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Abstract

Over the past decades, constitutive relations have been developed to compute
the mechanical response of silicate glasses at the continuum length scale. They
are now reliable enough that we can calculate indentation induced stress and
strain fields and examine the impact of material parameters on indentation
response, and especially hardness, pile-up and stress fields. In contrast to a
presently widespread assumption in the literature, we show that (shear) flow
stress is the primary determinant of these properties, and that densification
plays a secondary role in the indentation response of all the silicate glasses. This
result applies even for large values of the densification at saturation because of
the high ratio between effective volumetric yield stress (i.e. yield pressure) and
flow stress.

It is well-known that, depending upon composition, silicate glasses exhibit
very different sensitivities to indentation cracking, although all other standard
mechanical properties remain quite similar. We point out that material damage
incurred through plastic shear flow, and especially shear flow instability and
localization may well control crack initiation, which would resolve the paradox.
Shear flow instability and damage has not been quantitatively investigated in
detail in silicate glasses as yet, neither experimentally nor theoretically. How-
ever, we believe it is key to an in depth understanding of cracking resistance in
silicate glasses.

Keywords:
Silicate glasses, Plasticity, Indentation cracking, densification, Constitutive
relation

1. Introduction

Because it is the archetypal damage process, indentation cracking of silicate
glasses has been extensively studied over the past century [1, 2, 3]. It has been
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clearly established that the final crack pattern and the cracking sequence during
a full indentation cycle strongly depend not only upon maximum load but also
on the composition of the glass [4, 5, 6] and the sharpness of the indenter [7, 8].
However, the cracking process is still largely ill-understood [9, 10]. Better insight
would hopefully pave the way to the formulation of more resistant glasses.

In silicate glasses as in other materials, plastic deformation is central to the
stress field which develops during indentation. However, in contrast to metal-
lic materials or polymers, it has been demonstrated that plastic deformation
in silicate glasses sometimes involves permanent volumetric strain, ie densifica-
tion [11]. The phenomenon is particularly notable in amorphous silica. Because
densification is absent in the more conventional metal plasticity, it has attracted
considerable interest in the glass community. It turns out that amorphous sil-
ica, which exhibits the highest level of densification among silicate glasses, also
features a specific crack pattern upon indentation, with ring and cone cracks [2].
As a result, the connections between densification and crack patterns have been
investigated using various tools, among which the most prominent is the stress
distribution model proposed by Yoffe [2, 4].

In Yoffe’s model [12], an approximate form for the contribution of the stress
field due to plastic strain is proposed (the so-called blister field) and the in-
tensity of this blister field has been diversly evaluated. Various quantities have
been used from hardness to modulus ratio, proportionally corrected by densi-
fication [2] to elaborate measurements of volumes below and above the surface
after and before annealing [4]. Some insight has been gained by this method,
but two shortcomings can be identified: 1) the determination of the amplitude of
the blister field (representing the role of plastic deformation) is not unequivocal,
and 2) the degree of approximation of the model is unknown.

As a result, the question of the relation between glass structure and inden-
tation cracking is still a largely unsolved question, despite huge technological
implications. Alternative methods to understand the stress field developing
during indentation in silicate glasses and the response of the material to this
stress field would be highly useful. Here we present numerical results based on
a recently developed constitutive relation [13] for silicate glasses. It has been
validated for amorphous silica under a few different loading configurations, and
provides reasonable agreement with all the measured mechanical properties of
amorphous silica, including densification. While still an approximation, we be-
lieve that it provides an acceptable description of plastic deformation during
indentation of silicate glasses. We use it to evaluate the impact of each of
the relevant material parameters identified in the constitutive model. Three
characteristic phenomena registered in the indentation of silicate glasses will be
considered: 1) macroscopic response, i.e. hardness; 2) pile-up formation and 3)
stress and strain fields, which we will discuss in relation to crack formation in
silicate glasses. Our conclusion is that the role of densification has been largely
overemphasized in the past decades. We point out that beyond densification at
saturation, a key parameter is the ratio of the effective yield pressure to flow
stress, which is always too large for densification to play a significant role in the
indentation response of silicate glasses. As a result, shear flow dominates over
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densification even in amorphous silica, and the flow stress – or more precisely
the ratio of the flow stress to Young’s modulus – is the first order parameter.

