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Time-frequency fading algorithms based on Gabor
multipliers

A. Marina Krémé, Valentin Emiya, Caroline Chaux, Senior member, IEEE, and Bruno Torrésani

Abstract—In this paper, we address a particular instance
of time-frequency filter design, which we call Time-Frequency
Fading (TFF). In TFF the only available information concerns
the time-frequency localization of the component to be filtered
out or attenuated: the signal of interest is supposed to be spread
out in the time-frequency plane, whereas the perturbation signal
is concentrated within a specified time-frequency region Ω.

The problem is formulated as an optimization problem de-
signed to fade out the perturbation with accurate control on
the fading level. The corresponding objective function involves
a data fidelity term that aims to match the TF coefficients of
the estimated signal to those of the observed signal outside the
perturbation support. It also involves a penalty term that controls
the energy of the reconstructed signal, within that region.

We obtain the closed-form solution of the problem which
involves Gabor multipliers, i.e. linear operators of the pointwise
product by a time-frequency transfer function called a mask. We
study the TF localization properties of dominant eigenvectors of
these Gabor multipliers, with particular attention to the case
where the region Ω is a disjoint union of several sub-regions.
The decay properties of eigenvalues naturally lead to reduced-
rank approximations, and further approximations are obtained
in the multiply connected region case. Also, we exploit random
projection methods to speed up eigenvalue decompositions and
rank reduction. This is implemented in two TFF algorithms, that
cover the cases of single or multiple regions.

The efficiency of the proposed approach is demonstrated on
several audio signals where the perturbations are filtered while
leading to a good quality of signal reconstruction.

I. INTRODUCTION

WE consider the problem of restoration of a signal that
has been degraded by an additive perturbation, in the

special case where the latter is localized in specified regions
of a time-frequency domain.A prototypical application is time-
frequency editing, which may be described as follows: given
a graphical TF representation, remove (graphically with a
rubber) some TF components and reconstruct the signal. To
our knowledge, this problem has not been really considered
from the methodological point of view, even though it has
been addressed in several application-driven problems.

In general the problem is solved empirically by time-
frequency masking [1], [2], namely pointwise multiplication
with a real-valued function called mask, binary or more
sophisticated (Wiener-type filters). Time-frequency masking
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may be seen as a particular instance of linear time-varying
(LTV) filtering (see [3], [4], [5], [6] and references therein),
where the filter design is done directly in a time-frequency
domain. The design itself depends on the information available
on the perturbation to be filtered out, that may consist of
the single information on its time-frequency localization as
in the problem at hand here or maybe more quantitative.
Whatever the design, the resulting masked time-frequency
transforms generally do not satisfy the consistency conditions
associated with the transform (not every image corresponds to
a time-frequency transform), unless consistency is imposed as
a constraint as in [7].

In this work, we formulate the problem in a different
way and propose a variational approach to design such time-
frequency filters. We limit ourselves to the case of discrete
Gabor transform [8], [9] (a.k.a. subsampled STFT), but the
approach can easily be extended to other linear time-frequency
or time-scale transforms from which perfect reconstruction is
possible (such as wavelet transform, constant Q transform, S
transform or others). The time-frequency filters are obtained
by minimizing a suitable objective function, that involves
binary masking, but the resulting filter is not time-frequency
masking. We call such an approach time-frequency fading, as
it makes it possible to fade out a given region in the time-
frequency domain by an amount that can be tuned by a (set
of) control parameter(s), in an analogy with classical audio
fading (gradual change in loudness) or video (gradual change
in color). This control parameter is actually a regularization
parameter in the objective function. We also propose a data
driven strategy for tuning this parameter. At this point, let us
stress that the fading problem does not involve the estimation
of the region to be filtered out, which is fixed. In this respect,
fading is closer to time-frequency filter design than to single
channel blind source separation, which often involves the
construction of a mask, be it binary or real.

Our approach can be summarized as follows. Let T denote
a time-frequency transform, mapping any signal x ∈ CL to
T x ∈ l2(Λ). Let us denote by xo ∈ RL the target signal
and yo ∈ RL the signal to be faded out. yo is assumed to
be essentially localized in a specific region Ω (that may be
a disjoint union of connected sub-regions Ωp far away from
each other) in the time-frequency domain Λ. We assume that
sub-regions Ωp (and thus Ω) are symmetric with respect to the
null-frequency axis since signals are real-valued. We denote
by Ω̄ = Λ \Ω the complement region. The observed signal z
is thus given by z = xo + yo. The objective is, given Ω, to
retrieve xo from z or equivalently, to remove yo from z. We
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formulate the problem as the following quadratic optimization
problem

xλ = argmin
x∈RL

‖T x− T z‖2
Ω

+

P∑
p=1

λp ‖T x‖2Ωp
. (1)

where ‖x‖2Ω :=
∑
k∈Ω |x[k]|2 and λ = (λp)p, λp > 0. This

amounts to find an estimation xλ of xo which best matches
z outside Ω and whose energy within Ω is reduced. The
problem (1) leads to a linear system, whose solution involves
time-frequency multipliers (i.e. time-frequency filters defined
by pointwise multiplication in the time-frequency domain),
as shown in [10], where a spectral approach based upon
eigenvalue decomposition of Gabor multipliers was proposed.
However, this approach turns out to be computationally ex-
pensive with large signals. Furthermore, the approach was
restricted to the case P = 1.

In this work, we build on the results of [10] and extend
the approach to the case P > 1, still using Gabor multipliers.
We propose several strategies to reduce the computational cost
and thus enable real audio signal processing. We also propose
a complete pipeline involving the splitting of Ω into pairwise
disjoint sub-regions Ωp and the estimation of optimal values
for hyperparameters λp.

The paper is organized as follow: Section II is devoted to the
introduction of Gabor tools while Section III presents the pro-
posed method. The problems of erasing one region or several
sub-regions are treated as well as efficient algorithmic issues.
Numerical experiments are drawn in Section IV on various
audio signals for which the proposed algorithm outperforms
baseline approaches. Finally, Section V concludes the paper.
More technical aspects are postponed to the appendix.

II. ELEMENTS OF GABOR ANALYSIS

Gabor analysis is a particular instance of time-frequency
analysis, that aims at representing signals (functions, se-
quences, or vectors) as linear combinations of translated and
modulated copies of a generic signal called a window. The
coefficients of the expansion provide an alternative represen-
tation of the object of interest, called a time-frequency repre-
sentation. Gabor analysis has enjoyed important developments
since its introduction in the seminal paper by D. Gabor [8].
We refer to [11] for a detailed account of mathematical
developments, which also addresses extensions to operator
theory that will be of interest here, and to [12], [13], [14]
for signal processing related developments. Gabor analysis has
found many applications in various areas of signal processing
such as audio, speech and image processing, communication
theory, radar and sonar [15], [8]. We give below a short
account of the main aspects that are important for this paper.

Let us first introduce some notations. Throughout this paper,
matrices and vectors (considered columnwise) are represented
using bold characters type (such as X or x), and scalars
are represented using normal characters; the ith entry of x
is x[i], similar notations are used for matrix elements. The
inner product of two column vectors x and y is defined by
〈x,y〉 = yHx, where H denotes Hermitian conjugation, and
the standard norm is denoted by ‖ · ‖2.

Given a matrix X , we denote by ‖X‖2 =
√

Tr(XHX)
its Frobenius norm (with Tr denoting the trace) and by ‖X‖
its operator norm. Given a subset Ω of the matrix index set,
the Frobenius norm of the restriction of X to Ω is denoted by
‖X‖Ω = ‖X1Ω‖2, 1Ω being the indicator function of Ω.

