate f(x) with the closest available
surrogate, namely the function value observed at the previous
iteration of the process.

To make this precise in our MIMO context, we will consider
the enhanced SPSA estimator

Ay, A A
Vi = S [RQ) = RQu-1)] Z. (SPSA+)

where:

1) ¢, is the given query radius at time ¢.
2) Zy, is drawn randomly from the sphere §%~!
3) Qq is the transmit covariance matrix defined along (20).

Then, integrating (SPSA+) in the chassis of MXL, we obtain
a similarly enhanced version of MXLO0, which we call gradient-
free MXL with callbacks (MXLO0"). For concreteness, we
present a pseudocode implementation of the resulting method
in Alg. 2.

In terms of parameter values, MXLO" supports a broad class
of policies satisfying the so-called Robbins—Monro conditions:

(@) X, = oo, (b) X, 77 <oo. (H1)



Algorithm 2: Gradient-free MXL with callbacks (MXLO")

TABLE II: Parameters of MXLO* for Corollary 1

Parameters: vy, o;
Initialization:r <« 1,Y « O;
Vk: Qp — (Pr/M L, pr — R(Q)

[

: Repeat
: For ke {l,...,K}do MXLO;(y,,6;) in parallel
te—rt+1

P

outine MXLQ;(y,0) :

Sample Z, uniformly over $%!

Transmit with Q — Qy + %(Ck - Q) + 6Zy
Get R — R(Q)

Set Vk — %(ié —,Dk) Zk

Set pp « R

Set Y, « Y, +vyVy;

Set Qk — Ak(Yk)

R A

In addition, MXLO" also requires the following precautions
regarding the allowable step-size and query-radius sequences:

2 Y10y < 0, (H2)
sup, v:/6m+1 < 2/(dLK), (H3)
sup, 6;/0s4+1 < o0, (H4)

Of the above conditions, (H3)-(H4) guarantee the uniform
boundedness of the gradient estimator, while (H2) is an addi-
tional condition needed for convergence of the algorithm.

In practice, these conditions are easy to verify wheny; = y/t*
and 6, = 6/ for some a,8 > 0. In this case, the conditions
(HO)—(H4) reduce to:

(dLKJ2)y < 6 < 1] VMM = 1), (Ha)
0<f<a<l and a+B8> 1, (Hb)

With all this in hand, we are finally in a position to state our
main convergence results for the MXLO" algorithm. We begin
by establishing the algorithm’s almost sure convergence:

Theorem 3 (Convergence of MXLO"). Suppose that MXLO*
(Alg. 2) is run with step-size and query-radius policies sat-
isfying (HO)—(H4). Then, with probability 1, the sequence of
the users’ transmit covariance matrices Q, converges to the
solution set of (Opt).

As in the case of Theorem 1, Theorem 3 provides a strong
asymptotic convergence result, but it leaves open the crucial
question of the algorithm’s convergence speed. Our next result
justifies the introduction of (SPSA+) and shows that Alg. 2
achieves the best of both worlds: one-shot throughput measure-
ments with an O(1/ NT ) convergence rate.

Theorem 4 (Convergence rate of MXLO"). Suppose that
MXLO* (Alg. 2) is run for T iterations. We then have:
1) If y, = v/ Nt and 6, = 6/ Nt with y and § satisfying (Ha):
logT
)
2) Ifyr=vy/ T and 0, =6/ T with vy and ¢ satisfying (Ha):

E[R" ~ R(Q7)] = (9( 27

oy \/logM/(dLKz); _ V(dL/2) logM; s LM*log M
VA+ V2dLK 2 44

-1
@ 1
b) y = %[mmw N 2/10g(1/a/)/1] Vosk
§=2%0 \/L//l Viog(T/@)/2dlog M ;
2
T= 4¢4(Q)L2[1+m ,/2/1/La/2/10g(1/a)] (loett/K d og M,

with ¢(a) = [1/ ylog(T/a) +4/ \/log(M)]l/ ?

a) In expectation,

_ B(y, 6 1
E[R" - RQ) < 22 )=0(—

T \NT
8Kd
where B(y, ) = (K/y)log M + 4K>26 + [ZKWIEW'

b) In probability, for any small enough tolerance € > 0,

By i
PR - RQn = 22 +8) < e"p(_c;,&)’
29)

where C(y,6) = 2°dK?/[2/(dLK) — y/6]>.

) . (28

Importantly, Theorem 4 shows that MXLO" recovers the
O(1/ \NT ) convergence rate of MXL with full gradient infor-
mation, even though the network’s users are no longer assumed
to have any access to a gradient oracle. In fact, the guarantees
of Theorem 4 can be optimized further by finetuning the choice
of y and §; doing just that (and referring to Appendix D for the
details), we have:

Corollary 1. Suppose that MXLO* is run with v, = y/ T,
0; =0/ \/T, and T, vy, 6 as in Table II. Then:

a) In expectation, we have:

3/4
E[R* - RQr)] < 2L(1 .2 d”/L) \/K4M6T1°gM. (30)

b) In probability, given a small enough tolerance € > 0 and a
confidence level 1 — a € (0, 1), we have:

P(R* - R(Qrr) < &) > 1 —a. 31)

An important feature of the convergence rate guarantee (31)
is that it does not depend on the number of antennas N at the
receiver. As such, Alg. 2 exhibits a scale-free behavior relative
to N, which makes it particularly appealing for distributed
massive-MIMO systems. In the next section, we further relax
the requirement that all users update their transmit covariance
matrices in a synchronous manner, and we derive a fully dis-
tributed version of the MXLO" algorithm.

V. DISTRIBUTED IMPLEMENTATION

In this section, we propose a distributed variant of the
MXLO* method which can account for randomized and asyn-
chronous user decisions (independent or in alternance with
other users). Specifically, we now assume that, at each stage of
the process, only a random subset of users perform an update of
their individual covariances matrices, while the remaining users
maintain the same covariance matrix, without updating.



