
HAL Id: hal-02860827
https://hal.science/hal-02860827v1

Preprint submitted on 8 Jun 2020 (v1), last revised 10 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Can Uncoordinated Beeps tell Stories?
Fabien Dufoulon, Janna Burman, Joffroy Beauquier

To cite this version:
Fabien Dufoulon, Janna Burman, Joffroy Beauquier. Can Uncoordinated Beeps tell Stories?. 2020.
�hal-02860827v1�

https://hal.science/hal-02860827v1
https://hal.archives-ouvertes.fr

Can Uncoordinated Beeps tell Stories?

FABIEN DUFOULON, Faculty of Industrial Engineering and Management, Technion

JANNA BURMAN and JOFFROY BEAUQUIER, Université Paris-Saclay, CNRS, LRI

The beeping model is an extremely restrictive communication model. Nodes communicate in discrete rounds using beeps—simple

bursts of energy—and carrier sensing. Simultaneous beeps produce (non-destructive) collisions, resulting in information loss. Such

communication differs greatly from the traditional communication mechanisms in distributed systems, like message-passing or shared

memory. Indeed, a beep is a unary signal that communicates no information (e.g., no message content, nor sender information) beyond

its own presence. As a result, in a round of beeping communication, hearing a beep means only that some (unknown) neighboring node

is communicating in this very round, whereas silence (i.e., hearing no beeps) means only that no neighboring node is communicating.

Most previous works assume that nodes all start (wake up) at the same time. In this (synchronous starts) setting nodes have

synchronized local clocks and thus synchronized round numbers. Via these round numbers, information can be extrinsically conveyed

in a round of beeping communication. For example, the parity of the round number allows to convey letters in {0, 1}. In contrast, we

consider here that nodes start in an uncoordinated manner. Thus two nodes may have arbitrarily different round numbers and no

information can be extrinsically conveyed in a single round. In the present paper, we show how non-trivial information—e.g., letters

from a binary alphabet—can be conveyed through several rounds instead. Applying tools from coding theory and additive number

theory, we propose communication schemes—binary words of length 𝑙 specifying how a node communicates during 𝑙 consecutive

rounds—allowing nodes to convey letters from an alphabet of size ℎ, for any constant ℎ ≥ 2 (known by all nodes). Direct application

of such schemes allows to implement a message-passing primitive with an exponential (in the number of message bits) multiplicative

overhead. Here, in contrast, we design an exponentially more efficient message-passing primitive.

First, we use these communication schemes to implement a 2-hop beep communication primitive, simulating beeping communication

on the square of the communication graph. Building upon this primitive, we present the first solution to the 2-hop desynchronization

problem in the beeping model with uncoordinated starts. This is a fundamental interference control problem, in which nodes

must compute (periodic) infinite communication schemes, disjoint from those chosen by the nodes at distance one and two on the

communication graph (thus, the schemes are said to be 2-hop desynchronized). That way, nodes may communicate while avoiding

collisions and information loss. Finally, we show how nodes can use these 2-hop desynchronized schemes to simulate a convenient,

general (i.e., not limited to any predefined alphabet size ℎ) and efficient (i.e., with an overhead linear in the number of bits of the

message) message-passing abstraction layer.

CCS Concepts: • Theory of computation → Distributed algorithms; Error-correcting codes.

Additional Key Words and Phrases: beeping model, uncoordinated starts, local message broadcast, interference control

1 INTRODUCTION

In the present paper we study radio networks composed of devices with severely restricted communication capabilities.

These devices do not exchange information via messages but instead communicate using bursts of energy (i.e., beeps)

and carrier sensing. To formally analyze algorithms in these networks, we consider the discrete beeping model [6]. In

this model, time is discrete and divided into synchronous rounds. During each round, a node can beep (signal) or listen.

If it beeps, it cannot know whether or not any of its neighbors beeped during the round (sender-side collision, if at least

another neighbor beeps). If it listens, it can distinguish if any of its neighbors beeped or none (receiver-side collision, if

at least two neighbors beep).

Authors’ addresses: Fabien Dufoulon, dfabien@campus.technion.ac.il, Faculty of Industrial Engineering and Management, Technion; Janna Burman,

janna.burman@lri.fr; Joffroy Beauquier, joffroy.beauquier@lri.fr, Université Paris-Saclay, CNRS, LRI.

1

2 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

The beeping model is a weak distributed computing model, making little demands on the communication devices. As

a result, it is very general and its solutions apply to most types of radio networks. Previous works have emphasized the

model’s application to radio networks with reduced network stacks [9] as well as its usefulness for studying distributed

systems emerging from natural phenomena (e.g., firefly swarms [10] or biological cellular networks [1]).

However, designing algorithms in the beeping model is challenging. Indeed, unlike most communication mechanisms

in distributed computing, beeps are unary signals, and communicate no message content, nor sender information.

Moreover, beeps suffer from interference (i.e., collisions) which causes information loss (simultaneous beeps are received

as a single beep). For that reason, providing efficient communication primitives is important for developers. However, the

only information intrinsically conveyed in a round of beeping communication is whether some unknown neighboring

node is communicating in this very round. In other words, a round of beeping communication intrinsically conveys

non-zero but trivial information (i.e., at most a letter from an alphabet of size 1). Therefore, any communication primitive

must build upon a technique that allows beeping communication to extrinsically convey non-trivial information (i.e.,

letters from some alphabet of size at least 2), or in other words, that allows nodes to locally broadcast (meaningful)

messages using beeping communication. Techniques prior to this work can be separated into two different approaches.