A. Gabor analysis

We limit ourselves to finite dimensional situations and de-
scribe Gabor analysis on CL, where L is a positive integer. Let
a and b be two divisors of L, we set N = L/a and M = L/b
and introduce the time-frequency lattice Λ◦ = bZM×aZN and
the lattice Λ = ZM ×ZN (which we will use as index set for
Gabor analysis), where ZN := Z/NZ = {0, 1, . . . , N − 1} is
the cyclic group with N elements. Let g ∈ RL be a nonzero
vector, hereafter called the analysis window. The family of
Gabor atoms associated with (g,Λ◦) is the family of vectors
gmn ∈ CL obtained by translations and modulations of g on
the lattice Λ◦. Namely, the Gabor atoms gmn are defined by

gmn[l] = g[l − na]e2iπmbl/L, l ∈ ZL

A family of Gabor atoms as above is a Gabor frame when
there exists two constants 0 < A ≤ B <∞ verifying, for all
x ∈ CL.

A‖x‖22 ≤
M−1∑
m=0

N−1∑
n=0

|〈x, gmn〉|2 ≤ B‖x‖22 (2)

The constants A and B are respectively the lower and upper
frame bounds. When A = B, the Gabor frame is tight, and is
called a Parseval frame when A = B = 1. The redundancy of
the representation is L/ab = MN/L, it has to be greater
than or equal to 1 to allow perfect reconstruction [11],
[16]. However, the Balian-Low theorem states that if g is
to be sufficiently localized in time and frequency, which is
the case in most applications including the present paper, the
redundancy must be greater than 1.

The discrete Gabor transform (DGT) [17], [18] V maps any
x ∈ CL into a matrix Vx ∈ CM×N of Gabor coefficients,
defined by

Vx[m,n] = 〈x, gmn〉 =

L−1∑
l=0

x[l]g[l − na]e−2iπmbl/L.

The spectrogram is the squared modulus |Vx[m,n]|2 of the
DGT, often represented in logarithmic scale.

When the signal x is real-valued, its DGT is Hermitian, i.e.,
Vx[M −m,n] = Vx[m,n],∀m ∈ {1, . . . ,M − 1}. In such a
case it is customary to represent non-negative frequencies only.

The adjoint operator VH : CM×N −→ CL, also called
synthesis operator is given as follows. For all c ∈ CM×N ,

VHc =

M−1∑
m=0

N−1∑
n=0

c[m,n]gmn .

The frame operator is defined by S = VHV . It is bounded,
self-adjoint and semi positive definite (i.e. xHSx ≥ 0 for
x ∈ CL) by construction, and actually positive definite as a
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consequence of (2). Therefore S is invertible, which permits
to reconstruct any x ∈ CL from its Gabor coefficients.

Of particular interest are the above mentioned Parseval
frames, for which S = I, i.e., VH is a left inverse of V .
In such situations, the Gabor expansion takes a very simple
form: for all x ∈ CL

x =

M−1∑
m=0

N−1∑
n=0

〈x, gmn〉gmn .

For the sake of simplicity, we will limit ourselves to this case
throughout this paper.

Parseval Gabor frames can easily be generated from any
Gabor frame. Indeed, it can be shown that given a Gabor frame
associated with (g,Λ◦), with frame operator S, and defining
a new window γ = S−1/2g, the Gabor frame associated
with (γ,Λ◦) is a Parseval Gabor frame. In this paper we will
focus on Parseval frames constructed in this way, starting from
Gaussian and Hann windows.

B. Gabor multipliers

Gabor multipliers are linear operators that perform time-
varying signal filtering by pointwise multiplication in the
Gabor domain.

Definition II.1 (Gabor multiplier). Let g and Λ◦ be as above,
and let m ∈ CM×N . The Gabor multiplier associated to
(g,Λ◦) and m, is the linear operator Mm = VHmV , acting
on x ∈ CL as

Mmx =

M−1∑
m=0

N−1∑
n=0

m[m,n]〈x, gmn〉gmn .

m is called the mask (or time-frequency transfer function) of
the Gabor multiplier1.

Gabor multipliers form a particular class of time-varying
filters [19], [4], which is relevant in various domains in-
cluding time-varying system identification [20] or modulation
theory [21] or sound morphing [22]. Approximation of linear
systems by Gabor multipliers have been studied in various
places (see e.g. [23], [24], [25] and references therein). The
main property is that they are good at approximating so-called
underspread linear systems, i.e. linear systems that do not
involve large time shifts and frequency shifts.

The class of Gabor multipliers considered in this paper
enjoy useful properties, which we address below. We first start
with generic properties.

Properties II.1 ([19], [26]). (i) If m is real-valued then
Mm is self-adjoint. It is then diagonalizable, with real
eigenvalues, and there exists an orthonormal basis of CL
formed by Mm eigenvectors.

(ii) The Gabor multiplier generated by m ≡ 1 is a multiple
of the identity operator if and only if (g,Λ◦) generates
a tight Gabor frame.

1By abuse of notation we have used the same symbol to represent the mask
and the operator of pointwise multiplication by the mask.

(iii) For arbitrary m ∈ CM×N , then Mm defines a bounded
operator with operator norm ‖Mm‖ ≤ B‖m‖∞, where
B is the upper bound defined in (2). In particular, if g and
Λ◦ generate a Parseval frame, then ‖Mm‖ ≤ ‖m‖∞.

We will mainly focus on the so-called time-frequency
localization operators, which are Gabor multipliers associated
with a mask m = 1Ω equal to the indicator function of a
region Ω of the time-frequency lattice Λ. The mask m being
binary, and since we limit the present investigations to Parseval
frames, the corresponding eigenvalues range between 0 and 1.

Time-frequency localization properties of corresponding
eigenvectors (which can be seen as generalized prolate
spheroidal functions) have been studied in [27], [19], see [28]
and references therein for recent accounts. The main result
is that when the area of the region Ω is large enough,
eigenvectors with large eigenvalues (i.e. close to 1) tend to
be concentrated within Ω, while eigenvectors with smaller
eigenvalues tend to localize themselves outside Ω. Therefore,
the rank (or effective rank, i.e. dimension of the subspace gen-
erated by eigenvectors with significant eigenvalues) grows with
the area of Ω (we refer to [28] for more precise statements).
We illustrate these properties in the next subsection.

C. Numerical illustrations

We illustrate in this section the behavior of Gabor transform
and Gabor multipliers in situations of interest here. We rely
on dedicated toolboxes, namely the LTFAT Octave/Matlab
toolbox [29], [30], and the Python version ltfatpy [31].

We first highlight the behavior of eigenvectors and eigen-
values of Gabor multipliers on a mask generated from the
sum of a car engine sound and a bird song with length
16384 (see Section IV for the full experimental setting).
The mask was constructed by appropriate thresholding of the
Gabor transform of the resulting signal, followed by simple
morphological operations that ensure sufficient connectivity
of sub-regions (see Section IV-A below for details). The mask
is displayed in Fig 1 (left panel), the eigenvalues of the
corresponding Gabor multiplier are displayed on the right
panel, sorted in decreasing order. Two windows have been
considered, respectively generated from a Gaussian and Hann
window (we recall that initial windows are modified so as to
generate Parseval frames).

As expected, eigenvalues range between 0 and 1. A plateau
of values equal to 1 can be observed at the beginning, followed
by a rapid decay. As an example, less than 3900 eigenvalues
(out of 16384) are enough to reach a precision of 10−6 for
the Gaussian-type window (3700 for Hann), which opens the
door to significant dimension reduction. We also illustrate in
Fig. 2 the time-frequency localization of eigenvectors related
to large and smaller eigenvalues. It can be seen on the top
row that eigenvectors associated with the top eigenvalue σ [1]
(equal to 1 with excellent precision, namely 2.4 × 10−11 for
the Gaussian type window, and 3.4×10−12 for the Hann type
window)

tend to localize in the same regions as one of the connected
sub-regions of the mask (here sub-regions 1 and 8, from left
to right). Eigenvectors associated with lower eigenvalues are
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displayed on the bottom row, (chosen so as to have close
eigenvalues, and approximately the same TF localization as
the top eigenvector: σ [3072] ≈ 3.914× 10−4 and σ [3199] ≈
3.865 × 10−4) tend to be localized within time-frequency
“rings” around the connected components of the mask, the
smaller the eigenvalue the larger the ring radius.

Fig. 1. Binary Mask generated with a Gauss window estimated from a bird
song signal (left), and Gabor multiplier’s eigenvalues σ[k] in decreasing order,
displayed in logarithmic scale (right).