Algorithm 3: The asynchronous MXLO* (AMXLO0") method

TABLE III: Parameters of UCD-MXLO0* of Corollary 2

Parameters: II, y,, o;
Initialization:r < 1,Y « O;

Vk: Qp « (Pr/M) 1, pr < R(Q)
Repeat
Draw set of active users U according to II
For ke {l,...,K}do in parallel
| If ke U then MXLO[(y;,6,) else Passy
te—t+1

BN~ >

Routine Pass; :
1: Transmit with Q
2: Get pr — R(Q)

To state this formally, suppose that a random subset of
users U; € K = {1,...,K} is drawn at stage ¢ following an
underlying probability law I1 = (IIy)ycc (ie., U C K is
drawn with probability I1;,). From the distributed perspective of
individual users, we write m; = s Iy to denote the marginal
probability that user k updates their covariance at any stage f;
as such, the participation of all users is enforced by imposing
the condition 7r; > 0. We thus obtain the asynchronous MXLO*

scheme:
Qt = A(YZ)’

. (AMXLO0")
Y=Y +%V,

where \A/k,, = Vi, if k € U, and Vk,, = 0 otherwise. For a
pseudocode implementation, see also Alg. 3 above.

As we show below, AMXLO™" recovers the O(1/ \NT ) conver-
gence rate of MXLO0*, despite being distributed across users:

Theorem 5 (Convergence rate of AMXLO"). Suppose that
AMXLO* (Alg. 3) is run for T iterations. We then have:
1) Ify, = y/ Nt and 6, = 6/ Nt with y and § satisfying (Ha):
logT
)
2) Ify, = y/ NT and 6, = 5/ NT withy and § satisfying (Ha):
a) In expectation,

E[R" - R(Qp)] = (9( (32)

E[R" - R(Q7)] <

M = O(L)7 (33)

VT VT

_ vk logM; 2 8Kdy
where By(y,0) = X, T 4K-26 + =T

b) In probability, for any small enough tolerance & > 0,

(R R(Q ) > HE/)/T’ ) +s)$exp(—

T
Cr(v, 6)) |
(34)

2
where Ca(y,8) = [1 + % + S LB "y, 5), with vy =

K Z,{il max(l,ﬂ;' — 1) and C(y,9) as in Theorem 4.

Note here that the quantity B,(y,d) above only differs from
its counterpart B(y,d) of Theorem 4 in the first term, which
measures the cost of asynchronicity in terms of expected con-
vergence. A similar increase in the deviation from the mean
transpires through an impeding factor in the expression for
Cx(v, 6), quantifying the impact of asynchronicity in both mean
and fluctuation terms.

T > LILKM*log M]

a) y= 1+ \/ﬁd] \/% 5=1 \/m
) Y og!/3(1/a 0,
b) ¥ = §(@)| VR@L+210g* ¥ (1) t(ayine) LIKaP*| (1 2 (11</d 1/\4/157)

6= (w(zu) X(a/)l) [ Vlog(1/e) Kd| 174 JlogM ;
6 13
T= 16L2[1//2(a)+ d(@) \/W] (log(l/(y)l(2d log 1)

log3/8(1/a) K3/4d

with (@) = | J’(i“i)(” + A2/log(M) (1 + 1/1()]
og @)
@) = [ V201 - 1K) + ———

log(1/a)

]1/2

In Appendix E, we show how the parameters (y, ) can be
optimized for general II; for concreteness, we present below
the particular case where at any stage each user is active with
probability m; = 1/K:

Corollary 2 (Uniform AMXLO0*, K =>2). Suppose that
AMXLO* is run with 1y = --- = nx = 1/K, y, = y/ T,
0; =0/ \/7, and T, vy, 6 as in Line 2. Then:

a) In expectation, we have:

R -E[RQp)| <2L(1+ /L ,/KSMG#. (35)

b) In probability, given a small enough tolerance € > 0 and a
confidence level 1 — a € (0, 1), we have:

P(R* -RQr) <e)>1-a (36)

Remark 2 (Coordinate descent). The case IIj;; = --- = Ilixy =
1/K where a single user is active at each time step with
probability m; = 1/K covers the alternated optimization scheme
known as (uniform) “coordinate descent” (UCD-MXLO0*)—the
coordinates in this context refer to the wireless users. In this
regard, Corollary 2 provides us with a quantification of the
impact of alternation on the convergence speed of MXLO*.
Looking for instance at Corollaries 1(a) and 2(a), we ob-
serve that the expected convergence of the time average, if
regarded as a function of the total number #n of user updates,
is O(+/K>M°log M/n) both for the synchronized algorithm
MXLO* and for UCD-MXLO*. The impact of the network size
K on the number of user updates needed for e-convergence with
probability 1 — a, however, is more pronounced by an order
of magnitude for UCD-MXLO0*, ©® (log(l/oz)K6M6 log M/82>,
than it is for MXLO*, © (log(1/a)K> M® log M/&?).

VI. NumEeRrICAL EXPERIMENTS

In this section, we perform a series of experiments to val-
idate our results in realistic network conditions. Throughout
what follows, and unless specified otherwise, our numerical
experiments are performed in a simulated wireless network
setup with parameters as summarized in Table IV. In more
detail, we consider a cellular wireless network occupying a
central frequency of f, = 2.5GHz and a total bandwidth of
10 MHz. Signal propagation in the wireless medium is modeled
following the widely utilized COST 2100 channel model for
moderately dense urban environments [34]. This is a geometry-
based stochastic extension of the original COST Hata model



Parameter Value
Time frame duration 5ms
MIMO channel model COST 2100 [34]
BS/MS antenna height 32m/1.5m
Central frequency 2.5GHz
Total bandwidth 11.2MHz
Spectral noise density (20 °C) —174dBm/Hz
Maximum transmit power P =33dBm
Transmit antennas per device M € {2,4,8}
Receive antennas N =128

TABLE IV: Wireless network simulation parameters.

