
HAL Id: hal-02861388
https://hal.science/hal-02861388v1

Preprint submitted on 8 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On fluctuations of global and mesoscopic linear statistics
of generalized Wigner matrices

Yiting Li, Yuanyuan Xu

To cite this version:
Yiting Li, Yuanyuan Xu. On fluctuations of global and mesoscopic linear statistics of generalized
Wigner matrices. 2020. �hal-02861388�

https://hal.science/hal-02861388v1
https://hal.archives-ouvertes.fr


Submitted to Bernoulli
arXiv: arXiv:2001.08725

On fluctuations of global and mesoscopic

linear statistics of generalized Wigner matrices

YITING LI1,* YUANYUAN XU2,**
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We consider an N by N real or complex generalized Wigner matrix HN , whose entries are
independent centered random variables with uniformly bounded moments. We assume that the
variance profile, sij := E|Hij |2, satisfies

∑N
i=1 sij = 1, for all 1 ≤ j ≤ N and c−1 ≤ Nsij ≤ c

for all 1 ≤ i, j ≤ N with some constant c ≥ 1. We establish Gaussian fluctuations for the
linear eigenvalue statistics of HN on global scales, as well as on all mesoscopic scales up to the
spectral edges, with the expectation and variance formulated in terms of the variance profile.
We subsequently obtain the universal mesoscopic central limit theorems for the linear eigenvalue
statistics inside the bulk and at the edges respectively.

Keywords: central limit theorem, linear eigenvalue statistics, generalized Wigner matrix.

1. Introduction

1.1. Linear eigenvalue statistics of Wigner matrices

A Wigner matrix HN is an N × N matrix whose entries are independent real or com-
plex valued random variables up to the symmetry constraint HN = H∗N . Wigner ma-
trices with real or complex Gaussian entries are known as the Gaussian Orthogonal
Ensemble (GOE) and the Gaussian Unitary Ensemble (GUE), respectively. The cele-
brated Wigner semicircle law [68] states that the empirical eigenvalue distribution of HN

converges to the semicircle distribution with density ρsc(x) := 1
2π

√
4− x21[−2,2]. More

precisely, denoting by (λi)
N
i=1 the eigenvalues of HN , for any sufficiently regular test

function f , the linear statistics 1
N

∑N
i=1 f(λi)−

∫
R f(x)ρsc(x)dx converges in probability

to zero as N →∞, which can be understood as a Law of Large Numbers.
It is then natural to derive the corresponding Central Limit Theorem (CLT), i.e., the

Gaussian fluctuations of the linear eigenvalue statistics

N∑
i=1

f(λi)− E
[ N∑
i=1

f(λi)
]
. (1.1)

The linear statistics (1.1) need not be normalized by N−
1
2 as in the classical CLT, which

can be explained by the strong correlations among eigenvalues. Khorunzhy, Khoruzhenko

1
imsart-bj ver. 2014/10/16 file: manuscript_generalized_Xu.tex date: June 1, 2020

http://isi.cbs.nl/bernoulli/
http://arxiv.org/abs/arXiv:2001.08725
mailto:yiting.li@univ-amu.fr
mailto:yuax@kth.se


2 Y. Li and Y. Xu

and Pastur [50] proved a CLT for the trace of the resolvent of Wigner matrices. Johans-
son [49] derived Gaussian fluctuations for the linear eigenvalue statistics of invariant
ensembles, including the GUE and GOE. Bai and Yao [9] used a martingale method to
extend the CLTs to arbitrary Wigner matrices and analytic test functions. The regularity
conditions on the test functions were weakened by Lytova and Pastur [60], Shcherbina
[62] via the characteristic function of (1.1), and more recently by Sosoe and Wong [67]
who obtained the CLT for H1+ε test functions.

The fluctuations of the linear eigenvalue statistics on mesoscopic scales, i.e.,

N∑
i=1

f
(λi − E0

η0

)
− E

[ N∑
i=1

f
(λi − E0

η0

)]
, (1.2)

with fixed energy E0 ∈ (−2, 2) and scale parameter N−1 � η0 � 1, were first studied by
Boutet de Monvel and Khorunzhy [18] for the GOE given the test function f(x) = (x−
i)−1. They subsequently extended their results to real Wigner matrices [19] with N−

1
8 �

η0 � 1. A Mesoscopic CLT for the GUE was obtained by Fyodorov, Khoruzhenko and
Simm [39], and was extended by Lodhia and Simm [59] to complex Wigner matrices on
scalesN−1/3 � η0 � 1. He and Knowles [42] improved these CLTs on optimal mesoscopic
scales N−1 � η0 � 1 for all Wigner matrices. They also studied the two point correlation
function of Wigner matrices on mesoscopic scales in [43]. More recently, Landon and Sosoe
[53] obtained similar CLTs by studying the characteristic function of (1.2).

Mesoscopic linear eigenvalue statistics can also be studied at the spectral edges, where
the mesoscopic scale ranges over N−

2
3 � η0 � 1. Basor and Widom [11] used asymptotics

of the Airy kernel to derive Gaussian fluctuations of the linear eigenvalue statistics of
the GUE at the edges. Min and Chen [61] subsequently extended this result to the GOE.
Adhikari and Huang [1] proved the mesoscopic CLT for the Dyson Brownian motion at

the edges down to the optimal scale η0 � N−
2
3 in a short time. Recently, Schnelli and the

authors [58] obtained mesoscopic CLT for deformed Wigner matrices at regular edges,
where the spectral density has square-root behaviors.

Besides Wigner matrices, mesoscopic CLTs were also obtained in many other random
matrices ensembles, e.g., random band matrices [27, 28], sparse Wigner matrices [41],
Dyson Brownian motion [26, 47, 54], invariant β-ensembles [12, 15, 51], orthogonal poly-
nomial ensembles [20], classical compact groups [66], circular β ensembles [52], and free
sum of matrices [10].

