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Pierre Clairambault

Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Abstract

In this paper we develop the theory of how to count, in thin concurrent games, the
configurations of a strategy witnessing that it reaches a certain configuration of the
game. This plays a central role in many recent developments in concurrent games,
whenever one aims to relate concurrent strategies with weighted relational models.

The difficulty, of course, is symmetry: in the presence of symmetry many config-
urations of the strategy are, morally, different instances of the same, only differing
on the inessential choice of copy indices. How do we know which ones to count?
The purpose of the paper is to clarify that, uncovering many strange phenomena and
fascinating pathological examples along the way.

To illustrate the results, we show that a collapse operation to a simple weighted
relational model simply counting witnesses is preserved under composition, provided
the strategies involved do not deadlock.

1 Introduction

Thin concurrent games [5] are a complex but powerful setting for truly concurrent game
semantics; one of the latest iterations of a long line of work [1, 11, 13] on game semantics
questioning the premise that a play should be a total chronological ordering. They are
very expressive, able to express various languages both pure [4] and stateful [5]; including
with various quantitative aspects [3, 7]. One strength of concurrent games in general is
the clean link they offer with relational-like semantics: a strategy may (slightly naively)
be seen as a collection of points of the web (in the sense of relational semantics) enriched
with causal information. This enables a clean connection with the relational model, which
served as basis e.g. for Melliès’ fully complete model of linear logic [10] (see also [6]).

Now, relational semantics as well can be enriched with quantitative information; this is
the basis for probabilistic coherence spaces [8]. Probabilistic coherence spaces are obtained
via a biorthogonality construction on top of the relational model weighted by elements of
R+, the completion of non-negative reals R+ with a point at infinity. Instead of merely
relations, morphisms from set A to set B are then matrices

(αa,b)(a,b)∈A×B ∈ R+
A×B
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composed via the potentially infinite matrix multiplication formula

(β ◦ α)a,c =
∑

b∈B

αa,b · βb,c . (1)

Beyond real scalars, more generally one can construct a weighted relational model
parametrized by certain semirings [9]. Adding typing information one goes beyond semir-
ings, for instance the adequate model for the quantum λ-calculus of [12] uses weights from
the category of finite dimensional Hilbert spaces and completely positive maps.

Above, we mentioned a collapse from concurrent games to the relational model. Does
it hold with quantitative information? Such results appear in the literature [3, 7] – though
we shall see in this paper that the definition of this collapse in [3] is not quite right. This
seemingly simple question holds some surprises. This is the question that this paper solves;
detailing the basis for part of [7], and identifying and correcting the mistake in [3].

As a matter of fact, the difficulty is not in handling the weights, but in listing the right
witnesses : if (1) originates in a bijection between witnesses, then provided this bijection
preserves the weights (and it will be generated in such a way that it does), it follows that
adding weights is relatively painless. On the other hand, coming up with the right notion of
witnesses is really hard. Indeed, in the presence of replication of resources, configurations
in strategies are countably duplicated, so it is meaningless to sum over all of those as
one does without symmetry. What are, then, the right witnesses? Symmetry classes of
configurations? Something else? In this paper we give the answer, and illustrate it with a
proof of a formula like (1) for a simple weighted relational model simply counting witnesses.

We shall see that the appealingly simple idea of [3] to use symmetry classes of config-
urations as witnesses is, in general, wrong. We give a more refined notion of witnesses,
taking advantage of the split of the symmetry into positive and negative reindexings offered
by thin concurrent games [5]. This lets us solve the problem, but with the cost of adding a
new condition to thin concurrent games called representability, which states the existence,
for every symmetry class, of a canonical representative on which the symmetry decomposes
neatly into a positive and negative parts.

Outline. The structure of the paper is as follows. In Section 2 we fix the notations for
thin concurrent games used in this paper and recall a few notions. In Section 3 we give a
technical explanation of the problem and its difficulties. In Section 4 we introduce the new
notions of canonicity and representability. In Section 5 we give the central contribution of
the paper, the proof of (1). Finally, in Section 6 we give a few ending remarks.

2 Preliminaries

2.1 Notations and terminology

In this paper, we assume some familiarity with concurrent games, and more precisely with
thin concurrent games [5]. Let us fix a few conventions for notations and terminology.
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By strategy we will always mean ∼-strategy in the sense of [5]. We will sometimes refer
to pre-∼-strategies, which must be understood as in [5]. If σ : S → A⊥ ‖ B is a strategy

from A to B, we write σ : A
S
→ B. We often use xS , yS, . . . to range over configurations of

S, with S as a superscript. If xS ∈ C (S), we take the convention that

σxS = xSA ‖ xSB ,

in the paper we will use xSA ∈ C (A) and xSB ∈ C (B) without further introduction.
If A is a tcg, we write ∼=A for its symmetry, and θ : x ∼=A y if the bijection θ : x ≃ y is in

∼=A – in which case we say that θ is a symmetry. For x, y ∈ C (A), we write x ∼=A y for the
induced equivalence relation. We use similar notations for the positive and negative sub-
symmetries, with ∼=+

A for the positive and ∼=−
A for the negative. We use for symmetries on

strategies similar notations as for configurations. For σ : A
S
→ B, we often tag symmetries

in S with S, as in ϕS : xS ∼=S y
S. Then, we write ϕSA : xSA

∼=A y
S
A and ϕSB : xSB

∼=B y
S
B.

In diagrams, dotted lines signify immediate causal links in the game, whereas _ means
immediate causality in the strategy. If the direction of causal links is unspecified (e.g. with
dotted lines with no arrow head), then it must be read from top to bottom.

2.2 Interaction and composition

Consider two strategies σ : A
S
→ B and τ : B

T
→ C.

Recall that their interaction

τ ⊛ σ : T ⊛ S → A ‖ B ‖ C

has set C (T ⊛ S) isomorphic to pairs (xS , xT ) ∈ C (S) × C (T ) such that xSB = xTB = xB,
and which are causally compatible, in the sense that the induced bijection

xS ‖ xTC ≃ xSA ‖ xB ‖ xTC ≃ xSA ‖ xT

is secured [5]. We write xT ⊛ xS ∈ C (T ⊛ S) for the corresponding configuration; then:

(τ ⊛ σ)(xT ⊛ xS) = xSA ‖ xB ‖ xTC .

The composition

τ ⊙ σ : A
T⊙S
→ C

is obtained from the interaction through a hiding operation [5]. We recall:

Proposition 1. The set C (T⊙S) is isomorphic to the set of pairs (xS, xT ) ∈ C (S)×C (T )
such that xSB = xTB = xB, which are causally compatible and minimal, in the sense that if
yS ⊆ xS and yT ⊆ xT are matching and causally compatible, and

xSA ‖ xTC = ySA ‖ yTC ,

then xS = yS and xT = yT . If xS and xT are matching, causally compatible, and minimal,
we write xT ⊙ xS ∈ C (T ⊙ S) for the corresponding configuration. We then have

(τ ⊙ σ)(xT ⊙ xS) = xSA ‖ xTC .
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Proof. Direct from the definition. If a pair (xS , xT ) is matching and causally compatible,
then it is minimal iff xT ⊛ xS has all its maximal events visible (i.e. in A or C); and those
are in one-to-one correspondence with configurations of T ⊙ S.

Interaction behaves like a cartesian product (restricted to the matching causally com-
patible configurations), while composition has this additional minimality assumption. We
wish to get rid of minimality, since we wish to link to weighted relational models, where
(intuitively) a witness of the composition is a pair of witnesses. This can be achieved:

Definition 2. Let σ : S → A be a strategy.
A configuration x ∈ C (S) is +-covered iff all its maximal events have positive polarity.

We write C +(S) for the set of +-covered configurations of σ.

By extension, we say that xT ⊛ xS ∈ C (T ⊛ S) is +-covered iff its maximal events are
positive and write xT ⊛ xS ∈ C +(T ⊛ S). This notion is useful, because we have:

Lemma 3. Consider σ : A
S
→ B and τ : B

T
→ C two strategies. Then, there is a bijection

φ : C +(T ⊛ S) ≃ C +(T ⊙ S)
xT ⊛ xS 7→ xT ⊙ xS

such that if (τ ⊛ σ)(xT ⊛ xS) = xA ‖ xB ‖ xC , then (τ ⊙ σ)(φ(xT ⊛ xS)) = xA ‖ xC .

Proof. If xT ⊛ xS ∈ C +(T ⊛ S), then the pair (xS, xT ) is automatically minimal: if not,
then one can remove an event in B. But it must be negative for either σ or τ , contradiction.
So we may simply set φ(xT ⊛ xS) = xT ⊙ xS ∈ C +(T ⊙ S).

