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We consider an N by N real or complex generalized Wigner matrix HN , whose entries are independent centered random variables with uniformly bounded moments. We assume that the variance profile, sij := E|Hij| 2 , satisfies N i=1 sij = 1, for all 1 ≤ j ≤ N and c -1 ≤ N sij ≤ c for all 1 ≤ i, j ≤ N with some constant c ≥ 1. We establish Gaussian fluctuations for the linear eigenvalue statistics of HN on global scales, as well as on all mesoscopic scales up to the spectral edges, with the expectation and variance formulated in terms of the variance profile. We subsequently obtain the universal mesoscopic central limit theorems for the linear eigenvalue statistics inside the bulk and at the edges respectively.

Introduction 1.Linear eigenvalue statistics of Wigner matrices

A Wigner matrix H N is an N × N matrix whose entries are independent real or complex valued random variables up to the symmetry constraint H N = H * N . Wigner matrices with real or complex Gaussian entries are known as the Gaussian Orthogonal Ensemble (GOE) and the Gaussian U nitary Ensemble (GUE), respectively. The celebrated Wigner semicircle law [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF] states that the empirical eigenvalue distribution of H N converges to the semicircle distribution with density ρ sc (x) :=

1 2π √ 4 -x 2 1 [-2,2]
. More precisely, denoting by (λ i ) N i=1 the eigenvalues of H N , for any sufficiently regular test function f , the linear statistics 1 N N i=1 f (λ i ) -R f (x)ρ sc (x)dx converges in probability to zero as N → ∞, which can be understood as a Law of Large Numbers.

It is then natural to derive the corresponding Central Limit Theorem (CLT), i.e., the Gaussian fluctuations of the linear eigenvalue statistics

N i=1 f (λ i ) -E N i=1 f (λ i ) .
(1.1)

and Pastur [START_REF] Khorunzhy | Asymptotic properties of large random matrices with independent entries[END_REF] proved a CLT for the trace of the resolvent of Wigner matrices. Johansson [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF] derived Gaussian fluctuations for the linear eigenvalue statistics of invariant ensembles, including the GUE and GOE. Bai and Yao [START_REF] Bai | On the convergence of the spectral empirical process of Wigner matrices[END_REF] used a martingale method to extend the CLTs to arbitrary Wigner matrices and analytic test functions. The regularity conditions on the test functions were weakened by Lytova and Pastur [START_REF] Lytova | Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF], Shcherbina [START_REF] Shcherbina | Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices[END_REF] via the characteristic function of (1.1), and more recently by Sosoe and Wong [START_REF] Sosoe | Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices[END_REF] who obtained the CLT for H 1+ test functions.

The fluctuations of the linear eigenvalue statistics on mesoscopic scales, i.e.,

N i=1 f λ i -E 0 η 0 -E N i=1 f λ i -E 0 η 0 , (1.2) 
with fixed energy E 0 ∈ (-2, 2) and scale parameter N -1 η 0 1, were first studied by Boutet de Monvel and Khorunzhy [START_REF] Boutet De Monvel | Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices[END_REF] for the GOE given the test function f (x) = (xi) -1 . They subsequently extended their results to real Wigner matrices [START_REF] Boutet De Monvel | Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices[END_REF] with N -1 8 η 0 1. A Mesoscopic CLT for the GUE was obtained by Fyodorov, Khoruzhenko and Simm [START_REF] Fyodorov | Fractional Brownian motion with Hurst index H = 0 and the Gaussian unitary ensemble[END_REF], and was extended by Lodhia and Simm [START_REF] Lodhia | Mesoscopic linear statistics of Wigner matrices[END_REF] to complex Wigner matrices on scales N -1/3 η 0 1. He and Knowles [START_REF] He | Mesoscopic eigenvalue statistics of Wigner matrices[END_REF] improved these CLTs on optimal mesoscopic scales N -1 η 0 1 for all Wigner matrices. They also studied the two point correlation function of Wigner matrices on mesoscopic scales in [START_REF] He | Mesoscopic Eigenvalue Density Correlations of Wigner Matrices[END_REF]. More recently, Landon and Sosoe [START_REF] Landon | Applications of mesoscopic CLTs in random matrix theory[END_REF] obtained similar CLTs by studying the characteristic function of (1.2).

Mesoscopic linear eigenvalue statistics can also be studied at the spectral edges, where the mesoscopic scale ranges over N -2 η 0 1. Basor and Widom [START_REF] Basor | Determinants of Airy Operators and Applications to Random Matrices[END_REF] used asymptotics of the Airy kernel to derive Gaussian fluctuations of the linear eigenvalue statistics of the GUE at the edges. Min and Chen [START_REF] Min | Linear Statistics of Random Matrix Ensembles at the Spectrum Edge Associated with the Airy Kernel[END_REF] subsequently extended this result to the GOE. Adhikari and Huang [START_REF] Adhikari | Dyson Brownian Motion for General β and Potential at the Edge[END_REF] proved the mesoscopic CLT for the Dyson Brownian motion at the edges down to the optimal scale η 0 N -2 3 in a short time. Recently, Schnelli and the authors [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF] obtained mesoscopic CLT for deformed Wigner matrices at regular edges, where the spectral density has square-root behaviors.

Besides Wigner matrices, mesoscopic CLTs were also obtained in many other random matrices ensembles, e.g., random band matrices [START_REF] Erdős | The Altshuler-Shklovskii formulas for random band matrices I: the unimodular case[END_REF][START_REF] Erdős | The Altshuler-Shklovskii formulas for random band matrices II: the general case[END_REF], sparse Wigner matrices [START_REF] He | Bulk eigenvalue fluctuations of sparse random matrices[END_REF], Dyson Brownian motion [START_REF] Duits | On mesoscopic equilibrium for linear statistics in Dyson's Brownian Motion[END_REF][START_REF] Huang | Rigidity and a mesoscopic central limit theorem for Dyson Brownian motion for general beta and potentials[END_REF][START_REF] Landon | Fixed energy universality of Dyson Brownian motion[END_REF], invariant β-ensembles [START_REF] Bekerman | Mesoscopic central limit theorem for general β-ensembles[END_REF][START_REF] Bourgade | Fixed energy universality for generalized Wigner matrices[END_REF][START_REF] Lambert | Mesoscopic fluctuations for unitary invariant ensembles[END_REF], orthogonal polynomial ensembles [START_REF] Breuer | Universality of mesoscopic fluctuations for orthogonal polynomial ensembles[END_REF], classical compact groups [START_REF] Soshnikov | Central Limit Theorem for Linear Statistics in Classical Compact Groups and Related Combinatorial Identities[END_REF], circular β ensembles [START_REF] Lambert | Mesoscopic central limit theorem for the circular beta-ensembles and applications[END_REF], and free sum of matrices [START_REF] Bao | Central limit theorem for mesoscopic eigenvalue statistics of free sum of matrices[END_REF].