1.2. Generalized Wigner matrices

In this paper, we are interested in the linear eigenvalue statistics for generalized Wigner
matrices, which were introduced in [36]. Let HN = (Hij)

N
i,j=1 be an N by N matrix

with independent but not identically distributed centered random variables up to the
symmetry constraint HN = H∗N . Denote by S ≡ SN the matrix of variances, i.e. S :=
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(sij)
N
i,j=1, with sij = E|Hij |2. We assume that S is symmetric and doubly stochastic, i.e.,

N∑
i=1

sij = 1, for all 1 ≤ j ≤ N. (1.3)

We say HN is a generalized Wigner matrix if the size of sij is comparable with N−1,
that is, there exists c ≥ 1 independent of N such that

c−1 ≤ Nsij ≤ c, for all 1 ≤ i, j ≤ N. (1.4)

Standard Wigner matrices are a special case of generalized Wigner matrices, with sij =
N−1 for all 1 ≤ i, j ≤ N . The first condition in (1.3) guarantees that the limiting spectral
measure of HN is given by the semicircle law; see [7, 40, 64]. Without the condition (1.3),
the limiting eigenvalue distribution is characterized by the Dyson equation and were
classified in [3]. Local laws of such general Wigner-type matrices were obtained in [4, 5]
and bulk universality was then established in [4], while the edge and cusp universality
were derived in [5, 6, 33].

The second assumption (1.4) is a sufficient condition for generalized Wigner matrices
to demonstrate the same local eigenvalue statistics as standard Wigner matrices. Uni-
versality for the local eigenvalue statistics of generalized Wigner matrices was obtained
in [15, 37, 38] for the bulk and in [14, 36, 56] for the edges. For random band matrices,
the condition (1.4) is not satisfied. We refer to [16, 17, 30] for results on local laws and
bulk universality, and to [65] for edge universality.

Consider now a special variance matrix S with sij = 1
N f
(
i
N ,

j
N

)
, where f ∈ C([0, 1]×

[0, 1]) is a non-negative, symmetric function such that
∫ 1

0
f(x, y)dy ≡ 1. A CLT for the

linear eigenvalue statistics of such matrices was obtained in [7] by studying its generating
function via combinatorial enumeration, with the variance formulated as an infinite series.
Global CLTs for random band matrices were obtained in [57, 48, 63], while the mesoscopic
linear statistics were studied in [27, 28]. Fluctuations of the linear eigenvalue statistics on
global scales for many familiar classes of random matrices were also studied in [21], where
a unified technique was formulated for deriving such CLTs using second order Poincaré
inequalities, without an explicit formula for the variance. Under this framework, CLTs
for linear eigenvalue statistics of Wigner matrices with general variance profiles were
obtained in [2]. Global fluctuations of block Gaussian matrices with variance profiles
were proved within the framework of second-order free probability theory, see [25] and
references therein. In addition, CLTs on global scales for large sample covariance matrices
given a general variance profile were discussed in [45].

In the present paper, we consider generalized Wigner matrices with matrix of variances
S satisfying (1.3) and (1.4). We derive Gaussian fluctuations for the linear eigenvalue
statistics (1.2), with explicit integral formulas for the variance and expectation in terms
of the matrix of variances S, at fixed energy E0 ∈ [−2, 2] on scales η0 such that N−1 �
η0
√
η0 + κ0 ≤ 1, where κ0 = κ0(E0) denotes the distance from E0 to the closest edge

of the semicircle law; see Theorem 2.2. This range of η0 covers the global scales as well
as all mesoscopic scales up to the spectral edges. Furthermore, we obtain the universal
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CLTs on all mesoscopic scales, for energies E0 in the bulk and at the edges respectively,
by computing the variances and expectations explicitly considering mesoscopic-scaled
test functions; see Theorem 2.4. The limiting law is universal, only depending on the
symmetry class, and is independent of the scaling η0 and the energy E0.

The proof of our main technical result Proposition 4.1 is provided in Section 4. We
follow the idea of [60, 53] to study the characteristic function of the linear eigenvalue
statistics (1.2). Via the Helffer-Sjöstrand functional calculus, we write the derivative
of the characteristic function in terms of the resolvent of HN , and then cut off the
ultra-mesoscopic scales of the spectral domain, see (4.4), since the very local scales do
not contribute to the mesoscopic linear statistics. The benefit is that on the restricted
spectral domain, the resolvent of HN is controlled effectively by the local laws [31, 36].
We subsequently apply the cumulant expansions (see Lemma 4.2) to solve the right side
of (4.4). This technique was first used in random matrix theory by [50] and in recent
papers, e.g., [32, 42, 55, 60]. The key tools to estimate the error in Proposition 4.1 are
the (isotropic) local laws for the resolvent [13, 6, 32, 44] and the fluctuation averaging
estimates [29, 30, 46, 69]. One of the main technical achivements is to find a weak local

law for the two point function Tab(z, z
′) :=

∑N
j=1,j 6=b sajGjb(z)Gjb(z

′), with different
spectral parameters z, z′; see Lemma 4.3 with proof in Section 5. Compared with the
standard Wigner matrices [42, 53], the two point function Tab(z, z

′) cannot be written
as a matrix product and hence the resolvent identity (5.15) or cyclicity of trace no
longer help. Similar two point functions of the resolvents appeared in [34, 22, 24, 10] to
derive Gaussian fluctuations of the linear eigenvalue statistics for different random matrix
ensembles. The proof of Lemma 4.3 is inspired by the fluctuation averaging mechanism
[29], combined with recursive moment estimates based on cumulant expansions. A special
case z = z̄ was studied previously in [29, 46, 69], and our statements are for arbitrary
parameters z, z′ ∈ C \R. In addition, we end Section 4 by estimating the expectation of
the linear eigenvalue statistics and then complete the proof of Theorem 2.2.

Notation: We will use the following definition on high-probability estimates from [29].

Definition 1.1. Let X ≡ X (N) and Y ≡ Y(N) be two sequences of nonnegative random
variables. We say Y stochastically dominates X if, for all (small) ε > 0 and (large) D > 0,

P
(
X (N) > N εY(N)

)
≤ N−D, (1.5)

for sufficiently large N ≥ N0(ε,D), and we write X ≺ Y or X = O≺(Y).