We have one last ingredient to introduce. One crucial difference between strategy com-
position and composition in weighted relational models, is that strategies may deadlock.
This question is fairly well-explored; in particular in settings where we have performed
such a collapse [3, 7, 6], we have done so under the assumption that strategies satisfied a
condition called visibility, which prevents deadlocks [2]. Describing visibility is beyond the
scope of this paper, but many of the results given here will be under the assumption that
certain strategies do not deadlock. Accordingly, we define:

Definition 4. Strategies σ : A
S
→ B and τ : B

T
→ C do not deadlock iff for all xS ∈ C (S),

xT ∈ C (T ) and θB : xSB
∼=B x

T
B, the composite bijection

xS ‖ xTC
σ‖xT

C

≃ xSA ‖ xSB ‖ xTC
xS
A
‖θB‖xT

C

≃ xSA ‖ xTB ‖ xTC
xS
A
‖τ−1

≃ xSA ‖ xT

is secured.

This is, in particular, always the case when σ and τ are visible. If σ and τ do not
deadlock then we may forget the causal compatibility condition in their interaction: con-
figurations of the interaction correspond to arbitrary matching pairs.

We do not assume that all strategies considered do not deadlock. Throughout the
paper, we make it explicit when we consider this hypothesis.
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3 Towards a Quantitative Collapse

3.1 Relational collapse and symmetry

A game A has a natural associated notion of position, given by the set of configurations
C (A). Configurations inform the relationship with relational-like semantics: if A is a game
arising from a type in a linear type system, then the web (a set) interpreting this type in
relational semantics may be identified with a subset of C (A)1. Likewise, a strategy

σ : A
S
→ B

induces a relation ∫ σ = {(xA, xB) | ∃x
S ∈ C (S), σxS = xA ‖ xB} ∈ Rel(C (A),C (B)).

With this definition, for any σ : A
S
→ B and τ : B

T
→ C we automatically have that

∫ (τ ⊙ σ) ⊆ (∫ τ) ◦ (∫ σ)

and the other inclusion holds if σ and τ do not deadlock.
This picture above is of course much simplified thanks to linearity. Without the linearity

assumption, the games considered need to carry a symmetry. If A arises from a type, then
the corresponding web is no longer (a subset of) C (A), but (a subset of) C∼=(A), the set of
equivalence classes of configurations under symmetry. In particular, we have

Lemma 5. Consider N a negative tcg. Then,

C∼=(!N) ∼= Mf(C∼=(N)) .

where Mf(X) is the set of finite multisets of elements of set X.

Proof. Straightforward.

We use x, y, . . . as metavariables ranging over symmetry classes.
Above, ! stands for the AJM-style exponential described in Section 3.3.4 in [5]. Like-

wise, the reader familiar with relational semantics will recognize in Mf(X) the familiar
exponential modality. This traces the path to extend the links between game and relational
semantics beyond the linear case: simply correct the definition of ∫ σ by setting:

∫ σ = {(xA, xB) ∈ C∼=(A)× C∼=(B) | ∃xS ∈ C (S), xSA ∈ xA & xSB ∈ xB} ,

where σxS = xSA ‖ xSB, a naming convention that we shall adopt. If xS ∈ C (S) is such that
xSA ∈ xA and xSB ∈ xB, we say that xS is a witness for (xA, xB) in ∫ σ.

With this definition, it is immediate by definition of composition of strategies that we

retain ∫(τ ⊙ σ) ⊆ ∫ (τ) ◦ ∫ (σ) for any strategies σ : A
S
→ B and τ : B

T
→ C.

1Typically, in the presence of Question/Answer labeling, those are the complete configurations where
every question is answered – but details do not matter for this paper.
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3.2 Synchronization up to symmetry

More interesting is the reverse inclusion. Of course, the deadlock issue mentioned above

still applies. But something else is also going on: consider σ : A
S
→ B and τ : B

T
→ C, and

(xA, xB) ∈ ∫ σ (xB, xC) ∈ ∫ τ .

By definition, this means that there are xS ∈ C (S) and xT ∈ C (T ) such that

xSA ∈ xA, xSB ∈ xB , xTB ∈ xB , xTC ∈ xC .

In particular, since we have xSB ∈ xB and xTB ∈ xB it follows that there is a (non-unique)

θ : xSB
∼=B x

T
B ,

a symmetry on B. So the witnesses xS ∈ C (S) and xT ∈ C (T ) might not quite reach
the same configuration of the game: typically, they might involve completely distinct copy
indices, and θ carries a reindexing from one to the other. Independently of the deadlocks,
if we wish to provide a witness y ∈ C (T ⊙ S) for (xA, xC) in τ ⊙ σ, we must in particular
find some yS ∈ C (S) and yT ∈ C (T ) such that

ySA ∈ xA , ySB = yTB , yTC ∈ xC ,

matching on B on the nose. So starting from xS ∈ C (S) and xT ∈ C (T ), we must
reindex them until they match on B on the nose. Of course, this issue already arises in the
process of constructing a game semantics based on copy incides, to show that equivalence
of (uniform) strategies up to the choice of copy indices is stable under composition.

In thin concurrent games, the main tool to deal with it is the weak bipullback property :

Lemma 6 (Weak bipullback property). Let σ : S → A and τ : T → A⊥ be pre-∼-strategies.
Let xS ∈ C (S) and xT ∈ C (T ) and θ : σxS ∼=A τx

T , such that the composite bijection

xS
σ
≃ σxS

θ
∼=A τx

T τ
≃ xT

is secured. Then, there are yS ∈ C (S) and yT ∈ C (T ) causally compatible, θS : xS ∼=S y
S

and θT : yT ∼=T x
T , such that τθT ◦ σθS = θ. Moreover, yS, yT are unique up to symmetry.

This appears as Lemma 3.23 in [5]. The intuition is that σ and τ play against each other,
each replacing Player copy indices with one they are prepared to play. By ∼-receptivity, τ
must be receptive to a change in copy indices made by Player, and reciprocally; so yS and
yT may be constructed by induction on the causal structure induced by the securedness

assumption. If σ : A
S
→ B and τ : B

T
→ C, and we have xS ∈ C (S) and xT ∈ C (T ) with

θ : xSB
∼=B x

T
B ,
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we may apply the lemma above for σ ‖ C⊥ → A⊥ ‖ B ‖ C⊥ and A ‖ τ : A ‖ T → A ‖ B⊥ ‖
C. Provided some other argument ensures the securedness assumption, then we obtain

yS ‖ yTC ∈ C (S ‖ C) ySA ‖ yT ∈ C (A ‖ T )

matching on B; and so we have found an interaction

yT ⊛ yS ∈ C (T ⊛ S)

with (τ ⊛ σ)(yT ⊛ yS) = ySA ‖ yB ‖ yTC , satisfying y
S
A ∈ xA and yTC ∈ xC thus providing

through hiding the desired witness for (xA, xC) ∈ ∫ (τ ⊙ σ).

3.3 Quantitative extension

But the above is purely qualitative: if σ : A
S
→ B then the collapse above lets us define

which pairs (xA, xB) are “inhabited” by σ. This is sufficient in order to link game semantics
with relational semantics. But this is not sufficient if we want to reproduce this feat in the
presence of quantitative information, such as probabilities or quantum valuations.

For the purposes of this paper, let us say that we are now interested not in the mere
existence of a witness xS ∈ C (S) such that xSA ∈ xA and xSB ∈ xB, but in counting such
witnesses. For reasons explained in Section 2.2, from now on we consider witnesses for
(xA, xB) not merely those configurations xS ∈ C (S) such that xSA ∈ xA and xSB ∈ xB; but
those that are additionally +-covered, i.e. we have xS ∈ C +(S).

From a strategy σ : A
S
→ B, we want a N-weighted relation, i.e. a function

∫ σ : C∼=(A)× C∼=(B) → N ,

where N = N∪{+∞}, counting the number of distinct witnesses for (xA, xB). In that case,
for xA ∈ C∼=(A) and xB ∈ C∼=(B), write (∫ σ)

xA,xB ∈ N for the corresponding coefficient.

In the spirit of weighted relations [9], we then want to prove that for all σ : A
S
→ B

and τ : B
T
→ C that do not deadlock, we have that for all xA ∈ C∼=(A) and xC ∈ C∼=(C),

(∫(τ ⊙ σ))
xA,xC =

∑

xB∈C∼=(B)

(∫ σ)
xA,xB × (∫ τ)

xB ,xC . (2)

The convergence of the sum on the right hand side is ensured by the fact that we
consider the completed natural numbers N ∪ {+∞} as in the weighted relational model.