Generalized Wigner matrices

In this paper, we are interested in the linear eigenvalue statistics for generalized Wigner matrices, which were introduced in [START_REF] Erdős | Rigidity of eigenvalues of generalized Wigner matrices[END_REF]. Let H N = (H ij ) N i,j=1 be an N by N matrix with independent but not identically distributed centered random variables up to the symmetry constraint H N = H * N . Denote by S ≡ S N the matrix of variances, i.e. S :=

(s ij ) N i,j=1 , with s ij = E|H ij | 2 .
We assume that S is symmetric and doubly stochastic, i.e.,

N i=1 s ij = 1, for all 1 ≤ j ≤ N. (1.3)
We say H N is a generalized Wigner matrix if the size of s ij is comparable with N -1 , that is, there exists c ≥ 1 independent of N such that

c -1 ≤ N s ij ≤ c, for all 1 ≤ i, j ≤ N. (1.4)
Standard Wigner matrices are a special case of generalized Wigner matrices, with s ij = N -1 for all 1 ≤ i, j ≤ N . The first condition in (1.3) guarantees that the limiting spectral measure of H N is given by the semicircle law; see [START_REF] Anderson | A CLT for a band matrix model[END_REF][START_REF] Guionnet | Large deviation upper bounds and central limit theorems for band matrices[END_REF][START_REF] Shlyakhtenko | Random Gaussian band matrices and freeness with amalgamation[END_REF]. Without the condition (1.3), the limiting eigenvalue distribution is characterized by the Dyson equation and were classified in [START_REF] Ajanki | Singularities of solutions to quadratic vector equations on the complex upper half-plane[END_REF]. Local laws of such general Wigner-type matrices were obtained in [START_REF] Ajanki | Universality for general Wigner-type matrices[END_REF][START_REF] Ajanki | Stability of the matrix Dyson equation and random matrices with correlations[END_REF] and bulk universality was then established in [START_REF] Ajanki | Universality for general Wigner-type matrices[END_REF], while the edge and cusp universality were derived in [START_REF] Ajanki | Stability of the matrix Dyson equation and random matrices with correlations[END_REF][START_REF] Alt | Correlated Random Matrices: Band Rigidity and Edge Universality[END_REF][START_REF] Erdős | Cusp universality for random matrices I: Local law and the complex Hermitian case[END_REF].

The second assumption (1.4) is a sufficient condition for generalized Wigner matrices to demonstrate the same local eigenvalue statistics as standard Wigner matrices. Universality for the local eigenvalue statistics of generalized Wigner matrices was obtained in [START_REF] Bourgade | Fixed energy universality for generalized Wigner matrices[END_REF][START_REF] Erdős | Bulk universality for generalized Wigner matrices[END_REF][START_REF] Erdős | Universality for generalized Wigner matrices with Bernoulli distribution[END_REF] for the bulk and in [START_REF] Bourgade | Edge universality of beta ensembles[END_REF][START_REF] Erdős | Rigidity of eigenvalues of generalized Wigner matrices[END_REF][START_REF] Lee | A necessary and sufficient condition for edge universality of Wigner matrices[END_REF] for the edges. For random band matrices, the condition (1.4) is not satisfied. We refer to [START_REF] Bourgade | Random band matrices in the delocalized phase, I: Quantum unique ergodicity and universality[END_REF][START_REF] Bourgade | Random band matrices in the delocalized phase, II: Generalized resolvent estimates[END_REF][START_REF] Erdős | Delocalization and Diffusion Profile for imsart-bj ver[END_REF] for results on local laws and bulk universality, and to [START_REF] Sodin | The spectral edge of some random band matrices[END_REF] for edge universality.

Consider now a special variance matrix S with

s ij = 1 N f i N , j N , where f ∈ C([0, 1] × [0, 1]
) is a non-negative, symmetric function such that 1 0 f (x, y)dy ≡ 1. A CLT for the linear eigenvalue statistics of such matrices was obtained in [START_REF] Anderson | A CLT for a band matrix model[END_REF] by studying its generating function via combinatorial enumeration, with the variance formulated as an infinite series. Global CLTs for random band matrices were obtained in [START_REF] Li | Central limit theorem for linear statistics of eigenvalues of band random matrices[END_REF][START_REF] Jana | Fluctuations of linear eigenvalue statistics of random band matrices[END_REF][START_REF] Shcherbina | On fluctuations of eigenvalues of random band matrices[END_REF], while the mesoscopic linear statistics were studied in [START_REF] Erdős | The Altshuler-Shklovskii formulas for random band matrices I: the unimodular case[END_REF][START_REF] Erdős | The Altshuler-Shklovskii formulas for random band matrices II: the general case[END_REF]. Fluctuations of the linear eigenvalue statistics on global scales for many familiar classes of random matrices were also studied in [START_REF] Chatterjee | Fluctuations of eigenvalues and second order Poincaré inequalities[END_REF], where a unified technique was formulated for deriving such CLTs using second order Poincaré inequalities, without an explicit formula for the variance. Under this framework, CLTs for linear eigenvalue statistics of Wigner matrices with general variance profiles were obtained in [START_REF] Adhikari | Linear eigenvalue statistics of random matrices with a variance profile[END_REF]. Global fluctuations of block Gaussian matrices with variance profiles were proved within the framework of second-order free probability theory, see [START_REF] Diaz | On the global fluctuations of block Gaussian matrices[END_REF] and references therein. In addition, CLTs on global scales for large sample covariance matrices given a general variance profile were discussed in [START_REF] Hachem | A CLT for Information-theoretic statistics of Gram random matrices with a given variance profile[END_REF].

In the present paper, we consider generalized Wigner matrices with matrix of variances S satisfying (1.3) and (1.4). We derive Gaussian fluctuations for the linear eigenvalue statistics (1.2), with explicit integral formulas for the variance and expectation in terms of the matrix of variances S, at fixed energy E 0 ∈ [-2, 2] on scales η 0 such that N -1 η 0 √ η 0 + κ 0 ≤ 1, where κ 0 = κ 0 (E 0 ) denotes the distance from E 0 to the closest edge of the semicircle law; see Theorem 2.2. This range of η 0 covers the global scales as well as all mesoscopic scales up to the spectral edges. Furthermore, we obtain the universal imsart-bj ver. 2014/10/16 file: manuscript_generalized_Xu.tex date: June 1, 2020

CLTs on all mesoscopic scales, for energies E 0 in the bulk and at the edges respectively, by computing the variances and expectations explicitly considering mesoscopic-scaled test functions; see Theorem 2.4. The limiting law is universal, only depending on the symmetry class, and is independent of the scaling η 0 and the energy E 0 .

