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Time-frequency fading algorithms based on Gabor
multipliers

A. Marina Krémé, Valentin Emiya, Caroline Chaux, Senior member, IEEE, and Bruno Torrésani, Member, IEEE

Abstract—This paper addresses the problem of suppressing or
attenuating time-frequency localized sources from audio signals,
using only the knowledge of their time-frequency localization
property. This problem, termed time-frequency fading, is formu-
lated as a quadratic optimization problem in the signal domain,
with data fidelity and penalization terms in the time-frequency
plane. This allows the time-frequency coefficients of the estimated
signal to be closed to the time-frequency coefficients of the
observed signal outside the support of the perturbation while
at the same time having a reduced energy inside the support of
the perturbation. A closed-form solution is obtained that may
be written in terms of Gabor multipliers, i.e. linear operators
defined by pointwise multiplication in the time-frequency space.
This approach, combined with efficient low-rank approximation
algorithms and a suitable heuristic for hyperparameter selection,
is able to efficiently process realistic signals. The effectiveness of
the proposed approach is demonstrated on several audio signals
where perturbations are filtered out while leading to good signal
reconstruction quality.

I. INTRODUCTION

F ILTERING is one of the fundamental techniques in signal
processing. By filtering one often means linear time

invariant (LTI) filtering, which has a simple characterization in
time and/or frequency domains. We refer to [1] for an in-depth
description, in view of audio applications. Sticking to linear
filters, time varying (LTV) filtering is also fundamental, as
most devices actually feature time variations. LTV filters form
a much wider class than LTI filters, and may be represented in
several different ways, for example as matrices as described
in [1] for digital signals, or pseudo-differential operators in
the mathematical literature [2] in the analog case.

Among LTV filters, filters that can be efficiently represented
in a joint time-frequency domain have received significant
interest in the last two decades. These include filters whose
spectral characteristics (frequency response) vary slowly as
a function of time, or filters designed to enhance, attenuate
or cancel out components which possess specific localiza-
tion properties in joint time-frequency domain (e.g., chirps
with prescribed or parameterized frequency modulation laws,
transient oscillatory waves). Several formulations for non-
stationary Wiener filtering have been proposed, that rely on
time-frequency representations such as the spectrogram [3]
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or Wigner distribution [4], [5], [6]. These generally rely on
pointwise multiplication in the time-frequency domain prior
to inversion, very much in the spirit of classical LTI filtering.
Filtering in the time-frequency domain has been used for a
wide range of applications including decision, detection, or
time-frequency segmentation.

Time-frequency filtering exploits the ability of some time-
frequency representations to efficiently represent signals of
interest. Limited to linear transforms, usual choices are Gabor
transform [7] or Short Time Fourier Transform [8], on which
we will focus in the present paper, or wavelet transform, con-
stant Q transform or S transform, the choice often depending
on the application domain.

We are interested here in the problem of removing or atten-
uating time-frequency localized components in signals. Unlike
Wiener-type filtering, almost no knowledge on the component
to be removed or attenuated is available: we only exploit its
time-frequency localization properties, i.e., an effective time-
frequency support. This problem, named time-frequency fading
(TFF) in this paper, can be formulated in several ways, such as
denoising, source separation, time-frequency segmentation or
time-frequency inpainting, each formulation leading to distinct
strategies. We are specifically interested here in removing
interference sources that are well localized in a specific region
Ω in the time-frequency domain Λ. A simple (and often
used in practice) approach is to multiply the time-frequency
representation inside Ω with a small value and reconstruct.
However the time-frequency representation modified in such
a way is not consistent —i.e., it is not the time-frequency
transform of any signal—, which often results in artifacts after
reconstruction [9].

We propose a variational formulation, which can be sum-
marized as follows. Let T denote a time-frequency transform,
mapping any x ∈ CL to T x ∈ l2(Λ). Let us denote by xo

the target signal and yo the signal to be cancelled out. yo is
assumed to be essentially localized in a specific region Ω (that
may be the union of connected sub-regions Ωp far away from
each other) in the time-frequency domain Λ. The observed
signal z is thus given by z = xo + yo. The objective is,
given Ω, to retrieve xo from z or equivalently, to remove yo

from z. We formulate the problem as the following quadratic
optimization problem

xλ = argmin
x∈CL

‖T x− T z‖2
Ω

+

P∑
p=1

λp ‖T x‖2Ωp
. (1)

where ‖x‖2Ω :=
∑
k∈Ω |x[k]|2 and λ = (λp)p, λp > 0.

This optimization problem amounts to find an estimation xλ
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of x which best matches x outside Ω and whose energy
within Ω is reduced. The problem (1) leads to a linear system,
whose solution involves time-frequency multipliers (i.e. time-
frequency filters defined by pointwise multiplication in the
time-frequency domain), as shown in [10], where a spectral
approach based upon eigenvalue decomposition of Gabor
multipliers was proposed. However, this approach turns out to
be computationally expensive with large signals. Furthermore,
the approach was restricted to the case P = 1.

In this work, we build on the results of [10] and extend the
approach to the case P > 1, still using Gabor multipliers. We
propose several strategies to reduce the computational cost and
thus enable real audio signal processing. We also propose a
complete pipeline that involves the construction of sub-regions
Ωp and the estimation of optimal values for hyperparameters
λp.

The paper is organized as follow: Section II is devoted to the
introduction of Gabor tools while Section III presents the pro-
posed method. The problems of erasing one region or several
sub-regions are treated as well as efficient algorithmic issues.
Numerical experiments are drawn in Section IV on various
audio signals for which the proposed algorithm outperforms
baseline approaches. Finally, Section V concludes the paper.
More technical aspects are postponed to the appendix.

II. ELEMENTS OF GABOR ANALYSIS

Gabor analysis is a particular instance of time-frequency
analysis, that aims at representing signals (functions, se-
quences or vectors) as linear combinations of translated and
modulated copies of a generic signal called window. The coef-
ficients of the expansion provide an alternative representation
of the object of interest, called a time-frequency represen-
tation. Gabor analysis has enjoyed important developments
since its introduction in the seminal paper by D. Gabor [7].
We refer to [11] for a detailed account of mathematical
developments, which also addresses extensions to operator
theory that will be of interest here, and to [12], [13], [14]
for signal processing related developments. Gabor analysis has
found many applications in various areas of signal processing
such as audio, speech and image processing, communication
theory, radar and sonar. We give below a short account fo the
main aspects that are important for this paper.