For any vector v ∈ CN , let ‖v‖sup := maxNi=1 |vi| be the sup norm. For any matrix
A ∈ CN×N , the matrix norm induced by the sup vector norm are given by ‖A‖∞ :=

max1≤i≤N
∑N
j=1 |Aij |. We also write ‖A‖sup := maxi,j |Aij |.

Throughout the paper, we use c and C to denote strictly positive constants that are
independent of N . Their values may change from line to line. We use standard Big-O and
little-o notations. Moreover, we write X ∼ Y if there exist constants c, C > 0 such that
c|Y | ≤ |X| ≤ C|Y |. Finally, we denote the upper half-plane by C+ := {z ∈ C : Im z > 0}.
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2. Main results

Let H ≡ HN be an N × N real or complex generalized Wigner matrix satisfying the
following assumption.

Assumption 2.1. For real (β = 1) generalized Wigner matrix, we assume that

1. {Hij |i ≤ j} are independent real-valued centered random variables with Hij = Hji.
2. Let S ≡ SN denote the matrix of variances, i.e., S := (sij)

N
i,j=1 with sij = E|Hij |2.

There exist constants 0 < Cinf ≤ Csup <∞ such that

N∑
i=1

sij ≡ 1; Cinf ≤ inf
N,i,j

Nsij ≤ sup
N,i,j

Nsij ≤ Csup. (2.1)

3. All moments of the entries of
√
NHN are uniformly bounded, i.e., for any k ∈ N,

there exists Ck independent of N such that for all 1 ≤ i, j ≤ N ,

E|
√
NHij |k ≤ Ck. (2.2)

For complex (β = 2) generalized Wigner matrix, we assume that

(a) {ReHij , ImHij |i ≤ j} are independent real-valued centered random variables with
Hij = Hji.

(b) The same moment conditions 2 and 3 hold and E[H2
ij ] = 0 for i 6= j.

For a probability measure ν on R, denote by mν its Stieltjes transform, i.e.,

mν(z) :=

∫
R

dν(x)

x− z
, z ∈ C+ . (2.3)

Note that mν : C+ → C+ is analytic and can be analytically continued to the real line
outside the support of ν. Moreover, mν satisfies limη↗∞ iηmν(iη) = −1. The Stieltjes
transform of the semicircle law µsc := ρsc(x)dx = 1

2π

√
4− x21[−2,2]dx, denoted by msc,

is defined as the unique analytic solution C+ → C+ satisfying

m2
sc(z) + zmsc(z) + 1 = 0. (2.4)

Fix the energy E0 ∈ [−2, 2] and set N−1 � η0 ≤ 1. Consider a scaled test function

f ≡ fN (x) := g
(x− E0

η0

)
, g ∈ C2

c (R). (2.5)

Define the distance between the support of f and the nearest edge of the semicircle law,

κ0 := dist(supp(f), {−2, 2}). (2.6)

Then we have the following CLT for the linear eigenvalue statistics of HN .
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Theorem 2.2. Let HN be a generalized Wigner matrix satisfying Assumption 2.1 and
assume that η0

√
κ0 + η0 ≥ N−1+c0 for some constant c0 > 0. Then there exists a small

constant 0 < τ < c0
16 such that the following statements hold. For f as in (2.5), define

V (f) :=− 1

4π2

∫
Γ1

∫
Γ2

f̃(z)f̃(z′)
{ 2

β
Tr
( m′sc(z)m

′
sc(z

′)S

(1−msc(z)msc(z′)S)2

)
+ 2k4msc(z)m

′
sc(z)msc(z

′)m′sc(z
′) + TrS

(
1− 2

β

)
m′sc(z)m

′
sc(z

′)
}

dzdz′, (2.7)

where

• k4 is the summation of the forth cumulants (see (4.6) and (4.21)) of both real and
imaginary parts of all entries {Hij};

• f̃ is an almost-analytic extension of f , i.e.

f̃(x+ iy) := (f(x) + iyf ′(x))χ(y), (2.8)

where χ : R → [0, 1] is a smooth cutoff function with support in [−2, 2] and with
χ(y) = 1, for |y| ≤ 1;

• the contours Γk (k = 1, 2) are given by {z ∈ C : |Im z| = 1
kN
−τη0} with counter-

clockwise orientation.

If there exist constants c, C > 0 such that c < V (f) < C, then

Trf(HN )− ETrf(HN )√
V (f)

d−→ N (0, 1).

Moreover, the so-called bias is given by

ETrf(HN )−N
∫
R
f(x)ρsc(x)dx =

1

2πi

∫
Γ1

f̃(z)
{( 2

β
− 1
)

Tr
(m′sc(z)m3

sc(z)S
2

1−m2
sc(z)S

)
+ k4m

′
sc(z)m

3
sc(z)

}
dz +O≺

( N2τ

(Nη0
√
κ0 + η0)1/4

)
+O≺(N−τ ). (2.9)

Remark 2.3. We remark that Theorem 2.2 applies to the global scales as well as op-
timal mesoscopic scales up to the spectral edges. The formulas for the variance (2.7)
and the bias (2.9) coincide with the corresponding results for standard Wigner matrices
[53, 58] where sij = N−1 for all 1 ≤ i, j ≤ N .

Finally, we obtain the following mesoscopic CLTs for the linear eigenvalue statistics
in the bulk and at the edges respectively.

Theorem 2.4 (Universal mesoscopic CLTs). Let HN be a generalized Wigner matrix
satisfying Assumption 2.1. Fix any E0 ∈ (−2, 2) and c1 ∈ (0, 1), and set η0 = N−c1 . For
any function g ∈ C2

c (R), the mesoscopic linear statistics in the bulk

N∑
i=1

g
(λi − E0

η0

)
−N

∫
R
g
(x− E0

η0

)
ρsc(x)dx

d−→ N
(

0,
1

βπ

∫
R
|ξ||ĝ(ξ)|2dξ

)
,
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where ĝ(ξ) := (2π)−1/2
∫
R g(x)e−iξxdx.