On the one hand, nodes can use a 2-hop symmetry-breaking problem to compute communication schemes that avoid

collisions (e.g., 2-hop coloring [2]) and thus convey information. Alternatively, nodes can use coding techniques to

compute communication schemes that convey information despite collisions (e.g., superimposed codes [8]). However,

[2, 8] require strong synchronization between neighboring nodes: it is assumed that nodes all start at the same time (or

at least in some coordinated way).

Contributions. The present paper deals with the uncoordinated starts setting, in which nodes wake up in an uncoor-

dinated manner (i.e., with arbitrary time offsets). We show how nodes can (efficiently) locally broadcast meaningful

information (messages)—through several rounds of beeping communication—even in this more difficult setting. To

do so, we use a combination of the above-mentioned approaches. First, we introduce coding techniques suited to the

uncoordinated starts setting—uncoordinated superimposed codes. Such codes can be used to locally broadcast (at most

𝑘 per neighborhood) messages of 𝐵 bits in 𝑂 (exp(𝑐 · 𝐵 · 𝑘)) rounds, for some constant 𝑐 ≥ 1. Then, using such codes,

we give a solution to the 2-hop desynchronization problem allowing for more efficient local broadcasts of messages.

In this problem, every node has to compute, from some round onwards, an infinite communication scheme—that

is, an infinite binary word specifying for each round whether a node beeps or not—disjoint from those of its 2-hop

neighbors. Additionally, the communication scheme should be periodic (with period length 𝑇 = 𝑂 (Δ4

𝑢𝑝), where Δ𝑢𝑝 is

a known upper bound on the maximum degree of the communication graph). The time complexity of our solution is

𝑂 (Δ4

𝑢𝑝 log𝑛) rounds w.h.p. (i.e., with probability at least 1 −𝑂 (1𝑛)). Such a solution allows nodes to avoid collisions

(both sender-side and receiver-side collisions) in the uncoordinated starts setting
1
. Given this solution, we present a

local message broadcast primitive, allowing a node to send a message of 𝐵 bits in 𝑂 (Δ4

𝑢𝑝 · 𝐵) rounds.

1.1 Roadmap

First, we introduce uncoordinated superimposed codes (Section 3.1), a variant of superimposed codes [11]. Unfortunately,

constructions for superimposed codes (and other similar combinatorial structures, see the discussion in the related

1
In contrast, other symmetry-breaking problems, such as 2-hop coloring, may not allow to avoid collisions in this setting. With 2-hop coloring,

although nodes get unique colors in their 2-hop neighborhoods, they have no common view of time and thus nodes cannot use these colors to compute

communication schemes disjoint from those of their 2-hop neighbors.

Can Uncoordinated Beeps tell Stories? 3

work) cannot be straightforwardly translated to constructions for uncoordinated superimposed codes. Thus, we also

provide such a construction, by exploiting properties of Sidon sets—see Section 3.2.

To solve 2-hop desynchronization using uncoordinated superimposed codes, we implement a 2-hop beep communi-

cation primitive (Section 4). This primitive allows nodes to communicate to their 2-hop neighbors. As the primitive

is quite general, it can also be used to solve other problems (e.g., translate a maximal independent set algorithm to

a 2-hop maximal independent set solution) in the beeping model with uncoordinated starts. The complete 2-hop

desynchronization solution is given in Section 5.

Finally, we present a local message broadcast primitive (Section 6). Nodes compute 2-hop desynchronized communi-

cation schemes, which they can then use to locally broadcast messages bit by bit in a reliable manner.

1.2 Related Work

On the Beeping Model. To the best of the authors’ knowledge, [1, 6] are the only works assuming arbitrary wake-ups

and a multi-hop communication graph in the beeping model. Similarly to the current work, these two results require

some a priori knowledge on the communication graph: the maximum degree Δ or the number of nodes 𝑛, or upper

bounds on these values. Interestingly, [1, 6] show that non-zero but trivial information—the only information that can

be intrinsically conveyed in a round of beeping communication—is enough to design probabilistic solutions to both the

maximal independent set and 1-hop desynchronization problems.

In [1], a probabilistic solution is given for maximal independent set (MIS). Nodes know an upper bound 𝑁 on the

number of nodes 𝑛 in the graph, and decide whether they are in the MIS or not in 𝑂 (log2 𝑁 log𝑛) rounds w.h.p.
Cornejo and Kuhn [6] give a probabilistic algorithm solving the 1-hop desynchronization problem (also called interval

coloring). In this problem, every node is required to compute, from some round onwards, a (periodic) infinite communi-

cation scheme—with a period of (known) length 𝑇 = 𝑂 (Δ)—disjoint from those of its neighbors. The time complexity

of the solution in [6] is 𝑂 (𝑇 log𝑛) rounds w.h.p. However, such a solution does not allow nodes to avoid receiver-side

collisions. Indeed, two neighbors of a node, at distance 2 of each other, can (correctly) compute non-disjoint communi-

cation schemes. Consequently, the communication schemes obtained with this solution are not 2-hop desynchronized,

nor do they allow nodes to simulate communication on the square communication graph—a crucial part of any 2-hop

desynchronization solution.