Let us first introduce some notations. Throughout this paper,
matrices and vectors are represented using bold characters type
(such as X or x), and scalars are represented using normal
characters; the ith entry of x is x[i], similar notations are used
for matrix elements. The inner product of two vectors x and
y is defined by 〈x,y〉 = yHx, where H denotes Hermitian
conjugation, and the standard norm is denoted by ‖ · ‖2.

Given a matrix X , we denote by ‖X‖2 =
√

Tr(XHX)
its Frobenius norm (with Tr denoting the trace) and by ‖X‖
its operator norm. Given a subset Ω of the matrix index set,
the Frobenius norm of the restriction of X to Ω is denoted by
‖X‖Ω = ‖X1Ω‖2, 1Ω being the indicator function of Ω.

A. Gabor analysis
We limit ourselves to finite dimensional situations and de-

scribe Gabor analysis on CL, where L is a positive integer. Let

a and b be two divisors of L, we set N = L/a and M = L/b
and introduce the time-frequency lattice Λ◦ = bZM×aZN and
the dimensionless lattice Λ = ZM × ZN (which we will use
as index set for Gabor analysis). Let g ∈ RL be a nonzero
vector, hereafter called the analysis window. The family of
Gabor atoms associated with (g,Λ◦) is the family of vectors
gmn ∈ CL obtained by translations and modulations of g on
the lattice Λ◦. Namely, the Gabor atoms gmn are defined by

gmn[l] = g[l − na]e2iπmbl/M , l ∈ ZL

A family of Gabor atoms as above is a Gabor frame when
there exists two constants 0 < A ≤ B <∞ verifying, for any
x ∈ CL.

A‖x‖22 ≤
M−1∑
m=0

N−1∑
n=0

|〈x, gmn〉|2 ≤ B‖x‖22 (2)

The constants A and B are respectively the lower and upper
frame bounds. When A = B, the Gabor frame is tight, and
is called a Parseval frame when A = B = 1. The redundancy
of the Gabor frame is the parameter The redundancy of the
representation is the number red = L/ab = MN/L, it has to
be larger than 1.

The Discrete Gabor transform (DGT) V maps any x ∈ CL
into a matrix Vx ∈ CM×N of Gabor coefficients, defined by

Vx[m,n] = 〈x, gmn〉 =

L−1∑
l=0

x[l]g[l − na]e−2iπmbl/M .

The adjoint operator VH : CM×N −→ CL, also called
synthesis operator is given as follows. For all c ∈ CM×N ,

VHc =

M−1∑
m=0

N−1∑
n=0

c[m,n]gmn .

The frame operator is defined by S = VHV . It is bounded,
self-adjoint and semi positive definite by construction, and
actually positive definite as a consequence of (2). Therefore S
is invertible, which permits to reconstruct any x ∈ CL from
its Gabor coefficients.

Of particular interest are the above mentioned Parseval
frames, for which S = I, i.e., VH is a left inverse of V .
In such situations, the Gabor expansion takes a very simple
form: for all x ∈ CL

x =

M−1∑
m=0

N−1∑
n=0

〈x, gmn〉gmn .

For the sake of simplicity, we will limit ourselves to this case
throughout this paper. Parseval Gabor frames can easily be
generated from any Gabor frame. Indeed, it can be shown that
given a Gabor frame associated with (g,Λ◦), with frame op-
erator S, and defining a new window γ = S−1/2g, the Gabor
frame associated with (γ,Λ◦) is a Parseval Gabor frame. In
this paper we will focus on Parseval frames constructed in
this way, starting from a Gaussian window and from a Hann
window.
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B. Gabor multipliers
Gabor multipliers are linear operators that perform time-

varying signal filtering by pointwise multiplication in the
Gabor domain.

Definition 2.1 (Gabor multiplier): Let g and Λ◦ be as above,
and let m ∈ CM×N . The Gabor multiplier associated to
(g,Λ◦) and m, is the linear operator Mm = VHmV , acting
on x ∈ CL as

Mmx =

M−1∑
m=0

N−1∑
n=0

m[m,n]〈x, gmn〉gmn .

m is called the mask (or time-frequency transfer function) of
the Gabor multiplier1.

Gabor multipliers form a particular class of time varying
filters [15], [5], which has been shown to be relevant in various
domains including time varying system identification [16] or
modulation theory [17] or sound morphing. Approximation
of linear systems by Gabor multipliers have been studied in
various places (see e.g. [18], [19], [20] and references therein).
A main property is that they are good at approximating so
called underspread linear systems, i.e. linear systems that do
not involve large time shifts and frequency shifts.

The class of Gabor multipliers considered in this paper
enjoy useful properties, which we address below. We first start
from generic properties.

Properties 2.1:
(i) If m is real-valued then Mm is self-adjoint. It is then

diagonalizable, with real eigenvalues, and there exists an
orthonormal basis of CL formed by Mm eigenvectors.

(ii) The Gabor multiplier generated by m ≡ 1 is a multiple
of the identity operator if and only if (g,Λ◦) generates a
tight Gabor frame.

(iii) For arbitrary m ∈ CM×N , then Mm defines a bounded
operator with operator norm ‖Mm‖ ≤ C‖m‖∞, for
some constant C. In particular, if g and Λ◦ generate a
Parseval frame, then ‖Mm‖ ≤ ‖m‖∞.

We will mainly focus on the so-called time-frequency
localization operators, which are Gabor multipliers associated
with a mask m = 1Ω equal to the indicator function of a
region Ω of the time-frequency lattice Λ. The mask m being
binary, and since we limit the present investigations to Parseval
frames, the corresponding eigenvalues range between 0 and 1.