How might we, from σ : A
S
→ B, extract the weighted relation ∫ σ? Intuitively, we need

(∫ σ)
xA,xB = |witσ(xA, xB)|

where witσ(xA, xB) captures the witnesses in σ for symmetry classes xA ∈ C∼=(A) and
xB ∈ C∼=(B), and where |X| simply computes the cardinal, taken to be +∞ for X infinite.
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Situations where strategies carry additional weights, say probabilities or quantum valua-
tions, would be dealt with similarly. In any case, the first obstacle to overcome is then to
give a satisfactory definition of witσ(xA, xB).

Of course counting all xS ∈ C +(S) such that xSA ∈ xA and xSB ∈ xB makes no sense:
there are almost always infinitely many of them since e.g. the construction !N introduces
countably many copy indices. The definition of witnesses must take symmetry into account.

Symmetry classes. The obvious candidate for witnesses, chosen in [3], is:

witσ(xA, xB) = {xS ∈ C
+
∼= (S) | ∀xS ∈ xS, xSA ∈ xA & xSB ∈ xB} ,

i.e. the symmetry classes of +-covered configurations mapping to xA ‖ xB. This convinc-
ingly simple definition in fact hides a major subtlety. Indeed, (2) hints at a bijection

witτ⊙σ(xA, xC) ∼=
∑

xB∈C∼=(B)

witσ(xA, xB)× witτ (xB, xC) .

This seems straightforward. Firstly, if z ∈ witτ⊙σ(xA, xC), then any choice z ∈ z is
z = zT ⊙ zS ∈ C (T ⊙ S) and the symmetry classes of its projections yield

zS ∈ witσ(xA, xB) , zT ∈ witτ (xB, xC) ,

for some xB ∈ C∼=(B). These data are easily shown to be invariant under the choice of z.
Reciprocally, if xS ∈ witσ(xA, xB) and xT ∈ witτ (xB, xC), we may take arbitrary xS ∈

xS, xT ∈ xT , and via Lemma 6 find symmetric yS ∈ xS and yT ∈ xT agreeing on B on the
nose. We may then form yT⊙yS ∈ C +(T⊙S) and take its symmetry class in witτ⊙σ(xA, xC).

But one should not skip the details2: we must show that this construction only depends
on the symmetry classes xS and xT , not on the specific choices xS ∈ xS and xT ∈ xT and
the symmetry θB : xSB

∼=B x
T
B used to link them. But surely, that must be true, right?

Well, about that. . . It certainly was a surprise to us that the symmetry class obtained
through synchronization does depend on the symmetry θB.

Example 7. Consider the following games. Firstly, A = ∅ is the empty game. Secondly,
C = (!⊖)⊥ which has countably many Player moves written Xi for all i ∈ N, all symmetric
– we adopt here a convention followed throughout the paper: copy indices appear in grey,
to distinguish them from other indices.

Thirdly, consider the game B = !HO(⊖ _ ⊕), where !HO is the “HO exponential”
defined in Definition 2.24 with symmetries in Definition 2.27 in [5] (see also Proposition
3.3). This game has events, polarities and causal dependency those pictured in:

⊖0 ⊖1 . . . ⊖i . . .

⊕0,0 ⊕0,1 ⊕0,2 . . . ⊕0,j . . . ⊕1,0 ⊕1,1 ⊕1,2 . . . ⊕1,j . . . ⊕i,0 ⊕i,1 ⊕i,2 . . . ⊕i,j . . .

2We were guilty of that in [3].
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A
S
→ B

⊖i

❀xx� ④
④④

✄ ��&
❈❈

❈

⊕f(i)
/o/o/o ⊕g(i)

Figure 1: σ : A
S
→ B

B
T
→ C

⊕0

❴���

⊕h(i)

❴���

Xk(i,j)

⊖i

✹ 55?tttt
⊖j

✳ 33;♥♥♥♥♥♥♥

Figure 2: τ : B
T
→ C

with all finite sets consistent. Its symmetry comprises all order-isomorphisms between
configurations. Its positive symmetry comprises all order-isomorphisms that preserve the
initial (negative) move. Its negative symmetry comprises all order-isomorphisms such that
θ(⊕i,j) = ⊕i′,j for some i′ ∈ N, i.e. they preserve the j component of the positive move.
In practice, we will omit the first copy index for the event in the second row, which is
redundant with the immediate causal antecedent of the event.

We now introduce two strategies σ : A
S
→ B and τ : B

T
→ C that we wish to compose,

represented on Figures 1 and 2 where the functions f, g, h, and k are assumed injective,
and 0 is not in the codomain of h. Note that the representation is symbolic: the diagrams
must be understood by stating that every positive move has one copy for each instantiation
of the metavariables i, j ∈ N, with dependencies as indicated in the diagram. These copies
are compatible with each other. Finally, the symmetries comprise order-isomorphisms that
differ only by the value of the metavariables i, j ∈ N. In particular, the two moves in the
conflicting branches of σ are not symmetric (that would anyway contradict thinness).

First, we compute the composition τ ⊙ σ, and observe that it is:

Xk(f(0),f(h(f(0))))
/o/o/o

3s 2r
2r 2r

1q 1q
1q 0p 0p 0p

/o /o /o .n .n .n -m -m -m ,l ,l ,l +k4t
4t 4t

3s 3s
3s 3s

3s 3s
2r 2r

2r 2r
2r 1q 1q

1q 1q 1q
0p 0p 0p 0p 0p

0p /o /o /o /o /o .n .n .n .n .n .n -m -m -m -m -m ,l ,l ,l ,l ,l +k +k +k +k +k +k *j *j
*j

Xk(f(0),g(h(f(0))))
/o/o/o

3s 2r
2r 2r

1q 1q
1q 0p 0p 0p

/o /o /o .n .n .n -m -m -m ,l ,l ,l +k

Xk(g(0),f(h(g(0))))
/o/o/o Xk(g(0),g(h(g(0))))

There are four events, pairwise conflicting, reflecting the two non-deterministic choices
arising from the two calls to σ – one can read back which non-deterministic choice gave
rise to which result from the copy indices, but that is another story. None of these events
are symmetric: again, this would contradict thinness.

Now, let us define two configurations xS ∈ C (S) and xT ∈ C (T ) as

xS =

⊖0 ⊖h(f(0))

⊕f(0) ⊕g(h(f(0)))

xT =

⊕0 ⊕h(f(0))

⊖f(0) ⊖g(h(f(0)))

‖ Xk(f(0),g(h(f(0))))

These two configurations match on B (and are causally compatible); and their compo-
sition yields the configuration {Xk(f(0),g(h(f(0))))}. We of course obtain the same result if
we synchonize them through the trivial symmetry on their common interface:

id : xTB
∼=B x

T
B .
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But there is another endosymmetry on xB = xSB = xTB, namely

sw : xTB
∼=B x

T
B ,

exhanging the two copies. Synchronizing xS and xT through sw via Lemma 6 instead gives:

{Xk(g(0),f(h(g(0))))}

which is not symmetric to {Xk(f(0),g(h(f(0))))} in T⊙S. Indeed, intuitively, in x
S we only have

the information that there were two calls to σ, with distinct non-deterministic resolutions.
We do not know, just by looking at xS , which one is the “first call” and which one is
the “second call”. The symmetry θ : xSB

∼=B xTB “plugs” the two calls in xT to their two
non-deterministic resolutions in xS. With id the first call selected ⊕f(i) and the second call
⊕g(i), and the other way around for sw; leading to non-symmetric outcomes.

Well, this is puzzling. If the obvious candidate for a bijection between witnesses z ∈
witτ⊙σ(xA, xC) and pairs of witnesses zS ∈ witσ(xA, xB) and z

T ∈ witτ (xB, xC) for some xB
does not work, how can we hope to obtain (2)? This makes one wonder by what miracle
the weighted relational model works at all – what does it really count?

Concrete witnesses. To investigate this issue we introduce an alternative, more con-
crete choice for witnesses. It is rooted in the following fact (Lemma 3.28 in [5]):

Lemma 8. Let σ : S → A be a pre-∼-strategy on A, and let θ : x ∼=S y such that σθ ∈ ∼=+
A.

Then, x = y and θ = idx.