Within this wider point of view, the diversity of cracking behaviour in silicate
glasses cannot be accounted for. This shortcoming strongly suggests that local
damage – which may in many cases be induced by the localization of shear
flow – must be taken into account to obtain a full picture of cracking in silicate
glasses. This conjecture opens up new perspectives for the understanding of
cracking resistance in silicate glasses.

2. Model

2.1. Constitutive relation

To model the response of silicate glasses at the continuum lengthscale, we use
a constitutive model which has been tested over the last decade [13]. In brief,
elasticity is assumed linear isotropic and is characterized by Young’s modu-
lus and Poisson’s ratio. Plastic strain is triggered when a criterion depending
elliptically upon hydrostatic pressure and shear stress is met (Fig. 1).

Figure 1: Elliptic yield criterion for the plastic response of silicate glasses [13] characterized
by flow stress τc and yield pressure pc. The yield pressure itself increases with densification
∆ρ while the flow stress is assumed to be independent of plastic strains. The straight dashed
line represents uniaxial compression.

In Fig. 1, τ =
√

3
2 tr (s∼ · s∼) where s∼ is the deviatoric part of the Cauchy stress

tensor and tr is the trace operator.
This criterion is characterized by: 1) the flow stress τc, ie the uniaxial (Mises)

stress at which plastic deformation occurs (here we have adopted the notation
τc to emphasize the nature of this deformation, which is plastic shear flow) and
2) the volumetric yield stress or yield pressure pc, ie the pressure at which den-
sification occurs under pure hydrostatic compression. Based on high pressure
hydrostatic experiments, pc itself is known to depend upon the current density
of the material until a saturation density is reached: this hardening is built into

3



the model [13, 14]. We also assume that shear flow does not result in hardening
or softening. For silica, the validity of this assumption has been demonstrated
experimentally [15]. For other glasses, this is more of an approximation and
its possible shortcomings will be pointed out in the discussion. The partition
of plastic strain between densification and shear flow is set by a condition of
normality of flow relative to the yield surface (associated plasticity). Given the
horizontal slope near the pure shear axis, plastic strain will be predominantly
shear flow in this region of loading state. Conversely, given the vertical slope
near the pure pressure axis, plastic strain will be predominantly densification
in this region. If the loading contains both shear stress and pressure in a sig-
nificant measure, densification and shear flow will concur to plastic strain in
a ratio which is set by the direction of the normal to the yield surface. In
brief, in this simplified model, the main parameters for the plastic part of the
constitutive relation are the flow stress, the yield pressure, a hardening slope
for the yield pressure and the saturation density. From the original density ρ
and this saturation density ρsat we can derive the densification at saturation
∆ρsat = ρsat/ρ − 1 which is directly related to the free volume in the pristine
material φ by the relation φ = ∆ρsat/(1 + ∆ρsat).

More quantitatively, for a reference material approximating amorphous sil-
ica, we will use a flow stress τc=7.0 GPa, a yield pressure pc=9.0 GPa and a
densification at saturation ∆ρsat = 0.20. Maximum densification is reached at
a pressure of 20 GPa. The parameter values typical for other glasses will be
defined in comparison to this reference material.

Two standard indenter geometries have been considered, a Vickers and its
axisymmetric (conical) analog. Due to self-similarity, the dimension of the sys-
tem is irrelevant. However, numerical accuracy will depend upon both the ratio
of the mesh size to the contact radius under load and the ratio of the contact ra-
dius to the system size. The mesh is refined in the indentation region. Typically
we use a contact radius equal to 45 times the element size, a lateral system size
equal to 15 times the contact radius, and a vertical system size 1.5 times larger
than the lateral size. The calculations are performed with Abaqus 2016 using
about 4000 CAX4 elements in the axisymmetric model and about 130000 C3D8
elements in the Vickers model. A UMAT file containing an implementation
of the Kermouche constitutive relation [13, 16] is provided as supplementary
material.