The proof of our main technical result Proposition 4.1 is provided in Section 4. We follow the idea of [START_REF] Lytova | Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF][START_REF] Landon | Applications of mesoscopic CLTs in random matrix theory[END_REF] to study the characteristic function of the linear eigenvalue statistics (1.2). Via the Helffer-Sjöstrand functional calculus, we write the derivative of the characteristic function in terms of the resolvent of H N , and then cut off the ultra-mesoscopic scales of the spectral domain, see (4.4), since the very local scales do not contribute to the mesoscopic linear statistics. The benefit is that on the restricted spectral domain, the resolvent of H N is controlled effectively by the local laws [START_REF] Erdős | The local semicircle law for a general class of random matrices[END_REF][START_REF] Erdős | Rigidity of eigenvalues of generalized Wigner matrices[END_REF]. We subsequently apply the cumulant expansions (see Lemma 4.2) to solve the right side of (4.4). This technique was first used in random matrix theory by [START_REF] Khorunzhy | Asymptotic properties of large random matrices with independent entries[END_REF] and in recent papers, e.g., [START_REF] Erdős | Random Matrices with Slow Correlation Decay[END_REF][START_REF] He | Mesoscopic eigenvalue statistics of Wigner matrices[END_REF][START_REF] Oon Lee | Edge universality for deformed Wigner matrices[END_REF][START_REF] Lytova | Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF]. The key tools to estimate the error in Proposition 4.1 are the (isotropic) local laws for the resolvent [START_REF] Bloemendal | Isotropic local laws for sample covariance and generalized Wigner matrices[END_REF][START_REF] Alt | Correlated Random Matrices: Band Rigidity and Edge Universality[END_REF][START_REF] Erdős | Random Matrices with Slow Correlation Decay[END_REF][START_REF] He | Isotropic self-consistent equations for meanfield random matrices[END_REF] and the fluctuation averaging estimates [START_REF] Erdős | Averaging Fluctuations in Resolvents of Random Band Matrices[END_REF][START_REF] Erdős | Delocalization and Diffusion Profile for imsart-bj ver[END_REF][START_REF] He | Diffusion Profile for Random Band Matrices: a Short Proof[END_REF][START_REF] Yang | Random band matrices in the delocalized phase, III: Averaging fluctuations[END_REF]. One of the main technical achivements is to find a weak local law for the two point function T ab (z, z ) := N j=1,j =b s aj G jb (z)G jb (z ), with different spectral parameters z, z ; see Lemma 4.3 with proof in Section 5. Compared with the standard Wigner matrices [START_REF] He | Mesoscopic eigenvalue statistics of Wigner matrices[END_REF][START_REF] Landon | Applications of mesoscopic CLTs in random matrix theory[END_REF], the two point function T ab (z, z ) cannot be written as a matrix product and hence the resolvent identity (5.15) or cyclicity of trace no longer help. Similar two point functions of the resolvents appeared in [START_REF] Erdős | Fluctuations of Rectangular Young Diagrams of Interlacing Wigner Eigenvalues[END_REF][START_REF] Cipolloni | Fluctuations for linear eigenvalue statistics of sample covariance random matrices[END_REF][START_REF] Cipolloni | Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices[END_REF][START_REF] Bao | Central limit theorem for mesoscopic eigenvalue statistics of free sum of matrices[END_REF] to derive Gaussian fluctuations of the linear eigenvalue statistics for different random matrix ensembles. The proof of Lemma 4.3 is inspired by the fluctuation averaging mechanism [START_REF] Erdős | Averaging Fluctuations in Resolvents of Random Band Matrices[END_REF], combined with recursive moment estimates based on cumulant expansions. A special case z = z was studied previously in [START_REF] Erdős | Averaging Fluctuations in Resolvents of Random Band Matrices[END_REF][START_REF] He | Diffusion Profile for Random Band Matrices: a Short Proof[END_REF][START_REF] Yang | Random band matrices in the delocalized phase, III: Averaging fluctuations[END_REF], and our statements are for arbitrary parameters z, z ∈ C \ R. In addition, we end Section 4 by estimating the expectation of the linear eigenvalue statistics and then complete the proof of Theorem 2.2.

Notation: We will use the following definition on high-probability estimates from [START_REF] Erdős | Averaging Fluctuations in Resolvents of Random Band Matrices[END_REF].

Definition 1.1. Let X ≡ X (N ) and Y ≡ Y (N ) be two sequences of nonnegative random variables. We say Y stochastically dominates X if, for all (small) > 0 and (large) D > 0,

P X (N ) > N Y (N ) ≤ N -D , (1.5) 
for sufficiently large N ≥ N 0 ( , D), and we write X ≺ Y or X = O ≺ (Y).

For any vector v ∈ C N , let v sup := max N i=1 |v i | be the sup norm. For any matrix A ∈ C N ×N , the matrix norm induced by the sup vector norm are given by A 

∞ := max 1≤i≤N N j=1 |A ij |. We also write A sup := max i,j |A ij |.

Main results

Let H ≡ H N be an N × N real or complex generalized Wigner matrix satisfying the following assumption.

Assumption 2.1. For real (β = 1) generalized Wigner matrix, we assume that 1. {H ij |i ≤ j} are independent real-valued centered random variables with

H ij = H ji . 2. Let S ≡ S N denote the matrix of variances, i.e., S := (s ij ) N i,j=1 with s ij = E|H ij | 2 . There exist constants 0 < C inf ≤ C sup < ∞ such that N i=1 s ij ≡ 1; C inf ≤ inf N,i,j N s ij ≤ sup N,i,j N s ij ≤ C sup . (2.1)
3. All moments of the entries of √ N H N are uniformly bounded, i.e., for any k ∈ N, there exists C k independent of N such that for all

1 ≤ i, j ≤ N , E| √ N H ij | k ≤ C k . (2.2)
For complex (β = 2) generalized Wigner matrix, we assume that

(a) {Re H ij , Im H ij |i ≤ j} are independent real-valued centered random variables with H ij = H ji . (b)
The same moment conditions 2 and 3 hold and