For this, the condition thin plays a crucial role. Intuitively, thinness means that the
strategy has a canonical choice of copy indices for its moves, once Opponent fixes their
choice of copy indices. Accordingly, the lemma above may be interpreted as saying that
provided we remain in the positive symmetry (i.e. we do not change Opponent’s copy
indices), then the choice of the concrete configuration x ∈ C (S) is unique. This suggests
that we might take witσ(xA, xB) to range over concrete configurations of S matching with the
game up to positive symmetry – of course, for that we need reference concrete configurations
of the game rather than symmetry classes. So let us fix a choice, for any tcg A and any
symmetry class xA ∈ C∼=(A), of a concrete representative written xA ∈ xA.

Our alternative definition of witnesses is, for σ : A
S
→ B, xA ∈ C∼=(A) and xB ∈ C∼=(B):

wit+σ (xA, xB) = {xS ∈ C
+(S) | xSA

∼=−
A xA & xSB

∼=+
B xB}

It will turn out (see Section 6) that (even assuming representability) these two notions
of witnesses are not equivalent: the weighted relational model counts not symmetry classes,
but concrete witnesses up to positive symmetry. In the rest of this paper, we aim to prove
(as mentioned above, modulo one additional condition on games) that wit+, unlike wit,
does the trick3. This will be quite the ride, so switch off your phone, fasten your seat belt,
as we must now embark on a journey into the darkest corners of thin concurrent games.

3An early sign that wit
+ is better behaved is that unlike wit, it does not depend on the choice of the

symmetry for σ – recall from Section A.1.2 in [5] that the symmetry is not unique.
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4 Canonical configurations and representable games

4.1 Canonical representatives of symmetry classes

To motivate the development of this section, let us look at the definition just above:

wit+σ (xA, xB) = {xS ∈ C
+(S) | xSA

∼=−
A xA & xSB

∼=+
B xB} .

This definition depends on a choice of a representative xA, once and for all, for every
symmetry class xA. Of course, the set of witnesses we obtain this way depends on this
choice: a different choice of representatives yields configurations of S where Opponent uses
different copy indices. But what we really need for this definition to be of any use, is that
the cardinal of wit+σ (xA, xB) should not depend on the representatives xA, xB.

Bad news: it does.

Example 9. Remember the game B = !HO(⊖ _ ⊕) of Example 7. Consider the strategy

⊕0

❴���

⊕h(i)

❴���
⊖i

✼ 77A
✇✇✇
⊖j

written σ : S → B⊥, which is τ of Example 7 without the last move.
Now, imagine that we fix as representative for a symmetry class in B⊥ the configuration:

xB =
⊕1 ⊕2

⊖1 ⊖2

.

Let us consider the configurations of S matching xB up to positive symmetry. First, a
configuration x ∈ C (S) matching our requirements has four moves, and each Player move
has exactly one successor. So it must have the following form, for some i, j ∈ N,

⊕1

❴���

⊕h(i)

❴���
⊖i

✼ 77A✇✇✇
⊖j

(3)

and finding the witnesses for xB boils down to figuring out all possible positive symmetries

θ :

⊕1 ⊕h(i)

⊖i ⊖j

∼=+
B⊥

⊕1 ⊕2

⊖1 ⊖2

The positive symmetry of B⊥ is the negative symmetry of B: it lets us change the
indices of minimal events, but the second component for positive events must be left
unchanged. We may freely associate the minimal events either as ⊕1 ↔ ⊕1 and ⊕h(i) ↔ ⊕2;
or as ⊕1 ↔ ⊕2 and ⊕h(i) ↔ ⊕1. But if we do the former, as the symmetry is positive it

11



forces i = 1 and j = 2. Likewise, if we do the latter, it forces i = 2 and j = 1. So overall,
there are exactly two configurations of S matching xB up to positive symmetry:

⊕1

❴���

⊕h(1)

❴���
⊖1

✻ 66@✈✈✈
⊖2

⊕1

❴���

⊕h(2)

❴���
⊖2

✻ 66@✈✈✈
⊖1

In particular, there are two witnesses for xB. This is confusing, because these two
configurations are symmetric in S, so we seem to be counting the same symmetry class of
S twice – and we shall see indeed that this is a pathological example.

In contrast, assume we pick as representative for xB the following configuration:

x′B =
⊕1 ⊕2

⊖1 ⊖1

.

Now, there is only exactly one configuration of S matching x′B up to positive symmetry:

⊕1

❴���

⊕h(1)

❴���
⊖1

✻ 66@✈✈✈
⊖1

Indeed, starting from (3), the positive symmetry forces i and j to be both 1; and we
obtain the unique configuration above. So the choice of xB affects the number of witnesses.

What is the moral of the story? This is subtle. Notice that while there is indeed
exactly one configuration x ∈ C (S) matching x′B up to positive symmetry, there are still
two symmetries θ : σx ∼=+

B⊥ x′B, corresponding to {⊕1 ↔ ⊕1,⊕h(1) ↔ ⊕2} and {⊕1 ↔
⊕2,⊕h(1) ↔ ⊕1}. So for xB we get two witnesses, and each has one positive symmetry
to xB; while for x′B we get one witness, with two positive symmetries. So the mismatch
between the representatives is explained if one factors in the number of positive symmetries.

To comment further: there are two positive endo-symmetries x′B
∼=+
B⊥ x′B: the identity,

and the swap between positive events. In contrast, in xB, swapping the positive events

⊕1 ⊕2

⊖1 ⊖2

∼=+
B⊥

⊕2 ⊕1

⊖1 ⊖2

while preserving Opponent indices cannot be achieved via an endosymmetry, this requires
changing the configuration. To avoid such pathological cases, we must select xB such that
the positive symmetry whose effect is, intuitively, merely to swap (the copy indices of) two
Player events, still has xB as codomain. We do not have a definition capturing exactly
this, as it is not clear how to formalize this idea of the minimal symmetry “swapping two
Player events”. However, for our purposes the following definition does the job.

Definition 10. Consider A a tcg, and x ∈ C (A).

12



We say that x is canonical iff any θ : x ∼=A x factors uniquely as

x
θ−

∼=−
A x

θ+
∼=+
A x ,

with in particular x in the middle.

So endo-symmetries of canonical configurations decompose as endo-symmetries, positive
and negative. Of course we already know that all endosymmetries (like all symmetries)
decompose as the composite of a positive and a negative symmetries (see Lemma 3.19
of [5]). But there is a priori no reason why the decomposition should have the same
configuration in the middle. This is in fact not always the case: for instance, picking the
problematic configuration xB of the example above, we have the decomposition

⊕1 ⊕2

⊖1 ⊖2

∼=−
B⊥

⊕1 ⊕2

⊖2 ⊖1

∼=+
B⊥

⊕2 ⊕1

⊖2 ⊖1

where rather than drawing the symmetries, we suggest them by considering that they
preserve the position of events in the diagrams. If we wish to avoid the problem mentioned
above, we must project strategies only on canonical representatives of symmetry classes.
But for that, we need to be sure that such canonical representatives always exist.

Of course, there is no free lunch: in the full generality of tcgs, that is not the case4.

Example 11. Consider the tcg A, with events, polarities, and causality and follows:

⊖1 ⊖2

⊕1 ⊕2

Its symmetry comprises all order-isomorphisms between configurations. The negative
symmetry has all order-isomorphisms included in one of the two maximal bijections

⊖1 ⊖2

⊕1 ⊕2

∼=−
A

⊖1 ⊖2

⊕1 ⊕2

⊖1 ⊖2

⊕1 ⊕2

∼=−
A

⊖2 ⊖1

⊕2 ⊕1

where again, the bijection matches those events in the corresponding position of the dia-
gram. Likewise, the positive symmetry has all order-isomorphisms included in one of:

⊖1 ⊖2

⊕1 ⊕2

∼=+
A

⊖1 ⊖2

⊕1 ⊕2

⊖1 ⊖2

⊕1 ⊕2

∼=+
A

⊖1 ⊖2

⊕2 ⊕1

forming, altogether, a tcg. Then, the endosymmetry

⊖1 ⊖2

⊕1

∼=A

⊖2 ⊖1

⊕1

4The following example is due to Marc de Visme.
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which is neither positive nor negative, uniquely factors as

⊖1 ⊖2

⊕1

∼=−
A

⊖2 ⊖1

⊕2

∼=+
A

⊖2 ⊖1

⊕1

which is not formed of endosymmetries. So this configuration is not canonical, but its only
symmetric {⊖1,⊖2,⊕2} is not canonical either, for the same reason.

Fortunately, no such pathological example arises in the games that (to our knowledge)
have found a use in semantics of logics and programming languages. Next we shall propose
the existence of a canonical representative as a new axiom for tcgs, and show that it is
preserved by all useful constructions on games.

4.2 Representable games

The axiom of representability simply requires the existence of canonical representatives.