Fig. 2. Column 1 (top to bottom): spectrogram of the first and 3072 th
eigenvectors of the Gabor multiplier generated with a Gauss window. Column
2 (top to bottom): spectrogram of the first and 3199 th eigenvectors of the
Gabor multiplier generated with a Hann window. The mask associated with
each of these multipliers was generated using the Gaussian type window, as
shown in Fig 1.

The relationship between the support size of the mask
and the behavior of eigenvalues of the corresponding Gabor
multiplier has been studied theoretically by several authors,
in a continuous time setting (see e.g. [28] and references
therein). Assuming one may extrapolate to the discrete, finite-
dimensional case, one would expect the number of eigenvalues
larger than some threshold to vary (at least approximately)
linearly with the support size. We checked this property
numerically in situations such as the ones we consider in this
paper.

More precisely, we computed a rank estimate for Gabor
multipliers with a binary mask with rectangular support,
constant shape and center, and increasing areas. Namely, we
computed the number of eigenvalues above a fixed threshold
(set here to 10−13), as a function of the area of the support
of the mask. We use a signal length L = 16384, a Gaussian
window with length 64, a hop size a = 16 and b = 256 bins.
Results are displayed in Fig. 3. Within the range of interest,
the rank estimate appears to vary linearly as a function of
the mask area. Fig. 3 also includes another estimate called
Rand-EVD and based upon random projections, which we use
and describe in Section III-C2 below. This estimate exhibits
the same linear behavior; we remark that Rand-EVD tends
to slightly underestimate the rank compared to the reference
approach.

Fig. 3. Rank estimation as a function of mask area. The window is a Gaussian
window.

III. TIME-FREQUENCY FADING (TFF)

A. Problem statement

As mentioned in Section I, we assume that we observe a
signal z of length L, of the form

z = xo + yo , (3)

i.e., the sum of a signal of interest xo and a perturbation yo.
We assume further that the perturbation is strongly concen-
trated within a known region Ω ⊂ Λ in the time-frequency
(TF) domain Λ. We recall that Ω = Λ \ Ω is the complement
region of Ω.

Our objective is to filter out the perturbation yo within Ω
and reduce the artifacts generated by filtering. We term this
problem time-frequency fading (TFF).

The example in Figure 1 suggests to split the region Ω into
smaller disjoint sub-regions Ωp, 1 ≤ p ≤ P and attempt to
approximate the problem by P independent subproblems. As
we will see, this turns out to be possible if sub-regions Ωp are
sufficiently far away from each other, with respect to a distance
measure to be properly defined. We provide in Section III-B3
below and the Appendix a more quantitative analysis that also
justifies one of the algorithms we propose (TFF-P).

Standard practice for such a TFF problem is to perform
a pointwise multiplication in the time-frequency domain by
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some transfer function (see e.g. [1], [32], [16], [33], [34] for
applications in various domains), that penalizes the component
within Ω, i.e. using a Gabor multiplier. However the choice of
the transfer function is often arbitrary, and standard choices
(such as binary masks) often generate artifacts, as stressed
in [7] .

We choose here to formulate the problem as an optimization
problem, which we write as

xλ = argmin
x∈RL

fλ(x) := ‖Vx− Vz‖2
Ω

+

P∑
p=1

λp‖Vx‖2Ωp
(4)

where the objective function fλ depends on regularization
parameters λp > 0 for all sub-regions p = 1, . . . P , which
we collect in a vector λ = (λ1, . . . , λP ).

The first term of the objective function in (4) is a data
fidelity term that matches the DGT of the estimated signal
to that of the observation outside Ω. The second term controls
its energy in each sub-region Ωp, and the regularization pa-
rameters control the trade-off among all terms. The importance
of the hyperparameters is discussed in Remark III.2 below.

The objective function in (4) is a quadratic form, its
optimization leads to a linear system which we study below.

Remark III.1. In the case P = 1, the problem can also be
formulated in terms of the perturbation y in the observation
model (3). Indeed, one may also write

gλ(y) =
1

λ
fλ(z − y) = ‖Vy − Vz‖2Ω +

1

λ
‖Vy‖2

Ω

so that optimizing fλ with respect to x is equivalent to opti-
mizing gλ with respect to y. Despite this apparent symmetry,
the problems of reconstructing x and reconstructing y are not
equivalent. Indeed, we showed in [10] that the optimal value
of λ for reconstructing x is not the same as the optimal value
for reconstructing y, mainly due to the imbalance of sizes of
Ω and Ω.A strategy for tuning λ is described in Section III-C3
below.

B. Proposed solutions

1) Closed-form solution: Because fλ is quadratic, solutions
of the optimization problem (4) are given by the corresponding
critical points. The gradient of fλ can be expressed in terms
of Gabor multipliers

∇fλ(x) = 2MΩx− 2MΩz + 2

P∑
p=1

λpMΩp
x , (5)

where MD denotes the Gabor multiplier associated with the
indicator function of the domain D.

Since we limit our interest to the case of Parseval Gabor
frames, we have MΩ + MΩ = I. Therefore, the normal
equations can be written as(

I−
P∑
p=1

(1− λp)MΩp

)
x =

(
I−

P∑
p=1

MΩp

)
z , (6)

where we have also used the fact that the Ωp are pairwise
disjoint.

Remark III.2. Notice that setting λp = 0 in the above
equation for every p leads to MΩz = MΩx, which does not
have a unique solution if MΩ is not full rank; what happens
within Ω is then uncontrolled. The same may be true if one
of the constants λp is set to zero and if the corresponding
sub-region Ωp is large enough.

The operator I −
∑P
p=1(1 − λp)MΩp

is actually a Gabor
multiplier with piecewise constant mask m = 1−

∑P
p=1(1−

λp)1Ωp
, where 1Ωp

is the indicator function of the sub-region
Ωp. If λp > 0 for all p, then min(m,n)(m[m,n]) > 0 and the
mask is therefore semi-normalized, which implies invertibility
(see Proposition 3.7 in [35]).

From now on we then assume λp > 0 for all p. The solution
then reads

xλ =

(
I−

P∑
p=1

(1− λp)MΩp

)−1(
I−

P∑
p=1

MΩp

)
z

= z−

(
I−

P∑
p=1

(1−λp)MΩp

)−1 P∑
p=1

λpMΩp
z. (7)

This closed-form solution requires solving a linear system
for each choice of λ, which may be computationally demand-
ing in high dimensions and/or when the region Ω is large.
Indeed, owing to the discussion at the end of subsection II-A,
the rank of the multipliers increases with the area of the
support of the mask. We propose below efficient algorithmic
solutions that provide good approximations of (7).

2) Reduced rank approximation for P = 1: Let us first
examine the case where a single region Ω is considered (for
simplicity we then drop the subregion index). Since P = 1, a
unique regularization parameter λ ∈ R∗+ is required.

The solution reads

xλ = z −
(

I− (1− λ)MΩ

)−1

λMΩz , (8)

the invertibility of I − (1 − λ)MΩ being ensured by the fact
that the spectrum of MΩ is included in [0, 1] (see below).

As mentioned in Properties II.1, the mask being binary, the
Gabor multiplier MΩ can be diagonalized and thus factored
in matrix form as MΩ = UΣUH where U is unitary and
Σ = diag(σ) is diagonal. Here σ = (σ[1], . . .σ[L]) ∈ RL is
the vector of eigenvalues, which are sorted in decreasing order
1 ≥ σ[1] ≥ · · · ≥ σ[L] ≥ 0.

We can then write

xλ = z −UΓUHz (9)

where Γ = diag(γ), with γ = (γ[1], . . .γ[L]) and

γ[i] =
λσ[i]

1− (1− λ)σ[i]
.

It is easily seen that the sequence γ = (γ[1], . . . γ[L]) is
decreasing and included in [0, 1], which we will use for
truncation purposes.

