
HAL Id: hal-02861347
https://hal.science/hal-02861347v1

Submitted on 8 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of a new strain split to model unilateral
contact within the phase field method

Thanh-Tung Nguyen, Julien Yvonnet, Danièle Waldmann, Qi-Chang He

To cite this version:
Thanh-Tung Nguyen, Julien Yvonnet, Danièle Waldmann, Qi-Chang He. Implementation of a new
strain split to model unilateral contact within the phase field method. International Journal for
Numerical Methods in Engineering, 2020, 121 (21), pp.4717-4733. �hal-02861347�

https://hal.science/hal-02861347v1
https://hal.archives-ouvertes.fr


Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Implementation of a new strain split to model unilateral contact
within the phase field method

Thanh-Tung Nguyen*1 | Julien Yvonnet2 | Danièle Waldmann1 | Qi-Chang He2

1University of Luxembourg, Laboratory of
Solid Structures, 6, Rue Richard
Coudenhove-Kalergi, L-1359, Luxembourg

2Université Paris-Est, Laboratoire
Modélisation et Simulation Multi Échelle
MSME UMR 8208 CNRS, 5 bd Descartes,
F-77454 Marne-la-Vallée, France

Correspondence
*Thanh-Tung Nguyen. Email:
thanh-tung.nguyen@uni.lu

Summary

A new orthogonal split of strain tensor into compressive and tensile parts is imple-
mentedwithin the phase fieldmodel tomimic unilateral contact conditionwith which
any existing cracks and any crack propagation have to comply. The resulting phase
field model offers several advantages as compared to other available schemes. First,
it involves rigorous orthogonality between traction and compression parts. Second,
it yields remarkably simple, new analytical expressions of the projectors which pro-
vide computational saving during the crack propagation simulation. Finally, it can
be applied to arbitrary initial elastic anisotropic media, which is not the case of
other available strain tensor split operators. A detailed comparison of the fracture
responses predicted by the present model and other approaches is provided. It is
shown that the present orthogonal decomposition is able to accurately predict experi-
mental results and removes spurious effects found in other schemes for specific loads
like compression.
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1 INTRODUCTION

The phase field method (PFM) is nowadays one of the most robust and efficient numerical tool to study brittle and ductile
fractures. It has been introduced based on the pioneer works on variational approaches to fracture by Francfort, Marigo and their
co-authors1,2,3. The technique makes use of a regularized description of discontinuities through an additional phase field variable
and strongly alleviates meshing problems for describing brittle/ductile cracking. Furthermore, the PFM can effectively handle
the phenomena of crack nucleation, interaction and arbitrary crack morphologies. This method has been successfully applied to
model complex, multiple crack fronts, and branching in both 2D/3D without ad-hoc numerical treatments, see e.g.4,5,6,7,8,9,10,11.
In the phase field model, as in classical damage models, avoiding material interpenetration in the contact of the lips of any

crack is performed by decomposing the strain density function and by introducing a dependence on damage via the so-called
"traction" or "positive" part. Many efforts have been made in the context of damage models to overcome somehow unrealistic
tension-compression symmetry in the failure models. For instance, Ortiz et al.12 introduced a split decomposition of strain
energy based on the positive/negative parts of the stress tensor which can accommodate fully anisotropic elastic degradation.
This decomposition has been adapted in many studies, such as Simo and Ju13, and Mazars and co-authors14,15,16,17,18, wherein
a simplified formulation of a volumetric tensile strain projection was introduced. Cervera et al.19 proposed a biaxial effective
principal stress space, in which the equivalent stress is defined to govern the damage evolution. Comi and Perego20 developed a
bi-dissipative damage model to describe tension and compression behavior independently. In the mentioned work, the unilateral
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effects were modeled by splitting the volumetric strain energy into two parts: one depending on the positive part of the trace
of strains, affecting both tension/compression damage variables, and a second part depending on the negative part of the trace
of strains, only affecting the compression damage. Giacomini and Ponsiglione21 introduce a geometrically non-linear model
where the non-interpenetration condition appears as a non-local constraint. Wu and Cervera22 proposed a new positive/negative
projection operator in energy norm to ensure that the secant stiffness tensor always possesses major symmetry and exhibits
orthotropic behavior under uniaxial tension and mixed tension/compression. More recently, He and Shao have proposed a new
orthogonal decomposition of the strain tensor to model the unilateral effects within the crack lips23.
Some of the mentioned ideas have been incorporated into the phase field model24,25,26,5,27,8,28. For instance, Amor et al.5