In addition, set E0 = ±2 and η0 = N−c2 with any fixed c2 ∈ (0, 2
3 ). Then the meso-

scopic linear statistics at the edges

N∑
i=1

g
(λi − E0

η0

)
−N

∫
R
g
(x− E0

η0

)
ρsc(x)dx

d−→ N
(( 2

β
− 1
)g(0)

4
,

1

2βπ

∫
R
|ξ||ĥ(ξ)|2dξ

)
,

where h(x) := g(∓x2), and ĥ(ξ) := (2π)−1/2
∫
R h(x)e−iξxdx.

Remark 2.5. The means and variances of the limiting laws in Theorem 2.4 agree with
the corresponding results for the Gaussian ensembles. See [18, 39] for the bulk and [11, 61]
for the edges. Such edge formulas were also obtained in other ensembles, e.g., Dyson
Brownian motion [1], deformed Wigner matrices and sample covariance matrices [58].

3. Preliminaries

In this section, we introduce some preliminary results that will be used in the proof.

3.1. Properties of the Stieltjes transform of the semicircle law

In this subsection, we recall some properties of msc. Let κ = κ(E) be the distance from
E to the closest spectral edge of the semicircle law, i.e.,

κ := min{|E + 2|, |E − 2|}. (3.1)

Define the spectral domain

D := {z = E + iη : |E| ≤ 5, 0 < η ≤ 10}. (3.2)

Lemma 3.1 (Lemma 4.2 in [38], Lemma 6.2 in [35]). We have the following estimates.

1. For any z ∈ D, there exists a constant c > 0 such that

c ≤ |msc(z)| ≤ 1− cη. (3.3)

2. For all z ∈ D, we have

|Immsc(z)| ∼

{√
κ+ η, if |E| ≤ 2,
η√
κ+η

, otherwise.
(3.4)

3. For all z ∈ D, there exist some constants c, C > 0 such that

c
√
κ+ η ≤ |1−m2

sc(z)| ≤ C
√
κ+ η. (3.5)

4. For all z ∈ D, we have

|msc(z)| ∼ 1; |m′sc(z)| ∼
1√
κ+ η

; |m′′sc(z)| = O
( 1√

(κ+ η)3

)
. (3.6)
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3.2. Properties of the variance matrix S

In this subsection, we state some properties of the matrix of variances S, which is crucial
in studying the local laws of the generalized Wigner matrices. Recall that S = (sij)

N
i,j=1

is the matrix of variances satisfying (2.1), and S is deterministic, symmetric and doubly
stochastic with strictly positive entries. Hence 1 is the largest eigenvalue, with eigenvector
e := N−

1
2 (1, 1, · · · , 1)T . By the Perron-Frobenius Theorem, the largest eigenvalue 1 is

simple and all other eigenvalues are strictly less than 1 in absolute value. Define δ± to
be the spectral gaps satisfying

Spec(S) ⊂ [−1 + δ−, 1− δ+] ∩ {1}.

It is not hard to show that
δ± ≥ Cinf > 0,

provided S satisfies (2.1). Combining with (3.3), 1−msc(z)msc(z
′)S is invertible. Thus,

we have the following estimates.

Lemma 3.2. Define Π := eeT with e = N−
1
2 (1, 1, · · · , 1)T . For any z, z′ ∈ D, there

exists C > 0 such that∥∥∥ 1

1−msc(z)msc(z′)S

∥∥∥
∞
≤ C

|1−msc(z)msc(z′)|
,
∥∥∥ 1−Π

1−msc(z)msc(z′)S

∥∥∥
∞
≤ C,

where the constant C depends on Cinf and Csup in (2.1).

Similar statements can be found in Lemma 6.3 [35] for z = z′, and the proof also
applies to two parameters z, z′. In particular, we have from (3.5) that

ρ :=
∥∥∥ 1

1−m2
sc(z)S

∥∥∥
∞
≤ C

∣∣∣ 1

1−m2
sc(z)

∣∣∣ ∼ 1√
κ+ η

. (3.7)

We also have a trivial lower bound, ρ ≥ 1
|1−m2

sc(z)|
≥ 1

2 , since e is an eigenvector of S

and |msc(z)| ≤ 1.

3.3. Local Law for the resolvent of HN

Denote by (λi)
N
i=1 the eigenvalues of HN . We define the empirical spectral measure of

HN by µN (x) := 1
N

∑N
i=1 δλi . The Stieltjes transform of µN is then given by

mN (z) :=

∫
R

dµN (λ)

λ− z
= N−1TrG(z), with G(z) := (HN − zI)−1, z ∈ C+. (3.8)

The function G(z) is referred to as the resolvent or Green function of HN . The semicircle
law states that for any fixed z away from the real line, mN (z) converges in probability to
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Linear statistics of generalized Wigner matrices 9

msc(z) as N tends to infinity. It can be extended down to the local scales Im z � N−1.
We introduce the spectral domain,

D′ :=
{
z = E + iη : |E| ≤ 5, N−1+τ ≤ η ≤ 10

}
, (3.9)

for any constant τ > 0, and define two deterministic control parameters

Ψ(z) :=

√
Immsc(z)

Nη
+

1

Nη
, Θ(z) :=

1

Nη
. (3.10)

With estimates of msc(z) in Lemma 3.1, it is easy to check

CN−
1
2 ≤ Ψ(z)� 1 , z ∈ D′ . (3.11)

We have the following (isotropic) local laws for the resolvent of HN , which is an essential
tool in our proof.