On Superimposed Codes. Such codes, and in particular zero-false-drop (of order 𝑘) superimposed codes (abbreviated

as 𝑍𝐹𝐷𝑘 codes), were introduced in [11]. A 𝑍𝐹𝐷𝑘 code is a set of codewords with the 𝑘-cover-free property, which

ensures that every superposition (bitwise OR) of at most 𝑘 codewords (from this set) does not contain (or cover) any

other codeword. Such codes can allow to deal with simple interference (i.e., collisions) in wireless communications, in a

decentralized manner. Indeed, a 𝑍𝐹𝐷𝑘 code C with ℎ codewords of length 𝑙 can be used to specify the communications

of ℎ users over (periodic phases of) 𝑙 rounds. If at most 𝑘 of these users (with unique codewords in C = {𝑐1, . . . , 𝑐ℎ})
communicate during these 𝑙 rounds—according to their codewords, that is, only in codeword-defined rounds—then the

resulting interference can be overcome by all 𝑘 users. In the beeping model with synchronous starts, [8] solves leader

election efficiently by encoding messages using 𝑍𝐹𝐷𝑘 codes.

Similar combinatorial structures, such as selective families [3] and radio synchronizers [5], have been used for the

broadcast and wake-up problems in radio networks [3–5]. More specifically, a 𝑘-selective family can also be used to

specify communications over (periodic phases) of 𝑙 rounds, but provides weaker ”interference-tolerance” guarantees

than a 𝑍𝐹𝐷𝑘 code. Radio synchronizers provide the same level of guarantees, but extended to arbitrarily started

4 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

transmissions of unique codewords. In contrast, the uncoordinated superimposed codes introduced here have stronger

properties, extending the 𝑘-cover-free property to the more general case of arbitrarily started transmissions of non-

unique codewords. In the construction of the proposed 2-hop communication primitives, these properties are absolutely

necessary.

2 MODEL AND DEFINITIONS

2.1 Preliminaries

The communication network is represented by a static connected undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the node set

and 𝐸—the edge set. The network size |𝑉 | is denoted by 𝑛 and the maximum degree by Δ. The square of the communication

graph is denoted by𝐺2 = (𝑉2, 𝐸2), where𝑉2 = 𝑉 and 𝐸2 = 𝐸 ∪ {{𝑣1, 𝑣2} ∈ 𝑉 2 | ∃𝑢 ∈ 𝑉 \ {𝑣1, 𝑣2}, s.t. {𝑣1, 𝑢}, {𝑢, 𝑣2} ∈ 𝐸}.
For any given node 𝑣 , its one-hop neighborhood in 𝐺 is denoted by N(𝑣) = {𝑣} ∪ {𝑢 ∈ 𝑉 | {𝑣,𝑢} ∈ 𝐸} and its 2-hop

neighborhood (i.e., its 1-hop neighborhood in 𝐺2
) by N2 (𝑣) = {𝑣} ∪ {𝑢 ∈ 𝑉 | {𝑣,𝑢} ∈ 𝐸2}. Node 𝑣 is included in both

sets. For any variable 𝑣𝑎𝑟 , 𝑣𝑎𝑟𝑣 denotes its value in node 𝑣 .

We use the terminology of formal language theory and focus on the binary alphabet Σ = {0, 1}. The free monoid

on Σ—the set of finite binary words —is denoted by Σ∗ and Σ𝜔 is the set of infinite words on Σ. The empty word is

denoted by 𝜖 . The length of a word 𝑥 ∈ Σ∗ is denoted by |𝑥 |. For any word 𝑥 in Σ∗ or Σ𝜔 , 𝑥 [𝑗] denotes the 𝑗𝑡ℎ bit of

𝑥 and 𝑥 [𝑖, 𝑗] the factor of 𝑥 , from the 𝑖𝑡ℎ to the 𝑗𝑡ℎ bit. For any two finite (respectively, infinite) binary words 𝑥 and

𝑦, 𝑥 and 𝑦 are said to be disjoint if ∀𝑖 ∈ {1, . . . ,min{|𝑥 |, |𝑦 |}} (resp., ∀𝑖 ∈ N∗), ¬(𝑥 [𝑖] = 1 and 𝑦 [𝑖] = 1). Similarly, for

any positive integer and two finite (respectively, infinite) binary words 𝑥 and 𝑦, 𝑥 and 𝑦 are said to be 𝑘-disjoint if

∀𝑖, 𝑗 ∈ {1, . . . ,min{|𝑥 |, |𝑦 |}} (resp., ∀𝑖, 𝑗 ∈ N∗) such that |𝑖 − 𝑗 | ≤ 𝑘 , ¬(𝑥 [𝑖] = 1 and 𝑦 [𝑗] = 1). For any positive integer

𝑖 and word 𝑢 ∈ Σ∗, 𝑢𝑖 denotes the 𝑖-fold concatenation of 𝑢 (where 𝑢0 = 𝜖) and 𝑢𝜔 denotes the infinite binary word

𝑢𝑢𝑢 · · · . A word 𝑥 ∈ Σ𝜔 is said to be periodic, of period 𝑢 and period length 𝑝 , if there is a finite word 𝑢 of minimum

length 𝑝 such that 𝑥 = 𝑢𝜔 .