adopted a model based on the volumetric/deviatoric spectral decomposition of the strain tensor and assumed that damage is
created by expansion and shear. The extensive/compressive spectral decomposition of the strain tensor used by Miehe et al.8 is
another popular formulation. As noticed in10,28, the difference between these two models becomes evident in a situation where
all three principal strains are negative. In this case, according to5, the deviatoric strain energy is always degraded, and the related
phase-field model will produce cracking in the corresponding regions while the model in8 will not. This, however, provides a
significant difference in fracture behavior. The one proposed by Amor et al.5 seems to be better in terms of numerical efficiency,
but as shown in the numerical examples of the present paper, their formulation introduces spurious effects and some problems in
simulating crack propagation under compression loads. The formulation proposed byMiehe et al.8 has demonstrated to be robust
in these situations, but requires a higher computation cost due to the evaluation of eigenvalues and eigenvectors of the strain
tensors at each load increment. Moreover, the spectral decomposition proposed by Miehe et al.8 does not satisfy the orthogonal
condition of the extensive and compressive parts29. Another model has been proposed by Freddi et al.27, with the assumption
that the fracture is only due to the deviatoric part of the strain tensor. This model suitable for compressed materials, becomes
incorrect in expanded regions where fracture due to tensile strains is expected5.
In this study, we use and implement a recent new formulation of the orthogonal decomposition of the strain tensor proposed

by He and Shao23 in the phase field method. As in the work of Miehe8, this formulation is based on the spectral decomposition
of the strain tensor into extensive (positive) and compressive (negative) parts. However, the main difference with the model of
Miehe8 is that the extensive and compressive parts of the strain tensors are here rigorously orthogonal in the sense of an inner
product, and both fourth-order elastic stiffness and compliance tensors act as metric tensors. Two projection tensors following
the idea of Miehe30 are also introduced to numerically implement the new model within the Finite Element framework in an
efficient manner. Remarkably, very simple, closed forms expressions can be analytically obtained for these projectors leading
to a very efficient scheme. A staggered scheme is proposed in this context, which has the consequence that each problem to be
solved at each load step remains linear, the calculation of eigenvalues being reported to the previous iteration of the algorithm, as
in11. Another important advantage of the present model is that it can be applied to any initial elastic anisotropy, in contrast with
other available models which are restricted to special classes of anisotropy. For instance, there is no available formulation for
modeling anisotropic materials within the framework proposed by Miehe et al.8. The model proposed by Amor et al.5 requires
the definition of the bulk modulus31,32. Hence, it can only handle some simple anisotropic materials (cubic, hexagonal,...). We
provide a careful comparison with other available models for the fracture behavior under different load testing scenarios, e.g.,
shear, traction, and compression and illustrate the capability of the method to handle cracking in anisotropic elastic media.
This paper is organized as follows. A brief review of the phase field for fracture and a description of the new formulation of the

orthogonal decomposition of the strain tensor in this context are given in section 2. In section 3, the numerical implementation
details of the present scheme are provided. In the Section 4, several numerical experiments are presented to validate and illustrate
the capabilities of the proposed framework.

2 PHASE FIELD METHODWITH THE NEW ORTHOGONAL STRAIN SPLIT OPERATOR

2.1 Brief review of the phase field method
We consider a cracked body Ω ⊂ ℝD, with D the space dimension and )Ω its boundary. Let Γ be a manifold of dimension
D−1 representing crack discontinuity withinΩ, see Fig. 1(a). The total energy of the cracked body in accordance with Griffith’s
theory of brittle fracture can be defined by

E = ∫
Ω

 e (") dΩ + ∫
Γ

gc dS, (1)
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where  e is the elastic energy density, " = 1
2

(

∇u + ∇uT
)

is the infinitesimal strain tensor, and gc describes the critical fracture
energy.
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FIGURE 1 Regularized representation of a crack: (a) sharp crack model; (b) regularized representation through phase field.