Time-frequency localization properties of corresponding
eigenvectors (which can be seen as generalized prolate
spheroidal functions) have been studied in [21], [15], see [22]
and references therein for recent accounts. A main result is that
when the area of the region Ω is large enough, eigenvectors
with large eigenvalues (i.e. close to 1) tend to be concentrated
within Ω, while eigenvectors with smaller eigenvalues tend to
localize themselves outside Ω. Therefore, the rank (or effective
rank, i.e. dimension of the subspace generated by eigenvectors
with significant eigenvalues) grows with the area of Ω (we
refer to [22] for more precise statements). We illustrate these
properties in the next subsection.

1By abuse of notation we have used the same symbol to represent the mask
and the operator of pointwise multiplication by the mask.

C. Numerical illustrations

We illustrate in this section the behavior of Gabor transform
and Gabor multipliers in situations of interest here. We rely
on dedicated toolboxes, namely the LTFAT Octave/Matlab
toolbox [23], [24], and the Python version ltfatpy [25].

We first highlight the behavior of eigenvectors and eigen-
values of Gabor multipliers on a mask generated from a
mixture of car engine sound and bird song with length 16384
(see Section IV for the full experimental setting). The mask
was constructed by an appropriate thresholding of the Gabor
transform of the mixture, followed by simple morphological
operations that ensure sufficient connectivity of sub-regions
(see Section IV-A below for details). The mask is displayed in
Fig 1 (left panel), the eigenvalues of the corresponding Gabor
multiplier are displayed on the right panel, sorted in decreasing
order. Two windows have been considered, respectively gener-
ated from a Gaussian and Hann window (we recall that initial
windows are modified so as to generate Parseval frames). As
expected, eigenvalues range between 0 and 1. A plateau of
values equal to 1 can be observed at the beginning, followed
by a rapid decay. As an example, less than 1800 eigenvalues
(out of 16384) are enough to reach a precision of 10−6 for
the Gaussian-type window (2000 for Hann), which opens the
door to significant dimension reduction. We also illustrate in
Fig. 2 the time-frequency localization of eigenvectors related
to large and smaller eigenvalues. It can be seen on the top
row that eigenvectors associated with the top eigenvalue σ [1]
(equal to 1 with an excellent precision, namely 3.4 × 10−10

for the Gaussian type window, and 1.5 × 10−6 for the Hann
type window) tend to localize in the same regions as one of the
connected sub-regions of the mask (here sub-regions 3 and 5).
Eigenvectors associated with lower eigenvalues are displayed
on the bottom row, (we chose σ [1540] ≈ 2.254 × 10−4 and
σ [1585] ≈ 6.399 × 10−5) tend to be localized within time-
frequency “rings” around the connected components of the
mask, the smaller the eigenvalue the larger the ring radius. In
both rows, the frequency localization of the Hann type window
seems poorer, as could be expected.

Fig. 1. Binary Mask generated with a Gauss window estimated from a
bird song signal (left), and Gabor multiplier’s eigenvalues σ[k] in decreasing
order, displayed in logarithmic scale (right). Eigenvectors associated with
eigenvalues marked by dots on the right panel are displayed in Fig. 2

The relationship between the support size of the mask
and the behavior of eigenvalues of the corresponding Gabor
multiplier has been studied theoretically by several authors,
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Fig. 2. Column 1 (top to bottom): spectrogram of the first and 1540 th
eigenvectors of the Gabor multiplier generated with a Gauss window. Column
2 (top to bottom): spectrogram of the first and 1585 th eigenvectors of the
Gabor multiplier generated with a Hann window. The mask associated with
each of these multipliers was generated using the Gaussian type window, as
shown in Fig 1.

in continuous time setting (see e.g. [22] and references
therein). Assuming one may extrapolate to the discrete, finite-
dimensional case, one would expect the number of eigenvalues
larger than some threshold to vary (a least approximately)
linearly with the support size. We checked this property
numerically in situations such as the ones we consider in this
paper.

More precisely, we computed a rank estimate for Gabor
multipliers with rectangular masks of constant shape and
increasing areas. Namely, we computed the number of eigen-
values above a fixed threshold (set here to 10−13), as a function
of the area of the support of the mask. We use a signal
length L = 16384, a Gaussian window with length 64, a
hop size a = 16 and b = 256 bins. Results are displayed in
Fig. 3. Within the range of interest the rank estimate appears
to vary linearly as a function of the mask area. Fig. 3 also
includes another estimate called Rand-EVD and based upon
random projections, which we use in Section III-C2 below.
This estimate exhibits the same linear behavior.

III. TIME-FREQUENCY FADING (TFF)

A. Problem statement

As mentionned in Section I, we assume that we observe a
signal z of length L, of the form

z = xo + yo , (3)

i.e., the sum of a signal of interest xo and a perturbation yo.
We assume further that the perturbation is strongly concen-
trated within a known region Ω ⊂ Λ in the time-frequency
(TF) domain Λ. We denote Ω = Λ \ Ω the complementary
region of Ω.

Fig. 3. Rank estimation as a function of mask area. The window is a Gaussian
window.

Our objective is to filter out the perturbation yo within Ω
and reduce the artifacts generated by filtering. We term this
problem time-frequency fading (TFF).

As can be intuited from Figure 1, region Ω may be struc-
tured into P sub-regions Ωp where 1 ≤ p ≤ P by grouping
time-frequency points that are close, given a closeness measure
to be properly defined (see Section III-C1).

A standard practice for such a TFF problem is to perform
a pointwise multiplication in the time-frequency domain by
some transfer function, that penalizes the component within
Ω, i.e. using a Gabor multiplier. However the choice of the
transfer function is often arbitrary, and standard choices (such
as binary masks) often generate artifacts.

We choose here to formulate the problem as an optimization
problem, which we write as

xλ = argmin
x∈RL

fλ(x) := ‖Vx− Vz‖2
Ω

+

P∑
p=1

λp‖Vx‖2Ωp
(4)

where the objective function fλ depends on regularization
parameters λp > 0 for all sub-regions p = 1, . . . P , which
we collect in a set λ = {λ1, . . . λP }.

The first term of the objective function in (4) is a data
fidelity term that matches the DGT of the estimated signal
to that of the observation outside Ω. The second term controls
its energy in each sub-region Ωp, and the regularization
parameters controls the trade-off among all terms.

The objective function in (4) is a quadratic form, its
optimization leads to a linear system which we study below.