The approximate solution when truncating to the K largest
eigenvalues (K < L) is given by:

x
(K)
λ = z −U (K)Γ(K)(U (K))Hz (10)
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where U (K) is the L×K submatrix consisting in the first K
columns of U , and Γ(K) is the submatrix consisting of the
K first rows and columns of Γ. The truncation error can be
bounded as [10]∥∥∥xλ − x(K)

λ

∥∥∥
2
≤ γ[K+1] ‖z‖2 . (11)

3) Approximate solution in the general case P ≥ 1:
In the general case where P sub-regions are considered, we
propose an approximation, given in eq. (13), of the practically-
untractable closed-form solution (7). The approximation relies
on the assumption that the composition of Gabor multipliers
related to two different sub-regions may be neglected provided
the regions are sufficiently far apart:

p 6= q ⇒
∥∥MΩp

MΩq

∥∥ ≈ 0,∀p, q . (12)

Let us assume for the sake of the argument2 that for all p 6= q,∥∥MΩpMΩq

∥∥ = 0, in other words the range of MΩq is in the
null space of MΩp ; as a result, the eigenvectors of MΩq with
the largest eigenvalues are orthogonal to the eigenvectors of
MΩp

with the largest eigenvalues.
Hence one may jointly diagonalize all the Gabor multipliers{
MΩp

}P
p=1

in a common orthonormal basis of eigenvectors

U (K) :=
[
U

(K1)
1 , . . . ,U

(KP )
P ,U

(K0)
0

]
where Up is the matrix

of orthonormal eigenvectors associated with the Kp largest
eigenvalues σ(Kp)

p of MΩp
sorted in decreasing order, and

where U (K0)
0 is composed of K0 = L−

∑P
p=1Kp orthonormal

vectors to complete the basis. This is valid when the Kp are
small enough, i.e., when the perturbation is well localized
so that regions Ωp are small. It follows that the closed form
solution (7) is approximated by

x
(K)
λ = z −

I−U (K) diag


λ1σ

(K1)
1
...

λPσ
(KP )
P

0K0

(U (K)
)H

−1

×
P∑
p=1

λpU
(Kp)
p diagσ(Kp)

p

(
U (Kp)
p

)H
z

= z −
P∑
p=1

U (Kp)
p diag

(
1− λpσ

(Kp)
p

)−1 (
U (Kp)
p

)H
×

P∑
p=1

λpU
(Kp)
p diagσ(Kp)

p

(
U (Kp)
p

)H
z

Defining Γ
(Kp)
p = diag (γp [1] , . . . ,γp [Kp]) with γp [i] =

2In practice, this assumption never holds exactly (except for specific cases
such as regions that a far away in time, using finite-length windows), so the
proposed argument is an intuitive justification of our method rather than a
formal proof. Yet, very low values of

∥∥MΩpMΩq

∥∥ are reached in practice
(e.g. see the ε = 10−5 threshold used in the experiments).

λpσp[i]
1−λpσp[i] , we then obtain

x
(K)
λ = z −

P∑
p=1

U (Kp)
p Γ(Kp)

p

(
U (Kp)
p

)H
z

−
∑
p 6=q

U (Kp)
p diag

(
1−λpσ

(Kp)
p

)−1 (
U (Kp)
p

)H
U (Kq)
q

diag
(
λqσ

(Kq)
q

)(
U (Kq)
q

)H
z .

Since
(
U

(Kp)
p

)H
U

(Kq)
q ≈ 0 the approximate solution reads

x
(K)
λ = z −

P∑
p=1

U (Kp)
p Γ(Kp)

p

(
U (Kp)
p

)H
z , (13)

which is actually a truncated version of a sum of independent
single region solutions (9)

xLλ = z −
P∑
p=1

(
I− (1− λp)MΩp

)−1
λpMΩp

z . (14)

In fact the norms
∥∥MΩp

MΩq

∥∥ are only approximately zero.
We show in the Appendix that the error induced by the ap-
proximation can actually be controlled, assuming 0 < λp < 1
for all p.

Set λ̃p = minq 6=p λq and ∆p =∑
q 6=p ‖MΩp

MΩq
‖, and assume that for 1 ≤ p ≤ P ,

∆p <
λp

1−λp

λ̃p

1−λ̃p
, i.e., that the products of pairs of different

Gabor multipliers are small enough compared to the values
of regularization parameters. Given the localization properties
of eigenvectors, this typically happens when sub-regions
Ωp are sufficiently far away from each others, and/or when
regularization parameters are close to 1. We then obtain the
upper bound (see Appendix A for a proof).

∥∥xλ − xLλ∥∥2
≤

P∑
p=1

(1− λ̃p)∆p

λpλ̃p − (1− λp)(1− λ̃p)∆p

‖z‖2 ,

(15)
The truncation error estimate (11) can be extended to this

new setting and reads

∥∥∥xLλ − x(K)
λ

∥∥∥
2
≤

P∑
p=1

γp[Kp + 1] ‖z‖2 .

The triangle inequality then yields the bound∥∥∥xλ − x(K)
λ

∥∥∥
2
≤ C(λ,K)‖z‖2 , (16)

with

C(λ,K) =

P∑
p=1

(
(1− λ̃p)∆p

λpλ̃p−(1−λp)(1−λ̃p)∆p

+ γp[Kp+1]

)
.

(17)
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C. All-in-one algorithms

Relying on solutions presented in Sections III-B2
and III-B3, we introduce Algorithms 1 and 2 that process an
observation z and a mask Ω in order to estimate the target
signal. Algorithm 1 (resp. 2), named TFF-1 (resp. TFF-P),
implements the solution of Section III-B2 (resp. III-B3), by
considering Ω as a whole region (resp. as multiple subregions).
In particular, it includes the creation of the Gabor multipliers
(steps 2 in Alg. 1 and 4 in Alg. 2), the computation of their
approximate EVD (steps 3 in Alg. 1 and 5 in Alg. 2), and
the construction of the solutions (steps 6 in Alg. 1 and 9 in
Alg. 2).

In order to make them computationally efficient and conve-
nient for real-world usage, those algorithms also rely on three
additional aspects :
• in TFF-P, the TF region Ω is partitioned into subregions

(step 1 in Alg. 2); this can be done automatically without
specifying the number of subregions, as described in
Section III-C1;

• the Gabor multipliers are diagonalized using fast random-
ized algorithms, as described in Section III-C2

• efficient hyperparameter tuning is obtained by estimating
target energy values in the (sub-)regions (steps 1-4-5 in
Alg. 1 and 2-6-7 in Alg. 2), as detailed in Section III-C3.

Algorithm 1 TFF-1: filtering out one TF region
Require: Mix z, mask Ω, DGT V , parameters εEVD, pEVD,

1: Estimate target energy etarget ∈ R in Ω (see III-C3)
2: MΩ ← VH1ΩV
3: Û , σ̂ ← rand_evd (MΩ, εEVD, pEVD)
4: Let

x̂ : λ 7→ z − ÛΓ (λ) ÛHz

where

Γ : λ 7→ diag

(
λσ̂

1− (1− λ)σ̂)

)
5: λ̂← argminλ>0

∣∣∣etarget − ‖Vx̂ (λ)‖2Ω
∣∣∣

6: return x̂
(
λ̂
)

1) Partioning mask Ω into sub-regions: As introduced in
Section III-B3, the solution using P sub-regions {Ωp}Pp=1

relies on the hypothesis that the norm
∥∥MΩpMΩq

∥∥ of the
composition of Gabor multipliers from sub-regions Ωp and
Ωq is small, which occurs when sub-regions are sufficiently
far away from each other in the time-frequency plane, in the
sense that Ωp and Ωq satisfy the condition

∥∥MΩp
MΩq

∥∥ ≤ ε,
for some small ε. We propose in Algorithm 3 an approach that
splits an initial region Ω into P such sub-regions. The starting
point (step 1) is a partition of Ω into connected components,
e.g. by clustering TF points that are immediate neighbors
using a 4-connected structuring element as done in image
processing3. Then, pairs of sub-regions (Ωp,Ωq) for which

3See bwlabel in Matlab or scipy.ndimage.label in Python.