In a regularized framework33, the crack geometry Γ is approximated by a smeared representation, which can be set as a
function of a phase field, d(x) ∈ [0, 1]. This scalar parameter d(x) takes a unit value on Γ and vanishes away from it. The phase
field is here associated with the damage level: d = 1 represents the fully broken material while d = 0 is the sound state of the
material. The fracture energy can be approximated accordingly by:

∫
Γ

gc dS ≃ ∫
Ω

gcd(d,∇d) dΩ. (2)

Above, d is considered as the crack surface density function. A second-order expression for  in a 3D context can be expressed
as (see e.g.8,34)

d(d,∇d) =
3
8l
d + 3l

8
∇d ⋅ ∇d, (3)

in which l is a regularized length describing the thickness of the smeared crack. As discussed in3,34, this approximation satisfies
the Γ−convergence condition, i.e., the solution of the regularized scheme converges to the solution of the sharp crack description
when l goes to zero. It should be mentioned that l is also an internal parameter that affects the critical stress of the crack
initiation. Discussions on how to choose this parameter for practical situations can be found e.g. in5,10,35,36.
Within the regularized description of crack, the total energy form in (1) can be rewritten as

E = ∫
Ω

 e (", d) dΩ + ∫
Ω

gcd(d,∇d) dΩ. (4)

The phase field d is incorporated into the strain energy  e (", d) to account for the loss of material stiffness in the failure zone.
It is often done through the use of the degradation function g(d) = (1 − d)2 + � (with � ≪ 1, satisfying g(0) ≈ 1, g(1) ≈ 0 and
g′(1) = 0, see2,8). In the phase field model, unilateral contact condition for any crack is obtained by splitting the elastic strain
density function tensor into a damaged part  e+ associated to damage and a part  e− which does not activate damage. This
implies the following expression of the strain energy

 e(", d) = g(d)  e+ (") +  e− (") . (5)
Several studies have been conducted to provide an appropriate formulation for  e(", d) . Two popular models are: (a) the one

of Amor et al.5 denoted here by (SD1) and (b) that of Miehe et al.8 hereby noted (SD2). The main ideas of these two schemes
are reviewed in A.
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2.2 Phase field model with an orthogonal decomposition of the strain tensor into
compressive/tensile parts
Alternatively to the formulation used in Amor et al.5 and Miehe et al.8, we adopt here a new decomposition scheme recently
proposed by He and Shao23 (denoted here by (SD3)). This scheme is based on the decomposition of the strain tensor into two
complementary parts, which are orthogonal in the sense of an inner product where the fourth-order elastic stiffness tensor acts as
the metric operator. Let ℂ be the fourth-order stiffness tensor, the traction part (denoted by (.)+) and compression part (denoted
by (.)−) of the strain energy density are expressed by

 e±(") = 1
2
[

"± ∶ ℂ ∶ "±
]

. (6)
In this formulation, the traction/compression elastic strain energy parts depend explicitly on a generic form of the stiffness

tensor ℂ. This implies that the present model can be applied to arbitrary anisotropic elastic behavior.
The orthogonality condition for the positive/negative parts "± is specified by

"+ ∶ (ℂ ∶ "−) =
(

ℂ ∶ "+
)

∶ "− = 0. (7)
The requirement in Eq. (7) can be ensured through a method based on the elastic energy preserving transformation proposed

by He and co-author37,23. The main idea of this method is summarized below. First, the square root of the elastic stiffness tensor
is introduced

ℂ1∕2 =
∑

i
�1∕2i !i ⊗ !i and ℂ−1∕2 =

∑

i
�−1∕2i !i ⊗ !i, (8)

where �i are the eigenvalues of ℂ, and !i are second-order orthonormal eigentensors associated to �i.
In the case of an isotropic material, ℂ1∕2 and ℂ−1∕2 are specified by
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. (9)

Several explicit formulations can be found in37 to compute these two square root tensors for different types of material.
However, it should be noticed that ℂ1∕2 and ℂ−1∕2 have to be evaluated only once during the simulation.
Following37, we define the transformed strain tensors "̃ = ℂ1∕2 ∶ ". Then, the split decomposition is performed on this new

space, implying "̃ = "̃+ + "̃−, in which "̃± can be determined via the following expression

"̃± = ⟨�̃1⟩± Ẽ1 + ⟨�̃2⟩± Ẽ2 + ⟨�̃3⟩± Ẽ3 (10)
where the functions ⟨.⟩+ and ⟨.⟩− are defined by ⟨x⟩+ = (x + |x|) ∕2 and ⟨x⟩− = (x − |x|) ∕2. In 2D, the transformed strain
tensor "̃ admits the following spectral decomposition

"̃ = �̃1Ẽ1 + �̃2Ẽ2. (11)
The eigenvalues �̃i and eigenprojectors Ẽi can be expressed in closed form following the methods proposed by He and Shao23.