Definition 12. Consider A a tcg.
We say that A is representable iff for all x ∈ C∼=(A), there is x ∈ x canonical.

If A is representable we may consider fixed in advance a choice, for every symmetry class
x ∈ C∼=(A), of a canonical representative x ∈ C (A). For this to be a reasonable condition
on tcgs, we must check that all the common game constructions preserve representability.

Basic constructions. First, we review the common game constructions that have few
interactions with the symmetry. Clearly, the empty game is representable. We have:

Lemma 13. Consider A,B representable tcgs. Then,

(1) A⊥ is representable,
(2) A ‖ B is representable.

Proof. (1) the dual exchanges ∼=+
A and ∼=−

A and the definition of canonical is symmetric.
(2) If xA ‖ xB ∈ C∼=(A ‖ B), we simply set xA ‖ xB = xA ‖ xB. Canonicity follows

directly from that of xA and xB, exploiting the fact that any endosymmetry

θ : xA ‖ xB
∼=A‖B xA ‖ xB

must have the form θ = θA ‖ θB for endosymmetries θA : xA
∼=A xA and θB : xB

∼=B xB.

The above are the game constructions used in the compact closed structure of thin
concurrent games. With similarly direct proofs, we cover all the frequent constructions on
tcgs that are essentially independent of symmetry: the shifts ↑ A (resp. ↓ A) which prefix
the game A with a new negative (resp. positive) move (see e.g. [7]), the sum

∑
i∈I Ai

having all Ai in pairwise conflict (see e.g. [7]), the linear arrow M ⊸ N of negative M,N

– for all those, preservation of representability is direct. What requires more care is the
fact that the constructions that introduce symmetry do indeed preserve representability.
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HO exponential. We start with the Hyland-Ong style exponential. Recall that it takes
an arena in the usual Hyland-Ong sense, i.e. a forestial partial order, without symmetry.
We refer to [5] for the definition of !HOA for A an arena and the associated notations.

We have the proposition:

Proposition 14. For A any arena, !HOA is a representable thin concurrent game.

Proof. Within this proof (and only), by !A we mean !HOA. Those configurations x ∈
C (!HOA) with exactly one initial move are entirely determined by:

(1) their label lbl(min(x)),
(2) their copy index ind(min(x)),
(3) for each min(x) _ a, the sub-configuration starting with a.

Any x ∈ C (!A) with index i, label a and sub-configurations x1, . . . , xn may be written

x = i · ({x1, . . . , xn} ⊸ a) ∈ C (!A)

where each xi is written similarly, with a notation inspired from intersection types. But
then, using that similarly any xj is written ij · (Xj ⊸ aj), we may rewrite x as

i · ((i1 · x
′
1, . . . , in · x

′
n) ⊸ a)

where each x′j = Xj ⊸ aj . Going one step further, write

x = i · ((i11 · x
1
1, . . . , i

1
p1
· x1p1) ⊸ . . .⊸ (im1 · xm1 , . . . , i

m
pm

· xmpm) ⊸ a) ,

regrouping sub-trees by symmetry classes. If x is to be canonical, then for any 1 ≤ k ≤ m,
any ikl and ikl′ should be swapped by an endosymmetry; implying xkl = xkl′ . So we set

x′ = i · ((i11 · x
1
1, . . . , i

1
p1
· x11) ⊸ . . .⊸ (im1 · xm1 , . . . , i

m
pm

· xm1 ) ⊸ a) ,

which is symmetric to x by construction; moreover if for all 1 ≤ k ≤ m, xk1 is assumed
canonical by induction hypothesis, then one may verify that x′ is canonical.

We omit the details on that last verification, as it is the exact same reasoning as for the
AJM exponential, which we give more formally below. Unsuprisingly, the proof for AJM
bears much in common with the one above. We started with HO as we believe that the
more concrete nature of games obtained through the HO exponential makes the reasoning
slightly more transparent: we wish to construct a configuration where any two moves with
swappable copy indices have the exact same sub-trees below, so that the two copy indices
may be simply swapped leaving the remainder of the configuration unchanged.
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AJM exponential. The AJM exponential is our main source of non-trivial symmetries.

Lemma 15. Consider N a representable negative thin concurrent game, i.e. all its mini-
mal events are negative. Then, the thin concurrent game !N is representable.

Proof. Let x ∈ C (!N), of the form x = ‖i∈I xi, where xi ∈ C (N). Let us partition I as

I =
⊎

k∈K

Ik

such that for all i, j ∈ I, xi ∼=N xj iff there is some k ∈ N such that i, j ∈ K. For each i ∈ I,
write f(i) ∈ K for the corresponding component. For each k ∈ K, fix some g(k) ∈ Ik.

Now, fix k ∈ K. SinceN is representable, there is xg(k) ∼=N canon(xg(k)) with canon(xg(k))
canonical. Then for each j ∈ Ik we replace xj with canon(xg(k)); or more formally we set

x′ = ‖i∈I canon(xg(f(i))) ∈ C (!N) .

We clearly have x ∼=!N x′; indeed, for each i ∈ I, we have xi ∼=N xg(f(i)) ∼=N canon(xg(f(i))).
Furthermore, x′ is canonical. Indeed, writing x′i = canon(xg(f(i))), consider now any symetry

θ : ‖i∈I x
′
i

∼=!N ‖i∈I x
′
i .

By definition, there is π : I → I a permutation, and for all i ∈ I a symmetry θi : x
′
i
∼=N

x′π(i). But by construction, this means that we had xi ∼=N xπ(i) as well, so i, π(i) belong to

the same component of the partition and g(f(i)) = g(f(π(i))). Therefore, by construction,
x′i = x′π(i). But x

′
i is canonical, so θi decomposes as

x′i

θ−
i

∼=−
N x′i

θ+
i

∼=+
N x′i .

Setting θ−(i, e) = (π(i), θ−i (e)) and θ+(i, e) = (i, θ+i (e)), we have the required decom-
position of θ, showing that x′ is canonical, as required.

In the rest of this paper, we aim to make it explicit whenever this condition is required.

5 Quantitative collapse

By now we have added a new condition on games which eliminates some pathological
examples, and we have proved that this condition is preserved by all sensible constructions
on games. It remains to be seen whether this condition does solve the problem at hand.
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5.1 Actions of negative symmetries on strategies

Before we start, recall that for A,B tcgs (which from now on will always be assumed to

be representable), σ : A
S
→ B a strategy and xA ∈ C∼=(A), xB ∈ C∼=(B), we have set

wit+σ (xA, xB) = {xS ∈ C
+(S) | xSA

∼=−
A xA & xSB

∼=+
B xB} ,

where xA and xB are the canonical representatives given by representability of A and B.
Our next step will be to investigate how negative symmetries act on witnesses. Our

starting point for that is the following lemma, Lemma B.4 in [5].

Lemma 16. Consider σ : S → A a pre-∼-strategy, xS ∈ C (S) and θ− : xSA
∼=−
A yA. Then,

there is a unique ϕ : xS ∼=S y
S s.t. σϕ = θ+ ◦ θ− : xSA

∼=A y
S
A for some θ+ : yA ∼=+

A y
S
A.

This is our main tool to have negative symmetries act on strategies. If xS ∈ C (S) and
θ− : xSA

∼=−
A yA presents a change in Opponent’s copy indices, we can make θ− “act on” xS:

Player adapts to the change of Opponent copy indices and presents some ϕ : xS ∼=S y
S.

It is tempting to invoke some group theory here. For any x ∈ C (A), we have three
groups: the group S (x) of endosymmetries θ : x ∼=A x, the group S+(x) of positive
endosymmetries, and the group S−(x) of negative endosymmetries. When applied to
symmetry classes, as in S (x) for x ∈ C∼=(A), these operations mean S (x). Of course,
if x ∼=A y then any θ : x ∼=A y provides an iso between S (x) and S (y) by conjugation.
Warning: if x ∼=A y we do not necessarily have S−(x) and S−(y) isomorphic (and of course,
likewise for S+(−)), so the notation S−(x) is borderline – we insist that it means S−(x)
and depends on the chosen representative. This shall hopefully cause no confusion.

Now, for σ : S → A and xA ∈ C (A), it is tempting to make S−(xA) act on the set

X = {xS ∈ C (S) | σxS = xA} ,

but for θ− ∈ S−(xA) and x
S ∈ X , there is no reason why the ϕ : xS ∼=S y

S obtained via
Lemma 16 would satisfy σyS = xA and hence remain in X .