The following (superposition) operations are illustrated in Figures 1 and 2. The operator ∨ is for the logical disjunction

(i.e., binary OR) on Σ. For any two words 𝑥,𝑦 ∈ Σ∗ of the same length, we define the (bitwise OR) superposition of 𝑥 and

𝑦, ∨(𝑥,𝑦), as the binary word𝑤 of length |𝑤 | = |𝑥 | such that ∀𝑖 ∈ {1, . . . , |𝑤 |},𝑤 [𝑖] = 𝑥 [𝑖] ∨ 𝑦 [𝑖]. We naturally extend

the superposition (and its operator) to arbitrary sets {𝑥1, . . . , 𝑥𝑐 } of finite binary words of the same length. Additionally,

for any two words 𝑥,𝑦 ∈ Σ∗ of the same length, 𝑦 is said to contain (or cover) 𝑥 (alternatively, 𝑥 is said to be included in

𝑦) if ∀𝑖 ∈ {1, . . . , |𝑥 |}, 𝑥 [𝑖] = 1 ⇒ 𝑦 [𝑖] = 1.

Finally, we consider superpositions of arbitrarily shifted words (in Σ∗). First, we define a shifted word 𝑠 = 𝜎 (𝑥, 𝑡), for
any word 𝑥 ∈ Σ∗ and shift 𝑡 ∈ {−|𝑥 | + 1, . . . , |𝑥 | − 1} as a binary word of length |𝑠 | = |𝑥 | such that ∀𝑖 ∈ {1, . . . , |𝑠 |},
𝑠 [𝑖] = 𝑥 [−𝑡 + 𝑖] if −𝑡 + 𝑖 ∈ {1, . . . , |𝑥 |} and 𝑠 [𝑖] = 0 otherwise. We also define an extended shifted word 𝑠 = 𝜎 (𝑥, 𝑡), for any
word 𝑥 ∈ Σ∗ and shift 𝑡 ∈ {−|𝑥 | + 1, . . . , |𝑥 | − 1}, as the binary word 𝑠 = 0

|𝑥 |−1+𝑡 𝑥 0
|𝑥 |−1−𝑡

(of length 3|𝑥 | − 2). Then,

we define the uncoordinated superposition of a set {(𝑥1, 𝑡1), . . . , (𝑥𝑐 , 𝑡𝑐)} of finite binary word (of the same length) and

shift pairs, as the superposition of the set of shifted words {𝜎 (𝑥1, 𝑡1), . . . , 𝜎 (𝑥𝑐 , 𝑡𝑐)}. Similarly, we define the extended

uncoordinated superposition of a set {(𝑥1, 𝑡1), . . . , (𝑥𝑐 , 𝑡𝑐)} of finite binary word (of the same length) and shift pairs, as

the superposition of the set of extended shifted words {𝜎 (𝑥1, 𝑡1), . . . , 𝜎 (𝑥𝑐 , 𝑡𝑐)}.

Can Uncoordinated Beeps tell Stories? 5

1 0 0 0 1 0 0

1 1 0 0 0 1 0

0 1 1 0 0 0 1

1 1 1 0 1 1 1

Superposition

of 3 binary words

Fig. 1. Superposition of the binary words 1000100, 1100010
and 0110001.

1 0 0 0 1 0 0

1 1 0 0 0 1 0

0 1 1 0 0 0 1

1 1 1 1 0 1 0

Uncoordinated

superposition

Fig. 2. Uncoordinated superposition of the set of shifted
words 𝑋 = {(1000100,−2), (1100010, 0), (0110001, 1) }.

2.2 Model Definitions

We consider the beeping model as originally defined in [6], that is, in the uncoordinated starts setting. Direct communi-

cation is only possible between neighboring nodes in the static communication graph𝐺 , and nodes have no knowledge

of this graph. Time is divided into discrete time intervals, called (global) rounds. The first global round is the round

in which the first node wakes up (the node itself is not aware of that). Any other node wakes up spontaneously at

an arbitrary round (arbitrary time offset). From this wake-up round onwards, the node is said to be awake. In each

subsequent round (and synchronously with other awake nodes) the node executes the following steps. First, it beeps

(instruction 𝐵𝐸𝐸𝑃 in algorithms) or listens (𝐿𝐼𝑆𝑇𝐸𝑁 in algorithms). Beeps are transmitted to all (awake) neighbors of

the beeping node during the round. Then, if the node listens (in the previous step of the same round), it knows whether

or not at least one of its neighbors beeped (during the previous step of the same round). Finally, the node performs local

computations.

Besides the static communication graph 𝐺 , we also define the awake communication graph 𝐺𝑎 (𝑟), for any given

global round 𝑟 , induced by the vertex set 𝑉𝑎 (𝑟) = {𝑢 ∈ 𝑉 | 𝑢 is awake in 𝑟 }. Then, for any awake node 𝑣 in global round

𝑟 , we define the reachable 1-hop neighborhood of 𝑣 , denoted by N𝑎 (𝑣, 𝑟), as the 1-hop neighborhood of 𝑣 in 𝐺𝑎 (𝑟) and
the reachable 2-hop neighborhood of 𝑣 , denoted by N𝑎

2
(𝑣, 𝑟), as the (reachable) 2-hop neighborhood of 𝑣 in 𝐺𝑎 (𝑟).

Local Variables. For any given global round 𝑟 , an awake node 𝑣 (in 𝑟) knows only the local round number 𝑟𝑣 (round

number relative to node 𝑣 ’s wake-up round). For any local round 𝑟𝑣 , 𝑣 is unaware of the global round. Thus, any

two nodes 𝑢 and 𝑣 may have uncoordinated local clocks (i.e., arbitrarily different local round values). For the sake of

analysis, for any given node 𝑣 , a function 𝑔𝑣 is defined such that for any local round 𝑟𝑣 ≥ 1, 𝑔𝑣 (𝑟𝑣) is the global round
corresponding to 𝑟𝑣 . Additionally, 𝑔𝑣 has an inverse function, denoted by 𝑔−1𝑣 .