For the case of �̃1 ≠ �̃2, the eigenvalues of the strain tensor can simply be calculated by

�̃1 =
I1 + (I21 − 4I2)

1∕2

2
, and �̃2 =

I1 − (I21 − 4I2)
1∕2

2
. (12)

Above, I1 and I2 are the principal invariants of the two-dimensional transformed strain tensor "̃

I1 = tr "̃, I2 = det "̃. (13)
In the case of �̃1 ≠ �̃2, then

Ẽ1 =
"̃ − �̃21
�̃1 − �̃2

, and Ẽ2 = 1 − Ẽ2. (14)

In the case of �̃1 = �̃2, it implies "̃ = �̃11, and

Ẽ1 = [1 0; 0 0] and Ẽ2 = [0 0; 0 1]. (15)
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Once "̃± have been obtained, we compute "± by

"± = ℂ−1∕2 ∶ "̃±. (16)
As demonstrated by He37, since the positive/negative parts of the transformed strain "̃± are orthogonal "̃+ ∶ "̃− = 0, the

extensive and compressive parts obtained by Eq. (16) satisfy the orthogonality condition (7).
The derivatives of "̃± with respect to the transformed strain tensor "̃ also define two projection tensors ℙ̃±("̃) = )"̃

[

"̃±("̃)
]

.
It is worth mentioning that the projection tensors can be directly computed from the eigenvalues and eigenprojectors i.e.
ℙ̃± = f (�̃i, Ẽi). As compared to the scheme proposed by Miehe et al.8, the present model does not require the numerical eval-
uation of eigenvectors of the strain tensor (see8,10,38,39,40, and many others). In these papers, the eigenvectors are determined
numerically, which is computationally expensive. In the present method, the projection tensors and the positive/negative parts of
strain are directly computed from the eigenvalues and eigenprojectors by using their analytical explicit expressions. Hence, the
computational efficiency is actually improved. This implies the complete formulation for the proposed decomposition scheme
as follows

"± =

[

ℂ−1∕2 ∶
(

ℙ̃± ∶ ℂ1∕2
)

]

∶ ". (17)

The formulation for the three-dimensional problem can be found in37. The Cauchy stress � can be obtained as

�(", d) = g(d) ) 
e+(")
)"

+
) e−(")
)"

= ℂ(d) ∶ ". (18)

From (17) and by introducing ℙ± = ℂ−1∕2 ∶
(

ℙ̃± ∶ ℂ1∕2
)

, the general form of the elastic tensor accounting for damage is
defined by

ℂ(d) = g(d) ℙ+ ∶ ℂ ∶ ℙ+ + ℙ− ∶ ℂ ∶ ℙ−. (19)

3 NUMERICAL IMPLEMENTATION

3.1 Weak forms
The variational approach to fracture as proposed in Bourdin, Francfort and Marigo1,2,3 is used here. The employed numerical
strategy consists in a series of alternate minimizations, that is minimization with respect to u at a fixed d and then minimization
with respect to d at a fixed u. The details of the proposed minimization procedure is described below.
The mechanical problem is derived by minimizing the total energy with respect to displacements

u(x) = Arg
{

inf
u∈u

(

E(u, d) −W ext
)}

, (20)

where u =
{

u|u(x) = ū on )Ωu, u ∈ H1(Ω)
}

and W ext = ∫Ω f ⋅ u dΩ + ∫)ΩF F ⋅ u dΓ with f and F being body forces and
prescribed traction over the boundary )ΩF . We obtain the weak form for u(x) ∈ u as follows

∫
Ω

� ∶ "(�u) dΩ − ∫
Ω

f ⋅ �u dΩ − ∫
)ΩF

F ⋅ �u dΓ = 0. (21)

The phase field problem consists in minimizing the total energy with respect to phase field

d(x) = Arg
{

inf
d∈d

E(u, d)
}

, (22)

where d =
{

∇d ⋅ n = 0 on )Ω, d|ḋ(x) ≥ 0, 0 ≤ d(x) ≤ 1
}

. The evolution law of the phase field to ensure the irreversibility of
the process is derived through a thermodynamically consistent framework, see e.g.11,41,42 for more details. The weak form of
the phase field problem is written as

∫
Ω

2 (1 − d) �d  e+ dΩ − ∫
Ω

3gc
4l

(�d
2
+ l2∇d∇�d

)

dΩ = 0. (23)
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Following Miehe et al.8, the local crack driving force (x, t) is introduced as a dependence on loading history, to take into
account loading-unloading:

(x, t) = max
�∈[0,t]

{

l
gc
 e+ (x, �)

}

. (24)