Remark 3.1: In the case P = 1, the problem can also be
formulated in terms of the perturbation y in the observation
model (3). Indeed, one may also write

gλ(y) =
1

λ
fλ(z − y) = ‖Vy − Vx‖2Ω +

1

λ
‖Vy‖2

Ω

so that optimizing fλ with respect to x is equivalent to opti-
mizing gλ with respect to y. Despite this apparent symmetry,
the problems of reconstructing x and reconstructing y are not
equivalent. We showed in [10] that the optimal values of λ
are not the same for the two problems, mainly due to the
imbalance of sizes of Ω and Ω.
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B. Proposed solutions

1) Closed-form solution: Because fλ is quadratic, solutions
of the optimization problem (4) are given by corresponding
critical points. The gradient of fλ can be expressed in terms
of Gabor multipliers

∇fλ(x) = MΩx−MΩz +

P∑
p=1

λpMΩpx , (5)

where MD denotes the Gabor multiplier associated with the
indicator function of the domain D.

Since we have limited our interest to the case of Parseval
Gabor frames, we then have MΩ + MΩ = I. Therefore, the
normal equations can be written as(

I−
P∑
p=1

(1− λp)MΩp

)
x =

P∑
p=1

λpMΩpz . (6)

The operator I−
∑P
p=1(1−λp)MΩp

is actually a Gabor multi-
plier with piecewise constant mask m = 1−

∑P
p=1(1−λp)1Ωp ,

where 1Ωp
is the indicator function of the sub-region Ωp. If

λp > 0 for all p, then min(m,n)(m[m,n]) > 0 and the mask
is therefore semi-normalized, which implies invertibility (see
Proposition 3.7 in [26]).

From now on we then assume λp > 0 for all p. The solution
then reads

xλ =

(
I−

P∑
p=1

(1− λp)MΩp

)−1(
I−

P∑
p=1

MΩp

)
z

= z−

(
I−

P∑
p=1

(1−λp)MΩp

)−1 P∑
p=1

λpMΩp
z (7)

This closed-form solution requires solving a linear system
for each choice of λ, which may be computationally demand-
ing in high dimensions and/or when the region Ω is large.
Indeed, owing to the discussion at the end of subsection II-A,
the rank of the multipliers increases with the area of the
support of the mask. We propose below efficient algorithmic
solutions that provide good approximations of (7).

2) Reduced rank approximation for P = 1: Let us first
examine the case where a single region Ω is considered (for
simplicity we then drop the subregion index). Since P = 1,
a unique regularization parameter λ ∈ R∗+ is required. The
solution reads

xλ = z −
(

I− (1− λ)MΩ

)−1

λMΩz , (8)

the invertibility of I − (1 − λ)MΩ being ensured by the fact
that the spectrum of MΩ is included in [0, 1] (see below).

As mentioned in Properties 2.1, the mask being binary, the
Gabor multiplier MΩ can be diagonalized and thus factored
in matrix form as MΩ = UΣUH where U is unitary and
Σ = diag(σ) is diagonal. Here σ = (σ[1], . . .σ[L]) ∈ RL is
the vector of eigenvalues, which are sorted in decreasing order
1 ≥ σ[1] ≥ · · · ≥ σ[L] ≥ 0. We can then write

xλ = z −UΓUHz (9)

where Γ = diag(γ), with γ = (γ[1], . . .γ[L]) and

γ[i] =
λσ[i]

1− (1− λ)σ[i]
.

It is easily seen that the sequence γ = (γ[1], . . . γ[L]) is
decreasing and included in [0, 1], which we will use for
truncation purposes.

The approximate solution when truncating to the K largest
eigenvalues (K < L) is given by:

x
(K)
λ = z −U (K)Γ(K)(U (K))Hz (10)

where U (K) is the L×K submatrix consisting in the first K
columns of U , and Γ(K) is the submatrix consisting of the
K first rows and columns of Γ. The truncation error can be
bounded as [10]∥∥∥xλ − x(K)

λ

∥∥∥
2
≤ γ[K+1] ‖z‖2 . (11)

3) Approximate solution in the general case P ≥ 1:
In the general case where P sub-regions are considered, we
propose an approximation, given in eq. (13), of the practically-
untractable closed-form solution (7). The approximation relies
on the assumption that the composition of Gabor multipliers
related to two different sub-regions may be neglected provided
the regions are sufficiently far apart:

p 6= q ⇒
∥∥MΩpMΩq

∥∥ ≈ 0,∀p, q . (12)

Let us assume for the sake of the argument that for all p 6= q,∥∥MΩp
MΩq

∥∥ = 0, in other words the range of MΩq
is in the

null space of MΩp ; as a result, the eigenvectors of MΩq with
the largest eigenvalues are orthogonal to the eigenvectors of
MΩp

with the largest eigenvalues.
Hence one may jointly diagonalize all the Gabor multi-

pliers
{
MΩp

}P
p=1

in a common orthobasis of eigenvectors

U (K) :=
[
U

(K1)
1 , . . . ,U

(KP )
P ,U

(K0)
0

]
where Up is the matrix

of orthonormal eigenvectors associated with the Kp largest
eigenvalues σ(Kp)

p of MΩp
sorted in decreasing order, and

where U (K0)
0 is composed of K0 = L−

∑P
p=1Kp orthonormal

vectors to complete the basis. It follows that the closed form
solution (7) is approximated by

x
(K)
λ = z −

I−U (K) diag


λ1σ

(K1)
1
...

λPσ
(KP )
P

0K0

(U (K)
)−1


−1

×
P∑
p=1

λpU
(Kp)
p diagσ(Kp)

p

(
U (Kp)
p

)H
z

= z −
P∑
p=1

U (Kp)
p diag

(
1− λpσ

(Kp)
p

)−1 (
U (Kp)
p

)H
×

P∑
p=1

λpU
(Kp)
p diagσ(Kp)

p

(
U (Kp)
p

)H
z
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Defining Γ
(Kp)
p = diag (γp [1] , . . . ,γp [Kp]) with γp [i] =

λpσp[i]
1−λpσp[i] , we then obtain

x
(K)
λ = z −

P∑
p=1

U (Kp)
p Γ(Kp)

p

(
U (Kp)
p

)H
z

−
∑
p 6=q

U (Kp)
p diag

(
1−λpσ

(Kp)
p

)−1 (
U (Kp)
p

)H
U (Kq)
q

diag
(
λqσ

(Kq)
q

)(
U (Kq)
q

)H
z .