3. Results

3.1. Macroscopic response - hardness

Hardness is a complicated material property which encapsulates in one fig-
ure the macroscopic, integrated response of an elastoplastic material to sharp
contact. The simplest evaluation of hardness is obtained with a standard mi-
croindenter, where the applied force is simply divided by the area of the imprint
after unloading. In instrumented indentation [17], the force applied to the in-
denter is measured continuously as a function of penetration. In this case, with
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Figure 2: Calculated hardness (i.e. mean contact pressure) for a cone equivalent to a Vickers
indenter. Left: hardness as a function of flow stress for a yield pressure pc = 9 GPa and
negligible densification at saturation (∆ρsat = 0.01). The calculations were repeated for a
few values of Young’s modulus spanning the 50 to 90 GPa range. Poisson’s ratio is 0.2. For a
Young’s modulus of 70 GPa, we also calculated hardness for larger values of ∆ρsat: there is
only a slight decrease of hardness when densification at saturation increases from 0.01 to 0.20.
Right: hardness as a function of densification at saturation for τc = 3.5, 5.25 and 7.0 GPa and
for two different values of yield pressure. For all three values of flow stress, hardness decreases
moderately with densification at saturation for pc = 9 GPa, and much more markedly for
pc = 5 GPa.

adequate data analysis, one can obtain an evaluation of hardness more closely
related to the definition, i.e. contact force normalized by contact area, or mean
contact pressure under load [17]. Due to the self-similarity of the problem, it is
a constant. In our numerical calculations, a constant mean contact pressure is
indeed found, and it is this value which is taken for hardness.

Calculated hardness as a function of flow stress is shown in Fig. 2 (left) for
a yield pressure pc=9 GPa, a negligible densification at saturation ∆ρsat = 0.01
and different Young’s modulus. Poisson’s ratio is always ν = 0.2 except when
mentioned otherwise. Hardness initialy grows linearly with flow stress then
slackens for flow stresses larger than ca. 3 GPa and reaches a plateau at large τc.
This plateau marks a purely elastic response and is here particularly visible for
the lower values of Young’s modulus. A first idea of the impact of densification
at saturation on hardness can be garnered by the results for ∆ρsat = 0.04, with
a very moderate decrease of hardness (here Young’s modulus is E = 70 GPa,
our reference value). Even increasing densification at saturation to 0.20, which
is the largest conceivable value for silicate glasses, and found only in amorphous
silica, we find only a minute reduction of the calculated hardness, less than 5 %.
What ostensibly appears is that a reduction of the Young’s modulus by 15% has
more effect on hardness than a 20 times reduction of densification at saturation
!

To gain insight into this potentially surprising result, calculated hardness as
a function of densification at saturation is shown in Fig. 2 (right) for a Young’s
modulus E = 70 GPa, a yield pressure pc=9 GPa and three different values
of the flow stress 7, 5.25 and 3.5 GPa. Hardness decreases with densification
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at saturation in all cases with a ca 10% decrease over the ∆ρsat = 0 to 0.5
range for τc=7 GPa. The decrease is even smaller for lower values of τc. These
evolutions bring to light a competition between volumetric deformation and
shear flow. Significant impact on hardness is found only when the yield pressure
is stepped down from 9 to 5 GPa, with a near 20% reduction in hardness at
0.20 densification at saturation for τc=7 GPa. Clearly, the role of densification
in indentation depends not only on the densification at saturation, but also on
the balance between flow stress and yield pressure. With a high yield pressure,
the balance will lean in favour of flow deformation.

Figure 3: Calculated hardness for a Vickers equivalent cone as a function of yield pressure for
τc = 3.5, 5.25 and 7.0 GPa, and small (0.04) or large (0.20) densification at saturation. Even
with sizeable densification at saturation, hardness remains insensitive to densification when
the yield pressure exceeds a threshold, which, in the parameter range relevant here, is roughy
equal to the hardness (dashed line).

To better appreciate this effect, hardness calculated as a function of yield
pressure pc is shown in Fig. 3 for three values of the flow stress 3.5, 5.25 and
7.0 GPa and two values of the densification at saturation 0.04 and 0.2. We
indeed find that the effect of densification at saturation is observed at lower
values of the yield pressure, and that the threshold decreases slowly with flow
stress. However the effect is mostly noticeable for a ∆ρsat = 0.2 densification
at saturation but almost vanishes when the densification at saturation drops to
0.04.
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Figure 4: Calculated hardness for a Vickers equivalent cone. Left: hardness as a function of
Young’s modulus for yield pressure pc =9 GPa, flow stress τc = 3.5, 5.25 and 7.0 GPa, and
small (0.01) or large (0.20) densification at saturation. Poisson’s ratio is ν = 0.2. Hardness
increases with Young’s modulus. Right: hardness also increases but very moderately with
Poisson’s ratio. The dashed segments mark the ranges of parameters relevant for most silicate
glasses.