For any node 𝑣 , H𝑣 denotes the history of 𝑣 , defined as an infinite binary word s.t. H𝑣 [𝑟𝑣] = 1 if in some local round

𝑟𝑣 , 𝑣 or one of its neighbors beeped, andH𝑣 [𝑟𝑣] = 0 otherwise. Similarly, for any node 𝑣 , B𝑣 denotes the beep history of

𝑣 , defined as an infinite binary word s.t. B𝑣 [𝑟𝑣] = 1 if in some local round 𝑟𝑣 , 𝑣 beeped, and B𝑣 [𝑟𝑣] = 0 otherwise. We

assume that every node has 2 corresponding history variables denoted also by H and B (by abuse of notation). They

are used to store successive prefixes of the (infinite) historiesH and B of an execution (by registering the details of

incoming and outgoing beeping communications).

We define a (finite) communication scheme of length 𝑙 (for some integer 𝑙 ≥ 1) as a binary word of length 𝑙 . It indicates

how a node should communicate during 𝑙 consecutive rounds. More precisely, a node 𝑣 is said to beep (according to)

a (single) communication scheme 𝑠 starting in round 𝑟𝑣 if ∀𝑖 ∈ {1, . . . , |𝑠 |}, 𝑣 beeps in round 𝑟𝑣 + 𝑖 − 1 if and only if

6 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

𝑠 [𝑖] = 1. In other words, 𝑣 beeps (respectively, listens) according to the 1’s (resp, 0’s) in 𝑠 . If a node beeps multiple

schemes at the same time, then it beeps if and only if at least one scheme indicates that it should beep (i.e., even if some

other scheme indicates that it should listen). As a natural extension, we define an infinite communication scheme 𝑠 ′

as an infinite binary word. Two (possibly infinite) communication schemes 𝑠𝑢 and 𝑠𝑣 , beeped by some nodes 𝑢 and 𝑣

(possibly 𝑢 = 𝑣) starting respectively in rounds 𝑟𝑢 and 𝑟𝑣 , are said to be disjoint if the two binary words 0
𝑔𝑢 (𝑟𝑢) 𝑠𝑢 and

0
𝑔𝑣 (𝑟𝑣) 𝑠𝑣 are disjoint.

2.3 Problem Definition

In the 2-hop desynchronization problem, every node has to compute, from some round onwards, an infinite communica-

tion scheme disjoint from those of its 2-hop neighbors. Moreover, the communication scheme should be periodic (of

period length 𝑇). A communication scheme satisfying these conditions is said to be 2-hop desynchronized. Notice that

nodes can only compute such schemes by using their local view of time (local rounds).

We say that a (probabilistic) distributed algorithm solves the 2-hop desynchronization problem in R rounds (i.e., has

time complexity R) if R rounds after all nodes have woken up, all nodes compute 2-hop desynchronized communication

schemes (w.h.p.).

3 USING UNCOORDINATED SUPERIMPOSED CODES TO CONSTRUCT COMMUNICATION SCHEMES
FOR THE UNCOORDINATED STARTS SETTING

A single round of beeping communication intrinsically conveys little information. A natural way to (extrinsically)

convey more is to use multiple rounds. In particular, a node may transmit some message (i.e., binary word)𝑚 (starting

in some round 𝑟) by beeping the communication scheme𝑚 starting in round 𝑟 . However, such message transmissions

raise new issues. Multiple nodes may transmit messages simultaneously (not necessarily starting in the same round),

and since beeps suffer from interference (i.e., simultaneous beeps are received as a single beep), these messages (and the

corresponding communication schemes) must be carefully chosen to successfully convey information. In particular, a

node may transmit two different messages𝑚1 and𝑚2 starting in the same round, and in doing so, also beep according

to some third communication scheme𝑚3 contained in the bitwise OR superposition of𝑚1 and𝑚2. Since the node

did not transmit𝑚3, it is said to falsely transmit 𝑚3. In the present work, we use a coding-based approach to obtain

communication schemes that allow nodes to avoid false transmissions and correctly decode superpositions, even in the

uncoordinated starts setting.

First, we use a simplified communication scenario to illustrate how a coding-based approach allows nodes to deal

with interference. We consider the following coordinated transmission scenario: several neighbors of a given node 𝑣

(and possibly also node 𝑣) transmit (each node possibly multiple) codewords of length 𝑙 starting in the same round

𝑔𝑣 (𝑟𝑣), and node 𝑣 wants to deduce, given its (resulting) history factor
2
(of beeps and silences)H𝑣 [𝑟𝑣, 𝑟𝑣 + 𝑙 − 1], which

codewords were transmitted by its neighbors.
3
The scenario is said to have conflict 𝜒 if at most 𝜒 different codewords

were transmitted in 𝑣 ’s neighborhood. Importantly, the history factor H𝑣 [𝑟𝑣, 𝑟𝑣 + 𝑙 − 1] is the bitwise OR superposition

of codewords transmitted in 𝑣 ’s neighborhood. The problem of extracting the original transmitted codewords from

their superposition can be solved using superimposed codes [11] (see Definition 1). Such a code satisfies the 𝑘-cover-free

property (for some integer 𝑘) on superposition of codewords, which guarantees that, for a scenario with conflict 𝜒 ≤ 𝑘 ,

2
Defined in Section 2: the history of 𝑣 limited to 𝑙 consecutive rounds, starting in local round 𝑟𝑣 .

3
If node 𝑣 transmits some codewords, then 𝑣 only wants to deduce the transmitted codewords which are different from those it transmitted itself.