Algorithm 2 TFF-P: filtering out P TF sub-regions
Require: Mix z, mask Ω, DGT V , parameters εEVD, pEVD

1: Split Ω into sub-regions {Ωp}Pp=1 (e.g. via Algorithm 3)
2: Estimate target energies etarget ∈ RP in {Ωp}Pp=1

(see III-C3)
3: for p = 1 to P do
4: MΩp

← VH1Ωp
V

5: Ûp, σ̂p ← rand_evd
(
MΩp , εEVD, pEVD

)
6: Let

x̂p : λ 7→ z − ÛpΓp (λ) ÛH
p z

where

Γp : λ 7→ diag

(
λσ̂p

1− (1− λ)σ̂p)

)
7: λp ← argminλ>0

∣∣∣etarget [p]− ‖Vx̂p (λ)‖2Ωp

∣∣∣
8: end for
9: return z −

∑P
p=1 ÛpΓp (λp) Û

H
p z

∥∥MΩp
MΩq

∥∥ is greater than a tolerance threshold are merged
repeatedly until no such pairs of regions exist (step 3).

Algorithm 3 Finding sub-regions for TFF-P
Require: Mask Ω, tolerance ε > 0 on the spectral norm of

the composition of two Gabor multipliers, DGT V
1: Generate a partition P = {Ωp} of Ω into disjoint con-

nected components.
2: while ∃Ωp,Ωq ∈ P,

∥∥MΩp
MΩq

∥∥ > ε do
3: For every p, q such that

∥∥MΩpMΩq

∥∥ > ε, replace Ωp
and Ωq by Ωp ∪ Ωq in P

4: end while
5: return P

For the bird+car example mentioned in Fig. 1, running
Algorithm 3 with ε = 10−5 yields 9 sub-regions for which
the actual values of

∥∥MΩpMΩq

∥∥ are of the order of 10−29.
This demonstrates the practical suitability of the sub-regions
splitting.

2) Diagonalization of Gabor multipliers using Rand-EVD:
The algorithms proposed in this paper rely strongly on eigen-
value decompositions (EVD) of Gabor multipliers. However,
most EVD algorithms have complexity O

(
L3
)
, which be-

comes prohibitive in high dimensions. This can be reduced
when the numerical rank K is significantly lower than the
dimension. This is the case here, at least when the region
Ω is significantly smaller than the time-frequency domain
Λ, as shown in Section II-C. Provided that K is known,
such a low-rank approximation is computed in O

(
KL2

)
by well-known algorithms based on the Lanczos algorithm
such as the Implicitly Restarted Arnoldi Method available
in standard libraries under the usual name eigs [36], [37].
Even more efficient algorithms exist, as described as in [38],
based on random projections. In addition to being significantly
faster, they are also able to estimate the numerical rank K
while the previous methods need to be given this rank. In
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the current context, the low-rank eigenvalue decomposition
of Gabor multipliers is obtained by combining the Adaptive
Range Finder Algorithm [38, Algorithm 4.2] followed by the
so-called Eigenvalue Decomposition via Nyström Method [38,
Algorithm 5.5]. The Adaptive Range Finder Algorithm pro-
vides a low-rank matrix that approximates the range of the
Gabor multiplier. The rank is estimated from a target ap-
proximation error εEVD and a probability pEVD to reach this
error. This algorithm is particularly suitable in the case of fast
operators with fast-decreasing eigenvalues like the DGT-based
multipliers used here. Then, the Eigenvalue Decomposition via
Nyström Method uses this matrix to compute the approximate
EVD, taking advantage of the Hermitian, positive semidefinite
properties of our Gabor multipliers.

The combination of both algorithms will be named
Rand-EVD in the rest of the paper. Rand-EVD [38] al-
lows us to overcome precision and efficiency problems when
performing classical EVD calculations in large dimensions.
In practice, we have observed that Rand-EVD is able to
estimate the numerical rank and to compute an approximate
EVD about three times faster than eigs in settings such as
those described in Section IV with parameters εEVD < 10−3

and pEVD = 0.9999.

3) Efficient solutions for tuning hyperparameters: We pro-
pose a simple method to estimate hyperparameter λ. The main
idea is to consider a target energy for the coefficients within Ω
or any sub-region Ωp, and to adjust the related hyperparameter
consequently to fit this target value. Indeed, as can be seen in
Problem (1), the higher the value of λp, the lower the energy
‖Vx‖2Ωp

in sub-region Ωp.

The target energy may be adjusted by hand or by computing
the energy in an unmasked region similar to the masked one,
as described in [10]. Here, we propose a more systematic
and yet simple strategy, assuming that the target signal has
some stationarity properties: for each frequency channel f ,
we compute the average energy ēf =

∑
t:(t,f)∈Ω |Vz[t, f ]|2

of all the unmasked coefficients Vz in frequency bin f ; then,
we estimate the energy in Ωp as etarget [p] =

∑
(t,f)∈Ωp

ēf ; the
energy in Ω is estimated as etarget =

∑P
p=1 etarget [p].

Given target energies computed by the proposed strategy or
by any other method, one can tune the hyperparameters by
solving the optimization problems at step 5 in Algorithm 1 or
at step 7 in Algorithm 2. This is computationally efficient for
two reasons. First, while usual hyperparameter tuning via cross
validation [39] generally implies to run the whole optimization
procedure for model estimation at each hyperparameter eval-
uation, TFF-1 and TFF-P requires to diagonalize the Gabor
multipliers only once. Hence, the cost of computing a solution
for a given λ or λp is linear in the signal length. Second,
estimating each λp is done separately thanks to the fact that
sub-regions are far away from each other by construction (see
Section III-C1). Hence, simple line searches over each λp
in λ are conducted, avoiding a costly global P-dimensional
optimization over λ.

An illustration in the case of a bird+car signal previously
mentioned is given in Section IV-B and in Figure 5.

IV. NUMERICAL EXPERIMENTS

This Section is focused on practical experiments with the
algorithms introduced in Section III. In Section IV-A, the ex-
perimental setting is introduced, including the sound material,
the problem generation, the performance measure, the solvers,
their parameters, and implementation details. In Section IV-B,
we show and comment on results for the time-frequency fading
problem using five different approaches (2 baseline one and 3
based on the proposed approaches):

For reproducibility, all the code and data are available in the
tff2020 toolkit 4. Simulations have been conducted both in
MATLAB and Python on CPU at 2.3GHz.

A. Experimental setting

1) Sound material: all audio signals considered here have
been sampled at 8 kHz and their length is L = 16384 samples
(i.e., about 2 seconds). The bird and car signals were provided
by our partner ANSYS [40], chirps and modulations signals
were synthetically created in our toolboxes. All the other
signals have been downloaded from the Freesound database 5.

The observed signal z = xo+yo is constructed as the sum
of a target signal xo and a perturbation signal yo. The target
signals have a wideband spectrogram while the perturbation
signals are well localized in time-frequency. Original signals
are normalized so that the target signal energy is 8dB above
the energy in the perturbation signals after adding them up.
We consider 18 such observed signals obtained from all pairs
of target signal (car, plane and train engine sounds) and
perturbation signal (beeps, bird song, chirps, clicks, finger
snaps and modulations).

2) Problem generation: the DGT is parameterized using
1024 frequency bins and a hop size is a = 64. To favor the
TF localization properties of the Gabor multiplier eigenvectors
as highlighted in Section II, we used a Gaussian window for
which 96% of the energy is concentrated within a width of
256 samples. Considering only non-negative frequencies, it
results in a time-frequency matrix of size 513 × 256. With
these parameters, the redundancy of the Gabor frame equals
MN/L = 16. Some additional experiments have also been
conducted using a Hann window of size 512 samples. Results
are similar to those with the Gaussian window and are not
reported here in detail.