[35] which has been designed to reproduce the stochastic prop-
erties of MIMO channels over the frequency, space and time
domains. As such, even though it is not 5G-specific, the COST
2100 model is generic and flexible, making it suitable to model
a broad range of multi-user or distributed MIMO scenarios [34].
Network coverage is provided by a base station (BS) with
an effective service radius of 1km (for the wider network in
play, we consider a hexagonal cell coverage structure). The BS
serves the uplink of K wireless transmitters that are positioned
uniformly at random within the coverage area following a ho-
mogeneous Poisson point process. All communications occur
over a TDD transmission scheme with an asynchronous frame
duration of 7y = 5ms. Finally, in line with state-of-the-art
mobile and portable device specifications, transmitting devices
are assumed to have a maximum transmit power of 33 dBm.

A. Comparison with water-filling methods

We begin by examining the performance of MXL-type meth-
ods relative to conventional water-filling schemes. To provide a
broad basis for this comparison, we focus on two complement-
ing scenarios: (a) the full feedback case, i.e., when transmitters
are assumed to know their individual channel matrices H; and
the induced signal-plus-noise covariance matrix W; and () the
limited feedback case, i.e., when transmitters only observe their
realized utility (i.e., their sum rate). For the purposes of our
experiments, and in line with other recent works on large
antenna arrays [1, 5, 6, 36], we consider a system with K = 60
users, each with 2, 4 or 8 transmit antennas, and a BS with
N = 128 receive antennas; all other network parameters are as
in Table I'V.

In the first case (full matrix feedback), we simulated the
iterative and simultaneous variants of water-filling against the
MXL algorithm as presented in Section II-C. The iterative
WF variant converges to an optimum solution; however, be-
cause user updates need to be taken in a sequential, round-
robin fashion, the algorithm’s convergence speed is inversely
proportional to the number of users in the system, and hence
quite slow. On the other hand, the simultaneous WF variant
achieves significant performance gains within the first few iter-
ations, but because it has no way of mitigating conflicting user
updates, these gains subsequently evaporate and the algorithm
converges to a suboptimal state. By comparison, the MXL
algorithm achieves convergence to an optimal state within a few
iterations, without suffering from the slow convergence speed
of the iterative WF algorithm or the oscillatory behavior of its
simultaneous counterpart. The results of these simulations are
plotted in Fig. 1a.

Moving forward, to establish a fair comparison in the lim-
ited feedback case, we consider a baseline setting where, at
each transmission frame ¢+ = 1,2..., each user has access
to one-point pilot estimates of their effective channel matrix
H, = HkW]:]/ 2 (e.g., via randomized directional sampling)
[19]. Since W, = W,(Q,) evolves over time (because of
the signal covariance modulation Q, of all other users in the
network), these measurements must be repeated over time;
otherwise, knowledge of H; alone would not suffice to run
water-filling in a multi-user environment. By comparison, for
the MXLO" algorithm, we only assume that users observe their
realized throughput as described in detail in Section IV.

The results of our simulations are plotted in Fig. 1b. Because
water-filling methods require perfect knowledge of H; at each
transmission frame, the imperfections introduced by one-point
pilot contamination effects cause a complete breakdown of
the algorithm’s convergence. In particular, both iterative and
simultaneous variants fail to exhibit any significant perfor-
mance gains over a uniform (isotropic) input signal covariance
profile. The performance of MXLO is underwhelming in the
first iterations (due to exploration), but it improves steadily
over time; however, this improvement is very slow over the
simulation window. On the other hand, the callback mechanism
of MXLO" achieves dramatically better results, even with one-
shot, zeroth-order feedback.

In terms of per-iteration computational complexity, Fig. 2
compares the wall-clock runtime of an iteration of each al-
gorithm (IWF, SWF and MXLO"). All computations were
performed in a commercial laptop with 16 GB RAM and a 2.6
GHz 6-core Intel 17 CPU; for statistical significance, they were
averaged over S = 1000 sample runs. Network parameters were
as above, except for the number of receive antennas which was
taken in the range {4,...,064} to assess scalability. For small
values of N, IWF has the fastest runtime per iteration because
only one user updates per iteration and the inversion of the
MUI matrix at the receiver is relatively fast. However, for larger
values of N, this advantage evaporates and MXLO* becomes the
fastest because the SPSA estimator is sparse, so the resulting
matrix operations are the lightest. This provides an additional
layer to the results of Fig. 1: even though IWF/SWF methods
fail to produce any measurable performance gains in limited
feedback environments, MXLO* remains optimal and achieves
considerably better throughput values, all with a lighter per-
iteration runtime.

B. Convergence speed analysis

For completeness, we also examine below the convergence
speed of the different MXL methods with limited, zeroth-order
feedback. The results of our experiments are reported in Fig. 3
where we plot the users’ relative distance to optimality in
a log-log scale under the three gradient-free algorithms dis-
cussed in the previous sections, MXL0O, MXL0* and AMXLO*
(Algs. 1—3 respectively, the third in the coordinate descent
form UCD-MXLO0* discussed in Remark 2). We plot the rel-
ative ratio p = (R* — R(Q,))/(R* = R}), so p = 1 corresponds to
the initialization of each algorithm while p = O corresponds to
optimality. All algorithms were run with constant step size and



Full matrix feedback (K = 60 users, N = 128 RX antennas)
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Fig. 1: Comparison between water-filling and matrix exponential learning in a wireless network with K = 60 users and N = 128 receive
antennas. In the full feedback case (left), the transmitters are running MXL against IWF/SWF with full matrix information (perfect knowledge
of effective channel matrices, system-wide signal-plus-noise covariance matrix, etc.). In the zeroth-order case (right), the transmitters only have
access to their realized utility (the achieved throughput) and are running MXL0 and MXLO0" against IWF/SWF with one-shot pilot estimates of
the required matrix information. In both instances, MXL/MXLO0" exhibits consistent — and significant — performance gains over WF methods.
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Fig. 2: Per-iteration runtime of the IWF, SWF and MXLO* algorithms
as a function of the number of antennas at the receiver (lower is better).

query radius in a system with K = 20 users. Despite the severe
feedback limitations, we see that (UCD-)MXLO™ rapidly closes
the initial optimality gap (in line with Fig. 1b).