Since
(
U

(Kp)
p

)H
U

(Kq)
q ≈ 0 the approximate solution reads

x
(K)
λ = z −

P∑
p=1

U (Kp)
p Γ(Kp)

p

(
U (Kp)
p

)H
z , (13)

which is actually a truncated version of a sum of independent
single region solutions (9)

xLλ = z −
P∑
p=1

(
I− (1− λp)MΩp

)−1
λpMΩp

z . (14)

In fact the norms
∥∥MΩpMΩq

∥∥ are only approximately zero.
We show in the Appendix that the error induced by the ap-
proximation can actually be controlled, assuming 0 < λp < 1
for all p.

Setting λ̃p = minq 6=p λq and ∆p =∑
q 6=p ‖MΩpMΩq‖ and assuming that for 1 ≤ p ≤ P ,

∆p <
λp

1−λp

λ̃p

1−λ̃p
, i.e., that the products of pairs of different

Gabor multipliers are small enough compared to the values
of regularization parameters, we obtain

∥∥xλ − xLλ∥∥2
≤

P∑
p=1

(1− λ̃p)∆p

λpλ̃p − (1− λp)(1− λ̃p)∆p

‖z‖2 ,

(15)
An error bound for ‖xλ−x(K)

λ ‖2 can be obtained from (15)
and (11) using the triangle inequality.

C. All-in-one algorithms

Relying on solutions presented in Sections III-B2
and III-B3, we introduce Algorithms 1 and 2 that process
a mixture z and a mask Ω in order to estimate the target
signal. Algorithm 1 (resp. 2), named TFF-1 (resp. TFF-P),
implements the solution of Section III-B2 (resp. III-B3), by
considering Ω as a whole region (resp. as multiple subregions).
In particular, it includes the creation of the Gabor multipliers
(steps 2 in Alg. 1 and 4 in Alg. 2), the computation of their
approximate EVD (steps 3 in Alg. 1 and 5 in Alg. 2), and
the construction of the solutions (steps 6 in Alg. 1 and 9 in
Alg. 2).

In order to make them computationally efficient and conve-
nient for real-world usage, those algorithms also rely on three
additional aspects :
• in TFF-P, TF region Ω is partitioned into subregions

(step 1 in Alg. 2); this can be done automatically without

specifying the number of subregions, as described in
Section III-C1;

• the Gabor multipliers are diagonalized using fast random-
ized algorithms, as described in Section III-C2

• efficient hyperparameter tuning is obtained by estimating
target energy values in the (sub-)regions (steps 1-4-5 in
Alg. 1 and 2-6-7 in Alg. 2), as detailed in Section III-C3.

Algorithm 1 TFF-1: filtering out one TF region
Require: Mix z, mask Ω, DGT V , parameters εEVD, pEVD,

1: Estimate target energy etarget ∈ R in Ω (see III-C3)
2: MΩ ← VH1ΩV
3: Û , σ̂ ← rand_evd (MΩ, εEVD, pEVD)
4: Let

x̂ : λ 7→ z − ÛΓ (λ) ÛHz

where

Γ : λ 7→ diag

(
λσ̂

1− (1− λ)σ̂)

)
5: λ̂← argminλ>0

∣∣∣etarget − ‖Vx̂ (λ)‖2Ω
∣∣∣

6: return x̂
(
λ̂
)

Algorithm 2 TFF-P: filtering out P TF sub-regions
Require: Mix z, mask Ω, DGT V , parameters εEVD, pEVD

1: Split Ω into sub-regions {Ωp}Pp=1 (e.g. via Algorithm 3)
2: Estimate target energies etarget ∈ RP in {Ωp}Pp=1

(see III-C3)
3: for p = 1 to P do
4: MΩp ← VH1ΩpV
5: Ûp, σ̂p ← rand_evd

(
MΩp

, εEVD, pEVD
)

6: Let

x̂p : λ 7→ z − ÛpΓp (λ) ÛH
p z

where

Γp : λ 7→ diag

(
λσ̂p

1− (1− λ)σ̂p)

)
7: λ̂ [p]← argminλ>0

∣∣∣etarget [p]− ‖Vx̂p (λ)‖2Ωp

∣∣∣
8: end for
9: return z −

∑P
p=1 ÛpΓp

(
λ̂ [p]

)
ÛH
p z

1) Partioning mask Ω into sub-regions: As introduced in
Section III-B3, the solution using P sub-regions {Ωp}Pp=1

relies on the hypothesis that the norm
∥∥MΩpMΩq

∥∥ of the
composition of Gabor multipliers from sub-regions Ωp and Ωq
is small, which occurs when sub-regions are sufficiently away
from each other in the time-frequency plane. We introduce
Algorithm 3 that splits the whole region Ω in such sub-regions.
The starting point is a set of initial sub-regions by clustering all
the TF points from Ω, using a 4-connected structuring element
to select immediate neighbors (step 1). Then, subregions for
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which
∥∥MΩp

MΩq

∥∥ is greater than a tolerance threshold are
merged repeatedly until no such pairs of regions exist (step 3).

Algorithm 3 Finding sub-regions for TFF-P
Require: Mask Ω, tolerance ε > 0 on the spectral norm of

the composition of two Gabol multipliers, DGT V
1: Let P = {Ωp} be the partition of Ω into labeled connected

sub-regions.
2: while ∃Ωp,Ωq ∈ P,

∥∥MΩpMΩq

∥∥ > ε do
3: For every p, q such that

∥∥MΩp
MΩq

∥∥ > ε, replace Ωp
and Ωq by Ωp ∪ Ωq in P

4: end while
5: return P

For the bird+car example mentioned in Figure 1, Algo-
rithm 3 applied with ε = 10−5 leads to 9 sub-regions for
which the actual values of

∥∥MΩpMΩq

∥∥ are of the order of
10−29, which shows how suitable the sub-region splitting is
in practice.