Finally, for completeness, we investigate the impact of elastic material prop-
erties on indentation response. Calculated hardness is shown in Fig. 4 as a func-
tion of Young’s modulus (left - ν =0.2) and Poisson’s ratio (right - E =70 GPa),
for a yield pressure 9 GPa, three values of the flow stress 3.5, 5.25 and 7.0 GPa
and two values (high - 0.20 and low - 0.01) of densification at saturation. As
expected from the previous graphs, hardness increases with Young’s modulus,
and this increase is larger for larger flow stress. Hardness increases by as much
as 30% over the modulus range 50-90 GPa for τc=7 GPa, and by half this value
for τc=3.5 GPa.

Hardness also increases moderately with Poisson’s ratio. More specifically,
focusing on the range relevant for silicate glasses, we find that hardness increases
by about 10% over the range of Poisson’s ratio 0.15-0.3. The effects of flow stress
and densification at saturation on the evolution of hardness with Poisson’s ratio,
however, are weak.

In brief, as a rule of thumb, densification will have a noticeable impact on
hardness if: 1) the densification at saturation is large and 2) the yield pressure
is moderate, compared to the flow stress. Note that when talking loosely about
yield pressure here, we implicitly refer to an effective value which involves the
effect of volumetric strain hardening. One must therefore keep in mind that this
effective yield pressure is typically larger than pc. Focusing on amorphous silica,
for which the constitutive relation used here is best calibrated, we conclude that
densification does affect hardness, but only moderately, certainly not as much
as is sometimes implied given the large densification at saturation (ca 0.20).
The primary reason is that the yield pressure is comparable (9 GPa) to the
flow stress (7 GPa) and that due to volumeric hardening the effective yield
pressure is somewhat larger, thus effectively restricting material compaction
during indentation. We conclude that plastic deformation during indentation
with Vickers type indenters, even in amorphous silica, is dominated by shear
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Figure 5: Vickers indentation: distribution of vertical displacement uz (τc = 3.5 GPa, pc = 7
GPa, ∆ρsat = 0.04) near the end of unloading (left - F = 0.25Fmax) and after complete
unloading (right - F = 0). The maximum penetration was 2.0 10−3. Upward displacements
are colored in purple-red hues while downward displacements are in turquoise. The plastically
deformed core is pushed back by the elastically stressed half space resulting in the appearance
of pile-up at the very end of the unloading process.

flow, and that hardness depends first and foremost upon the flow stress (Fig. 2).
Based on the present results, it is clear that similar conclusions will apply

to a material with low densification at saturation such as the so-called normal
glasses. To approximate soda-lime silica glass, from literature data, and within
the present model, we reduce the flow stress to 3.5 GPa, the yield pressure to
7 GPa and densification at saturation to 0.04 [18, 19]. We also set hardening
such that density saturates at 16 GPa, a minor variation compared to the cases
previously calculated. Here again, the conclusion is that hardness is dominated
by flow stress (not shown).

3.2. Indentation kinematics and the formation of pile-ups

Pile-up has been found on indent edges in some glasses [20, 21]. To better
understand the kinematics of formation of these pile-ups, a Vickers indentation
has been calculated for a soda-lime glass analog, for a maximum penetration
of 2 µm. The distribution of vertical displacement is shown in Fig. 5 at 3/4 of
unloading (left) and after full unloading (right). During loading and most of
unloading, all vertical displacements point downwards (turquoise blue). In con-
trast, net upward vertical displacements (shown in purple-red hues) only appear
at the very end of unloading. They develop all around the indent, including at
the surface, along the faces, where they are easily measurable by AFM. For the
amorphous silica analog (see above), our calculations show that pile-up does
form as well, but with considerably reduced amplitude. This process, whereby
the pile-up appears only at the very end of unloading, is very different from a
pile-up which would form through extensive shear flow alongside the indenter
faces during loading. It shows that for silicate glasses pile-ups form when the
plasticaly deformed core, under the indenter, is pushed back by the elastically
stressed half space as the load is removed.
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3.3. Stress field

As already mentioned, understanding the stress field which develops during
indentation is presently one of the major goals of glass mechanics research,
with a view to hopefully improving material formulation. Experiments and
models such as Yoffe’s are primarily developed to improve our understanding
of the stress field and how it leads to cracking. Because stress fields are 2nd
rank tensors, and strongly depend not only on material parameters but also on
loading history, a full account of our numerical results would be exceedingly
tedious and will not be attempted here. We only wish to demonstrate that
the stress fields derived from the present constitutive relation are at least as
consistent with the crack patterns found in various types of silicate glasses as
Yoffe’s model.