E[H 2 ij ] = 0 for i = j.
For a probability measure ν on R, denote by m ν its Stieltjes transform, i.e.,

m ν (z) := R dν(x) x -z , z ∈ C + . (2.3)
Note that m ν : C + → C + is analytic and can be analytically continued to the real line outside the support of ν. Moreover, m ν satisfies lim η ∞ iηm ν (iη) = -1. The Stieltjes transform of the semicircle law [START_REF] Adhikari | Linear eigenvalue statistics of random matrices with a variance profile[END_REF] dx, denoted by m sc , is defined as the unique analytic solution

µ sc := ρ sc (x)dx = 1 2π √ 4 -x 2 1 [-2,
C + → C + satisfying m 2 sc (z) + zm sc (z) + 1 = 0. (2.4) Fix the energy E 0 ∈ [-2, 2] and set N -1 η 0 ≤ 1. Consider a scaled test function f ≡ f N (x) := g x -E 0 η 0 , g ∈ C 2 c (R). (2.5)
Define the distance between the support of f and the nearest edge of the semicircle law,

κ 0 := dist(supp(f ), {-2, 2}). (2.6)
Then we have the following CLT for the linear eigenvalue statistics of H N .

Theorem 2.2. Let H N be a generalized Wigner matrix satisfying Assumption 2.1 and assume that η 0 √ κ 0 + η 0 ≥ N -1+c0 for some constant c 0 > 0. Then there exists a small constant 0 < τ < c0 16 such that the following statements hold. For f as in (2.5), define

V (f ) := - 1 4π 2 Γ1 Γ2 f (z) f (z ) 2 β Tr m sc (z)m sc (z )S (1 -m sc (z)m sc (z )S) 2 + 2k 4 m sc (z)m sc (z)m sc (z )m sc (z ) + TrS 1 - 2 β m sc (z)m sc (z ) dzdz , (2.7)
where 

•
{H ij }; • f is an almost-analytic extension of f , i.e. f (x + iy) := (f (x) + iyf (x))χ(y), (2.8) 
where χ : R → [0, 1] is a smooth cutoff function with support in [-2, 2] and with

χ(y) = 1, for |y| ≤ 1; • the contours Γ k (k = 1, 2) are given by {z ∈ C : |Im z| = 1 k N -τ η 0 } with counter- clockwise orientation. If there exist constants c, C > 0 such that c < V (f ) < C, then Trf (H N ) -ETrf (H N ) V (f ) d -→ N (0, 1).
Moreover, the so-called bias is given by

ETrf (H N )-N R f (x)ρ sc (x)dx = 1 2πi Γ1 f (z) 2 β -1 Tr m sc (z)m 3 sc (z)S 2 1 -m 2 sc (z)S + k 4 m sc (z)m 3 sc (z) dz + O ≺ N 2τ (N η 0 √ κ 0 + η 0 ) 1/4 + O ≺ (N -τ ).
(2.9)

Remark 2.3. We remark that Theorem 2.2 applies to the global scales as well as optimal mesoscopic scales up to the spectral edges. The formulas for the variance (2.7) and the bias (2.9) coincide with the corresponding results for standard Wigner matrices [START_REF] Landon | Applications of mesoscopic CLTs in random matrix theory[END_REF][START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF] where

s ij = N -1 for all 1 ≤ i, j ≤ N .
Finally, we obtain the following mesoscopic CLTs for the linear eigenvalue statistics in the bulk and at the edges respectively. Theorem 2.4 (Universal mesoscopic CLTs). Let H N be a generalized Wigner matrix satisfying Assumption 2.1. Fix any E 0 ∈ (-2, 2) and c 1 ∈ (0, 1), and set η 0 = N -c1 . For any function g ∈ C 2 c (R), the mesoscopic linear statistics in the bulk

N i=1 g λ i -E 0 η 0 -N R g x -E 0 η 0 ρ sc (x)dx d -→ N 0, 1 βπ R |ξ||ĝ(ξ)| 2 dξ ,
where ĝ(ξ) := (2π) -1/2 R g(x)e -iξx dx. In addition, set E 0 = ±2 and η 0 = N -c2 with any fixed c 2 ∈ (0, 2 3 ). Then the mesoscopic linear statistics at the edges

N i=1 g λ i -E 0 η 0 -N R g x -E 0 η 0 ρ sc (x)dx d -→ N 2 β -1 g(0) 4 , 1 2βπ R |ξ|| ĥ(ξ)| 2 dξ ,
where h(x) := g(∓x 2 ), and ĥ(ξ) := (2π) -1/2 R h(x)e -iξx dx.

Remark 2.5. The means and variances of the limiting laws in Theorem 2.4 agree with the corresponding results for the Gaussian ensembles. See [START_REF] Boutet De Monvel | Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices[END_REF][START_REF] Fyodorov | Fractional Brownian motion with Hurst index H = 0 and the Gaussian unitary ensemble[END_REF] for the bulk and [START_REF] Basor | Determinants of Airy Operators and Applications to Random Matrices[END_REF][START_REF] Min | Linear Statistics of Random Matrix Ensembles at the Spectrum Edge Associated with the Airy Kernel[END_REF] for the edges. Such edge formulas were also obtained in other ensembles, e.g., Dyson Brownian motion [START_REF] Adhikari | Dyson Brownian Motion for General β and Potential at the Edge[END_REF], deformed Wigner matrices and sample covariance matrices [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF].

Preliminaries

In this section, we introduce some preliminary results that will be used in the proof.

Properties of the Stieltjes transform of the semicircle law

In this subsection, we recall some properties of m sc . Let κ = κ(E) be the distance from E to the closest spectral edge of the semicircle law, i.e.,

κ := min{|E + 2|, |E -2|}. (3.1)
Define the spectral domain

D := {z = E + iη : |E| ≤ 5, 0 < η ≤ 10}. (3.2)
Lemma 3.1 (Lemma 4.2 in [START_REF] Erdős | Universality for generalized Wigner matrices with Bernoulli distribution[END_REF], Lemma 6.2 in [START_REF] Erdős | A Dynamical Approach to Random Matrix Theory[END_REF]). We have the following estimates.