Can Uncoordinated Beeps tell Stories? 7

only transmitted codewords are contained in that history factor. In particular, this implies that no node falsely transmits

codewords.

Definition 1. A zero-false-drop (of order 𝑘) superimposed code 𝐶 of length 𝑙 is a set of ℎ ≥ 𝑘 binary codewords of

length 𝑙 such that every superposition of 𝑘 or less different codewords of 𝐶 does not contain any other codeword from C.

However, in the uncoordinated starts setting, nodes may have arbitrarily different round numbers. Since these round

numbers do not allow nodes to coordinate and start transmissions simultaneously, the communication cannot build

upon superimposed codes. For that reason, we introduce (in Section 3.1) an extension of such codes—uncoordinated

superimposed codes—which allows to extract the originally transmitted words in the uncoordinated scenario. In the

following we say that these codes solve an (uncoordinated) transmission scenario. In such a scenario, several neighbors

of a given node 𝑣 (and possibly also node 𝑣) transmit codewords of length 𝑙 in arbitrary rounds (without coordination)

and yet for any local round 𝑟𝑣 , the history factorH𝑣 [𝑟𝑣, 𝑟𝑣 + 𝑙 − 1] only contains codewords that have been transmitted

(starting exactly in global round 𝑔𝑣 (𝑟𝑣)) in 𝑣 ’s neighborhood. A single node is allowed to start multiple codeword

transmissions (where a codeword transmission is now defined by the codeword and its starting round), and the scenario

is said to have conflict 𝜒 if there were at most 𝜒 different codeword transmissions (where a node’s multiple codeword

transmissions are added up) started within 𝑙 −1 rounds of 𝑟𝑣 (i.e., in rounds {𝑟𝑣 −𝑙 +1, . . . , 𝑟𝑣 +𝑙 −1}) in 𝑣 ’s neighborhood.
In Section 3.2, we present a construction method for uncoordinated superimposed codes.

3.1 Uncoordinated Superimposed Codes

We start by defining uncoordinated superimposed codes as a natural extension of superimposed codes. This is done

by extending the 𝑘-cover-free property to extended uncoordinated superpositions (i.e., to superpositions of (at most

𝑘) extended shifted codewords; defined in Section 2.1). Crucially for this work, the proposed codes guarantee the

𝑘-cover-property even if the superposition contains the same codeword arbitrarily shifted multiple times.
4

Definition 2. An (ℎ, 𝑘)-uncoordinated superimposed code or USI(ℎ, 𝑘)-code 𝐶 of length 𝑙 is a set of ℎ binary codewords

{𝑐1, . . . , 𝑐ℎ} of length 𝑙 such that every extended uncoordinated superposition of a set of codeword and shift pairs 𝑋1 =

{(𝑐 ′
1
, 𝑡1), . . . , (𝑐 ′𝑘 , 𝑡𝑘)}, where |𝑋1 | ≤ 𝑘 and ∀𝑖 ∈ {1, . . . , 𝑘} 𝑐 ′

𝑖
∈ 𝐶 and 𝑡𝑖 ∈ {−𝑙 + 1, . . . , 𝑙 − 1}, does not contain any other

extended shifted codeword (i.e., 𝜎 (𝑐 ′, 𝑡) such that (𝑐 ′, 𝑡) ∉ 𝑋1).

In an uncoordinated transmission scenario, the history factor (of length 𝑙) is the uncoordinated superposition of a set

of codeword and shift pairs, or in other words, the superposition of shifted codewords (and not of extended shifted

codewords). However, a USI(ℎ, 𝑘)-code, according to Definition 2, does not necessarily guarantee the 𝑘-cover-free

property for uncoordinated superpositions of shifted codewords.
5
For that reason, we present a second—equivalent (see

Theorem 1)—definition for uncoordinated superimposed codes below. It states that USI(ℎ, 𝑘)-codes guarantee that any

shifted codeword 𝜎 (𝑐 ′, 0) (i.e., simply a codeword 𝑐 ′) is not covered by the uncoordinated superposition of a set of (at

most 𝑘) codeword and shift pairs 𝑋2 ∌ (𝑐 ′, 0). Although the construction of uncoordinated superimposed codes—in

Section 3.2—uses Definition 2, we rely on Definition 3 to deal with an uncoordinated transmission scenario (see Theorem

2).

4
Note that the codeword and shift pairs (𝑐, 𝑡 ′

1
) and (𝑐, 𝑡 ′

2
) correspond to different extended shifted codewords (i.e., 𝜎 (𝑐, 𝑡 ′

1
) ≠ 𝜎 (𝑐, 𝑡 ′

2
)) if and only if

𝑡 ′
1
≠ 𝑡 ′

2
.

5
A USI(ℎ, 𝑘)-code, by Definition 2, only guarantees the 𝑘-cover-free property for superpositions of extended shifted codewords. In particular, notice that if

some codeword 𝑐 begins (respectively, ends) with 𝑠 zeroes (for some integer 𝑠 ≥ 1), then for any 𝑡 ∈ {𝑙 −𝑠, . . . , 𝑙 −1} (resp., 𝑡 ∈ {−(𝑙 −1), . . . ,−(𝑙 −𝑠) }),
the shifted codeword 𝜎 (𝑐, 𝑡) is 0𝑙 , which is contained by any superposition of shifted codewords.