A close inspection of the slopes of the various curves on
the log-log graph further reveals the O(1/+f) complexity of
MXLO and the O(1/ V1) complexity of (UCD-)MXLO0*, in full
accordance with Theorems 2, 4 and 5. The log K shift between
UCD-MXLO* and MXLO* predicted in Remark 2 can also be
clearly observed.

Finally, Fig. 4 provides a normalized comparison to gradient-
based methods in a network with N = 128 receive antennas
and K = 50 users. Here, access to full matrix feedback would
require N> = 32MB of 16-bit data per frame; in view of
this, we examine instead the algorithms’ convergence speed in
terms of the feedback epochs required for convergence. For
benchmarking purposes, we ran MXL with a constant step-
size (the most principled choice given the smoothness of R).
Quite remarkably, we see that MXLO" remains competitive
with—and even outperforms!—the fastest implementations of

(R —y)/(R* — Ry)
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Fig. 3: Convergence speed of the proposed methods (N = 16, K = 20).
The callback in MXLO* greatly improves performance over MXLO.
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Fig. 4: Overhead of the algorithms under study in a large network (K =
50, N = 128). When normalized for overhead, MXL0" matches the
performance of finely tuned gradient-based methods.

MXL. On the other hand, UCD-MXLO0* was approximately
K = 50 times slower than MXLO0*, while MXLO was essentially
non-convergent.

VII. DiscussioN

In this paper, we proposed a series of online optimization
schemes for distributed, feedback-limited multi-user MIMO
systems that circumvent the need for matrix feedback (perfect,
noisy, or otherwise). Gradient estimation methods based on



conventional simultaneous perturbation stochastic approxima-
tion (SPSA) techniques lead to an O(1/ T4 convergence rate,
which is catastrophically slow for large MIMO systems. To
overcome this deficiency, we introduced an acceleration mech-
anism which achieves an O(1/T'/?) convergence rate through
the reuse of previous throughput measurements. In this regard,
the proposed MXLO* algorithm enjoys the best of many worlds:
it achieves convergence with minimal feedback requirements (a
single scalar), it matches the convergence speed of conventional
methods that require full mtrix feedback, all the while remain-
ing simple in principle and easy to implement.

Although we focused on the throughput maximization prob-
lem in the single-cell MIMO multiple-access channel, our
proposed algorithms can also be applied to multi-cell networks
operating in orthogonal frequency bands so that the inter-cell
interference is canceled; the sum rate in each cell can be
optimized separately and independently without any loss of
global optimality. In dense small-cell networks, in which the
interference cannot be canceled this way, the network sum-rate
optimization problem is a known difficult non-convex problem
[15, 16]. A possible workaround is to consider autonomous
small-cells that aim at maximizing their own sum rate (similar
in spirit to (Opt;) in Section II-B), which leads to a concave
non-cooperative game. In our previous work [37], we showed
that the original MXL converges to the Nash equilibrium solu-
tion of such games under milder assumptions compared to itera-
tive water-filling; studying the performance of our gradient-free
algorithms MXLO0 and MXLO™" in such settings is an interesting
and non-trivial extension of the present work.

Moving beyond throughput maximization, the gradient-free
methodology presented in this work can also be tailored to a
wide range of resource allocation problems that arise in signal
processing and wireless communications (from power control
to energy efficiency). For example, by using the Charnes-
Cooper transformation to turn non-convex fractional optimiza-
tion problems into convex ones [38], the material developed
in this paper can be applied to the core problem of energy-
efficiency maximization problem in multi-user MIMO systems.
These applications, which are deferred to future work, highlight
the potential of the gradient-free algorithms derived here.

Finally, in terms of practical implementation, we should note
that our analysis provides precise computational complexity
and runtime bounds; however, it does not address the processing
power expenditure on “off-the-shelf” wireless devices. Investi-
gating this aspect of the proposed methods is a very fruitful
research direction which we intend to address in future work.

APPENDIX
TecaNICAL PROOFS

A. Matrix exponential learning as a dual averaging scheme

In our developments, the space of the covariance matrices
of each user is equipped with the nuclear norm, given for any
Hermitian matrix Q by ||Q|| = tr(4/QQ), and equivalent to the
Li-norm of the vector of the eigenvalues of Q. The dual of the
nuclear norm, ||Qll. = maxg {tr(QQ’) : [|Q’]] < 1}, reduces

to the L.-norm of the vector of eigenvalues. For every m X m
Hermitian matrix Q, one has

QI < 11Qll2 < 1Qll < VmlIQIlz < mlQll., (A1)

where [|Q], = +tr(QQ) denotes the (Frobenius) L?>-norm
of Q. From the global perspective of matrix arrangements
Q = (Qqy, ..., Qx)—now regarded as block diagonal covariance
matrices—, the trace norm and its dual naturally extend as
_ VK —
Q= S5, 1Qull IQI = max Qi (A2)

We now derive the matrix exponential learning step and some
properties of it. To this end, we place ourselves in the compact
set @ = {Q € Herm (M) : tr(Q) = 1,Q > 0} of the M-
dimensional positive semidefinite Hermitian matrices with unit
trace—the parameter M stands for the number of antennas of
any of the K users. Let the inner product (Y,Q) = tr(YQ)
denote the value at Q € Q of the linear function induced by
Y € Y, where Y = {Z € Herm (M) : tr(Z) = 0} is tangent to Q.
For any differentiable function f on Herm (M), we denote by
Vf : QY the orthogonal projection of the gradient Vf on
the tangent space ), given by Vf = Vf —tr(Vf) L.