The weak form of the phase field problem is finally rewritten as

∫
Ω

2d�d dΩ + ∫
Ω

3
4
l2∇d∇�d dΩ = ∫

Ω

⟨

2 − 3
8

⟩

+
�d dΩ. (25)

3.2 FEM discretization and staggered solving procedure
The problems described in Eqs. (21), (25) are solved by a standard FE procedure in a staggered procedure (one pass), i.e. we
alternatively solve the phase field problem and the mechanical problem, see e.g.8,43,11 for more practical details.
In general, the spectral decomposition of the strain tensor induces a strongly nonlinear mechanical problem. To avoid this

nonlinearity, we adopt the shifted strain tensor split algorithms as previously proposed in11. Within the present context, the
projection tensors defined at time step n+1 are approximated as results from the previous time step n, i.e. "±n+1 ≃ ℙ±("n) ∶ "n+1.
It leads to

ℂn+1(d) = g(d) ℙ+("n) ∶ ℂ ∶ ℙ+("n) + ℙ−("n) ∶ ℂ ∶ ℙ−("n). (26)
Using the standard FEM discretization, with Nu and Bu being vectors of shape functions and matrix of shape functions

derivatives of the displacement field, respectively, it yields the following linear system of equations to compute the displacements
at time step n + 1:

Kuu
n+1 un+1 = Fun+1, (27)

with
Kuu
n+1 = ∫

Ω

BTuCn+1(d)Bu dΩ and Fun+1 = ∫
Ω

NT
u f dΩ + ∫

)ΩF

NT
u F dΩ, (28)

where Cn+1(d) is the matrix form of the elastic tensor defined in (26) in Voigt’s notation.
Using the same standard FEM discretization, with Nd and Bd being vector of shape functions and matrix of shape functions

derivatives, respectively, it results in the linear system of equations for the phase field problem:

Kd
n+1dn+1 = Fdn+1, (29)

with
Kd
n+1 = ∫

Ω

(

2n+1NT
dNd +

3l2
4

BTdBd
)

dΩ and Fdn+1 = ∫
Ω

⟨

2n+1 −
3
8

⟩

+
NT
d dΩ. (30)
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4 NUMERICAL EXAMPLES

4.1 Comparison of the present scheme with other available models
In the first part of the numerical examples, we will compare the present scheme (SD3) with the two other models, Amor et al.5
(SD1) and Miehe et al.8 (SD2) for different characteristic loading which involve self-contact within a crack.

4.1.1 Single edge notched: pure shear test

Initial crack

x

y

1.0 mm

1.
0 

m
m0.

5 
m

m

0.5 mm

Displacement [mm]
0 0.005 0.01 0.015

L
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d
[k
N
]

0

0.1

0.2

0.3

0.4

0.5

0.6

(SD1) Amor et al. 2009

(SD2) Miehe et al. 2010

(SD3) Present model

(a) (b)

FIGURE 2 Single edge notched pure shear test sample: (a) geometry and boundary conditions; (b) comparison of load - dis-
placement curves for the different strain split operators. The prediction of the (SD1)model (Amor et al.5) is significantly different
with respect to the (SD2) and (SD3) models.

The benchmark example of the single edge notched pure shear test discussed in the study of Miehe et al.8 is considered. A
squared plate (1 mm × 1 mm) with an initial horizontal crack placed at a middle height from the left outer surface to the center of
the specimen is subjected to a shear load (see Fig. 2 (a)). The structure is meshed with triangular elements with ℎmaxe = 0.03mm
and ℎmine = 0.0025mm for the critical region of expected crack path. The boundary conditions are as follows: the displacements
along y on the whole boundary region and the displacement along x at the lower edge (y = 0) mm are fixed to zero. The
displacements are prescribed along the x−direction for upper edge (y = 1) mm. Plane strain condition is assumed.
The material properties are chosen following8, with the isotropic elastic modulus characterized by Lamé’s coefficients � =