Theorem 3.3 (Theorem 2.3 in [31], Theorem 2.12 in [13], (3.8) in [29]). Let HN be
a generalized Wigner matrix satisfying Assumption 2.1. The following estimates hold
uniformly in z ∈ D′:

max
i,j
|Gij(z)− δijmsc(z)| ≺ Ψ(z); |mN (z)−msc(z)| ≺ Θ(z). (3.12)

Furthermore, we also have for all z ∈ D′,

max
i

∣∣∣ N∑
j=1

sijGjj(z)−msc(z)
∣∣∣ ≺ ρΨ2(z), (3.13)

with ρ in (3.7). For any deterministic unit vectors v,w ∈ CN and all z ∈ D′, we have∣∣∣〈v, G(z)w〉 −msc(z)〈v,w〉
∣∣∣ ≺ Ψ(z). (3.14)

Finally, we end this section with properties of stochastic domination defined in (1.5).

Lemma 3.4 (Proposition 6.5 in [35]). 1. X ≺ Y and Y ≺ Z imply X ≺ Z;
2. If X1 ≺ Y1 and X2 ≺ Y2, then X1 +X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2;
3. If X ≺ Y , EY ≥ N−c and |X| ≤ N c almost surely with some fixed exponent c,

then we have EX ≺ EY .

4. Proof of Theorem 2.2 and 2.4

We define the characteristic function of the linear eigenvalue statistics

φ(λ) := E[e(λ)], where e(λ) := exp
{

iλ(Trf(HN )− ETrf(HN ))
}
, λ ∈ R. (4.1)

Then the characteristic function φ satisfies the following proposition.
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10 Y. Li and Y. Xu

Proposition 4.1. Under the same conditions as in Theorem 2.2, if η0
√
κ0 + η0 ≥

N−1+c0 for some c0 > 0, then there exists a constant 0 < τ < c0
16 such that φ satisfies

φ′(λ) = −λφ(λ)V (f) +O≺(|λ| logNN−τ ) +O≺

( (1 + |λ|4)N4τ

(Nη0
√
κ0 + η0)

1
4

)
.

Admitting Proposition 4.1, integrating φ′(λ) and applying the Arzelá-Ascoli theorem
and Lévy’s continuity theorem, we prove the Gaussian fluctuations for the linear statis-
tics, as stated in Theorem 2.2. Given the scaled test function (2.5), we compute the
variances (2.7) and biases (2.9) on mesoscopic scales in the bulk and at the edges respec-
tively, and then conclude Theorem 2.4. Similar arguments for deformed Wigner matrices
can be found in Section 6 [58] and we omit them in the present paper.

Proof of Proposition 4.1. Via the Helffer-Sjöstrand functional calculus (see (4.10) of
[53] for a reference), we translate the linear eigenvalue statistics of f(HN ) to the Green
function of HN . More precisely, for any f in (2.5),

Trf(HN ) =
1

π

∫
C

∂

∂z
f̃(z)Tr(G(z))d2z, (4.2)

where ∂
∂z = 1

2 ( ∂
∂x + i ∂∂y ), f̃(z) is an almost-analytic extension of f given in (2.8) and d2z

is the Lebesgue measure on C. As observed in [53], the ultra-local scales do not contribute
to the mesoscopic linear statistics. So we restrict the domain of the spectral parameter to

Ω0 :=
{
z ∈ C : |Im z| ≥ N−τη0

}
, (4.3)

for a small constant τ > 0. Notice that G(z) is analytic in C \ R. Taking derivative of
the characteristic function φ(λ) in (4.1) and applying Stokes’ formula, we have

φ′(λ) =
1

2π

∫
Γ1

f̃(z)E
[
e0(λ)(Tr(G(z)− ETrG(z))

]
dz +O≺

(
|λ| logNN−τ

)
, (4.4)

where

e0(λ) := exp
{ λ

2π

∫
Γ2

f̃(z′)(Tr(G(z′))− ETrG(z′))dz′
}
, (4.5)

with Γ1,2 given in Theorem 2.2. More details can be found in [53, 58]. Here we choose
slightly different contours to avoid singularities. Thus, in order to study φ′(λ), it suffices
to estimate E[(e0(λ)(Tr(G(z))− ETrG(z))].

To simplify the proof, we will only consider the real symmetric case (β = 1). The
proof for the complex case (β = 2) is similar. Before we proceed the proof, we introduce
the following cumulant expansion formula, see [42] for a reference.

Lemma 4.2 (Cumulant expansion formula). Let h be a real-valued random variable
with finite moments, and f is a complex-valued smooth function on R with bounded
derivatives. Let c(k)(h) be the k-th cumulant of h given by

c(k)(h) := (−i)k
dk

dtk

(
logE[eith]

)∣∣∣
t=0

. (4.6)
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Then for any fixed l ∈ N, we have

E[hf(h)] =

l∑
k=0

1

k!
c(k+1)(h)E

[ dk

dhk
f(h)

]
+Rl+1, (4.7)

where the error Rl+1 satisfies

|Rl+1| ≤ ClE
[
|h|l+2

]
sup
|x|≤M

|f (l+1)(x)|+ ClE
[
|h|l+21|h>M |

]
sup
x∈R
|f (l+1)(x)|, (4.8)

and M > 0 is an arbitrary fixed cutoff.

By the definition of the resolvent and applying the cumulant expansion (4.6) for l = 3,
we have (c.f. (5.6) in [58])

zE[e0(λ)(TrG− ETrG)] = E[e0(λ)(Tr(HG)− ETr(HG))] = I1 + I2 + I3 +R4, (4.9)

where Ik(k = 1, 2, 3) denote the expansion terms associated with the (k + 1)-cumulant,
and R4 is the error given in (4.8). In the following, we estimate each term on the RHS
of (4.9) using the identity

∂Gij
∂Hab

= −GiaGbj +GibGaj
1 + δab

, 1 ≤ a, b ≤ N. (4.10)

Similar arguments for deformed Wigner matrices can also be found in Section 5 [58], so
we omit most computation details. First, it is not hard to check that R4 = O≺(N−1/2(1+
|λ|4)), by using the local law (3.12), the moment condition (2.2) and Lemma 3.4.