2) Diagonalization of Gabor multipliers using Rand-EVD:
The algorithms proposed in this paper rely strongly on eigen-
value decompositions (EVD) of Gabor multipliers. However,
most EVD algorithms have complexity O

(
L3
)
, which be-

comes prohibitive in high dimensions. This can be reduced
when the numerical rank K is significantly lower than the
dimension. This is the case here, at least when the region
Ω is significantly smaller than the time-frequency domain Λ,
as shown in Section II-C. Provided that K is known, such
a low-rank approximation is computed in O

(
KL2

)
by well-

known algorithms based on the Lanczos algorithm such as
the Implicitly Restarted Arnoldi Method available in standard
librairies under the usual name eigs.

Even more efficient algorithms exist, as described in [27],
based on random projections. In addition to be significantly
faster, they are also able to estimate the numerical rank K
while the previous methods needs to be given this rank.

In the current context, the low-rank eigenvalue decom-
position of Gabor multipliers is obtained by combining the
Adaptive Range Finder Algorithm [27, Algorithm 4.2] fol-
lowed by the so-called Eigenvalue Decomposition via Nyström
Method [27, Algorithm 5.5]. The Adaptive Range Finder Al-
gorithm provide a low-rank matrix that approximates the range
of the Gabor multiplier. The rank is estimated from a target
approximation error εEVD and a probability pEVD to reach this
error. This algorithm is particularly suitable in the case of fast
operators with fast-decreasing eigenvalues like the DGT-based
multipliers used here. Then, the Eigenvalue Decomposition via
Nyström Method uses this matrix to compute the approximate
EVD, taking advantage of the Hermitian, positive semidefinite
properties of our Gabor multipliers.

The combination of both algorithms will be named
Rand-EVD in the rest of the paper. In practice, we have
observed that Rand-EVD is able to estimate the numerical
rank and to compute an approximate EVD about three times
faster than eigs in settings such as those described in
Section IV with parameters εEVD < 10−3 and pEVD = 0.9999.

3) Efficient solutions for tuning hyperparameters: We pro-
pose a simple method to estimate hyperparameter λ. The main

idea is to consider a target energy for the coefficients within Ω
or any sub-region Ωp, and to adjust the related hyperparameter
consequently to fit this target value. Indeed, as can be seen in
Problem (1), the higher the value of λ [p], the lower the energy
‖Vx‖2Ωp

in sub-region Ωp.
The target energy may be adjusted by hand or by computing

the energy in an unmasked region similar to the masked one,
as described in [10]. Here, we propose a more systematic
and yet simple strategy, assuming that the target signal has
some stationarity properties: for each frequency channel f ,
compute the average ēf of squared-magnitude TF coefficients
in the mixture localized at time t and frequency f for any
t such that (t, f) ∈ Ω; then, estimate the energy in Ωp as
etarget [p] =

∑
(t,f)∈Ωp

ēf ; the energy in Ω is estimated as
etarget =

∑P
p=1 etarget [p].

Given target energies computed by the proposed strategy or
by any other method, one can tune the hyperparameters by
solving the optimization problems at step 5 in Algorithm 1 or
at step 7 in Algorithm 2. This is computationally efficient for
two reasons. First, while usual hyperparameter tuning via cross
validation generally implies to run the whole optimization
procedure for model estimation at each hyperparameter eval-
uation, TFF-1 and TFF-P requires to diagonalize the Gabor
multipliers only once. Hence, the cost of computing a solution
for a given λ or λp is linear in the signal length. Second,
estimating each λp is done separately thanks to the fact that
sub-regions are far away from each other by construction (see
Section III-C1). Hence, simple line searches over each λp
in λ are conducted, avoiding a costly global P-dimensional
optimization over λ.

An illustration in the case of a bird+car mixture previously
mentioned is given in Section IV-B and in Figure 5.

IV. NUMERICAL EXPERIMENTS

This section is focused on practical experiments with the
algorithms introduced in section III. In section IV-A, the ex-
perimental setting is introduced, including the sound material,
the problem generation, the performance measure, the solvers,
their parameters and implementation details. In section IV-B,
we show and comment on results for the time-frequency fading
problem using five different approaches (2 baseline one and 3
based on the proposed approaches):

For reproducibility, all the code and data are available in the
tff2020 toolkit 2. Simulations have been conducted both in
MATLAB and Python on CPU at 2.3GHz.

A. Experimental setting

1) Sound material: all audio signals considered here have
been sampled at 8 kHz and their length is L = 16384 samples
(i.e., about 2 seconds).

The observed mixture z = xo + yo is constructed as
the sum of a target signal xo and a perturbation signal yo.
The target signals have a wideband spectrogram while the
perturbation signals are well localized in time-frequency. Each
source is normalized so that the target signal energy is 8dB

2https://gitlab.lis-lab.fr/skmad-suite/tff2020

https://gitlab.lis-lab.fr/skmad-suite/tff2020
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above the perturbation energy after mixing. We consider 18
mixtures obtained from all pairs of target signal (car, plane
and train engine sounds) and perturbation signal (beeps, bird
song, chirps, clicks, finger snaps and modulations).

2) Problem generation: the DGT is parameterized using
1024 frequency bins and a hop size is a = 64. To favor the
TF localization properties of the Gabor multiplier eigenvectors
as highlighted in section II, a Gaussian window for which 96%
of the energy is concentrated within a width of 256 samples.
Considering only non-negative frequencies, it results in a time-
frequency matrix of size 513 × 256. With these parameters,
the redundancy of the Gabor frame equals 8. Some additional
experiments have also been conducted using a Hann window
of size 512 samples. Results are similar to those with the
Gaussian window and are not reported here in details.

The TF fading problem is based upon the knowledge of the
region Ω. In our experiments, Ω was generated as follows:
• extract Ωxo as the TF points where the TF magnitude

of target is with a dynamic range of 40dB below its
maximum magnitude;

• extract Ωxo>yo as the TF points where the TF magnitude
of target is higher than that of the perturbation;

• take the union Ωraw = Ωxo ∪ Ωxo>yo ;
• smooth Ωraw via standard mathematical morphology tech-

niques [28] by applying a closing followed by an opening
with a structuring element of radius 3 and + shape.