The TF fading problem is based upon the knowledge of
the region Ω. In our experiments, Ω was generated from the
spectrograms of original signals Sxo and Syo , expressed in
dB, as follows:
• extract the sub-region Ωxo as the set of TF points

(m,n) ∈ Λ such that Sxo [m,n] ≥ max(Sxo)− 40dB,
• extract Ωyo>xo as the TF points (m,n) ∈ Λ such that
Syo [m,n] ≥ Sxo [m,n],

• take the union Ωraw = Ωxo ∪ Ωxo>yo ;
• smooth Ωraw via standard mathematical morphology tech-

niques [41] by applying a closing followed by an opening
with a structuring element of radius 3 and a ’+’ shape.

4https://gitlab.lis-lab.fr/skmad-suite/tff2020
5https://freesound.org/

https://gitlab.lis-lab.fr/skmad-suite/tff2020
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3) Performance measures: to assess numerically the quality
of the reconstruction, we use two performance measures. The
Source to Distortion Ratio (SDR) [42]

SDR (xo, x̂) = 20log10

(
‖xo‖
‖x̂− xo‖

)
quantifies the ratio between the energy of the target signal
denoted by xo and residual error with an estimate x̂. In order
to complement this signal-domain evaluation by a TF-domain
quality measure [43], [44], we compute the Itakura-Saito (IS)
divergence [45] using the discrete Fourier transform F of the
signals, as

IS (xo, x̂) =
∑
f

(∣∣∣∣Fxo [f ]

F x̂ [f ]

∣∣∣∣− log

∣∣∣∣Fxo [f ]

F x̂ [f ]

∣∣∣∣− 1

)
4) Solvers: for comparison, we compute 2 baseline solu-

tions and 3 estimates obtained from the proposed approach:
• Zero-fill: a baseline method consisting in applying
MΩ to the observed signal z, i.e., in reconstructing the
signal after filling the masked regions by zeros. This is
equivalent to take λp = λ = 1 in the analytical solution.

• Interp: a baseline method consisting in applying a
linear interpolation along the frequency axis of the mag-
nitude of observation TF matrix, and by drawing the
related phase uniformly at random, as proposed in some
industrial software [40].

• TFF-1: Time-Frequency Fading method considering the
mask as one region (Algo. 1).

• TFF-P: Time-Frequency Fading method considering the
mask as P sub-regions (Algo. 2).

• TFF-O: Time-Frequency Fading method considering the
mask as P sub-regions and where λ is chosen so as to
maximize the SDR in an oracle way, in order to have an
upper bound on the SDR performance.

The parameters used of Rand-EVD are εEVD < 10−3 and
pEVD = 0.9999 and a tolerance ε = 10−5 is set for finding the
subregions in Algorithm 3.

B. Results

An example of reconstruction is given in Figure 4. One
can observe that the spectrograms obtained by the proposed
methods are visually very similar to that of the original target
signal, except for the largest sub-region on the left. On the
contrary, the spectrograms obtained by the baseline methods
exhibit large differences.

Detailed results are given in Table I for the SDR and in
Table II for the IS divergence. Boldface is used to empha-
size the best values among TFF-1, TFF-P, Zero-fill
and Interp. In all cases, TFF-1 and TFF-P clearly give
SDR values higher than that of baselines Zero-fill, and
Interp by several dBs. TFF-1 and TFF-P SDR values are
close to the oracle upper bound given by TFF-O, by about 1dB
and there is no clear difference between TFF-1 and TFF-P.

In terms of IS divergence, values are much more hetero-
geneous. TFF-1 and TFF-P still outperform the baseline
methods in general. However, the Zero-fill strategy is
the best one when the perturbation is impulsive (clicks and

finger snaps). In those cases, the perturbation affects a wide
frequency range: the Interp strategy is particularly un-
adapted due to the interpolation along the frequency axis and
Zero-fill is giving the lowest (but yet very high) IS values.

Tables I and II display results for a unique realization of
the random projections. Running the algorithms several times
(100 times in our experiment, for the car and bird signals)
gives the same result on average, with a negligible standard
deviation (at most 1e−4 for IS, 1e-11 for the SDR). This could
be expected since the range and eigen-elements provided by
the randomized procedure [38] are controlled by theoretical
guarantees.