121.15 GPa, and � = 80.77 GPa and a critical energy release rate gc = 2.7×10−3 kN/mm. The length scale parameter is chosen
as l = 0.0075 mm. The computation is performed in a monotonic displacement driven context with constant displacement
increments of Δux = 10−5 mm for 1500 time steps.
The load-displacement curves for the three models are plotted in Fig. 2(b). Even though the mechanical response in the elastic

phase is the same, we observe different fracture behaviors. It shows that the prediction of the present model (SD3) is similar
to the one of Miehe et al.8 (SD2), but significantly different from the one of Amor et al.5 (SD1) model in this situation. More
specifically, the (SD1) model predicts a lower crack initiation stress than those ones of (SD2) and (SD3) models. The reason
could be related to the fact that the formulation proposed by Amor et al.44 allows for the whole deviatoric part of strain creating
fracture while the models proposed by Miehe et al.8, and He and Shao23 do not. Due to a lack of experimental results, we cannot
conclude on which model is more accurate than another. A detailed investigation in both numerical and experimental approaches
for various materials is needed to clarify this point and has to be pursued in future works.
More interestingly, at the final stage of crack growth the (SD1) and (SD2) split formulations are able to describe the full

degradation of the material due to crack propagation. Especially, only the proposed model (SD3) accurately captures the full
fracture behavior (total material resistance loss).
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(a) (SD1) U = 11.3 µm (b) (SD2) U = 11.3 µm (c) (SD3) U = 11.3 µm

(d) (SD1) U = 13.8 µm (e) (SD2) U = 13.8 µm (f) (SD3) U = 13.8 µm

(g) (SD1) U = 14.7 µm (h) (SD2) U = 14.7 µm (i) (SD3) U = 14.7 µm

FIGURE 3 Comparison of fracture response predicted by the different models for the shear test.

4.1.2 Double edge notched: Crack coalescence test
Next, the well-known benchmark test of crack coalescence is studied45,46. We consider a square plate with asymmetric double
notched, as described in Fig. 4(a). An unstructured mesh, containing 49296 triangular elements, is employed with ℎmine = 0.05
mm for the critical region of expected crack path. The material parameters are the same as those in the previous example
of the pure shear test, except the internal length scale being l = 0.135 mm. The computation is performed in a monotonic
displacement driven context with constant displacement increments Δuy = 10−4 mm in the first period and which are adjusted
to Δux = 2 × 10−5 mm as soon as the phase field d > 0.6 in one FE node.
We plot the obtained macroscopic curves in Fig. 4(b). In general, the global responses predicted by three different models

are nearly the same for the traction test. Again, the (SD1) model gives the lowest load for crack initiation and also the smallest
prescribed displacement for collapse of the structure, followed by (SD3) model and then (SD2) model. More interestingly, in
this test, the present model (SD3) is close to the (SD1) model of Amor et al.5 instead of (SD2) model as in the previous case,
even though if this effect is very small. This point is demonstrated through a zoom in the load - displacement curve in Fig. 4(b).
The behaviors of crack propagation and coalescence are similar for all three cases, as shown in Figs. 5, where we provide the
crack paths predicted by different models at the same loading. It is worth mentioning that the numerical results reproduce very
well the phenomenon of cracks avoiding each other as noticed in the experimental observation47, see Figs. 6.
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FIGURE 4 Double edge notched crack coalescence test: (a) geometry and boundary conditions; (b) comparison of load -
displacement curves obtained by different models.

(a) (SD1) U = 0.0488 mm (b)U = 0.0488 mm (c) (SD3) U = 0.0488 mm

(d) (SD1) U = 0.1937 mm (e) (SD2) U = 0.1937 mm (f) (SD3) U = 0.1937 mm

FIGURE 5 Comparison of fracture response predicted by the different models for the case of crack coalescence test.

4.1.3 Sample containing a hole: Compression test
In this example, we investigate the crack initiation and propagation in a structure containing a hole subjected to compression load.
Such problem has been previously investigated experimentally and numerically48,35. The geometry of the considered drilled
plaster sample is shown in Fig. 7(a).
The model parameters of the plaster material are taken from35, with elastic modulus E = 12 GPa, Poisson’s ratio � = 0.3,

critical fracture energy gc = 1.4 N/m, and the internal length scale is chosen as l = 0.12 mm. 2D plane strain simulation
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(a) (SD1) (b) (SD2) (c) (SD3) (d) Experiment

Region of interest

FIGURE 6Crack coalescence behavior in the traction test of a doubled notched sample. All three models successfully reproduce
the phenomenon of cracks avoiding each other observed in the experiment47.
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FIGURE 7 Compression test of a sample containing an hole: (a) geometry and boundary conditions; (b) comparison of load
- displacement curves for the different models. The (SD1) model again predicts a lower fracture resistance as compared to the
(SD2) and (SD3) models.