3) Performance measures: to assess numerically the quality
of the reconstruction, we use two performance measures. The
Source to Distortion Ratio (SDR) [29]

SDR (xo, x̂) = 20log10

(
‖xo‖
‖x̂− xo‖

)
quantifies the ratio between the energy of the target signal
denoted by xo and residual error with an estimate x̂. In order
to complement this signal-domain evaluation by a TF-domain
quality measure, we compute the Itakura-Saito divergence (IS)
using the discrete Fourier transform F of the signals, as

IS (xo, x̂) =
∑
f

(∣∣∣∣Fxo [f ]

F x̂ [f ]

∣∣∣∣− log

∣∣∣∣Fxo [f ]

F x̂ [f ]

∣∣∣∣− 1

)
4) Solvers: for comparison, we compute 2 baseline solu-

tions and 3 estimates obtained from the proposed approach:
• Zero-fill: a baseline method consisting in applying
MΩ to the observed mixture z, i.e., in reconstructing the
signal after filling the masked regions by zeros. This is
equivalent to take λp = λ = 1 in the analytical solution.

• Interp: a baseline method consisting in applying a
linear interpolation along the frequency axis of the mag-
nitude of observation TF matrix, and by drawing the
related phase uniformly at random, as proposed in some
industrial software [30].

• TFF-1: Time-Frequency Fading method considering the
mask as one region (Algo. 1).

• TFF-P: Time-Frequency Fading method considering the
mask as P sub-regions (Algo. 2).

• TFF-O: Time-Frequency Fading method considering the
mask as P sub-regions and where λ is chosen so as to

maximize the SDR in an oracle way, in order to have an
upper bound on the SDR performance.

The parameters used of Rand-EVD are εEVD < 10−3 and
pEVD = 0.9999 and a tolerance ε = 10−5 is set for finding the
subregions in Algorithm 3.

B. Results

An example of reconstruction is given in Figure 4. One
can observe that the spectrograms obtained by the proposed
methods are visually very similar to that of the original target
signal, except for the largest sub-region on the left. On the
contrary, the spectrograms obtained by the baseline methods
exhibit large differences.

Detailed results are given in Table I for the SDR and in
Table II for the IS divergence. Bold face is used to emphasize
the best values among TFF-1, TFF-P, Zero-fill and
Interp. For all mixtures, TFF-1 and TFF-P clearly give
SDR values higher than that of baselines Zero-fill and
Interp by several dBs. TFF-1 and TFF-P SDR values are
close to the oracle upper bound given by TFF-O, by about 1dB
and there is no clear difference between TFF-1 and TFF-P
in terms of SDR.