Lemma A.1.
(i) The regularization function® W(Q) = tr(QlogQ) is 1-

strongly convex over Q with respect to || - ||.
(ii) The conjugate of h, h* : Y — R, defined by

h*(Y) = maxqeo (Y, Q) - 1(Q)}, (A.3)

is differentiable with gradient Vh* = A, where A is the

exponential learning mapping defined by

_exp(Y)
AY) = —tr(exp Xy (A4)
(iii) ForQe QandY € ),
Q=AY)) e Y=ViQ). (A.S5)

(iv) h* is 1-smooth with respect to the dual norm || - ||..

Proof. We refer to [39] for the strong convexity of &. For (ii),
the differentiablity of 1" is a consequence of Danskin’s theorem
(e.g. [40]), which, besides, gives us the gradient of (A.3),

VR (Y) = argmaxqeo (Y, Q) — H(Q)}.

Relaxing the constraint tr(Q) — 1 = 0 in the subproblem (A.6)
and using VA(Q) = I + log Q yields the stationarity condition

logQ-Y+(1+v)I=0, S)

(A.6)

where v € R is the Lagrange multiplier related to the constraint.
Condition (S) rewrites as Q = exp(—(1 + v)) exp(Y), which
implies the primal feasibility condition Q > 0. The remaining
KKT conditions tr(Q) — 1 < O and v (tr(Q) — 1) = O yield v =
log(tr(exp(Y))) — 1, and Q = A(Y) as the unique maximizer of
(A.6), which completes the proof of (ii).

Now, it follows from (A.6) that, for any Y € ), one has
Q = A(Y) if and only if (Y, Q") — h(Q’) < (Y, Q) — h(Q) holds
forall Q" € Q,i.e., iff Y is a subgradient of £ at Q. Claim (iii)
follows by differentiability of 4.

SWe use here the convention 01log 0 = 0.



Finally, (iv) is a property of convex conjugation [41]. Indeed,
let Y,Y € Y and Q = A(Y). By convexity,

Q") = h(Q) + (VA(Q), Q' - Q) + 11IQ" - QI
holds for any Q’ € Q. It follows that

(A7)

(A3)

h*(Y") = maxqeo{(Y', Q") — h(Q")}
< maxgeo{(Y, Q) —h(Q) —(VA(Q), Q' - Q) - 31Q — QIF)

(A.5)

=(Y,Q) - Q) +(Y' - Y, Q) + maxqeo{(Y' - Y, Q" - Q)

-11Q - QI
A6
<s)h*(Y) +(Y =Y, V' (Y)) + %llY’ - Y|
(A.8)
and /" is 1-smooth. Equivently, (A.8) rewrites as[42]
IAY) =AY <Y =Y'll. VY, Y €. (A9)
[ |

We now consider the Fenchel primal-dual coupling F : Q X
Y — R associated with the entropic regularizer h.

Lemma A.2. The Fenchel coupling

FQ.Y) = Q)+ (Y) (Y, Q)
satisfies the following properties. For Q € Q and Y,Y' € ),
FQY)<FQY)+(Y-Y,AY)-Q)+ %HY’—YII&, (A.11a)

F(Q,Y) > 3Q - A2, (A.11b)
FQ,Y) > 0 with F(Q,Y) =0 & Y = VA(Q). (A.11c)

(A.10)

Proof. Equations (A.11a) and (A.11b) follow from the smooth-
ness of h* and from the strong convexity of A, respectively.
Indeed, we get (A.11a) by combining (A.10) with (A.8), while

(A.10)

F(Q,Y) = maxqgeo{h(Q)— Q') —(Y,Q-Q')}
> h(Q) - h(A(Y)) - (VA(A(Y)),Q — A(Y))
(A7)
> 1IQ - AW
(A.12)
yields (A.11b). Then, (A.11c) follows from (A.11b) and (A.5).
[

B. The SPSA estimator

This section is concerned with the bias of the gradient
estimator defined, fork = 1,...,K, by

Vi(Q.Z:p) = 4[RQ) - p] Z,

where ¢ > 0 is a given query radius, Q=@0Q.....Q0is given
by (20), Z = (Z,,...,Zk) with Z; sampled uniformly on the
sphere $%~1, and p an arbitrary scalar offset quantity indepen-
dent of Z. Observe that (B.1) covers the gradient estimators of
both MXL0 and MXLO*.

The computation of a bound for the bias of estimator (B.1) is
based on Stokes’ theorem, applied to the sphere $%~:

(B.1)

2 LiduZy) = fB Q) du©). (B2

S~
where f is any function on Herm (M) and u denotes the
Lebesgue measure. Before proceeding, observe that each test
covariance marix Q is bound to the initial matrix Q; by

1Qx — Qilla < 26||Zx |l where, under our assumption d; > 0,
1Zll. < 1/2 forevery Z; € $% !, It follows from (A.1) that any

test configuration Q in (SPSA) and (SPSA+) satisfies

IQ-Ql. <26K, and ||Q - Q| < 26K V4. (B.3)
Lemma B.1. The estimator (B.1) satisfies

IE[VK(Q, Z; p) — ViRQ)]ll. < 2K A6, (B.4)

IVHQ. Z: p)ll. < 5 maxqeg IRQ) —pl.  (B.5)

Proof of Lemma B.1. We argue as in [21, 43]. By introducing
the notation Q) = Q1.+ Q1. Q). Qis1 - ., Qk), in
which Q)(¢) = Q + (6/r)(Ci — Qi) + 6C, we find

IELVK(Q, Z; p) = ViRl
2 B4 1RQ) - p) Zi - TRQ],
= | E[R(Q) Zi] - ViR(Q)

A 3 B.6)
Mo [ ot RQO @) 24 duz) (
= || 4| S - vk
0 [ [ Jedet ROQP @) Za daZa)
2 || Lt vk -