1. For any z ∈ D, there exists a constant c > 0 such that

c ≤ |m sc (z)| ≤ 1 -cη. (3.3) 
2. For all z ∈ D, we have

|Im m sc (z)| ∼ √ κ + η, if |E| ≤ 2, η √ κ+η , otherwise. (3.4) 
3. For all z ∈ D, there exist some constants c, C > 0 such that

c √ κ + η ≤ |1 -m 2 sc (z)| ≤ C √ κ + η. (3.5)
4. For all z ∈ D, we have

|m sc (z)| ∼ 1; |m sc (z)| ∼ 1 √ κ + η ; |m sc (z)| = O 1 (κ + η) 3 . (3.6)

Properties of the variance matrix S

In this subsection, we state some properties of the matrix of variances S, which is crucial in studying the local laws of the generalized Wigner matrices. Recall that S = (s ij ) N i,j=1

is the matrix of variances satisfying (2.1), and S is deterministic, symmetric and doubly stochastic with strictly positive entries. Hence 1 is the largest eigenvalue, with eigenvector

e := N -1 2 (1, 1, • • • , 1) T .
By the Perron-Frobenius Theorem, the largest eigenvalue 1 is simple and all other eigenvalues are strictly less than 1 in absolute value. Define δ ± to be the spectral gaps satisfying

Spec(S) ⊂ [-1 + δ -, 1 -δ + ] ∩ {1}. It is not hard to show that δ ± ≥ C inf > 0,
provided S satisfies (2.1). Combining with (3.3), 1 -m sc (z)m sc (z )S is invertible. Thus, we have the following estimates.

Lemma 3.2. Define Π := ee T with e = N -1 2 (1, 1, • • • , 1) T . For any z, z ∈ D, there exists C > 0 such that 1 1 -m sc (z)m sc (z )S ∞ ≤ C |1 -m sc (z)m sc (z )| , 1 -Π 1 -m sc (z)m sc (z )S ∞ ≤ C,
where the constant C depends on C inf and C sup in (2.1).

Similar statements can be found in Lemma 6.3 [START_REF] Erdős | A Dynamical Approach to Random Matrix Theory[END_REF] for z = z , and the proof also applies to two parameters z, z . In particular, we have from (3.5) that

ρ := 1 1 -m 2 sc (z)S ∞ ≤ C 1 1 -m 2 sc (z) ∼ 1 √ κ + η . (3.7)
We also have a trivial lower bound, ρ ≥

1 |1-m 2 sc (z)| ≥ 1 2
, since e is an eigenvector of S and |m sc (z)| ≤ 1.

Local Law for the resolvent of H N

Denote by (λ i ) N i=1 the eigenvalues of H N . We define the empirical spectral measure of

H N by µ N (x) := 1 N N i=1 δ λi . The Stieltjes transform of µ N is then given by m N (z) := R dµ N (λ) λ -z = N -1 TrG(z), with G(z) := (H N -zI) -1 , z ∈ C + . (3.8)
The function G(z) is referred to as the resolvent or Green function of H N . The semicircle law states that for any fixed z away from the real line, m N (z) converges in probability to imsart-bj ver. 2014/10/16 file: manuscript_generalized_Xu.tex date: June 1, 2020 m sc (z) as N tends to infinity. It can be extended down to the local scales Im z N -1 . We introduce the spectral domain,

D := z = E + iη : |E| ≤ 5, N -1+τ ≤ η ≤ 10 , (3.9) 
for any constant τ > 0, and define two deterministic control parameters

Ψ(z) := Im m sc (z) N η + 1 N η , Θ(z) := 1 N η . (3.10)
With estimates of m sc (z) in Lemma 3.1, it is easy to check

CN -1 2 ≤ Ψ(z) 1 , z ∈ D . (3.11)
We have the following (isotropic) local laws for the resolvent of H N , which is an essential tool in our proof.

Theorem 3.3 (Theorem 2.3 in [START_REF] Erdős | The local semicircle law for a general class of random matrices[END_REF], Theorem 2.12 in [START_REF] Bloemendal | Isotropic local laws for sample covariance and generalized Wigner matrices[END_REF], (3.8) in [START_REF] Erdős | Averaging Fluctuations in Resolvents of Random Band Matrices[END_REF]). Let H N be a generalized Wigner matrix satisfying Assumption 2.1. The following estimates hold uniformly in z ∈ D :

max i,j |G ij (z) -δ ij m sc (z)| ≺ Ψ(z); |m N (z) -m sc (z)| ≺ Θ(z). (3.12) 
Furthermore, we also have for all z ∈ D , Finally, we end this section with properties of stochastic domination defined in (1.5).

max i N j=1 s ij G jj (z) -m sc (z) ≺ ρΨ 2 (z), ( 3 
Lemma 3.4 (Proposition 6.5 in [START_REF] Erdős | A Dynamical Approach to Random Matrix Theory[END_REF]). Proposition 4.1. Under the same conditions as in Theorem 2.2, if η 0 √ κ 0 + η 0 ≥ N -1+c0 for some c 0 > 0, then there exists a constant 0 < τ < c0 16 such that φ satisfies

1. X ≺ Y and Y ≺ Z imply X ≺ Z; 2. If X 1 ≺ Y 1 and X 2 ≺ Y 2 , then X 1 + X 2 ≺ Y 1 + Y 2 and X 1 X 2 ≺ Y 1 Y 2 ; 3. If X ≺ Y , EY ≥ N -c
φ (λ) = -λφ(λ)V (f ) + O ≺ (|λ| log N N -τ ) + O ≺ (1 + |λ| 4 )N 4τ (N η 0 √ κ 0 + η 0 ) 1 4 
.

Admitting Proposition 4.1, integrating φ (λ) and applying the Arzelá-Ascoli theorem and Lévy's continuity theorem, we prove the Gaussian fluctuations for the linear statistics, as stated in Theorem 2.2. Given the scaled test function (2.5), we compute the variances (2.7) and biases (2.9) on mesoscopic scales in the bulk and at the edges respectively, and then conclude Theorem 2.4. Similar arguments for deformed Wigner matrices can be found in Section 6 [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF] and we omit them in the present paper.

Proof of Proposition 4.1. Via the Helffer-Sjöstrand functional calculus (see (4.10) of [START_REF] Landon | Applications of mesoscopic CLTs in random matrix theory[END_REF] for a reference), we translate the linear eigenvalue statistics of f (H N ) to the Green function of H N . More precisely, for any f in (2.5),

Trf (H N ) = 1 π C ∂ ∂z f (z)Tr(G(z))d 2 z, (4.2) 
where

∂ ∂z = 1 2 ( ∂ ∂x + i ∂ ∂y ), f (z) is an almost-analytic extension of f given in (2.8
) and d 2 z is the Lebesgue measure on C. As observed in [START_REF] Landon | Applications of mesoscopic CLTs in random matrix theory[END_REF], the ultra-local scales do not contribute to the mesoscopic linear statistics. So we restrict the domain of the spectral parameter to

Ω 0 := z ∈ C : |Im z| ≥ N -τ η 0 , (4.3) 
for a small constant τ > 0. Notice that G(z) is analytic in C \ R. Taking derivative of the characteristic function φ(λ) in (4.1) and applying Stokes' formula, we have

φ (λ) = 1 2π Γ1 f (z)E e 0 (λ)(Tr(G(z) -ETrG(z)) dz + O ≺ |λ| log N N -τ , (4.4) 
where e 0 (λ

) := exp λ 2π Γ2 f (z )(Tr(G(z )) -ETrG(z ))dz , (4.5) 
with Γ 1,2 given in Theorem 2.2. More details can be found in [START_REF] Landon | Applications of mesoscopic CLTs in random matrix theory[END_REF][START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF]. Here we choose slightly different contours to avoid singularities. Thus, in order to study φ (λ), it suffices to estimate E[(e 0 (λ)(Tr(G(z)) -ETrG(z))].