So we add a bit of wiggling room. For xA ∈ C∼=(A), we define the set

∼+-wit
+
(xA) = {(xS, θ+) | x

S ∈ C
+(S), θ+ : xSA

∼=+
A xA}

of witnesses for xA along with a specific choice of positive symmetry. Then we indeed have:

Proposition 17. Consider A a tcg and xA ∈ C∼=(A). There is a group action

( y ) : S−(xA)×∼+-wit
+
(xA) → ∼+-wit

+
(xA) ,

such that for all (yS, ψ+) = ϕ− y (xS, θ+), there is φS : xS ∼=S y
S making the diagram

xSA
θ+ //

φS
A

��

xA

ϕ−

��
ySA ψ+

// xA

commute.
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Proof. Consider (xS, θ+) ∈ ∼+-wit+(xA) and ϕ− ∈ S−(xA). We show that there is unique
φS : xS ∼=S y

S and ψ+ : ySA
∼=+
A xA making the following diagram commute:

xSA
θ+ //

φS
A

��

xA

ϕ−

��
ySA ψ+

// xA

For existence, by Lemma 3.19 of [5], ϕ− ◦ θ+ : xSA
∼=A xA factors uniquely as

Ξ+ ◦ Ξ− : xSA
∼=A xA .

Next, by Lemma 16, there is φS : xS ∼=S y
S such that we have

φSA = Ω+ ◦ Ξ− : xSA
∼=A y

S
A

for some Ω+ : yA ∼=+
A y

S
A. We then form ψ+ = Ξ+ ◦ Ω−1

+ to conclude.
For uniqueness, if we have ϕ1 : x

S ∼=S y
S and ϕ2 : x

S ∼=S z
S satisfying the requirements,

ySA
(σϕ1)−1

//

+

��

xSA

+

��

σϕ2 // zSA

+

��
xA

ϕ−1
−

// xA ϕ−

// xA

commutes, so (σϕ2) ◦ (σϕ1)
−1 = σ(ϕ2 ◦ ϕ

−1
1 ) is positive, so by Lemma 3.28 of [5] we have

ϕ2 ◦ ϕ
−1
1 = id, so ϕ1 = ϕ2.

Note that in the proof, we have actually not used the representability assumption.
However, it will come in to deduce a property useful for elaborate forms of the collapse
(namely, in the quantum case). For that, we need the following intermediate lemma.

Lemma 18. Consider A a representable tcg, xA ∈ C∼=(A), and x ∈ C (A) s.t. x ∼=+
A xA.

Then, any θ : x ∼=A xA factors uniquely as θ−◦θ+, where θ+ : x ∼=+
A xA and θ− ∈ S−(xA).

Proof. Fix some ϕ : x ∼=+
A xA. Now, take θ : x ∼=A xA. By Lemma 3.19 of [5], θ factors

uniquely as θ− ◦ θ+, where θ+ : x ∼=+
A z and θ− : z ∼=−

A xA for some z ∈ C (A). But then,

ϕ ◦ θ−1 : xA
∼=A xA

factors via (ϕ◦θ−1
+ ) : z ∼=+

A xA and θ−1
− : xA

∼=−
A z, so xA = z follows since xA is canonical.

For A a tcg and xA ∈ C∼=(A), we have previously defined

∼+-wit
+
(xA) = {(xS, θ+) | x

S ∈ C
+(S), θ+ : xSA

∼=+
A xA}

the set of witnesses for xA up to positive symmetry, along with a specific choice of positive
symmetry θ+ : xSA

∼=+
A xA. We shall now also consider the variation

∼-wit+(xA) = {(xS, θ) | xSA
∼=+
A xA & θ : xSA

∼=A xA}

where we know that xSA
∼=+
A xA, but θ : x

S
A
∼=A xA may not be positive.
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Corollary 19. Consider A a representable tcg and xA ∈ C∼=(A). Then, the function

F : ∼-wit+(xA) → ∼+-wit+(xA)
(xS, θ− ◦ θ+) 7→ θ− y (xS, θ+)

is such that any X ∈ ∼+-wit+(xA) has exactly |S−(xA)| antecedents.

Proof. The definition of F makes use of the decomposition of all symmetries θ : xSA
∼=A xA

offered by Lemma 18, using canonicity of xA. The statement on the number of antecedents
is an immediate consequence of the group action of Proposition 17.

The reader might not immediately see the point; in fact we will not use this to establish
(2), but it fits in this paper as it is required for more elaborate versions of this construction,
in particular in the presence of quantum valuations [7].

5.2 Quantitative synchronization up to symmetry

Let us fix for this section two strategies σ : A
S
→ B and τ : B

T
→ C.

Witnessing strategies and interactions. We write elements of ∼+-wit+σ (xA, xB) as
triples (θA−, x

S, θB+); as an alias for (xS, θA− ‖ θB+) ∈ ∼+-wit+σ (xA ‖ xB). Two witnesses

(θA−, x
S, θB+) ∈ ∼+-wit

+
σ (xA, xB) , (ΩB−, x

T ,ΩC+) ∈ ∼+-wit
+
τ (xB, xC) ,

are causally compatible iff the composite bijection (see Definition 4) is secured. We write

∼+-wit
+
σ (xA, xB) • ∼

+-wit
+
τ (xB, xC)

for the set of causally compatible pairs (wσ,wτ ) ∈ ∼+-wit+σ (xA, xB)×∼+-wit+τ (xB, xC).
To accompany our notions of witnesses for strategies we shall need to provide witnesses

for interactions. If xA ∈ C∼=(A), xB ∈ C∼=(B) and xC ∈ C∼=(C), we write

int+τ⊛σ(xA, xB, xC) = {xT ⊛ xS ∈ C
+(T ⊛ S) | xSA

∼=−
A xA, x

S
B = xTB

∼=B xB, & xTC
∼=+
C xC} .

Like for strategies, we also write ∼+-int+τ⊛σ(xA, xB, xC) for the set

{(θA−, x
T
⊛ xS, θC+) | θ

A
− : xSA

∼=−
A xA, x

T
⊛ xS ∈ int+τ⊛σ(xA, xB, xC), & θC+ : xTC

∼=+
C xC} .

interaction witnesses along with specific symmetries to the game. Finally, we write:

int+τ⊛σ(xA, xC) = {xT ⊛ xS ∈ C
+(T ⊛ S) | xSA

∼=−
A xA, & xTC

∼=+
C xC}

for the variant of int+τ⊛σ(xA, xB, xC) with no constraint in B. Clearly, we have:

Lemma 20. Consider σ : A
S
→ B and τ : B

T
→ C, xA ∈ C∼=(A) and xC ∈ C∼=(C). Then:

int+τ⊛σ(xA, xC) =
⊎

xB∈C∼=(B)

int+τ⊛σ(xA, xB, xC)

where the notation ⊎ means the plain set-theoretic union when it is disjoint.

Proof. Simply partition interactions according to the symmetry class reached in B.
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Interactions up to symmetry. We start with a more explicit variant of Lemma 6.

Lemma 21. For any pair of causally compatible witnesses

(θA−, x
S, θB+) ∈ ∼+-wit

+
σ (xA, xB) , (ΩB−, x

T ,ΩC+) ∈ ∼+-wit
+
τ (xB, xC) ,

there are unique symmetries ωS : xS ∼=S y
S, νT : xT ∼=T y

T , ΘB : xB
∼=B yB and witness

(ψA−, y
T
⊛ yS, ψC+) ∈ ∼+-int

+
τ⊛σ(xA, xB, xC)

with ySB = yTB = yB, such that the following diagrams commute:

xSAθA
−

yysss
ss
s

ωS

A

��

xSB
θB
+ //

ωS

B

��

xB

ΘB

��

xTB

νT
B

��

ΩB
−oo xTC ΩC

+

%%❑❑
❑❑

❑❑

νT
C

��

xA xC

ySA
ψA
−

ee❑❑❑❑❑❑
ySB yB yTB yTC

ψC
+

99ssssss

Proof. By Lemma 6, there are unique symmetries ωS : xS ∼=S y
S, νT : xT ∼=T y

T , and

(ψA−, y
T
⊛ yS, ψC+) ∈ ∼+-int

+
τ⊛σ(xA, xB, xC)

with ySB = yTB = yB, such that the following diagrams commute:

xSAθA
−

yysss
ss
s

ωS

A

��

xSB
θB+ //

ωS

B

��

xB xTB

νT
B

��

//
(ΩB

−
)−1

xTC ΩC
+

%%❑❑
❑❑

❑❑

νT
C

��

xA xC

ySA
ψA
−

ee❑❑❑❑❑❑
ySB yB yTB yTC

ψC
+

99ssssss

We simply set ΘB : xB → yB as either path around the center diagram.