For our soda-lime glass analog, we have calculated the stress field during
Vickers indentation. For such a glass, a crack type of prominent interest is the
median-radial system, which typically appears during unloading [2]. With the
z direction along the indentation axis, we monitor the σyy stresses, which are
normal to the diagonal planes of the Vickers indent. The σyy stresses after full
unloading are plotted on Fig. 6 left. Tensile stresses appear, which are maximum
at the surface in the vicinity of the indenter edges; in fact, we observe in our
calculations that tensile stresses are already present upon loading, but intensify
markedly upon unloading. These characteristics match the appearance of radial
cracks outside the indent along the indenter edge directions. In normal glasses,
they indeed usually appear in the early stages of unloading [2].

We now turn to the σzz stress component. We find that this component
is compressive all along the loading and unloading phases, except at the very
end of unloading when it abruptly turns tensile (Fig. 6 right). In fact, stress
inversion and surface uplift, resulting in pile-up (section 3.2), occur simultane-
ously. This stress pattern ties in well with the lateral cracks, which are known
to appear below the irreversibly deformed material area more or less at the end
of unloading, depending on the exact type of glass [2].
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Figure 6: Vickers indentation, after full unloading. Left: distribution of stress component
σyy in Vickers indentation after full unloading (τc = 3.5 GPa, pc = 7.0 GPa, ∆ρsat = 0.04).
The stress is maximum (tensile maximum σyy = 1.345 GPa) along the edges, which can give
rise to the opening of radial cracks. Right: distribution of stress component σzz in Vickers
indentation after full unloading (τc = 7.0 GPa, pc = 9.0 GPa, ∆ρsat = 0.20). Tensile vertical
stresses arise below the plastically deformed region right at the end of the unloading phase,
consistent with the formation of lateral cracks.

As another example, the maximum principle stress calculated under load
for a conical indenter equivalent to a Vickers is shown in Fig. 7 (top left) for
an amorphous silica analog. The largest tensile value lies at the edge of the
contact: it is predominantly a tensile stress parallel to the surface which, if
cracking occurs, will produce ring cracks during loading. There is also another
local stress maximum right below the plastically deformed area. This tensile
stress component, which is normal to the axis of symmetry, can give rise to
median cracking at high enough loads.

Since the stress distributions found in the numerical calculations match the
well known crack patterns which are found to appear during glass indentation,
we can now evaluate the relative impact of flow stress and densification on these
stress fields.

Let us consider the reference silica analog and suppress densification by
switching densification at saturation from 0.2 to 0.01, keeping all other param-
eters constant. The resulting maximum principal stress distribution is plotted
in Fig. 7 (top right). Comparing to the densifying material (top left), we find
that the overall stress distributions are very similar. In more detail, the overall
stress level increases slightly when densification is switched out, and so does the
spatial extent of the stress distribution. All in all, however, suppressing densifi-
cation is found to affect stress fields only marginally. This conclusion parallels
our previous comments on hardness.
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∆ρ = 0.20 ∆ρ = 0.01

τc = 7.0 GPa

τc = 3.5 GPa

Figure 7: Maximum principal stress distribution for a Vickers equivalent cone indentation
under load (pc =9 GPa). Top: τc =7.0 GPa; bottom: τc =3.5 GPa; left: ∆ρsat = 0.20; right:
∆ρsat = 0.01.

Let us now consider the impact of flow stress. Lowering flow stress from
7.0 GPa to 3.5 GPa while keeping all the other parameters constant, we obtain
the maximum principal stress patterns shown in Fig. 7 - bottom) for high (left
- 0.20) or low (right - 0.01) densification at saturation. The general stress
level under load is lower by ca 40% and the affected region is somewhat larger
while the overall distribution is quite similar. This drop in stress level between
(roughly speaking) amorphous silica and soda-lime glass is in fact proportional
to the hardness reduction (Fig. 2), or equivalently to the flow stress reduction
(see below). The densification at saturation is again seen to have an impact on
stress distribution, but it is second order.

4. Discussion

4.1. Indentation of silicate glasses and confinement

When the indenter tip is pressed against the half-space, it imposes a set
distribution of surface displacement so that under the resulting stress field, the
substrate material under the tip is both elastically and plastically displaced into
the half-space (Fig. 8).
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Figure 8: Schematics of pile-up formation upon unloading for silicate glasses.