is conducted. Monotonic compressive displacement increments are prescribed on the top edge of the specimen, with Δuy =
−8 × 10−5 mm in the first period and then switch to Δuy = −2 × 10−5 mm as soon as the phase field d > 0.6 in one FE node.
The obtained load-displacement curves predicted by three different models are provided in Fig. 7(b). We note that the result of

the orthogonal decomposition (SD3) is similar to the one of Miehe et al.8 (SD2). The (SD1) model again shows a significantly
lower mechanical resistance, which can be related to the presence of damage in the shear band localization as depicted in
Figs. 8(a)(d). All three models are able to reproduce the vertical crack propagation as predicted by experiments (see48,35).
However, the (SD1) and (SD2) models induce spurious damage regions at the left and right side of the hole, which are not
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(a) (SD1) U = 18.5 µm (b) (SD2) U = 18.5 µm (c) (SD3) U = 18.5 µm

(d) (SD1) U = 24.6 µm (e) (SD2) U = 24.6 µm (f) (SD3) U = 24.6 µm

FIGURE 8 Compressive test: comparison of fracture behaviors predicted by the different models.

observed in the experiments (48,35), as shown in Fig. 9. Interestingly, the present model (SD3) does not induce such spurious
effect, as shown in Fig. 9(d). It confirms the accuracy of the orthogonal decomposition to simulate the crack initiation and
propagation of brittle material under compression load.

(a) Experiment (b) (SD1) (c) (SD2) (d) (SD3)

FIGURE 9 Compressive test: comparison of crack paths predicted by the different strain decomposition schemes with the one
of experiment48,35 for the same loading.
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4.2 Crack propagation in an initially anisotropic elastic medium, effects of material orientation
The last numerical experiment is dedicated to demonstrate the capacity of the (SD3) to deal with the case of an initially
anisotropic elastic medium, e.g. a monocrystal with given orientation. Note that here we do not consider an anisotropic dam-
age model, i.e. taking into account the anisotropy of cracking (see several models in this context, e.g.49,32,50. Then, the damage
model is isotropic but the elastic medium is anisotropic, inducing effects of the material orientation during crack propagation.

Initial crack

x

y

1.0 mm

1.
0 

m
m0.

5 
m

m

0.5 mm

o Orientation

FIGURE 10 Description of the anisotropic media: geometry and boundary conditions.

The same single edge notched sample as in the pure shear test is used. It is subjected to a traction load, see Fig. 10. The
components of the elastic stiffness tensor matrix C(ref) (in Voigt notation) are given in the reference coordinate system as

C(ref) =
⎡

⎢

⎢

⎣

65 20 0
20 260 0
0 0 30

⎤

⎥

⎥

⎦

[GPa]. (31)

It should be noticed that the existing split operators for the strain tensors models5,8,31 are unable to apply to such a situation.
There is no available formulation for the decomposition following the frame work of Miehe et al.8 to model such anisotrop-
ic/orthotropic material. As described in A, the formulation proposed by Amor et al. (SD1) model requires a definition of the
bulk modulus and is thus not able to handle such situation.
The orientation-dependent elastic stiffness tensor with respect to the reference coordinate system is determined by

C = PTC(ref)P, (32)
where P is the transformation tensor in Voigt’s notation. In the general 2D case, the rotation of material orientation can be simply
determined following51 as

P =
⎡

⎢

⎢

⎣

c2 s2 2cs
s2 c2 −2cs
−cs cs c2 − s2

⎤

⎥

⎥

⎦

, (33)

where c = cos (2� − �), s = sin (2� − �), with 2� − � is the Euler angle of material orientation, and � is the orientation angle
with respect to the x-axis, as described in Fig. 10.
We perform 19 simulations corresponding to � varying from 0◦ to 90◦, with step of 5◦, i.e. � = [0◦, 5◦, 10◦, 15◦, ..., 90◦].

The critical energy is taken to be independent of the material orientation with gc = 10−3 kN/mm, and the length scale is taken
as l = 0.0085 mm. The computation is performed in a monotonic displacement driven context with constant displacement
increments of Δuy = 6×10−5 mm in the first period and then adjusted to Δuy = 2×10−5 mm as soon as the phase field d > 0.6
in one FE node.
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In order to evaluate the effects of material orientation, we define the normalized maximum principal stresses near the crack
tip by

�Nlz(r, ') =
�(r, ')
�max

, (34)

where r, ' are the polar coordinates with origin at the crack tip; �(r, ') = max(�1(r, '), �2(r, ')); and �max is the maximal value
of �(r, ') over the considered region.
The plots of �Nlz(r, ') at r = 0.035 mm are provided in Fig. 11 for the elastic phase and in Fig. 12 after crack initiation.