Thanks to the previous section we may reverse this operation, as shown below.

Lemma 22. For any symmetry ΘB : xB
∼=B yB and any witness

(ψA−, y
T
⊛ yS, ψC+) ∈ ∼+-int

+
τ⊛σ(xA, xB, xC)

with ySB = yTB = yB, there are unique symmetries ωS : xS ∼=S y
S, νT : xT ∼=T y

T and

(θA−, x
S, θB+) ∈ ∼+-wit

+
σ (xA, xB) , (ΩB−, x

T ,ΩC+) ∈ ∼+-wit
+
τ (xB, xC) ,

a pair of causally compatible witnesses, such that the following diagrams commute:

xSAθA
−

yysss
ss
s

ωS

A

��

xSB
θB+ //

ωS

B

��

xB

ΘB

��

xTB

νT
B

��

ΩB
−oo xTC ΩC

+

%%❑❑
❑❑

❑❑

νT
C

��

xA xC

ySA
ψA
−

ee❑❑❑❑❑❑
ySB yB yTB yTC

ψC
+

99ssssss
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Proof. The first step is to factor Θ−1
B in two ways, as in the diagram

z1B
ΦB

+ // xB z2B
ΨB

−oo

xA xC

ySA
ψA
−

ee❑❑❑❑❑❑
ySB yB

ΦB
−

\\✾✾✾✾✾✾✾✾✾✾

Θ−1

B

OO

ΨB
+

BB✆✆✆✆✆✆✆✆✆✆
yTB yTC

ψC
+

99ssssss

following Lemma 3.19 of [5]. By Lemma 16 we can make ΦB− act on σ. This yields

λA− : xSA
∼=−
A y

S
A , ωS : xS ∼=S y

S , ∆B
+ : xSB

∼=+
B z

1
B ,

unique such that the following diagram commutes:

xSAλA
−

zztt
tt
tt

ωS

A

��

xSB

ωS

B

��

∆B
+ // z1B

ΦB
+ // xB z2B

ΨB
−oo

xA ySA
ψA
−

oo

❏❏
❏❏

❏❏

❏❏
❏❏

❏❏
xC

ySA ySB yB

ΦB
−

[[✼✼✼✼✼✼✼✼✼✼✼

Θ−1

B

OO

ΨB
+

CC✞✞✞✞✞✞✞✞✞✞✞
yTB yTC

ψC
+

::✉✉✉✉✉✉

leaving in grey the irrelevant parts of the full diagram for context. Setting θA− = ψA− ◦ λA−
and θB+ = ΦB+ ◦∆B

+, we have found data making the following diagram commute:

xSAθA
−

||①①①
①①

ωS
A

��

xSB

ωS
B

��

θB+ // xB

ΘB

��

z2B
ΨB

−oo

xA xC

ySA
ψA
−

bb❋❋❋❋

ySB yB

ΨB
+

EE☛☛☛☛☛☛☛☛☛☛
yTC yTC

ψC
+

<<①①①①

We shall now prove uniqueness of this data. Assume that we have other symmetries

γA− : uSA
∼=−
A xA , ̟S : uS ∼=S y

S , γB+ : uSB
∼=+
B xB ,

making the following diagram commute:

uSAγA
−

||①①①
①①

̟S

A

��

uSB

̟S

B

��

γB+ // xB

ΘB

��

z2B
ΨB

−oo

xA xC

ySA
ψA
−

bb❋❋❋❋

ySB yB

ΨB
+

EE✡✡✡✡✡✡✡✡✡
yTC yTC

ψC
+

<<①①①①

Then, it follows that the following diagram also commutes:

uSA(ψA
−
)−1◦γA

−

zzttt
tt
t

̟S

A

��

uSB

̟S

B

��

(ΦB
+
)−1◦γB

+ // z1B
ΦB

+ // xB z2B
ΨB

−oo

xA ySA
ψA
−

oo

❏❏
❏❏

❏❏

❏❏
❏❏

❏❏
xC

ySA ySB yB

ΦB
−

[[✼✼✼✼✼✼✼✼✼✼✼

Θ−1

B

OO

ΨB
+

CC✞✞✞✞✞✞✞✞✞✞✞
yTB yTC

ψC
+

::✉✉✉✉✉✉
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By uniqueness for Lemma 16, it follows that uS = xS , ωS = ̟S, λA− = (ψA−)
−1 ◦ γA− so

γA− = θA−, and (ΦB+)
−1 ◦ γB+ = ∆B

+ so γB+ = θB+ . Altogether, we have proved that there are

θA− : xSA
∼=S xA , ωS : xS ∼=S y

S , θB+ : xSB
∼=+
B xB ,

unique making the following diagram commutes:

xSAθA
−

||①①①
①①

ωS

A

��

xSB

ωS

B

��

θB
+ // xB

ΘB

��

z2B
ΨB

−oo

xA xC

ySA
ψA
−

bb❋❋❋❋

ySB yB

ΨB
+

EE✡✡✡✡✡✡✡✡✡
yTC yTC

ψC
+

<<①①①①

The lemma follows by performing the exact same reasoning on the right hand side.

5.3 Witnesses of interaction

With Lemmas 21 and 22 we have done the hardest part of the job; but to collect the fruits
of that work we need to introduce some additional notation. We write S (xB) for the set
of endosymmetries on xB. Let us fix a choice, for every x ∈ xB, of some

κx : x ∼=B xB .

Transporting through (κx)x∈xB gives a bijection, for any two x, y ∈ xB, between the set
of symmetries x ∼=B y and the set S (xB). If θ ∈ S (xB) and x, y ∈ xB, let us write

θ[x, y] : x ∼=B y

the transported symmetry obtained as κ−1
y ◦ θ ◦ κx.

Corollary 23. There is a bijection

Υ : ∼+-wit
+
σ (xA, xB) • ∼

+-wit
+
τ (xB, xC) → ∼+-int

+
τ⊛σ(xA, xB, xC)× S (xB)

such that for every pair of causally compatible witnesses

(w1,w2) = ((θA−, x
S, θB+), (ΩB−, x

T ,ΩC+)) ∈ ∼+-wit
+
σ (xA, xB) • ∼

+-wit
+
τ (xB, xC) ,

writing ((ψA−, y
T ⊛ yS, ψC+), ϕ) = Υ(w1,w2), yB = ySB = yTB, ΘB = ϕ[xB, yB], there are

ωS : xS ∼=S y
T and νT : xT ∼=T y

T such that the following diagrams commute:

xSAθA
−

yysss
ss
s

ωS

A

��

xSB
θB+ //

ωS

B

��

xB

ΘB

��

xTB

νT
B

��

ΩB
−oo xTC ΩC

+

%%❑❑
❑❑

❑❑

νT
C

��

xA xC

ySA
ψA
−

ee❑❑❑❑❑❑
ySB yB yTB yTC

ψC
+

99ssssss

22



Proof. Straightforward from Lemmas 21 and 22. Note that ωS and νT are unique; the
requirements of the diagrams constrain them entirely due to local injectivity of σ, τ .

The commutation of this diagram is required for situations where one would exploit this
in the presence of valuations on configurations that are typed and transported coherently
through symmetry, such as for quantum valuations [7]. However, if one is merely interested
in counting the witnesses, then the take home message is:

Corollary 24. For any xA ∈ C∼=(A), xB ∈ C∼=(B) and xC ∈ C∼=(C), we have

|∼+-wit
+
σ (xA, xB) • ∼

+-wit
+
τ (xB, xC)| = |∼+-int

+
τ⊛σ(xA, xB, xC)| × |S (xB)| . (4)

If we know that the strategies to be composed do not deadlock, then this can be
simplified further.

Corollary 25. Assume σ : A
S
→ B and τ : B

T
→ C do not deadlock. Then,

|∼+-wit
+
σ (xA, xB)| × |∼+-wit

+
τ (xB, xC)| = |∼+-int

+
τ⊛σ(xA, xB, xC)| × |S (xB)| ,

Proof. By hypothesis, causal compatibility is always satisfied. Therefore,

∼+-wit
+
σ (xA, xB) • ∼

+-wit
+
τ (xB, xC) = ∼+-wit

+
σ (xA, xB)×∼+-wit

+
τ (xB, xC)

and the result follows from Corollary 24.

This takes us close to Equation 2. One may wonder what is left to conclude; a hint is
the fact that for now, in this section, we have not used canonicity of representatives.

5.4 Witnesses and canonicity

The moral of Equation 4 seems clear: on the left hand side witnesses have the liberty to
pick any positive symmetry on respectively B and B⊥ to interact, whereas on the right
hand side they must match on the nose. Adding |S (xB)| on the right balances this out.