Next, we look at the first term I1. Using the local law (3.13), I1 can be written as (c.f.
Section 5.1 and Lemma 5.1 [58])

I1 =−
N∑
i=1

E[e0(λ)(1− E)
( N∑
j=1

sijGjj(z)Gii(z)
)

]−
N∑
i=1

E
[
e0(λ)(1− E)

( (i)∑
j=1

sijGji(z)Gji(z)
)]

− λ

π

N∑
i=1

E
[
e0(λ)

∫
Γ2

f̃(z′)
∂

∂z′

( N∑
j=1

1

1 + δij
sijG(z′)jiGji(z)

)
dz′
]

=− 2msc(z)E[e0(λ)(1− E)TrG]− E[e0(λ)(1− E)TrT (z, z)]

− λ

π
E[e0(λ)

∫
Γ2

f̃(z′)
∂

∂z′
TrT (z, z′)dz′]− λTrS

2π
E[e0(λ)]

∫
Γ2

f̃(z′)msc(z)m
′
sc(z

′)dz′

+O≺
(
NρΨ3(z)

)
+O≺

( |λ|√
Nη0

)
+O≺(|λ|Ψ(z)), (4.11)

where we define the following two point function for short,

Tab(z, z
′) :=

(b)∑
j=1

sajGjb(z)Gjb(z
′), 1 ≤ a, b ≤ N, z, z′ ∈ C \ R, (4.12)

with
∑(b)
j=1 :=

∑N
j=1,j 6=b. The following local laws for T (z, z′) are proved in Section 5.
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Lemma 4.3. For all 1 ≤ a, b ≤ N and z, z′ ∈ D′ in (3.9), we have

Tab(z, z
′) =

( m2
sc(z)m

2
sc(z

′)S2

1−msc(z)msc(z′)S

)
ab

+O≺

(
ρ2Ψ

3
2 (z)Ψ(z′) + ρ2Ψ(z)Ψ

3
2 (z′)

)
, (4.13)

where ρ2 ≡ ρ2(z, z′) := (1−msc(z)msc(z
′))−1. Moreover, we have the following estimate

of the trace of T (z, z′):

TrT (z, z′) = Tr
( m2

sc(z)m
2
sc(z

′)S2

1−msc(z)msc(z′)S

)
+ ET (z, z′), (4.14)

where the error ET (z, z′) is analytic in z, z′ ∈ C \ R and for all z, z′ ∈ D′, it satisfies

|ET (z, z′)| ≺ NΨ
3
2 (z)Ψ(z′) +NΨ(z)Ψ

3
2 (z′) +NΘ2(z) +NΘ(z)Θ(z′). (4.15)

Remark 4.4. We remark that the above local law is not optimal. If we further expand
(5.9) in the proof below, the error in (4.13) can be improved to O≺(ρ2Ψ2(z)Ψ(z′) +
ρ2Ψ(z)Ψ2(z′)). But Lemma 4.3 is sufficient to establish the CLTs for the linear statistics,
so we do not aim at the optimal local law in the present paper.

Notice that T (z, z′) is analytic in z, z′ ∈ C \ R. Taking the partial derivative of
TrT (z, z′) in (4.14) and applying the Cauchy integral formula, we have

∂

∂z′
TrT (z, z′) =Tr

( msc(z)m
′
sc(z

′)S

(1−msc(z)msc(z′)S)2

)
−msc(z)m

′
sc(z

′)TrS (4.16)

+O≺

(NΨ
3
2 (z)Ψ(z′) +NΨ(z)Ψ

3
2 (z′) +NΘ2(z) +NΘ(z)Θ(z′)

Im z′

)
.

Plugging (4.14) (for z = z′) and (4.16) into (4.11), we hence obtain that

I1 =− 2msc(z)E[e0(λ)(1− E)TrG] +
λTrS

2π
E[e0(λ)]

∫
Γ2

f̃(z′)msc(z)m
′
sc(z

′)dz′

− λ

π
E[e0(λ)]

∫
Γ2

f̃(z′)Tr
( msc(z)m

′
sc(z

′)S

(1−msc(z)msc(z′)S)2

)
dz′ + E1(z), (4.17)

where the error E1(z) is collected from (4.11), (4.15) (for z = z′) and (4.16). Since g is
compactly supported, we have κ0 ≤ κ ≤ C(κ0 + η0) with κ and κ0 given in (3.1) and
(2.6). Using (2.5), (3.4), (3.7) and (3.10), the error E1(z) satisfies

|E1(z)| ≺(1 + |λ|)N2τ

(
1√
Nη0

+ Ψ(z) +NρΨ3(z) +NΘ2(z) + Θ(z)η−1
0 +NΨ5/2(z)

+NΨ
3
2 (z)

( (κ0 + η0)
1
4

√
Nη0

+
1

Nη0

)
+NΨ(z)

( (κ0 + η0)
3
8

(Nη0)
3
4

+
1

(Nη0)
3
2

)
. (4.18)
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By direct computations and the isotropic local law (3.14), one shows that the second
term I2 corresponding to third cumulants is negligible (c.f. Section 5.2 [58]),

I2 = O≺

( (1 + |λ|2)N2τΨ(z)
√
η0

)
+O≺

(√
NΨ2(z)

)
. (4.19)

It is also straightforward to check that (c.f. Section 5.3 and Lemma 5.1 [58])

I3 =− k4λ

2π
E
[
e0(λ)

∫
Γ2

f̃(z′)
∂

∂z′
(m2

sc(z)m
2
sc(z

′))dz′
]

+O≺

( (1 + |λ|3)N2τ

√
Nη0

)
, (4.20)

where k4 is the summation of all the fourth cumulants, i.e.,

k4 :=

N∑
i,j=1

c
(4)
ij (Hij) = E[H4

ij ]− 3(E[H2
ij ])

2. (4.21)

Plugging (4.17), (4.19) and (4.20) into (4.9) and rearranging, we obtain that

(z + 2msc(z))E[e0(λ)(1− E)TrG] = − λ

2π
E[e0(λ)]