The obtained crack paths corresponding to different material orientations are depicted in Fig. 13. The effects of the directional
dependence of material properties are captured. Instead of purely propagating along the horizontal direction, the crack also
propagates in other directions depending on the competition between guided load and guided material cleavage plan. The crack
orientation occurs in a direction perpendicular to the greatest tensile stress at the elastic phase. Note again that these effects are
small as we did not introduce here an anisotropic damage model through the fracture energy term, but only an isotropic damage
interacting with an initially anisotropic elastic medium.
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FIGURE 11 Polar plot of the normalized maximum principal stresses �Nlz(r, ') near the crack tip at r = 0.035mm for the same
loading U = 4 µm. The crack onset and propagation occurs in a direction perpendicular to the greatest tensile stress.
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FIGURE 12 Polar plot of the normalized maximum principal stresses �Nlz(r, ') near the crack tip at r = 0.035 mm after crack
initiation. The peak of the stress concentration depicts the direction of crack propagation.

We provide the global loading curves as well as the maximal overall stress (peak stress in the loading curves), and the overall
fracture resistance (area under the loading curves) in Figs. 14. The anisotropic effects strongly alter the mechanical response
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FIGURE 13 Cracks for different material orientation angles obtained by the orthogonal decomposition scheme SD3.

and fracture behavior. We observe that the mechanical performance of the material reaches its maximal state at the orientation
� = 0◦, and its minimal value at � = 45◦.
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FIGURE 14Comparison of the mechanical responses for different orientation angles: the material anisotropic effects are clearly
captured. The material orientation strongly alters the mechanical performance as demonstrated by the pic stress and the global
fracture energy

5 CONCLUSION

In this work, we have used the new orthogonal split of the strain tensor proposed by23 in the phase field model. Projection tensors
have been introduced and numerical implementation details have been provided. Comparisons with other schemes have shown
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a good agreement with other models in most situations. The advantage as compared to other available strain split operators are:
(a) the possibility of dealing with any arbitrary initial anisotropic behavior; (b) an efficient numerical implementation due to
very simple closed forms of projection operators and (c) a strict orthogonality between the traction and compression parts of
the strain tensor, which seems to remove some spurious effects in crack propagation under compression loads.
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APPENDIX

A REVIEW OF OTHER AVAILABLE SPLIT OPERATORS FOR THE STRAIN TENSOR

A.1 (SD1) Volumetric/deviatoric decomposition of the strain proposed by Amor et al.5.
In5, the elastic strain is decomposed into spherical "sph and deviatoric "dev parts, with " = "sph + "dev. Then, it is assumed that
the damage is created by expansion only (positive spherical part) and shear

 e =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
g(di)

[

" ∶ ℂ0 ∶ "
]

if tr " ≥ 0,

1
2
[

"sph ∶ ℂ0 ∶ "sph
]

+ 1
2
g(d)

[

"dev ∶ ℂ0 ∶ "dev
]

if tr " < 0.
(A1)

By introducing the bulk modulus k0 for the undamaged material (relating the spherical part of the strain to the spherical part
of the stress), the elastic tensor is now written as:

ℂ(d) = g(d)ℂ0 + k01⊗ 1
[

1 − g(d)
]

sign−(tr "e), (A2)
where the sign function sign−(x) = 1 if x < 0 and sign−(x) = 0 if x ≥ 0. The strain energy can be now rewritten as:

 e(", d) = 1
2
[

" ∶ ℂ(d) ∶ "
]

. (A3)
The (SD1) model is able to simulate the isotropic material and several kinds of material symmetry such as cubic, hexagonal,

or trigonal symmetry. It is unable to describe the behavior of an arbitrary anisotropic material.

A.2 (SD2) Extensive/compressive decomposition of the strain proposed by Miehe et al.8.
In8, the elastic strain is decomposed into extensive "+ and compressive "− parts, with " = "+ + "−. Then, it is assumed that the
damage is created by traction only

 e±(") = �
2
[

⟨tr "⟩±
]2 + � tr

[ (

"±
)2 ], (A4)

where ⟨x⟩+ is the positive operator, with ⟨x⟩+ = x if x ≥ 0, and ⟨x⟩+ = 0 if x < 0. Conversely, ⟨x⟩− is the negative operator,
with ⟨x⟩− = 0 if x ≥ 0, and ⟨x⟩+ = x if x < 0.
The (SD2) model is only able to simulate damage in initially isotropic elastic materials. There is no available formulation for

anisotropic materials according the author’s best knowledge.
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