In terms of IS divergence, values are much more hetero-
geneous. TFF-1 and TFF-P still outperforms the baseline
methods in general. However, the Zero-fill strategy is
the best one when the perturbation is impulsive (clicks and
finger snaps). In those cases, the perturbation affects a wide
frequency range: the Interp strategy is particularly un-
adapted due to the interpolation along the frequency axis and
Zero-fill is giving the lowest (but yet very high) IS values.

`````````Signals
Methods
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car 20.49 20.17 24.58 23.27 23.26
beeps train 20.54 20.12 24.51 23.69 23.12

plane 26.20 25.95 28.23 27.73 27.70
car 12.32 12.08 18.32 17.19 15.30

bird train 22.25 21.31 26.02 25.27 23.11
plane 25.12 24.97 27.40 26.01 25.66
car 13.64 13.64 21.74 20.03 19.90

chirps train 13.82 13.58 21.96 18.16 18.28
plane 18.33 17.90 24.83 22.05 22.32
car 9.57 9.34 11.82 10.54 11.01

clicks train 9.21 8.25 11.63 10.49 10.67
plane 11.45 8.67 13.94 12.69 12.72
car 8.50 8.29 13.36 11.66 11.48

finger snaps train 9.22 8.47 14.64 12.48 12.32
plane 11.54 10.42 16.41 14.66 14.41
car 12.93 12.63 17.78 17.40 17.13

modulations train 17.14 16.89 20.59 19.34 19.56
plane 21.72 21.53 23.49 22.40 22.86

TABLE I
SDR IN DB FOR EACH METHOD AND EACH MIXTURE.

Figure 5 gives some insights in the case of the bird+car
mixture and considering only one whole region Ω. Colored
points represent the performance obtained by TFF-1, TFF-P,
TFF-O and Zero-fill (λ = 1). The additional points
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Fig. 4. Bird+car mixture: spectrograms of the target source and of the reconstruction by each method.
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F
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car 139.4 130.9 63.0 64.9 63.9
beeps train 270.4 214.1 255.4 138.1 138.1

plane 452.7 235.4 142.2 151.3 168.3
car 1770.0 1717.2 695.4 630.4 744.8

bird train 1870.5 3348.3 1538.3 1943.6 2413.3
plane 1993.6 1724.1 1383.0 1428.7 1439.5
car 880.0 868.4 260.3 537.7 613.5

chirps train 1205.8 1135.2 411.0 1506.8 615.6
plane 989.1 982.4 450.7 1178.6 736.1
car 1968.1 2877.0 1685.8 2465.4 2152.7

clicks train 2392.1 6798.5 2111.5 5092.6 4911.6
plane 2273.2 8551.7 2507.5 4262.5 4417.5
car 2961.6 3286.4 1342.5 1902.8 1769.9

finger snaps train 3105.5 7668.1 2810.0 3976.7 4263.3
plane 2629.0 6483.2 2396.7 3665.1 4228.4
car 832.1 877.4 235.3 282.8 208.2

modulations train 917.6 1017.7 282.2 349.6 412.7
plane 1017.8 803.9 580.8 353.5 410.3

TABLE II
IS DIVERGENCES FOR EACH METHOD AND EACH CONFIGURATION.

named TFF-E are obtained by extracting the true energy in
the subregions from the original target signal, and by using this
oracle value as a target energy in the estimation of λ. Both
curves show similar trends; however, the SDR curve is smooth
while the IS curve behaves more erratically. One can see that
the λ value estimated by TFF-1 is very close to the TFF-E
value, which supports that the proposed energy estimation
method is able to accurately estimate the target energy. Both
TFF-1 and TFF-E points are close to the optimal TFF-O,
in terms of λ value, of high SDR and of low IS divergence,

while the Zero-fill points are far away from the optimal.
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Fig. 5. Variation of the performance (SDR and IS) as a function of
hyperparameter λ for the bird+car mix, considering a whole region Ω.

Due to the processing and the Gabor mutipliers diagonaliza-
tion in high dimension (L = 16384 here), the computational
complexity of the proposed methods is a key issue that
has motivated several modeling and algorithmic contributions
in this paper. In [10], many of those contributions were
not present: processing a sound of length 8192 was lasting
about 300 seconds and processing longer sounds was both
untractable in time and memory. Using TFF-P, processing
a twice-longer sound with similar contents takes a bit less
than 200 seconds. Running times for TFF-1 and TFF-P
are represented in Figure 6, where results are given both
for the Hann and Gaussian windows. It shows TFF-P is
about three times faster than TFF-1, while their estimation
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performance are similar. Indeed, dividing the mask in P sub-
regions results in replacing the diagonalization of a large-rank
operator by P diagonalizations of lower-rank operators, with
significant computational savings. One may also observe that
the running times are very different from one mixture to the
other: it is highly dependent on the numerical rank of the
Gabor multipliers, which is related to the size of the region Ω.
Eventually, the running time also depends on the DGT setting:
while both windows have similar time spreading, the Hann
window has a smaller support than the Gaussian window,
which makes it about 30% faster here.
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Fig. 6. Computation times of TFF-1 versus TFF-P, with one point per
mixture, for the Hann and Gaussian windows.

V. CONCLUSION

In this paper, we have addressed the problem of single-
and multiple-region time-frequency fading, formulated as a
variational optimization problem. Almost no assumptions are
made about the signals to be processed: the only requirement
is that the perturbation to be filtered out is well localized in
known regions of the time-frequency plane.

We have proposed efficient algorithms based on the diag-
onalization of Gabor multipliers possibly coupled with fast
randomized eigenvalue decomposition. The proposed methods
acts in the signal domain, avoiding any time-frequency consis-
tency issue. They are easily usable in practice, requiring very
few parameters that can be set to some default values. Exper-
iments on real sounds have shown that good reconstruction
quality is obtained.

The novel time-frequency fading problem formulation and
algorithmic framework may be extended in several directions.
Signals with duration larger than one or two seconds may be
processed easily by segmenting them, processing each segment
and then reconstructing the full-length signal by overlap-add.
A interesting perspective is to integrate a priori information
about the sources in the optimization problem. This can lead to
more specific use cases in applications like denoising, source
separation, time-frequency segmentation or inpainting, as well
as to developing methods to automatically estimate the mask
location.
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APPENDIX

PROOF OF THE ERROR BOUND (15)
Throughout this section we assume that λp ∈]0, 1[ fo all

p = 1, . . . P . For the sake of simplicity we set

Ap = (1− λp)MΩp
, µp = λp/(1− λp) .

The assumption on λp then ensures ‖Ap‖ < 1. With these
notations, we wish to approximate

z−

(
I−

P∑
q=1

Aq

)−1 P∑
p=1

µpApz ≈ z−
P∑
p=1

µp(I−Ap)−1Apz

Defining Bp =
∑
q 6=pAq , we then set

Rp =

(
I−

P∑
q=1

Aq

)−1

Ap − (I−Ap)−1Ap

=

[(
I− (I−Ap)−1

Bp

)−1

− I

]
(I−Ap)−1

Ap

=
(
I−(I−Ap)−1

Bp

)−1

(I−Ap)−1
BpAp (I−Ap)−1

since ApBp = BpAp by construction. We show below that
‖Ap‖ < 1, ‖Bp‖ < 1, and that under suitable assumptions
(specified below as well), ‖(I − Ap)

−1Bp‖ < 1. Then we
have

‖Rp‖ ≤
1

(1− ‖Ap‖)2

‖ApBp‖

1−
∥∥∥(I−Ap)−1

Bp

∥∥∥ .

Then notice that

‖(I−Ap)−1Bp‖ =
∥∥Bp+(I−Ap)−1ApBp

∥∥ ≤ ‖Bp‖+ ‖ApBp‖
1−‖Ap‖

so that

1−‖(I−Ap)−1Bp‖ ≥
(1− ‖Ap‖)(1− ‖Bp‖)− ‖ApBp‖)

1− ‖Ap‖
.

Coming back to initial notations, we have ‖Ap‖ ≤ 1− λp so
that

1− ‖Ap‖ ≥ λp > 0 .

Also, since the sub-regions Ωq are pairwise disjoint

‖Bp‖ =

∥∥∥∥∥∥
∑
q 6=p

Aq

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
q 6=p

(1− λq)MΩq

∥∥∥∥∥∥ ≤ 1−min
q 6=p

λq ,

therefore

1− ‖Bp‖ ≥ λ̃p , where λ̃p = min
q 6=p

λq > 0 .

Besides,

‖ApBp‖=(1−λp)

∥∥∥∥∥∥
∑
q 6=p

(1−λq)MpMq

∥∥∥∥∥∥ ≤ (1−λp)(1−λ̃p)∆p ,

where we have set

∆p =
∑
q 6=p

‖MΩp
MΩq

‖ .

Plugging this expression into the lower bound of 1 − ‖(I −
Ap)

−1Bp‖ yields

1− ‖(I−Ap)−1Bp‖ ≥
λpλ̃p − (1− λp)(1− λ̃p)∆p

1− ‖Ap‖
.

From now on we assume that

∆p <
λpλ̃p

(1− λp)(1− λ̃p)
so that the lower bound is strictly positive. Putting things
together we then obtain

‖Rp‖ ≤
1− λp
λp

(1− λ̃p)∆p

λpλ̃p − (1− λp)(1− λ̃p)∆p

.

The bound (15) then follows from∥∥xλ − xLλ∥∥2
≤
∑
p

λp
1− λp

‖Rp‖ ‖z‖2 .

https://pypi.org/project/ltfatpy/
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