It follows from Stokes’ theorem that (B.6) reduces to

IELVA(Q.Z: ) = ViRl
w g [ Joa 8 ;V;ZizzB 55))) du§) VR (Q)]H
< El 5 Jpa IVeRQ(©) = ViRQ)ll. du(€)]

13 A 1Q2(E)-Qellz dp($) A
< Juti 21 k2 + Dok ACELQr — Qell2]

vofl(]B"k)
@0 M€l dp(C)
< a1+ BEEEEON5 1 2 5 A 1Zl216

< QB + 2 g Aed < 2K A6,

M +1

and we recover (B.4). Then (B.5) is immediate from the defini-
tion of Vi(Q, Z; p) and the fact that ||Z,||. < 1/2 for all ¢. [ |

C. Analysis of the MXLO algorithm
Let Q" denote the solution set of (Opt). Given any Q* € Q,

we consider, for analysis purposes, the Lyapunov function
LY:Q) = By F(Q. Yo

where F is the Fenchel coupling defined in (A.10). If F,_; =
X1,Zy,...,Y:-1,Z, 1) denotes the history of MXLO up to step
t — 1, the gradient estimator (B.1) decomposes into

Vi = ViR(Qy) + By, + Uy,

(C.1)

(C2)

where By, = E[Vy/|F-1] — ViR(Qy) is the systematic error on
V., bounded by

(B.4)
Bl < 2K, (C3)

and Uy, is the random deviation of V, from its expected value
E[VilFi-1], so that E[U4/F;1] = 0, and

Ukl < Vel + BNVl Fe-1]- (C4H
In our analysis we consider the following random sequence:

Zi = 7 211Uk, Qs = Qp)-
Since (U, Qur = QI < Ukl llQrr — QI < 21[Uifll., one has

a) E[Z|IF-11=0, b |ZI<2y, 350, Ukll.. (C.6)

(C.5)



Lemma C.1. Run MXLO/MXLO™" for t iterations under (HO).

(i) With any step-size and query radius policy (y;, 8;),
L(Y11;Q") < L(Y5QY) — v [R" - R(?t)] +7Z

+HAK2 Ay, + 5 S V2

holds for Q* € QF, where the sequence Z, is defined as in (C.5).

(ii) With decreasing policy (y,,6,) = (7%, 8t7P), such that
a,B>0and¥y,5 >0,

(C.7)

[; Y K283 5P
E[RQ)] < A1) 4 ke s
VZY_. 572 2K Vi H2 (C.8)
230 s

(iii) With constant policy (y:, 6;) = (¥,6), such that 7,6 > 0,
- E[R(Q7)] <

for any T > 1. Further; if there exists v > 0 such that ||V l|. <
dofork=1,...,Kandt=1,...,T, then

LY1:Q) 2% L Y30 S IVl?
SO £ 4K206 + TERSEME (C9)

P(7 X1, Z < 8) 2 | - exp(—3557). (C.10)

Proof of Lemma C.1. (i) If Q* € Q, the concavity of R gives
S (ViRQ), Qe - Q) < RQ) -R', ¥Qe Q. (C.1D)

It follows from Lemma A.2 that

L(Yu1: Q1) =" By QG Yiu + Vi)
(A]ld) 2
<" L0V Q) + K [V Qi = Q) + LIVl
LY;Q%) + v, Zk |<ka(Qt) th Q}i) 'Z"Zz
+ 34 [eBis Qs — Q) + lIViiI2].
(C.12)
Besides, (C.3) gives [(By;, Qr; — Q) < 4KA,6,, which com-
bined with (C.11) and (C.12) yields Inequality (C.7).

(i) By telescoping (C.7) r— 1 times, dividing by >}'_, v, and
using £(Y,+1; Q") > 0, we find

(MXL)

(C. 2)

R — e BRQ) - LOQ) | X Z
S zzz-.%é zy_lz s e (C13)
2 1 YsOs 1 ]7: k=1 11V ks ’
+4K/12,”% +3 ST .

By concavity of R, the time average of the estimates satisfies

RQ) > (Z’ -) Ximt VsR(Qy). (C.14)

Introducing the suggested policies in (C.13) and using (C.14)
gives

A LY1:Q) D Zx
- <
RQo =< 557 SR ) (C.15)
+aK2 T yz’ L 82 B Vel :
et 5 2 P

Since (C.6a) lends {Z;} the quality of a martingale difference
sequence, ]E[Zizl Zs] = 0, and (C.8) follows by expectation of
(C.15).

(>iii) Setting @ = 8 = 0 in (C.8) gives us (C.9). By using the
bounds 7y, ..., Dk in combination with (C.4) and (C.6b), we find
that |Z,| < 4vdy fort = 1,...,T, and the martingale difference
sequence {Z;} is bounded. It follows from Azuma’s inequality
that P(Y”, Z > Te¥) < exp[—z;?fﬁ‘z);z] for any & > 0, which
is equivalent to (C.10). [ ]

Theorems 1 and 2 follow from Lemmas B.1 and C.1.

Proof of Theorem 1. Following the line of thought of the proof
of [43, Theorem 5.1], we first show there one can find a solution
Q* € O* such that

liminf,, £L(Y;;Q*) =0 as.. (C.16)

Next, we see that {£(Y;;Q*)} converges almost surely (a.s.)
towards a finite quantity which, in view of (C.16), can only
be 0. A.s. convergence of {Q,} towards Q can then be inferred
from Lemma A.2-(A.11b). The assumption of non-increasing
{0;}, together with (22a) and (22b), implies §; | O which, in
view of (B.3), secures a.s. convergence of {Ql} as well.

First observe that (C.16) holds if, almost surely, there exists a
subsequence of {Q,} that converges towards a solution Q* € Q*.
Suppose this condition not to hold, and let S denote the set of
the limit points of all subsequences of {Q;}. Then, almost surely,
we have Q" N'S = 0 and, since S is closed by construction and
R is continuous and convex, o := R* — maxqges R(Q) > 0.