∫
Γ2

f̃(z′)K̃(z, z′)dz′ + Ẽ(z), (4.22)

where the kernel K̃(z, z′) is given by

K̃(z, z′) = 2Tr
( msc(z)m

′
sc(z

′)S

(1−msc(z)msc(z′)S)2

)
−msc(z)m

′
sc(z

′)TrS + 2k4m
2
sc(z)msc(z

′)m′sc(z
′),

and Ẽ(z) is the error collected from (4.18)-(4.20). Dividing both sides of (4.22) by z +

2msc(z) = −msc(z)m′sc(z)
∼
√
κ+ η from (2.4) and (3.6), and plugging it into (4.4), we hence

obtain that the characteristic function satisfies

φ′(λ) = −λE[e0(λ)]V (f) +O≺

( (1 + |λ|4)N4τ

(Nη0
√
κ0 + η0)

1
4

)
+O≺

(
|λ|N−τ

)
,

where V (f) is given in (2.7) and we use (2.5), (3.4) and (3.10) to estimate the error. Note
that |e(λ)− e0(λ)| ≺ |λ|N−τ . If V (f) ≺ O(1), then we replace e0(λ) by e(λ) at the cost
of O≺(|λ|N−τ ). This completes the proof of Proposition 4.1.

We end up this section with the estimate of E[TrG(z)] − Nmsc(z) in a similar way
and obtain the bias formula for the general linear statistics.

Proof of Equation (2.9). Using the definition of resolvent and the cumulant expan-
sion (4.7) on zE[TrG(z)−Nmsc(z)], in combination with the local laws in Theorem 3.3
and Lemma 4.3, we have the analogue of (4.22), i.e.,

(z + 2msc(z))E(TrG(z)−Nmsc(z)) =− Tr
( m4

sc(z)S
2

1−m2
sc(z)S

)
− k4m

4
sc(z) (4.23)

+O≺
(
NρΨ3

)
+O≺(NΨ5/2) +O≺(NΘ2),
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where ρ is given by (3.7), and k4 is defined in (4.21). Dividing both sides by z+ 2msc(z)
and transforming E[TrG(z)]−Nmsc(z) to the bias of the linear statistics via the Heffler-
Strösjand formula (4.2) and Stokes’ formula, we obtain (2.9) and conclude the last state-
ment of Theorem 2.2.

Remark 4.5. The results in Section 4 extend directly from real symmetric (β = 1)
to complex Hermitian (β = 2) matrices. The only difference is to apply the complex

analogue of cumulant expansion formula and
∂Gij
∂Hab

= −GiaGbj instead of (4.10). Similar

arguments can be found in Appendix A [58], and we omit them here.

5. Proof of Lemma 4.3

In this section, we prove a local law for the two point function T (z, z′) defined in (4.12).
For notational simplicity, we write T ≡ T (z, z′), m1 := msc(z), m2 := msc(z

′) and define

the control parameter Ξ2 := Ψ
3
2 (z)Ψ(z′) + Ψ(z)Ψ

3
2 (z′). We aim to prove that

Pab := − 1

m1
Tab +m2(ST )ab +m1m

2
2(S2)ab = O≺(Ξ2). (5.1)

Due to (2.4) and the relation zG = HG− I, we write

Pab =

(b)∑
j=1

saj(HG)jb(z)Gjb(z
′) +m1Tab +m2(ST )ab +m1m

2
2(S2)ab. (5.2)

Set Mp,q := (Pab)
p(P ∗ab)

q for any p, q ∈ N for short. For any d ∈ N, applying the cumulant
expansion (4.7), we have

E|Pab|2d =E
[( (b)∑

j=1

N∑
k=1

sajsjk
∂Gkb(z)Gjb(z

′)

∂Hjk

)
Md−1,d

]

+ E
[( (b)∑

j=1

N∑
k=1

sajsjkGkb(z)Gjb(z
′)
)

(d− 1)
∂Pab
∂Hjk

Md−2,d

]
(5.3)

+ E
[( (b)∑

j=1

N∑
k=1

sajsjkGkb(z)Gjb(z
′)
)
d
∂P ∗ab
∂Hjk

Md−1,d−1

]
+R2

+ E
[(
m1Tab +m2(ST )ab +m1m

2
2(S2)ab

)
Md−1,d

]
:= J1 + J2 + J3 +R2 + J4,

where R2 is the error of cumulant expansion, see (4.8) for l = 1. We first show that R2 is
negligible. We write G(1) := G(z), G(2) := G(z′), Ψ1 := Ψ(z) and Ψ2 := Ψ(z′) for short.
Using identity (4.10) and the local law (3.12), for general α ∈ N, we have∣∣∣∂αG(1)

kb G
(2)
jb

∂Hα
jk

∣∣∣ ≺ Ψ1Ψ2 + δjb + δkb. (5.4)
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We obtain from (4.10) and (5.1) that

∂Pab
∂Hjk

=− 1

m1

∂Tab
∂Hjk

+m2

N∑
i=1

sai
∂Tib
∂Hjk

= −
(b)∑
l=1

( 1

m1
sal −m2(S2)al

)
×(

G
(1)
lj G

(1)
kb G

(2)
lb +G

(1)
lk G

(1)
jb G

(2)
lb +G

(1)
lb G

(2)
lj G

(2)
kb +G

(1)
lb G

(2)
lk G

(2)
jb

)
. (5.5)

In general, for any α ∈ N, the local law (3.12) implies that,∣∣∣∂αPab
∂Hα

jk

∣∣∣ ≺ Ψ2
1Ψ2 + Ψ1Ψ2

2 + δjbΨ1Ψ2 + δkbΨ1Ψ2. (5.6)

Similarly, the estimate (5.6) still holds true for
∂αP∗ab
∂Hαjk

for general α ∈ N. Using the

moment condition (2.2), (5.4), (5.6) and (3.11), we hence obtain that

R2 =E[O≺(Ξ1)Md−1,d] + E[O≺(Ξ2
1)Md−2,d] + E[O≺(Ξ2

1)Md−1,d−1]

+ E[O≺(Ξ3
1)Md−3,d] + E[O≺(Ξ3

1)Md−2,d−1] + E[O≺(Ξ3
1)Md−1,d−2], (5.7)

where we define a new control parameter Ξ1 := Ψ2
1Ψ2 + Ψ1Ψ2

2 � Ξ2.
Next, we look at the first term J1. Using (4.10) and the local law (3.12), we write