Upon unloading, this irreversibly deformed core is pushed back by the elas-
tically compressed half-space, giving rise to both pile-up (Fig. 5) and complex
stress distributions (Fig. 6). It is these complex stress fields which are approxi-
mated by the combination of Boussinesq and blister fields in Yoffe’s model [12].

Note also that for silicates, in the kinematics of pile-up formation, there is no
material flow along the indenter faces upon loading. This latter phenomenology
may be adequate for materials with much lower yield stresses over shear modu-
lus ratios, such as metals with negligible hardening [22]. It is not consistent with
silicate glass plasticity where the flow stress to shear modulus ratio is signifi-
cantly larger than for typical metals. The difference between silicate glasses and
other materials in this respect is demonstrated in Fig. 9 where we have plotted
a number of literature values [23, 24] as a function of sample size. Amorphous
silica definitely surpasses the other inorganic solids, even if the well-known size
effect in crystalline materials [23] reduces the difference.

This phenomenology of indentation highlights the operation of confinement.
The primary role of the flow stress to shear modulus ratio is to quantify the
resistance to plastic strain effected by the surrounding elastic half-space.
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Figure 9: Flow stress normalized to shear modulus as a function of sample size in a broad
range of materials (data from [23]) and in amorphous silica (data from [24]). Even at lower
characteristic sizes, amorphous silica exhibits a larger τc/G ratio.

4.2. The constraint factor

Our numerical results suggest that densification is only a second order effect.
We therefore expect that hardness in silicate glasses is dominated by the com-
petition between plastic flow and elastic strain, as in standard, non-densifying
materials. It is natural in this case to scale hardness by the flow stress: this
ratio is the constraint factor [22, 25]. Note that sometimes this terminology is
used only when the indentation regime is fully plastic, in which case the ratio is
a constant [21, 26]. Here, because of the competition between plastic flow and
elastic confinement, the constraint factor depends upon the ratio of flow stress
to Young’s modulus, as shown in Fig. 10 (left) for ∆ρsat = 0.01. Due to self-
similarity, the scaling of the numerical results is perfect within numerical error.
At low τc/E, we recover the fully plastic regime where the constraint factor
saturates to a finite value slightly lower than 3 as predicted by Tabor [22]. This
saturation reflects the linear behaviour found in Fig. 2 left. At high τc/E values,
the constraint factor decreases linearly, which explains the plateau at high τc in
Fig. 2 left, especially for lower moduli. Unsurprisingly, given our observations
on the moderate role of densification, the predictions of a phenomenological
model proposed for isochoric plastic response (J2 plasticity) [27] are very close
to the present values. In our case, the other material parameters also play a
role, although less significant than flow stress, which is particularly relevant here
since amorphous silica is perfectly plastic (i.e. the flow stress is independent of
the plastic shear strain) [15]. For example, for a yield pressure pc = 9 Gpa, the
constraint factor is only moderately affected when densification at saturation
∆ρsat increases from 0.01 to 0.20 (Fig. 10 right). This result was expected from
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the previous discussion. A slightly larger effect is registered for ∆ρsat = 0.2 if
the yield pressure decreases to pc = 5 GPa. The master curve becomes really
different if we assume that pc varies proportionally to τc, at fixed densification
at saturation ∆ρsat.

Figure 10: Rescaling hardness by flow stress (constraint factor) and flow stress by Young’s
modulus (cf. Fig. 4), a universal curve is obtained for a low value of densification at saturation
0.01 (left). The variations around this universal curve is very limited except if high densi-
fication at saturation comes along with low yield pressure (right, thin dashed and dot-dash
red lines). A pure shear flow model (J2 plasticity, based on a simple von Mises criterion –
dashed black line) effectively fits the numerical results, in the range relevant for most mate-
rials, including glasses (τc/E < 0.1). The Expanding Cavity Model (dot-dash black line) also
provides a good approximation in the relevant range of τc/E values but deviates for values
below 0.05.