TABLE I
SDR IN DB FOR EACH METHOD AND EACH CONFIGURATION.

`````````Signals
Methods

Z
e
r
o
-
f
i
l
l

I
n
t
e
r
p

T
F
F
-
O

T
F
F
-
1

T
F
F
-
P

car 20.49 20.17 24.58 23.27 23.26
beeps train 20.54 20.12 24.51 23.69 23.12

plane 26.20 25.95 28.23 27.73 27.70
car 12.32 12.08 18.32 17.19 15.30

bird train 22.25 21.31 26.02 25.27 23.11
plane 25.12 24.97 27.40 26.01 25.66
car 13.64 13.64 21.74 20.03 19.90

chirps train 13.82 13.58 21.96 18.16 18.28
plane 18.33 17.90 24.83 22.05 22.32
car 9.57 9.34 11.82 10.54 11.01

clicks train 9.21 8.25 11.63 10.49 10.67
plane 11.45 8.67 13.94 12.69 12.72
car 8.50 8.29 13.36 11.66 11.48

finger snaps train 9.22 8.47 14.64 12.48 12.32
plane 11.54 10.42 16.41 14.66 14.41
car 12.93 12.63 17.78 17.40 17.13

modulations train 17.14 16.89 20.59 19.34 19.56
plane 21.72 21.53 23.49 22.40 22.86

Figure 5 gives some insights in the case of the bird+car
signal and considering only one whole region Ω. Colored
points represent the performance obtained by TFF-1, TFF-P,
TFF-O and Zero-fill (λ = 1). The additional points
named TFF-E are obtained by extracting the true energy in
the subregions from the original target signal, and by using
this oracle value as target energy in the estimation of λ. Both
curves show similar trends; however, the SDR curve is smooth
while the IS curve is more irregular (which originates from our
choice of the raw periodogram for spectral estimation; other
options such as Welch periodogram yield smoother versions
but require additional parameter tuning which we preferred to
avoid).

One can see that the λ value estimated by TFF-1 is very
close to the TFF-E value, which supports that the proposed
energy estimation method is able to accurately estimate the
target energy. Both TFF-1 and TFF-E points are close to
the optimal TFF-O, in terms of λ value, of high SDR and of
low IS divergence, while the Zero-fill points are far away
from the optimal.

Due to the processing and the Gabor multipliers diagonal-
ization in high dimension (L = 16384 here), the computational



> J-STSP-RAIHDO-00031-2020 < 10

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1000

2000

3000

4000
Fr

eq
ue

nc
y 

(H
z)

True signal

120

100

80

60

40

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1000

2000

3000

4000

Fr
eq

ue
nc

y 
(H

z)

Zero fill - SDR=12.3dB - IS=1770.0

120

100

80

60

40

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1000

2000

3000

4000

Fr
eq

ue
nc

y 
(H

z)

Interp - SDR=12.1dB - IS=1717.2

120

100

80

60

40

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1000

2000

3000

4000

Fr
eq

ue
nc

y 
(H

z)

TFF-1 - SDR=17.2dB - IS=630.4

120

100

80

60

40

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1000

2000

3000

4000

Fr
eq

ue
nc

y 
(H

z)

TFF-P - SDR=15.3dB - IS=744.8

120

100

80

60

40

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1000

2000

3000

4000

Fr
eq

ue
nc

y 
(H

z)

TFF-O - SDR=18.3dB - IS=695.4

120

100

80

60

40

Fig. 4. Bird+car signal: spectrograms of the target signal and of the reconstruction by each method.

TABLE II
IS DIVERGENCES FOR EACH METHOD AND EACH CONFIGURATION.

XXXXXXXXSignals
Methods

Z
e
r
o
-
f
i
l
l

I
n
t
e
r
p

T
F
F
-
O

T
F
F
-
1

T
F
F
-
P

car 139.4 130.9 63.0 64.9 63.9
beeps train 270.4 214.1 255.4 138.1 138.1

plane 452.7 235.4 142.2 151.3 168.3
car 1770.0 1717.2 695.4 630.4 744.8

bird train 1870.5 3348.3 1538.3 1943.6 2413.3
plane 1993.6 1724.1 1383.0 1428.7 1439.5
car 880.0 868.4 260.3 537.7 613.5

chirps train 1205.8 1135.2 411.0 1506.8 615.6
plane 989.1 982.4 450.7 1178.6 736.1
car 1968.1 2877.0 1685.8 2465.4 2152.7

clicks train 2392.1 6798.5 2111.5 5092.6 4911.6
plane 2273.2 8551.7 2507.5 4262.5 4417.5
car 2961.6 3286.4 1342.5 1902.8 1769.9

finger snaps train 3105.5 7668.1 2810.0 3976.7 4263.3
plane 2629.0 6483.2 2396.7 3665.1 4228.4
car 832.1 877.4 235.3 282.8 208.2

modulations train 917.6 1017.7 282.2 349.6 412.7
plane 1017.8 803.9 580.8 353.5 410.3

complexity of the proposed methods is a key issue that
has motivated several modeling and algorithmic contributions
in this paper. In [10], many of those contributions were
not present: processing a sound of length 8192 was lasting
about 300 seconds, and processing longer sounds was both
untractable in time and memory. Using TFF-P, processing
a twice-longer sound with similar contents takes a bit less
than 200 seconds. Running times for TFF-1 and TFF-P are
represented in Figure 6, where results are given both for the
Hann and Gaussian windows. It shows TFF-P is significantly
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Fig. 5. Variation of the performance (SDR and IS) as a function of
hyperparameter λ for the bird+car mix, considering a whole region Ω.

faster than TFF-1, while their estimation performance are
similar. Indeed, dividing the mask into P sub-regions results
in replacing the diagonalization of a large-rank operator with
P diagonalizations of lower-rank operators, with significant
computational savings. One may also observe that the running
times are very different from one case to the other: it is highly
dependent on the numerical rank of the Gabor multipliers,
which is related to the size of the region Ω.

V. CONCLUSION

In this paper, we have addressed the problem of single-
and multiple-region time-frequency fading, formulated as a
variational optimization problem. Almost no assumptions are
made about the signals to be processed: the only requirement
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Fig. 6. Computation times (log scale) of TFF-1 versus TFF-P, with one
point per mixture, for the Hann and Gaussian windows.

is that the perturbation to be filtered out is well localized in
known regions of the time-frequency plane.

We have proposed efficient algorithms based on the diag-
onalization of Gabor multipliers possibly coupled with fast
randomized eigenvalue decomposition. The proposed method
is based upon an optimization in the signal domain, avoiding
any time-frequency consistency issue (arising when working in
the time-frequency domain as mentioned in the introduction).
They are easily usable in practice, requiring very few parame-
ters that can be set to some default values. Good reconstruction
quality is obtained in experiments on real sounds.

The novel time-frequency fading problem formulation and
algorithmic framework may be extended in several directions.

First, the method itself may be studied, improved or ex-
tended further. For instance, signals with a duration larger than
one or two seconds may be processed easily by segmenting
them, processing each segment, and then reconstructing the
full-length signal by overlap-add type techniques. From a
computational point of view, given the excellent accuracy of
the randomized range estimation and EVD [38], we anticipate
that substantial savings in terms of computation time can be
achieved by lowering the required accuracy, without penalizing
the quality of results. Still from a computational point of
view, it would be interesting to manage to process each sub-
region by considering only its neighborhood, since coefficients
that are far away in the time-frequency plane may have an
insignificant influence on the sub-region.

Second, our approach is a generic time-frequency filter-
ing technique that may inspire more task-specific variants.
It would require to develop new models and optimization
schemes that are adapted to the task setting so that the resulting
new approaches can be compared to competing methods. An
interesting perspective is to integrate a priori information
about the unknown signals in the optimization problem, e.g.
some prior on their spectral shape or on the variations of the
coefficients along the time and frequency axes. This can lead to
more specific use cases in applications like denoising, source

separation, time-frequency segmentation or inpainting, as well
as to developing methods to automatically estimate the mask
location. A natural option would be to modify the penalization
term, with the risk of losing the spectral formulation developed
here that allows rank reduction and further simplifications.
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APPENDIX

A. PROOF OF THE ERROR BOUND (15) We now prove the
following theorem.

Theorem. Let g ∈ RL and Λ generate a Parseval Gabor
frame in CL. Let Ω ⊂ Λ be a subset of the time-frequency
domain, written as a disjoint union Ω =

⋃P
p=1 Ωp. Denote

by MΩp the Gabor multiplier associated with the indicator
function of Ωp, and set

∆p =
∑
q 6=p

‖MΩp
MΩq

‖ .

Let λ = (λ1, . . . λp) be a vector of real numbers such that
λp ∈]0, 1[ for all p = 1, . . . P , and define λ̃p = minq 6=p λq .
Assume further that

∆p <
λpλ̃p

(1− λp)(1− λ̃p)

Then for all z ∈ CL, if xλ and xLλ are respectively the solu-
tion (8) and the approximate solution (14) of the optimization
problem (4), the following bound holds true:∥∥xλ − xLλ∥∥2

≤
P∑
p=1

(1− λ̃p)∆p

λpλ̃p − (1− λp)(1− λ̃p)∆p

‖z‖2 ,

For the sake of simplicity, we set

Ap = (1− λp)MΩp
, µp = λp/(1− λp) .

The assumption on λp then ensures ‖Ap‖ < 1 by Property II.1-
(iii). With these notations, we wish to approximate

z−

(
I−

P∑
q=1

Aq

)−1 P∑
p=1

µpApz ≈ z−
P∑
p=1

µp(I−Ap)−1Apz ,