J1 =− E
[ (b)∑
j=1

N∑
k=1

sajsjk

(
m1G

(1)
jb G

(2)
jb +m2G

(1)
kb G

(2)
kb

)
Md−1,d

]
+ E[O≺(Ξ1)Md−1,d]

=− E
[(
m1Tab +m2

N∑
j=1

sajTjb +m1m
2
2(S)2

ab

)
Md−1,d

]
+ E[O≺(Ξ1)Md−1,d]. (5.8)

Note that the leading term of J1 will cancel J4. As for the second term J2, using (5.5)
and simple power counting by the local law (3.12), we have

J2 = (d− 1)E
[( (b)∑

j=1

N∑
k=1

sajsjkGkb(z)Gjb(z
′)
) ∂Pab
∂Hjk

Md−2,d

]
= E[O≺(Ξ2

2)Md−2,d]. (5.9)

We treat J3 similarly and get J3 = E[O≺(Ξ2
2)Md−1,d−1]. Therefore, we obtain that

E|Pab|2d =E[O≺(Ξ1)M(d− 1, d)] + E[O≺(Ξ2
2)Md−1,d−1] + E[O≺(Ξ2

2)Md−2,d]

+ E[O≺(Ξ3
1)Md−3,d] + E[O≺(Ξ3

1)Md−2,d−1] + E[O≺(Ξ3
1)Md−1,d−2]. (5.10)

Applying the Young’s inequality to the RHS of (5.10) and using Ξ1 � Ξ2, we get
E|Pab|2d ≺ Ξ2d

2 for any d ∈ N and thus |Pab| ≺ Ξ2. Using |msc(z)| ∼ 1, the matrix
(T )ab defined in (5.1) hence satisfies(

1−m1m2S
)
T = m2

1m
2
2S

2 +R(z, z′), (5.11)
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where the error matrix R ≡ R(z, z′) has the following estimate:

‖R(z, z′)‖sup = O≺(Ψ
3
2 (z)Ψ(z′)) +O≺(Ψ(z)Ψ

3
2 (z′)). (5.12)

Combining with the first estimate from Lemma 3.2, we hence prove (4.13).
Next, we continue to estimate the trace of the two point function T (z, z′). Recall the

projection matrix Π = ee∗, where e = N−
1
2 (1, 1, · · · , 1)∗. Note that ΠS = SΠ = Π.

Multiplying both sides of (5.11) by (1−Π)(1−m1m2S)−1, we have

(1−Π)T = m2
1m

2
2

S2 −Π

1−m1m2S
+

1−Π

1−m1m2S
R.

Using the second estimates in Lemma 3.2 and (5.12), we obtain that

TrT = Tr(ΠT )+Tr
(m2

1m
2
2(S2 −Π)

1−m1m2S

)
+O≺

(
NΨ

3
2 (z)Ψ(z′)

)
+O≺

(
NΨ(z)Ψ

3
2 (z′)

)
. (5.13)

For the first term on the RHS of (5.13), we write it as

Tr(ΠT ) =
1

N

N∑
b=1

(b)∑
j

Gjb(z)Gjb(z
′) =

1

N
Tr(G(z)G(z′))− 1

N

N∑
b=1

Gbb(z)Gbb(z
′). (5.14)

To estimate (5.14), we separate our argument into two cases:

1. For z 6= z′, using the resolvent identity

G(z)G(z′) =
1

z − z′
(G(z)−G(z′)), (5.15)

and the local law (3.12), we have

Tr(ΠT ) =
mN (z)−mN (z′)

z − z′
−msc(z)msc(z

′) +O≺(Θ(z)) +O≺(Θ(z′)).

If z, z′ are in different half planes, then |z − z′| ≥ |Im z| and thus from (3.12),

mN (z)−mN (z′)

z − z′
=
msc(z)−msc(z

′)

z − z′
+O≺

( Θ(z)

|Im z|

)
+O≺

(Θ(z′)

|Im z|

)
.

If z and z′ are in the same half-plane, without loss of generality, we assume z, z′ ∈
C+. If |Im z − Im z′| ≥ 1

2 Im z, the previous argument still applies. Otherwise, we
have 1

2 Im z ≤ Im z′ ≤ 3
2 Im z. Since d(z) := mN (z)−msc(z) is analytic in z ∈ C+,

applying the Cauchy integral formula, we obtain that∣∣∣d(z)− d(z′)

z − z′
∣∣∣ ≤ sup

ω∈L(z,z′)

∣∣∣d′(ω)
∣∣∣ ≺ Θ(ω)

|Imω|
= O≺

( Θ(z)

|Im z|

)
,

where L(z, z′) denotes the segment connecting z and z′. Therefore, we have

Tr(ΠT ) =
msc(z)−msc(z

′)

z − z′
−msc(z)msc(z

′) +O≺

(Θ(z) + Θ(z′)

|Im z|

)
. (5.16)
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2. For z = z′, using the identity G2(z) = d
dzG(z), the local law (3.12) and the Cauchy

integral formula, we have

Tr(ΠT ) =
d

dz
mN (z)− 1

N

N∑
b=1

(Gbb(z))
2 = m′sc(z)−m2

sc(z) +O≺

(Θ(z)

Im z

)
. (5.17)

In addition, we use the Taylor expansion on (1 −m1m2S)−1 and the relation ΠS =
SΠ = Π to get

Tr
( m2

1m
2
2Π

1−m1m2S

)
=

m2
1m

2
2

1−m1m2
. (5.18)

Plugging (5.16) (or (5.17) for z = z′) and (5.18) into (5.13), we conlucde from (2.4) that
(4.14) and (4.15) hold. This complete the proof of Lemma 4.3.
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[31] L. Erdős, A. Knowles, H.T. Yau and J. Yin. The local semicircle law for a general
class of random matrices, Electron. J. Probab 18(59), 1-58 (2013).
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