Telescoping (C.7) in Lemma C.1(i) and using(B.5), yields

LOY15Q%) < L(Y1;Q%) = X, vs [RF R(Qv)]
+ Y ZAAKPAY | 05 +K2(5<+d])2 s=1 ;—i
(C.17)
where {Z;} is the difference sequence of a martingale with
respect to the filtration {F;}. In view of (22b) and (22c), the last
two terms in the second member of (C.17) converge as t — oo.
As for the third term, since

4K(R*d 2 @)
3 B[22 F, ] < HKEAE g 7L o,

2,5 (C.18)

[44, Theorem 2.18] applies with parameter p = 2, and it follows
that )}'_, Z, converges a.s. as t — oo. Finally, one can find
a subsequence {Q; } that converges to a point of S and thus
satisfies R* — R(Q,,) > o/2 for s large enough. It follows from
(22a) that the second term ;7 ¥/[R(Q,)—R(Q")] — —co. Allin
all we find that £ (Y;; Q") — —oo a.s., which is in contradiction
with the nonnegativity of £. We infer that (C.16) is true.

It remains to show that {£(Y,; Q")} is almost surely conver-
gent. To do so we rely on Doob’s convergence theorem for
supermartingales [44, Theorem 2.5]. Recalling (C.7), and using
(B.5) and R(Q;) — R(Q*) < 0, we find

KR dy,)*
22K +1 62 .

LY01; Q)< LY Q)+ Z, + 4K Ay,6, + (C.19)
Consider S, = Y2, ,[4K>Ay6, + K(R*dy,)*/(2**162)] +
L(Y41; Q%). Under assumptions (22b) and (22c¢), S is finite by
construction. We infer from (C.6a) and (C.19) that E[S ;| F;_1] <
S, fort > 1, and {S,} is a supermartingale with respect to {F;},
thus satisfying IE[S;] < §¢ < co. Hence, {S,} is uniformly L'-
bounded and Doob’s theorem applies. It follows that {S,}, and
consequently {£(Y;; Q%)}, are almost surely convergent, which

completes the proof. [

Proof of Theorem 2. By considering Lemma C.1(iii) with the

upper bounds (dp) = dR*/(2X-16) supplied by (B.5), we find
R ]E[R(QT)] ’“"gM +4K228 + EX fffsi, (C.20)
where we have used £(Y;; Q*) < Klog M, and
(C.10) . =
P(ESL Zi<e) = 1- exp(—%). (C21)



The right member of (C.20) is convex in (¥, 8) and minimized
for the policy (7,8) = (y T=3/4,6 T~1/4), where

(C.22)

T K'd (logM)1/4
8 .

We find (28) by substituting ¥ and 6 in (C.20) with the sugges-
tion (¥,0) = (y T~3/*,6 T~'/*). Then, (29) follows from (28) and
(C.21) after setting 6 = 6 T~'/# in the right member of (C.21).
Claims (a) and (b) have been shown. [ ]

D. Analysis of the MXLO* algorithm

The O(6) bound for the bias in Lemma B.1 still holds when
the SPSAplus gradient estimator is used. The offset in (SPSA+)
allows us, however, to derive an O(1/6) bound for the norm, in
place of the harmful O(1/6) bound inherent with SPSA.

Lemma D.1. If MXLO" is implemented under (HO) and (H3)-
(H4), then ||Vl is uniformly bounded fork =1, ..., K
In particular, if (y,,6,) = (y £, 8 t7) with

@@ 0<p<a, (b) dLKy <26, (D.1)

then there is 0, g(y, 6) < 00 such that |[Vi . < 2 > U p(,0) holds
forall t and fork = 1,...,K and, when 3 = 0,

B0(756) = (4“')(‘12,( "

Proof of Lemma D.1. With the convention py = R(Q;), we
have, fork=1,...,K

IViill. < dk|R(Q1) R(Ql)”lel”

(D.2)

) ar (D.3)
< EL)Q, - Qull < LK Vd,
and it follows from (A.2) that ||V, < dLK Vd. Fort > 2,
||ka||* s " 4IRQ) ~ RQDIIZi .
< 4 [|R(Qt> RQ)| + IR(Q:) = R(Qs-1)|
+R(Qs-1) — R(Qz—l)”
(12) A
< SEILIQ QI + LIIQ, ~ Qu-ill (D.4)
+L)|Qr-1 — Qs l||]

(B.3)
< LK VAG, +6-1) + Ty 1Qks — Quacill]
< LK VA, + 61-1) + KyilIVicill,

so that [[Vill. < €£[2K Vd(S,+8-1)+K¥ |V ,i]l.]. With the

convention ¢y = 0, we find, by induction on ¢,

Vil < LKdiNd 5y (55 Mg %1 (1450).

u=s+1

(D.5)

Condition (H4) tells us that ¢,—;/d; is uniformly bounded by
a finite constant, say, ¢ < oo, while (H3) rewrites as

q:= %K (sup,,, L )<L (D.6)

< 7% and %L < cin (D.5), we find, for r > 2,

Usmg <o

Vil
LKd,Nd —

<Y . q" ¥(1+c)—(1+c)1q_%;. (D.7)

Under the policies y, = y ¢+~ and §, = 6 t 7, (D.5) becomes

[Vidlls < TadkLK\/_Z (ydLK)f Y(_)ﬁ

N

_1)1 18-
({;'1))’!] . (D.8)

where 7, = 1 + 2%. Under Condition (D.1a) the last factor is no
larger than 1, and we obtain the uniform bound with

Bap(y,8) = 2L(1 + 2K VA 50 [XE (L),

which is finite on condition that (D.1b) holds. For 8 = 0,(D.9)
reduces to a geometric series and (D.2) follows directly. [

D.9)

We are now able to show Theorem 3 and Theorem 4. Again,
the Lyapunov function (C.1) and Lemma C.1 are used.