in other words
P∑
p=1

µp

(I−
P∑
q=1

Aq

)−1

Ap − (I−Ap)−1Ap

 z ≈ 0 .

Defining Bp =
∑
q 6=pAq , we then set

Rp =

(
I−

P∑
q=1

Aq

)−1

Ap − (I−Ap)−1Ap

=

[(
I− (I−Ap)−1

Bp

)−1

− I

]
(I−Ap)−1

Ap

=
(
I−(I−Ap)−1

Bp

)−1

(I−Ap)−1
BpAp (I−Ap)−1

since Ap commutes with (I−Ap)−1 by construction. We show
below that ‖Ap‖ < 1, ‖Bp‖ < 1, and that under suitable
assumptions (specified below as well), ‖(I−Ap)−1Bp‖ < 1.
Then we have

‖Rp‖ ≤
1

(1− ‖Ap‖)2

‖ApBp‖

1−
∥∥∥(I−Ap)−1

Bp

∥∥∥ .

https://pypi.org/project/ltfatpy/
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Then notice that

‖(I−Ap)−1Bp‖ =
∥∥Bp+(I−Ap)−1ApBp

∥∥ ≤ ‖Bp‖+ ‖ApBp‖
1−‖Ap‖

so that

1− ‖(I−Ap)−1Bp‖ ≥
(1− ‖Ap‖)(1− ‖Bp‖)− ‖ApBp‖

1− ‖Ap‖
.

Coming back to initial notations, we have ‖Ap‖ ≤ 1− λp so
that 1− ‖Ap‖ ≥ λp > 0 . Also, since the sub-regions Ωq are
pairwise disjoint

‖Bp‖ =

∥∥∥∥∥∥
∑
q 6=p

Aq

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
q 6=p

(1− λq)MΩq

∥∥∥∥∥∥ ≤ 1−min
q 6=p

λq ,

therefore

1− ‖Bp‖ ≥ λ̃p , where λ̃p = min
q 6=p

λq > 0 .

Besides,

‖ApBp‖=(1−λp)

∥∥∥∥∥∥
∑
q 6=p

(1−λq)MpMq

∥∥∥∥∥∥ ≤ (1−λp)(1−λ̃p)∆p ,

where we have set ∆p =
∑
q 6=p ‖MΩp

MΩq
‖ . Plugging this

expression into the lower bound of 1−‖(I−Ap)−1Bp‖ yields

1− ‖(I−Ap)−1Bp‖ ≥
λpλ̃p − (1− λp)(1− λ̃p)∆p

1− ‖Ap‖
.

From now on we assume that

∆p <
λpλ̃p

(1− λp)(1− λ̃p)
so that the lower bound is strictly positive. Putting things
together we then obtain

‖Rp‖ ≤
1− λp
λp

(1− λ̃p)∆p

λpλ̃p − (1− λp)(1− λ̃p)∆p

.

The bound (15) then follows from∥∥xλ − xLλ∥∥2
≤
∑
p

λp
1− λp

‖Rp‖ ‖z‖2 .

B. PROOF OF GRADIENT COMPUTATION (5)
By definition of the Frobenius norm ‖F ‖2 = Tr(FHF ),

and using the properties of the trace, we have for any Ω ⊂ Λ,
‖Vx‖2Ω = Tr(xHVH1ΩVx) = Tr(xHMΩx) = Tr(xTMΩx),
since x is a real vector. Notice in addition that since Ω
is symmetric with respect to the zero frequency, MΩ is a
real matrix, which is therefore symmetric (since MΩ is self-
adjoint).

The objective function may be written as

fλ(x) = ‖Vx− Vz‖2
Ω

+

P∑
p=1

λp‖Vx‖2Ωp

= Tr
(
(x− z)TMΩ(x− z)

)
+

P∑
p=1

λpTr(x
TMΩpx) .

Using the derivation formula ∇xTr(xHAx) = (A + AT )x
yields the result, since MΩ is symmetric.
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Time-frequency fading algorithms based on Gabor
multipliers

Part II: Supplementary material
A. Marina Krémé, Valentin Emiya, Caroline Chaux, Senior member, IEEE, and Bruno Torrésani

Summary. This note provides additional information and results for the paper Time-frequency fading
algorithms based on Gabor multipliers [1]. The paper is mainly about time-frequency filtering, more
precisely time-frequency filter design. The main contribution is a new method for canceling or attenuating
signal ”components” that are essentially localized in pre-specified regions in the time-frequency plane. This
method departs from time-frequency masking and is formulated as a variational approach that focuses on
time-frequency localization properties. Although the problem possesses a closed-form solution, the latter
leads to important computational costs for real-life signals, which is addressed via dimension reduction
through random projections.

COMPARISON WITH CLASSICAL TIME-FREQUENCY FILTERS AND ORACLE APPROACHES

The time-frequency fading (TFF) problem may be described as follows: given a region Ω in the time-frequency
plane, construct a linear operator that filters out that region, very much like a classical time-invariant stop-band
filter that would filter out a prescribed frequency band. In TFF, the region Ω is fixed. TFF depends on a parameter
λ (which may be scalar, or a vector when Ω can be split as a disjoint union of connected sub-regions). [1] also
provides a procedure for the corresponding parameter estimation, based upon an energy criterion.

In [1] the method is evaluated on a simulated problem where a wideband signal is perturbed by an additive
perturbation signal with known time-frequency localization. Results obtained using two variants of TFF are
compared with baseline methods: binary masking (called zero-fill) and amplitude interpolation within Ω followed
by phase assignment. They are also compared with an oracle version, which addresses the tuning of the parameter
λ. Since the determination of the region Ω is not part of the algorithm, it is not addressed in [1].

It is also interesting to compare results with more traditional time-frequency filtering methods, such as Wiener-
type filtering, or oracle approaches such as described in [2], even though they do not address the same problem.
There, the reference and perturbation signals are supposed to be known (or at least their spectrograms), and an
optimal filter can then be searched for. Since only redundant time-frequency transforms are considered, the Wiener
filter is not tractable for real-life signals, and is replaced with heuristics called pseudo-Wiener filters.

Starting from the observation model considered in [1]

z = xo + yo , (1)

we considered three versions of the pseudo Wiener filter, which may be formulated as three different Gabor
multipliers V−1mV with different masks

v1 : m =
|Vxo|2

|Vz|2
; v2 : m =

|Vxo|2

|Vxo|2 + |Vyo|2
; v3 : m = <

(
Vxo

Vz

)
. (2)

Corresponding evaluation results for the Signal to Distortion Ratio (SDR) and for the Itakura-Saito (IS) divergence
are given in Table I .

This Table also reports results obtained using then Oracle approaches derived in [2], where an optimal mask
(real or binary) is obtained from the knowledge of the reference and perturbation signal (we adapted the function
bss_nearopt_monomask from the corresponding toolbox1 to use time-frequency tools used throughout our
simulations).

1http://bass-db.gforge.inria.fr/bss oracle/
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TABLE I
SDR AND IS DIVERGENCES FOR 3 VARIANTS OF PSEUDO-WIENER FILTERING AND EACH MIXTURE, AND ORACLE (REAL AND BINARY

MASKS).

SDR IS
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car 21.73 23.36 27.57 24.57 23.21 97.40 70.24 34.67 62.10 84.85
beeps train 24.08 24.12 27.57 25.15 23.95 138.90 128.17 64.60 116.56 145.24

plane 28.30 28.21 32.24 29.50 27.93 120.65 153.00 56.29 113.55 230.01
car 16.98 18.04 20.72 18.63 18.11 684.46 538.52 440.02 445.26 642.76

bird train 25.78 26.50 29.97 27.74 26.09 1287.28 1220.07 669.11 952.86 1279.37
plane 27.65 27.97 31.70 29.27 27.72 1152.24 1149.71 560.97 982.45 1211.67
car 17.27 18.53 21.54 19.27 18.55 507.13 483.38 227.51 526.44 426.87

chirps train 17.50 19.36 22.20 20.02 19.37 757.89 608.32 324.08 456.70 567.52
plane 21.25 22.92 25.91 23.84 22.45 657.97 557.39 267.53 437.68 844.20
car 16.93 18.23 20.72 18.83 17.98 648.57 616.22 305.18 496.65 566.17

clicks train 18.57 19.46 22.16 20.13 19.25 1181.36 1005.64 620.90 894.55 1154.28
plane 17.83 18.84 21.20 19.50 19.20 1155.64 1134.44 585.18 901.68 1145.20
car 14.80 16.17 18.77 16.66 15.98 1130.57 769.52 434.32 1282.38 750.16

finger snaps train 16.59 17.69 20.20 18.30 17.62 1580.42 1166.95 723.17 928.73 1180.99
plane 18.59 19.65 21.95 20.30 19.61 1565.76 1414.71 694.78 1183.58 1302.65
car 16.19 17.86 20.44 18.49 17.47 406.79 372.72 152.43 229.70 330.02

modulations train 19.10 21.00 24.89 21.93 21.06 558.59 493.60 195.05 311.36 545.04
plane 23.49 24.73 28.15 25.93 24.34 577.41 523.55 209.00 381.55 568.59

As may be expected, the best results are obtained with variant 3 of the pseudo-Wiener filter, which uses more
information than others. The real oracle mask outperforms the other two pseudo-Wiener filters, while the oracle
binary mask yields weaker performances (which could also be expected).

Even though these results are interesting by themselves (we thank the anonymous reviewer who brought this
point to our attention) we believe a direct comparison with results from TFF is not fully relevant, because of the
following two points

• Pseudo-Wiener filters and Oracle BSS approaches use information that is not available to TFF, and can therefore
be expected to outperform TFF (which is indeed the case).

• However, they are based upon real or binary time-frequency masking, which is a heuristics, while TFF builds
the time-frequency filter as the true solution (up to the precision of our approximations, which are controlled)
of an optimization problem.

CONSTRUCTION OF MASKS

In the numerical experiments of [1], an ad-hoc procedure is used for constructing the region Ω. The latter uses
the signals xo and yo of the model (1), and operates a series of thresholding and morphological operations. The
goal in [1] was to have a simple procedure for mask generation, no particular attention was paid to its optimization,
which was not a goal of the work. Several variants have been used in pilot studies, yielding comparable results.

An alternative could have been to use the oracle binary mask proposed in [2], our results show that the latter is
quite irregular (many isolated points) and requires significant post-processing (like the raw mask of [1]), at least
comparable with post-processing done in our work [1]. Designing specific variational approaches exploiting the
characteristics of the chosen Gabor system would be an interesting development.
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