To simplify the proof, we will only consider the real symmetric case (β = 1). The proof for the complex case (β = 2) is similar. Before we proceed the proof, we introduce the following cumulant expansion formula, see [START_REF] He | Mesoscopic eigenvalue statistics of Wigner matrices[END_REF] for a reference.

Lemma 4.2 (Cumulant expansion formula).

Let h be a real-valued random variable with finite moments, and f is a complex-valued smooth function on R with bounded derivatives. Let c (k) (h) be the k-th cumulant of h given by

c (k) (h) := (-i) k d k dt k log E[e ith ] t=0 . (4.6) 
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Then for any fixed l ∈ N, we have

E[hf (h)] = l k=0 1 k! c (k+1) (h)E d k dh k f (h) + R l+1 , (4.7) 
where the error R l+1 satisfies

|R l+1 | ≤ C l E |h| l+2 sup |x|≤M |f (l+1) (x)| + C l E |h| l+2 1 |h>M | sup x∈R |f (l+1) (x)|, (4.8) 
and M > 0 is an arbitrary fixed cutoff.

By the definition of the resolvent and applying the cumulant expansion (4.6) for l = 3, we have (c.f. (5.6) in [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF])

zE[e 0 (λ)(TrG -ETrG)] = E[e 0 (λ)(Tr(HG) -ETr(HG))] = I 1 + I 2 + I 3 + R 4 , (4.9)
where I k (k = 1, 2, 3) denote the expansion terms associated with the (k + 1)-cumulant, and R 4 is the error given in (4.8). In the following, we estimate each term on the RHS of (4.9) using the identity

∂G ij ∂H ab = - G ia G bj + G ib G aj 1 + δ ab , 1 ≤ a, b ≤ N. (4.10) 
Similar arguments for deformed Wigner matrices can also be found in Section 5 [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF], so we omit most computation details. First, it is not hard to check that

R 4 = O ≺ (N -1/2 (1+ |λ| 4 
)), by using the local law (3.12), the moment condition (2.2) and Lemma 3.4. Next, we look at the first term I 1 . Using the local law (3.13), I 1 can be written as (c.f. Section 5.1 and Lemma 5.1 [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF])

I 1 = - N i=1 E[e 0 (λ)(1 -E) N j=1 s ij G jj (z)G ii (z) ] - N i=1 E e 0 (λ)(1 -E) (i) j=1 s ij G ji (z)G ji (z) - λ π N i=1 E e 0 (λ) Γ2 f (z ) ∂ ∂z N j=1 1 1 + δ ij s ij G(z ) ji G ji (z) dz = -2m sc (z)E[e 0 (λ)(1 -E)TrG] -E[e 0 (λ)(1 -E)TrT (z, z)] - λ π E[e 0 (λ) Γ2 f (z ) ∂ ∂z TrT (z, z )dz ] - λTrS 2π E[e 0 (λ)] Γ2 f (z )m sc (z)m sc (z )dz + O ≺ N ρΨ 3 (z) + O ≺ |λ| √ N η 0 + O ≺ (|λ|Ψ(z)), (4.11) 
where we define the following two point function for short,

T ab (z, z ) := (b) j=1 s aj G jb (z)G jb (z ), 1 ≤ a, b ≤ N, z, z ∈ C \ R, (4.12) with (b) 
j=1 := N j=1,j =b . The following local laws for T (z, z ) are proved in Section 5.
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Lemma 4.3. For all 1 ≤ a, b ≤ N and z, z ∈ D in (3.9), we have

T ab (z, z ) = m 2 sc (z)m 2 sc (z )S 2 1 -m sc (z)m sc (z )S ab + O ≺ ρ 2 Ψ 3 2 (z)Ψ(z ) + ρ 2 Ψ(z)Ψ 3 2 (z ) , (4.13) 
where

ρ 2 ≡ ρ 2 (z, z ) := (1 -m sc (z)m sc (z )) -1
. Moreover, we have the following estimate of the trace of T (z, z ):

TrT (z, z ) = Tr m 2 sc (z)m 2 sc (z )S 2 1 -m sc (z)m sc (z )S + E T (z, z ), (4.14) 
where the error E T (z, z ) is analytic in z, z ∈ C \ R and for all z, z ∈ D , it satisfies

|E T (z, z )| ≺ N Ψ 3 2 (z)Ψ(z ) + N Ψ(z)Ψ 3 2 (z ) + N Θ 2 (z) + N Θ(z)Θ(z ). (4.15) 
Remark 4.4. We remark that the above local law is not optimal. If we further expand (5.9) in the proof below, the error in (4.13) can be improved to O ≺ (ρ 2 Ψ 2 (z)Ψ(z ) + ρ 2 Ψ(z)Ψ 2 (z )). But Lemma 4.3 is sufficient to establish the CLTs for the linear statistics, so we do not aim at the optimal local law in the present paper. 