8 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

Definition 3. A USI(ℎ, 𝑘)-code 𝐶 is a set of ℎ binary codewords {𝑐1, . . . , 𝑐ℎ} of length 𝑙 such that every uncoordinated

superposition of a set of codeword and shift pairs 𝑋2 = {(𝑐 ′
1
, 𝑡1), . . . , (𝑐 ′𝑘 , 𝑡𝑘)}, where |𝑋2 | ≤ 𝑘 and ∀𝑖 ∈ {1, . . . , 𝑘} 𝑐 ′

𝑖
∈ 𝐶

and 𝑡𝑖 ∈ {−𝑙 + 1, . . . , 𝑙 − 1}, contains a shifted codeword 𝜎 (𝑐 ′, 0) (i.e., the codeword 𝑐 ′) if and only if the codeword and shift

pair (𝑐 ′, 0) ∈ 𝑋2.

Theorem 1. Definitions 2 and 3 are equivalent.

Proof. First, we consider a USI(ℎ, 𝑘)-code 𝐶 , as defined in Definition 2. Then, we show that it satisfies Definition 3. Let

𝑋2 = {(𝑐 ′
1
, 𝑡1), . . . , (𝑐 ′𝑘 , 𝑡𝑘)} be an arbitrary set of codeword and shift pairs where |𝑋2 | ≤ 𝑘 and ∀𝑖 ∈ {1, . . . , 𝑘} 𝑐 ′

𝑖
∈ 𝐶

and 𝑡𝑖 ∈ {−𝑙 + 1, . . . , 𝑙 − 1}. If (𝑐 ′, 0) ∈ 𝑋2 for some codeword 𝑐 ′, then the uncoordinated superposition of 𝑋2 obviously

contains 𝑐 ′. Now, consider that the uncoordinated superposition of 𝑋2 contains some codeword 𝑐 ′. Then the extended

uncoordinated superposition of 𝑋2 contains the extended shifted codeword 𝜎 (𝑐 ′, 0) and due to the cover-free property

of USI-codes, the codeword and shift pair (𝑐 ′, 0) ∈ 𝑋2.

Now, we consider a USI(ℎ, 𝑘)-code 𝐶 , as defined in Definition 3. Then, we show that it satisfies Definition 2. Let

𝑋1 = {(𝑐 ′
1
, 𝑡1), . . . , (𝑐 ′𝑘 , 𝑡𝑘)} be an arbitrary set of codeword and shift pairs where |𝑋1 | ≤ 𝑘 and ∀𝑖 ∈ {1, . . . , 𝑘} 𝑐 ′

𝑖
∈ 𝐶

and 𝑡𝑖 ∈ {−𝑙 + 1, . . . , 𝑙 − 1}, and let (𝑐 ′, 𝑡 ′) be an arbitrary codeword and shift pair not in 𝑋1. We construct another

set of codeword and shift pairs 𝑋2 from 𝑋1 in the following way: for every (𝑐 ′
𝑖
, 𝑡𝑖) ∈ 𝑋1, (𝑐 ′𝑖 , 𝑡𝑖 − 𝑡 ′) ∈ 𝑋2 if 𝑡𝑖 − 𝑡 ′ ∈

{−𝑙 + 1, . . . , 𝑙 − 1}. Then, |𝑋2 | ≤ |𝑋1 | and if 𝑡 ′ = 0, then 𝑋2 = 𝑋1. By construction, (𝑐 ′, 0) ∉ 𝑋2. Thus, the uncoordinated

superposition of 𝑋2 does not contain 𝑐 ′ and the extended uncoordinated superposition of 𝑋2 does not contain the

extended shifted codeword 𝜎 (𝑐 ′, 0). Then, due to 𝑋2’s construction, the extended uncoordinated superposition of 𝑋1

does not contain the extended shifted codeword 𝜎 (𝑐 ′, 𝑡 ′). □

Theorem 2. A USI(ℎ, 𝑘)-code 𝐶 solves an uncoordinated transmission scenario if it has a conflict 𝜒 ≤ 𝑘 .

Proof. Consider that for any given node 𝑣 and any local round 𝑟𝑣 , there are at most 𝜒 ≤ 𝑘 (not necessarily different)

codeword transmissions started in node 𝑣 ’s neighborhood within 𝑙 − 1 rounds of 𝑟𝑣 . Then, one can define a set of

codeword and shift pairs 𝑋 as follows: 𝑋 is the set of pairs (𝑐, 𝑡) such that the transmission of the codeword 𝑐 starts in

𝑟 ′ ∈ {𝑟𝑣 − 𝑙 + 1, . . . , 𝑟𝑣 + 𝑙 − 1} in node 𝑣 ’s neighborhood, with a shift of 𝑡 = 𝑟 ′ − 𝑟𝑣 (thus in {−𝑙 + 1, . . . , 𝑙 − 1}). Notice
that the multiple codeword transmissions of a single node result in different codeword and shift pairs in 𝑋 . The set

𝑋 is of cardinality at most 𝑘 and the history factor H𝑣 [𝑟𝑣, 𝑟𝑣 + 𝑙 − 1] is the uncoordinated superposition of 𝑋 . Since

the communication builds upon the USI-code 𝐶 , then by Definition 3 the history factorH𝑣 [𝑟𝑣, 𝑟𝑣 + 𝑙 − 1] contains a
codeword 𝑐 ′ if and only if (𝑐 ′, 0) ∈ 𝑋 , or in other words, if and only if 𝑐 ′ was transmitted in node 𝑣 ’s neighborhood,

starting in 𝑔𝑣 (𝑟𝑣). □

Theorem 2 is used in the design of 2-hop communication primitives (in Section 4.2).