Proof of Theorem 3. Proceed as in the proof of Theorem 1, now
with assumptions (Hla), (Hlb) and (H2) in place of (22a),
(22b), (22¢). Because the conditions of Lemma D.1 are met,
there exists 0 < oo such that ||V ||, < 0 for all k, so that (C.17)
and (C.19) respectively become, for some Q* € QF,

L(Y115Q%) < L(Y1;Q%) = Xy ¥s [R* = R(Q))]
t 2 t Ko* <t 2 (D.10)
+ 1 Zg +AK A Y V505 + 5 2=t Vs
with 52, B[22\ 7,1 | < (4KD? £, 92 < o0, and
LOYi1:Q7) < LY Q) +Z + 4K Ay,8, + K292 (D.11)
Thus, S; = L(Yu1;Q%) + X2, [4K>Ay,05 + Kv*y?/2] now
defines the supermartingale with respect to {F;}. [

Proof of Theorem 4. (1) By combining the uniform bound in
Lemma D.1 with (C.8) in Lemma C.1(ii) and using £(Y; Q%) <

Klog M, we find, for the policy (y,,8,) = (717,56 t7P),
- E[RQ)] < S50 + 4k 1655 -
Y s S s (D.12)
n Kd* [Uaﬁ(V 0)] Y X
8 Zl s

where ,3(y,0) is given by (D.9). The above upper bound is
minimized for @ = 8 = 1/2, in which case we find (27).

(2) Using Lemma C.1(iii) under (¥,4) = (y/ \T,8/NT) and
with the bounds v = % Uo.0(¥, d), given by Lemma D.1, yields

9 KlogM | 4K2As Kdz[UU‘O(%»%)FY
E[RQr)] < v e Sﬁ (D.13)
where 50,0(7.0) = (35)(z7x ~ & ! and
.7 clo e
IP( \/T])/ S ) > 1 eXp( 8K2d2[5040(%,%)]2)' (D14)

We find (23) after substituting 9y,(¥, d) with its actual value in
(D.13). Then, (24) follows from (23) and (D.14). [ |

The proof of Corollary 1 relies on the following lemma.

Lemma D.2. Let T’ = {(y,6) € R.g X Ry : v < hd} and
consider the function f : T +— R defined by
o) =4+265+cy(h-3 7 +d(h-%)7",  (D.15)

where a,b,c,h > 0 and d > 0 are given parameters.
(i) At the point (y*,0%) € T, where

=n| Ve VEGER)

the value of f is given by

a7y = 20E oy a0

(251”) (D.16)

(D.17)



Under the constraint 5/ \t < r, where r > 0, (D.17) holds for
1> T (Rd) 2, (D.18)

(ii) For any £>0, f(y*,6")/Vt < & holds for t > T if
T=[f(y", 5%)/€)?. The constraint 6*/ \T < r then rewrites as

£ < (4b + 206/ VeTa (2 yac + d)) . (D.19)
Proof. Verification of all the claims is straightforward. [ ]

Proof of Corollary 1. (a) To derive vy and ¢ in (a) it suffices to
apply Lemma D.2(i) to the expression for B(y, §) given in Theo-
rem 4(2a). The convergence rate of E[R(Q7)] follows from (28)
and (D.17), while the condition on T is a translation of (D.18)
into the present setting, where the restriction §/ /s < r for all
k applies, with r; given by (21).

(b) Recall Theorem 4(2b). The second part of (29) rewrites

as 1 - afor & = 16] e — 1| 2log(K>(M2 ~ D/T.

Observe that B(y, ) +& VT is an instance of the function f(y,0)
defined in (D.15). Lemma D.2(ii) gives us a condition on T for
B(y,8)/ V[T] + € < € to be true which, in view of (29), is also
sufficient for (31) to hold. After computations we find the value
of T in Table IIb with the restriction on &:

(D.19) 3
e< 23/1[¢(a) VL/2+ —'—log(li;)[Mz—l]]

Viog(1/a) KA M+1][M2-1]
v .

E. Analysis of the AMXLO* algorithm

Lemmas B.1 and D.1 still apply in the asynchronous setting.
Instead of (C.1) we use the Lyapunov function

La(Y;Q) = T, £ F(Q; Yo,

where Q* € Q* is a solution. Proceeding as for the derivation of
(C.12) in Lemma C.1, we find, for the algorithm (AMXLO0™),

(E.1)

L(Yr15Q7) < Lr(Y3Q%) — ¥/ [R* — R(Qt)g E2)
K 6, + X+ B FIViE,

with the random sequence {X;} now given by

X =y ZkeU,(Uk,z, Qk,z - QZ>

K ly®-m oo % 2 (E3)
+ 2= T [Y{Vis> Qus — Q) + 7||Vk,t||*]-

It is easily seen that E[X;|.F,,—;] = 0, and

Xl <2y 2 U0kl

| Xl Yt Zk_l | k,t” (E.4)

2
+ i max (1, 2 = 1) 2y Vil + ZIVidR]-

Compare (E.2),(E.4) with (C.7),(C.6b). By reproducing the
rationale behind the proof of Lemma C.1, we obtain an asyn-
chronous counterpart to Lemma C.1, where (C.8) and (C.9) now
hold with £ in place of £, and (C.10) becomes

ZT: X T(z
Pl2s= > /) <exp| — = — s
( Ty = g) = &xp ( 81(2612[(1+U7")l70.0(7s5)+%”7d[50,0()7,5)]2]2>

where v, is defined as in Theorem 5.

Proof of Theorem 5. Proceed as in the proof of Theorem 4. m

Proof of Corollary 2. First observe that we have v, = K — 1
if K > 2. The rest of the proof bases on the conclusions of
Theorem 5 and follows the exact lines of the proof of Corollary
1, now using B (y, 0) and C,(y, 6). Note that Corollary 2b holds
with the following restriction on &:

62 2] bate) VR@LIA + [logh (1)K d] |

log? (1/@)K *[M + 1[M2-1]
v .
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