Notice that T (z, z ) is analytic in z, z ∈ C \ R.
I 1 = -2m sc (z)E[e 0 (λ)(1 -E)TrG] + λTrS 2π E[e 0 (λ)] Γ2 f (z )m sc (z)m sc (z )dz - λ π E[e 0 (λ)] Γ2 f (z )Tr m sc (z)m sc (z )S (1 -m sc (z)m sc (z )S) 2 dz + E 1 (z), (4.17) 
where the error E 1 (z) is collected from (4.11), (4.15) (for z = z ) and (4.16). Since g is compactly supported, we have κ 0 ≤ κ ≤ C(κ 0 + η 0 ) with κ and κ 0 given in (3.1) and (2.6). Using (2.5), (3.4), (3.7) and (3.10), the error E 1 (z) satisfies

|E 1 (z)| ≺(1 + |λ|)N 2τ 1 √ N η 0 + Ψ(z) + N ρΨ 3 (z) + N Θ 2 (z) + Θ(z)η -1 0 + N Ψ 5/2 (z) + N Ψ 3 2 (z) (κ 0 + η 0 ) 1 4 √ N η 0 + 1 N η 0 + N Ψ(z) (κ 0 + η 0 ) 3 8 
(N η 0 ) By direct computations and the isotropic local law (3.14), one shows that the second term I 2 corresponding to third cumulants is negligible (c.f. Section 5.2 [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF]),

I 2 = O ≺ (1 + |λ| 2 )N 2τ Ψ(z) √ η 0 + O ≺ √ N Ψ 2 (z) . (4.19)
It is also straightforward to check that (c.f. Section 5.3 and Lemma 5.1 [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF])

I 3 = - k 4 λ 2π E e 0 (λ) Γ2 f (z ) ∂ ∂z (m 2 sc (z)m 2 sc (z ))dz + O ≺ (1 + |λ| 3 )N 2τ √ N η 0 , (4.20) 
where k 4 is the summation of all the fourth cumulants, i.e.,

k 4 := N i,j=1 c (4) ij (H ij ) = E[H 4 ij ] -3(E[H 2 ij ]) 2 . (4.21)
Plugging (4.17), (4.19) and (4.20) into (4.9) and rearranging, we obtain that

(z + 2m sc (z))E[e 0 (λ)(1 -E)TrG] = - λ 2π E[e 0 (λ)] Γ2 f (z ) K(z, z )dz + E(z), (4.22) 
where the kernel K(z, z ) is given by Remark 4.5. The results in Section 4 extend directly from real symmetric (β = 1) to complex Hermitian (β = 2) matrices. The only difference is to apply the complex analogue of cumulant expansion formula and ∂Gij ∂H ab = -G ia G bj instead of (4.10). Similar arguments can be found in Appendix A [START_REF] Li | Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices[END_REF], and we omit them here.

K(z, z ) = 2Tr m sc (z)m sc (z )S (1 -m sc (z)m sc (z )S) 2 -m sc (z)m sc (z )TrS + 2k
(z))E(TrG(z) -N m sc (z)) = -Tr m 4 sc (z)S 2 1 -m 2 sc (z)S -k 4 m 4 sc (z) (4.23) + O ≺ N ρΨ 3 + O ≺ (N Ψ 5/2 ) + O ≺ (N Θ 2

Proof of Lemma 4.3

In this section, we prove a local law for the two point function T (z, z ) defined in (4.12). For notational simplicity, we write T ≡ T (z, z ), m 1 := m sc (z), m 2 := m sc (z ) and define the control parameter Ξ 2 := Ψ 3 2 (z)Ψ(z ) + Ψ(z)Ψ 3 2 (z ). We aim to prove that

P ab := - 1 m 1 T ab + m 2 (ST ) ab + m 1 m 2 2 (S 2 ) ab = O ≺ (Ξ 2 ). ( 5.1) 
Due to (2.4) and the relation zG = HG -I, we write

P ab = (b) j=1 s aj (HG) jb (z)G jb (z ) + m 1 T ab + m 2 (ST ) ab + m 1 m 2 2 (S 2 ) ab . (5.2) 
Set M p,q := (P ab ) p (P * ab ) q for any p, q ∈ N for short. For any d ∈ N, applying the cumulant expansion (4.7), we have

E|P ab | 2d =E (b) j=1 N k=1 s aj s jk ∂G kb (z)G jb (z ) ∂H jk M d-1,d + E (b) j=1 N k=1 s aj s jk G kb (z)G jb (z ) (d -1) ∂P ab ∂H jk M d-2,d (5.3) 
+ E (b) j=1 N k=1 s aj s jk G kb (z)G jb (z ) d ∂P * ab ∂H jk M d-1,d-1 + R 2 + E m 1 T ab + m 2 (ST ) ab + m 1 m 2 2 (S 2 ) ab M d-1,d := J 1 + J 2 + J 3 + R 2 + J 4 ,
where R 2 is the error of cumulant expansion, see (4.8) for l = 1. We first show that R 2 is negligible. We write G (1) := G(z), G (2) := G(z ), Ψ 1 := Ψ(z) and Ψ 2 := Ψ(z ) for short. Using identity (4.10) and the local law (3.12), for general α ∈ N, we have 

∂ α G (1) kb G (2) jb ∂H α jk ≺ Ψ 1 Ψ 2 + δ jb + δ kb . ( 5 
kb G

(2)

lb + G (1) lk G (1) 
jb G

(2)

lb + G (1) 
lb G

(2) lj G

(2)

kb + G (1) 
lb G

(2) lk G

(2)

jb .

(5.5)

In general, for any α ∈ N, the local law (3.12) implies that,

∂ α P ab ∂H α jk ≺ Ψ 2 1 Ψ 2 + Ψ 1 Ψ 2 2 + δ jb Ψ 1 Ψ 2 + δ kb Ψ 1 Ψ 2 .
(5.6)

Similarly, the estimate (5.6) still holds true for Note that the leading term of J 1 will cancel J 4 . As for the second term J 2 , using (5.5) and simple power counting by the local law (3.12), we have 

  Throughout the paper, we use c and C to denote strictly positive constants that are independent of N . Their values may change from line to line. We use standard Big-O and little-o notations. Moreover, we write X ∼ Y if there exist constants c, C > 0 such that c|Y | ≤ |X| ≤ C|Y |. Finally, we denote the upper half-plane by C + := {z ∈ C : Im z > 0}. imsart-bj ver. 2014/10/16 file: manuscript_generalized_Xu.tex date: June 1, 2020
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 13 with ρ in(3.7). For any deterministic unit vectors v, w ∈ C N and all z ∈ D , we have v, G(z)w -m sc (z) v, w ≺ Ψ(z).(3.14) 

4 . 4

 44 and |X| ≤ N c almost surely with some fixed exponent c, then we have EX ≺ EY . Proof of Theorem 2.2 and 2.We define the characteristic function of the linear eigenvalue statistics φ(λ) := E[e(λ)], where e(λ) := exp iλ(Trf (H N ) -ETrf (H N )) , λ ∈ R. (4.1) Then the characteristic function φ satisfies the following proposition. imsart-bj ver. 2014/10/16 file: manuscript_generalized_Xu.tex date: June 1, 2020
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 33 Taking the partial derivative of TrT (z, z ) in (4.14) and applying the Cauchy integral formula, we have∂ ∂z TrT (z, z ) =Tr m sc (z)m sc (z )S (1 -m sc (z)m sc (z )S) 2 -m sc (z)m sc (z (z)Ψ(z ) + N Ψ(z)Ψ (z ) + N Θ 2 (z) + N Θ(z)Θ(z )Im z .Plugging (4.14) (for z = z ) and (4.16) into (4.11), we hence obtain that