Let us look deeper into this. From now on, we will rely heavily on canonicity of
representatives. A first consequence of that is the following:

Lemma 26. If B is representable, then for all xB ∈ C∼=(B), we have

|S (xB)| = |S−(xB)| × |S+(xB)| .

Proof. Obvious consequence of the definition of canonicity.

Indeed this is almost the definition of canonicity, which states that every endosymmetry
on xB factors uniquely as the composition of a positive and a negative endosymmetries of
xB. Almost as obvious is the following fact:
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Lemma 27. For any σ : A
S
→ B, τ : B

T
→ C, xA ∈ C∼=(A), xB ∈ C∼=(B), and xC ∈ C∼=(C),

|∼+-wit
+
σ (xA, xB)| = |S−(xA)| × |wit+σ (xA, xB)| × |S+(xB)|

|∼+-int
+
τ⊛σ(xA, xB, xC)| = |S−(xA)| × |int+τ⊛σ(xA, xB, xC)| × |S+(xC)|

Proof. We only detail the first equality, the reasoning for the other is identical. Let us
choose, for every x ∈ xB such that x ∼=+

B xB, some positive symmetry κBx : xB
∼=+
B x.

Likewise we choose, for each y ∈ xA such that y ∼=−
A xA, some κAy : xA

∼=−
A y.

Now, we form the function:

G : ∼+-wit+σ (xA, xB) → S−(xA)× wit+σ (xA, xB)× S+(xB)
(θA−, x

S, θB+) 7→ (θA− ◦ κA
xS
A

, xS , θ
B
+ ◦ κB

xS
B

)

which is clearly a bijection as positive and negative symmetries are invertible.

5.5 Wrapping up

Finally, we are now in position to prove:

Theorem 28. Consider σ : A
S
→ B and τ : B

T
→ C that do not deadlock, and assume that

B is representable. Then, for all xA ∈ C∼=(A), xC ∈ C∼=(C), we have

(∫ (τ ⊙ σ))
xA,xC =

∑

xB∈C∼=(B)

(∫ σ)
xA,xB · (∫ τ)

xB,xC .

Proof. We calculate

(∫ (τ ⊙ σ))
xA,xC = |wit+τ⊙σ(xA, xC)| (5)

= |int+τ⊛σ(xA, xC)| (6)

=
∑

xB∈C∼=(B)

|int+τ⊛σ(xA, xB, xC)| (7)

=
∑

xB∈C∼=(B)

|∼+-int+τ⊛σ(xA, xB, xC)|

|S−(A)| · |S+(C)|
(8)

=
∑

xB∈C∼=(B)

|∼+-wit+σ (xA, xB)| · |∼
+-wit

+
τ (xB, xC)|

|S−(A)| · |S (B)| · |S+(C)|
(9)

=
∑

xB∈C∼=(B)

|S+(xB)| · |S−(xB)|

|S (xB)|
· |wit+σ (xA, xB)| · |wit

+
τ (xB, xC)| (10)

=
∑

xB∈C∼=(B)

|wit+σ (xA, xB)| · |wit
+
τ (xB, xC)| (11)

=
∑

xB∈C∼=(B)

(∫ σ)
xA,xB × (∫ τ)

xB,xC (12)
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where (5) is by definition, (6) is by Lemma 3, (7) is by Lemma 20, (8) is by Lemma 27,
(9) is by Corollary 25, (10) is by Lemma 27 again, (11) is by Lemma 26 exploiting that B
is representable; and (12) is by definition.

This concludes the proof of (2).

6 Epilogue: back to symmetry classes

To conclude, we show that our original notion of witness based on symmetry classes rather
than canonical representatives was, in fact, wrong. We give two counter-examples: the first
is geared towards simplicity, while the second aims to bring the counter-example as close
as possible to usual models of programming languages. The two examples are, however,
powered by the same phenomenon.

Example 29. Consider the games A⊥, C = X formed of only one positive move. The game
B = ⊖1 ⊖2 ⊕ has three moves, with ⊖1 and ⊖2 symmetric. We consider two strategies:

σ : A
S
→ B

⊖1

✵tt| ♣♣
♣♣♣

♣
❴���

⊖2

✯qqx ❥❥❥
❥❥❥❥

❥❥❥❥
❴���

X ⊕ /o ⊕

τ : A
T
→ C

⊕1 ⊕2

⊖
✑ $$,◗◗◗

◗

X

These are indeed valid strategies in the sense of [5]. Their composition is:

τ ⊙ σ : A
T⊙S
→ C

X X /o X

In particular, the non-deterministic choice on the right hand side originates from the
choice by σ: to which ⊖i should it react? In particular,

|witτ⊙σ({X}, {X})| = 2 ,

as the two occurrences of X on the right are not symmetric (this boils down to the fact
that ⊕1 and ⊕2 cannot be symmetric in τ , by thinness). On the other hand, the only
symmetry class of B on which these two may interact is {⊖1,⊖2,⊕}. And we have:

|witσ({X}, {⊖1,⊖2,⊕})| = 1 |witτ ({⊕1,⊕2,⊖}, {X})| = 1

In particular, the two configurations of σ responsible for the non-deterministic choice

σ : A
S
→ B

⊖1

✵tt| ♣♣
♣♣♣

♣
❴���

⊖2

✯qqx ❥❥❥
❥❥❥❥

❥❥❥❥

X ⊕

σ : A
S
→ B

⊖1

✵tt| ♣♣
♣♣♣

♣ ⊖2

✯qqx ❥❥❥
❥❥❥❥

❥❥❥❥
❴���

X ⊕
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are symmetric, so they form only one symmetry class and are counted only once in
witσ({X}, {⊖1,⊖2,⊕}) – whereas they are two distinct elements of wit+σ ({X}, {⊖1,⊖2,⊕}).

This also shows that it is not the case that configurations in wit+σ (x) are canonical
representatives of symmetry classes – they are better than that, as they get it right where
symmetry classes get it wrong.

We now show essentially the same example in a more “programming language” style.

Example 30. Consider a basic game o, with a unique move q−. Consider strategies:

σ : !o
S
→ (!o ⊸ o) ⊸ !o ⊸ o

q−

✮qqx ✐✐✐
✐✐✐✐

✐✐✐

q+

✹uu� tt
tt

q−i
✻vv� ✈✈
✈✈

✔ &&-❚❚❚❚
❚❚❚❚

❚❚❚

q+i q+i

τ : ((!o ⊸ o) ⊸ !o ⊸ o)
T
→ !o ⊸ o

q−

✮qqx ✐✐✐✐
✐✐✐✐

✐✐✐✐

q+

✮qqx ✐✐✐
✐✐✐✐

✐✐✐✐
✐

✷uu} rr
rrr

q−

✰rry ❦❦❦
❦❦❦

❦❦❦
✷uu} rr
rrr

q−i

✕ &&-❯❯❯❯
❯❯❯❯

❯❯❯❯

q+0 q+1 q+i

Note that the moves on the left are only there to ensure the +-covered hypothesis.
Their composition is:

τ ⊙ σ : !o
T⊙S
→ !o ⊸ o

q−

✫oov ❢❢❢❢❢
❢❢❢❢❢❢

❢❢❢❢❢❢
❢❢

✬ppw ❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣

✵tt| ♣♣
♣♣♣❇{{�

q+0 q+1 q+0 q+1

Now, as for the previous example, we observe:

|witτ⊙σ([q, q], [q] ⊸ q)| = 2

using an intersection type like notation for symmetry classes on the game, which hopefully
is clear. The reader may check that there is a unique symmetry class on (!o⊸ o) ⊸ !o⊸ o

on which the strategies may match to produce this via +-covered configurations, namely

([q, q] ⊸ q) ⊸ [q] ⊸ q

in the same intersection-type like notation. And we have

|witσ([q, q], ([q, q] ⊸ q) ⊸ [q] ⊸ q)| = 1 |witτ (([q, q] ⊸ q) ⊸ [q] ⊸ q), ([q], q))| = 1

for the same reason as in the previous example.

These strategies are not quite terms but they are very well-behaved, in particular visible
and parallel innocent. This counter-example does not quite contradict the claims of [3]
because there strategies are more constrained (in particular they are well-bracketed) and
the positions of interest (matching the points of the web) are complete. It is plausible that
this makes this pathology disappear – in particular Example 30 exploits non-well bracketed
behaviour, but this is pure speculation. In any case concrete witnesses as developped here
are definitely better behaved, and are recommended in all situations.
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