As already mentioned, one can use the phenomenological function for the
constraint factor based on J2 plasticity [27] to predict the constrain factor with
reasonable accuracy. For a slightly more refined prediction, we also propose
two fits to our numerical results. For a negligible densification at saturation, a
reasonable fit is given by

H/τc = 0.42 + 2.12 exp (−7.80τc/E)

while for 0.20 densification at saturation and a 9 GPa yield pressure, an approx-
imate relation is given by

H/τc = 0.49 + 2.07 exp (−9.26τc/E)

With these expressions, flow stress can be easily determined directly from hard-
ness, provided Young’s modulus is known and a Vickers (or the nearly equivalent
Berkovich) tip is used. This evaluation of the flow stress could be refined if other
parameters such as Poisson’s ratio and the densification parameters (yield pres-
sure and pressure hardening parameters, including densification at saturation)
are known. If other tips with different half included angles β are used, the J2
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plasticity phenomenological model [27] can be used instead. It predicts

H

τc
=

ζ1 tanβ

(1 − ζ2) τcE + ζ3 tanβ

where the ζ constants are weakly dependent upon β.
Our numerical results can also be compared to the Expanding Cavity Model

(ECM) introduced by Marsh [28] in the specific context of silicate glasses and
propounded by Johnson a few years later [29]:

H

τc
=

2

3

[
1 + ln

(
1

3

E

τc
tanβ

)]
+

2

3

Note the additional 2/3 term as prescribed in [30]. It is seen (Fig. 10) that
in the range of comparatively large τc/E ratios relevant for silicate glasses, the
ECM model provides an equally good approximation as the J2 model. It is only
at low τc/E ratios (and larger constraint factors - Fig. 10) that the validity of
the ECM model becomes questionable.

In fact, in the ECM model, it is postulated that the subsurface displacements
are radial [28, 29] (Fig. 8). This kinematic assumption is completely in line with
the quasi absence of pile-up as indicated in sec. 3.2 and 4.1, in contrast to the
slip line theory for rigid perfectly plastic materials, which is found adequate for
low τc/E materials.

4.3. But what about indentation cracking?

We have found that the stress fields calculated numerically with the present
constitutive relation are consistent with the phenomenology of indentation crack-
ing [2, 4, 12].

However, we find little difference between the stress fields calculated with and
without densification (Fig. 7). Just as with hardness (Fig. 2 and 3), densification
would impact stress distribution for high enough densification at saturation and
low enough effective yield pressure. However, due to the moderate value of the
flow stress and the presence of hardening in the volumetric plastic deformation
process, we find that densification impacts stress fields only marginally, even for
a saturation value as large as 0.20. The practical consequences of this fact can be
observed in a recent publication: when computing crack extension in amorphous
silica, Bruns et al. found a minute effect of densification for a Vickers indenter
and had to use sharper geometries to cranck up the impact [3].

Here again, it is shear flow, not densification, which primarily controls the
stress distribution (Fig. 7), just as for hardness. The main differences between
the stress fields of amorphous silica and normal glasses are due to: 1) the larger
hardness (hence flow stress) of amorphous silica (9 GPa vs. ca. 6 GPa - Fig. 2),
resulting in an overall higher stress level 2) the larger τc/E ratio (a factor of 2)
resulting in some variation in the stress distribution pattern (Fig. 7).

Here, we make the observation that efforts to improve our understanding of
cracking in silicate glasses have always been frustrated by a nagging problem:
the narrow range spanned by the seemingly pertinent mechanical parameters
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(elastic, plastic and rupture toughness). For example, Sellappan et al. have
investigated a wide range of glasses [4], and from their tables, it is clear that
elastic modulus and hardness change little: there is at most a factor of 2 between
extremes. The effect of Poisson’s ratio as an elastic parameter is quite limited
(Fig. 4). As to the yield pressure, there are very few data [31, 32, 19, 33], but the
measured values range between 6 and 9 GPa, and the densities at saturation be-
tween 1 and 1.2 times the density of the pristine material. Fracture toughnesses
are remarkably similar between all sorts of glasses... In the classical picture,
densification at saturation is the one parameter which changes considerably be-
tween silicate glasses: up to a factor 5! However, our results demonstrate that
little effect must be expected from densification, so that the problem emerges
with renewed acuteness: why are silicate glasses so diverse in their cracking
resistance [34, 35] when they are so much alike in all their other mechanical
properties? why are the cracking patterns definitely different from one family
of glasses to the other, for example between anomalous and normal glasses [2],
and even within a glass family? how can we explain a factor of ten improvement
in crack resistance with moderate changes of composition in borosilicates [5]?
what are the mechanical parameters responsible for indentation cracking...?

4.4. Crack initiation in silicate glasses - beyond the stress field

To answer these questions, we have to consider another phenomenon which
has been largely overlooked in the recent literature: crack initiation. The stress
distribution is relevant to predict the propagation of a crack, but on its own
it cannot predict whether a crack will form at all. It determines only where a
crack would go, if it formed. Possible mechanisms for crack initiation must be
considered as well.