2 .
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4 m 2 4 +

 24 sc (z)m sc (z )m sc (z ), and E(z) is the error collected from (4.18)-(4.20). Dividing both sides of (4.22) by z + 2m sc (z) = -msc(z) m sc (z) ∼ √ κ + η from (2.4) and(3.6), and plugging it into (4.4), we hence obtain that the characteristic function satisfiesφ (λ) = -λE[e 0 (λ)]V (f ) + O ≺ (1 + |λ| 4 )N 4τ (N η 0 √ κ 0 + η 0 ) 1 O ≺ |λ|N -τ , where V (f ) is given in (2.7) and we use (2.5), (3.4) and (3.10) to estimate the error. Note that |e(λ) -e 0 (λ)| ≺ |λ|N -τ . If V (f ) ≺ O(1), then we replace e 0 (λ) by e(λ) at the cost of O ≺ (|λ|N -τ ). This completes the proof of Proposition 4.1. We end up this section with the estimate of E[TrG(z)] -N m sc (z) in a similar way and obtain the bias formula for the general linear statistics. Proof of Equation (2.9). Using the definition of resolvent and the cumulant expansion (4.7) on zE[TrG(z) -N m sc (z)], in combination with the local laws in Theorem 3.3 and Lemma 4.3, we have the analogue of (4.22), i.e., (z + 2m sc

∂ 1 Ψ 2 + Ψ 1 Ψ 2 2 Ξ 2 .

 1222 α P * ab ∂H α jk for general α ∈ N. Using the moment condition (2.2), (5.4), (5.6) and (3.11), we hence obtain thatR 2 =E[O ≺ (Ξ 1 )M d-1,d ] + E[O ≺ (Ξ 2 1 )M d-2,d ] + E[O ≺ (Ξ 2 1 )M d-1,d-1 ] + E[O ≺ (Ξ 3 1 )M d-3,d ] + E[O ≺ (Ξ 3 1 )M d-2,d-1 ] + E[O ≺ (Ξ 3 1 )M d-1,d-2 ],(5.7)where we define a new control parameter Ξ 1 := Ψ 2 Next, we look at the first term J 1 . Using (4.10) and the local law (3.12), we writeJ 1 = -E kb M d-1,d + E[O ≺ (Ξ 1 )M d-1,d ] = -E m 1 T ab + m 2 N j=1 s aj T jb + m 1 m 2 2 (S)2 ab M d-1,d + E[O ≺ (Ξ 1 )M d-1,d ]. (5.8)

J 2 = (d - 1 sm 2 2 S 2 +

 2122 aj s jk G kb (z)G jb (z ) ∂P ab ∂H jk M d-2,d = E[O ≺ (Ξ 2 2 )M d-2,d ].(5.9)We treat J 3 similarly and getJ 3 = E[O ≺ (Ξ 2 2 )M d-1,d-1 ]. Therefore, we obtain thatE|P ab | 2d =E[O ≺ (Ξ 1 )M (d -1, d)] + E[O ≺ (Ξ 2 2 )M d-1,d-1 ] + E[O ≺ (Ξ 2 2 )M d-2,d ] + E[O ≺ (Ξ 3 1 )M d-3,d ] + E[O ≺ (Ξ 3 1 )M d-2,d-1 ] + E[O ≺ (Ξ 3 1 )M d-1,d-2 ]. (5.10)Applying the Young's inequality to the RHS of (5.10) and using Ξ 1 Ξ 2 , we getE|P ab | 2d ≺ Ξ2d 2 for any d ∈ N and thus |P ab | ≺ Ξ 2 . Using |m sc (z)| ∼ 1, the matrix (T ) ab defined in (5.1) hence satisfies 1 -m 1 m 2 S T = m 2 1 R(z, z ), (5.11) imsart-bj ver. 2014/10/16 file: manuscript_generalized_Xu.tex date: June 1, 2020 2. For z = z , using the identity G 2 (z) = d dz G(z), the local law (3.12) and the Cauchy integral formula(z)) 2 = m sc (z) -m 2 sc (z) + O ≺ Θ(z) Im z . (5.17)In addition, we use the Taylor expansion on (1 -m 1 m 2 S) -1 and the relation ΠS = SΠ = 16) (or (5.17) for z = z ) and (5.18) into (5.13), we conlucde from (2.4) that (4.14) and (4.15) hold. This complete the proof of Lemma 4.3.

  k 4 is the summation of the forth cumulants (see (4.6) and (4.21)) of both real and imaginary parts of all entries

  is given by (3.7), and k 4 is defined in (4.21). Dividing both sides by z + 2m sc (z) and transforming E[TrG(z)] -N m sc (z) to the bias of the linear statistics via the Heffler-Strösjand formula (4.2) and Stokes' formula, we obtain (2.9) and conclude the last statement of Theorem 2.2.
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  We obtain from (4.10) and (5.1) that

	∂P ab ∂H jk	= -	1 m 1	∂T ab ∂H jk	+ m 2	N i=1	s ai	∂T ib ∂H jk	= -	(b) l=1	1 m 1	s al -m 2 (S 2 ) al ×
		G (1) lj G								
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where the error matrix R ≡ R(z, z ) has the following estimate: R(z, z ) sup = O ≺ (Ψ (5.12)

Combining with the first estimate from Lemma 3.2, we hence prove (4.13).

Next, we continue to estimate the trace of the two point function T (z, z ). Recall the projection matrix Π = ee * , where e = N -1 2 (1, 1, • • • , 1) * . Note that ΠS = SΠ = Π. Multiplying both sides of (5.11) 

Using the second estimates in Lemma 3.2 and (5.12), we obtain that

For the first term on the RHS of (5.13), we write it as

To estimate (5.14), we separate our argument into two cases:

1. For z = z , using the resolvent identity

and the local law (3.12), we have

If z, z are in different half planes, then |z -z | ≥ |Im z| and thus from (3.12),

If z and z are in the same half-plane, without loss of generality, we assume z, z ∈

Im z, the previous argument still applies. Otherwise, we have 1 2 Im z ≤ Im z ≤ 3 2 Im z. Since d(z) := m N (z) -m sc (z) is analytic in z ∈ C + , applying the Cauchy integral formula, we obtain that

where L(z, z ) denotes the segment connecting z and z . Therefore, we have