In this respect, we note that in the field of silicate glasses, shear flow is
often thought of as resulting from shear bands. However, in many cases, shear
flow is a homogeneous process, as observed in a large number of systems from
metallic materials (at a length scale larger than the grains) to many liquids (at
low strain rates). If shear bands are not observed, it does not mean there is no
shear flow. In fact, the contribution of shear flow in the plastic deformation of
amorphous silica is significant. This is demonstrated by the kinematics of our
pillar compression experiments [24, 15], where the material necessarily flows to
the sides as the micropillars are irreversibly turned into pancakes. Indeed, in the
pillar geometry, the confinement inherent to indentation has been suppressed,
and shear flow is unrestricted. Clearly, this shear flow is homogeneous: no shear
band has been observed in these quasi-static experiments.

In many silicate glasses, however, the formation of shear bands is indeed ob-
served [36]. This is not an oddity: shear bands are common in many disordered
materials such as glassy polymers [37], bulk metallic glasses [26, 38] or granu-
lar materials [39]. They form due to flow instability and result in a strongly
heterogeneous strain field, with strongly localized shear flow in the bands. It
is precisely this propensity of many silicate glasses to undergo shear flow lo-
calization, and potentially strong material damage inside these bands, which
opens up for significant differentiation between glass compositions. This is all
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the more pertinent as crack initiation will result from a complex combination of
tensile stress and material damage, which depend upon loading (damage) and
unloading (residual tension) during one indentation cycle.

As early as 1979, Hagan has proposed that crack initiation in normal glasses
starts from the intersection of shear bands [40] as previously observed in a glassy
polymer such as polysterene [37]. These papers draw our attention to plastic
induced damage, which is typically incurred through shear flow, and especially
through inhomogeneous shear flow, i.e. shear bands. Recently, Gross et al.
have examined a series of aluminoborosilicates and concluded that the glasses
more resistant to indentation cracking exhibit finer shear bands, i.e. a more
homogeneous flow [41]. More homogeneous shear flow as in boron-rich glasses
means less damage and higher crack resistance. Similarly, amorphous silica
undergoes homogeneous shear flow [15] which limits plastic induced damage.
This is likely the reason why silica is less susceptible to median/radial cracking
and usually (but not always [42]) develop ring/cone cracks instead. Ring/cone
crack formation is an extrinsic process originating on (usually ill-defined) surface
defects, which will also be favored by the larger overall stress level due to the
high flow stress of amorphous silica.

We believe that developing constitutive relations is a necessary step to make
progress in our understanding of the cracking resistance of silicate glasses. With
good constitutive relations, precise stress fields can be calculated. Shear flow is
an integral part of the plastic response of all silicate glasses, be it homogeneous
or not. More precise descriptions of shear flow must indeed be developed. In
particular, taking into account plasticity, and especially shear localization as a
source of material damage opens up a different perspective for our understand-
ing of indentation cracking in silicate glasses. In this respect, the constitutive
equation used here is too restrictive. In particular, we have assumed perfect
plasticity, which means in particular that shear flow is not softening: this is ad-
equate for amorphous silica, but not for more normal glasses. If this simplifying
assumption is lifted, using more advanced models [16], shear flow localization
and the resulting material damage can be evaluated as well. In combination
with the calculation of the stress field, quantitative assessment of material dam-
age will lead to a significantly improved understanding of the nucleation and
propagation of cracks under indentation loading.

5. Conclusion

Our calculations strongly suggest that the impact of densification on in-
dentation response in silicate glasses has been consistently overrated over the
last half-century. Even with significant densification at saturation, the contri-
bution of densification to indentation response is limited due to the relatively
high value of yield pressure compared to flow stress. In addition, it is an effec-
tive yield pressure involving hardening for irreversible volumetric strain which
must be considered, and compared to a flow stress free from any hardening, at
best. We conclude that flow stress is the determining factor for indentation re-
sponse. As Marsh already put it more than half a century ago: ”Even for silica
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[...] compaction effects are probably much less important than was previously
thought” [28].

Moreover, at the present level of description, it is clear that there is a missing
piece in the standard description: cracking is varied for silicate glasses which are
otherwise not differentiated by their elastic or plastic properties. We argue that
the missing piece is damage sensitivity. Shear flow instability, and especially
shear band formation is certainly a most interesting - but difficult - field to
investigate in relation to this question.
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