3.2 Using Sidon Sets to construct USI-Codes

Sidon sets are defined and used as building blocks for USI-codes. We employ the Sidon set construction (Theorem 3)

given in [7]. This construction uses prime numbers. By the Bertrand-Chebyshev theorem, for every positive integer

𝑘 , there is a prime number 𝑝 such that 𝑘 ≤ 𝑝 ≤ 2𝑘 . As a result, for any integer 𝑘 , a construction of USI(2,𝑘)-codes of

length 𝑂 (𝑘2) can be obtained. This construction gives a USI(2,(Δ𝑢𝑝 + 1)2)-code of length 𝑂 (Δ4

𝑢𝑝) for any given Δ𝑢𝑝

(Corollary 8) and is used in the 2-hop communication primitives presented in Section 4.2.

Can Uncoordinated Beeps tell Stories? 9

Definition 4 (Sidon Set). An (𝑙,K) Sidon set is a subset 𝐷 of {0, . . . , 𝑙 − 1} of size K , such that all pairwise sums of

elements in 𝐷 are different.

Theorem 3 ([7]). Let 𝑝 be an odd prime number such that K ≤ 𝑝 ≤ 2K . Then the set of K integers {𝑑0, . . . , 𝑑K−1},
where ∀𝑖 ∈ {0, . . . ,K − 1} 𝑑𝑖 = 2𝑖𝑝 + (𝑖2 𝑚𝑜𝑑 𝑝), is an (𝑙 , K) Sidon set with 𝑙 ≤ 2𝑝2 ≤ 8K2.

Notice that Sidon sets are also Golomb rulers (Lemma 4), which are sets of integers such that all pairwise differences

are different. Although both mathematical objects are in fact equivalent, we only prove one implication here. The

distinct pairwise differences property is used later to construct a codeword of a USI-code.

Lemma 4 (Distinct pairwise differences). Let 𝐷 be an (𝑙,K) Sidon set. Then every non-zero element of {0, . . . , 𝑙 − 1}
can be expressed at most once as a difference 𝑑1 − 𝑑2 mod 𝑙 of two elements 𝑑1, 𝑑2 ∈ 𝐷 (i.e., 𝐷 is a Golomb ruler).

Proof. Suppose by contradiction that 𝐷 is not a Golomb ruler. Then there must exist elements 𝑑1, 𝑑2, 𝑑3, 𝑑4 ∈ 𝐷 with

𝑑2 − 𝑑1 = 𝑑3 − 𝑑4. However, then 𝑑2 + 𝑑4 = 𝑑3 + 𝑑1 which is a contradiction, since 𝐷 is a Sidon set. □

Given a Sidon set, a USI-code with a single codeword can be obtained (Theorem 5). The codeword construction

leverages the Sidon set’s distinct pairwise differences property to guarantee the cover-free property of the resulting

USI-code. Notice that the cardinality K of the Sidon set used in the construction determines the maximum number of

concurrent transmissions that the USI-code tolerates: 𝑘 = K − 1.

Theorem 5. Let 𝐷 be an (𝑙,K) Sidon set. Define the set 𝑆 as the set of integers {𝑑 + 1, 𝑑 ∈ 𝐷}, and the codeword 𝑐 as a
binary word of length 𝑙 such that 𝑐 [𝑝] = 1 if 𝑝 ∈ 𝑆 . Then {𝑐} is a USI(1, K − 1)-code of length 𝑙 .

Proof. To prove Theorem 5, we first consider Lemma 6, which states that if an (𝑙 ,K) Sidon set is used to construct the

codeword 𝑐 of a USI(1,𝑘)-code (with 𝑘 = K − 1), then any two extended shifted words 𝜎 (𝑐, 𝑡) and 𝜎 (𝑐, 𝑡 ′) have at most

one position where their bits are both 1.

Lemma 6. Let𝐷 be an (𝑙,K) Sidon set. Define the set 𝑆 as the set of integers {𝑑 +1, 𝑑 ∈ 𝐷}, and the codeword 𝑐 as a binary
word of length 𝑙 such that 𝑐 [𝑝] = 1 if 𝑝 ∈ 𝑆 . There exists at most one 𝑗 ∈ {1, . . . , 3𝑙−2} such that 𝜎 (𝑐, 𝑡) [𝑗] = 𝜎 (𝑐, 𝑡 ′) [𝑗] = 1.

Proof. By contradiction, assume that there exist 𝑗, 𝑗2 ∈ {1, . . . , 3𝑙 − 2}, 𝑗 ≠ 𝑗2 such that 𝜎 (𝑐, 𝑡) [𝑗] = 𝜎 (𝑐, 𝑡 ′) [𝑗] = 1 and

𝜎 (𝑐, 𝑡) [𝑗2] = 𝜎 (𝑐, 𝑡 ′) [𝑗2] = 1. Then, there exist 𝑑1, 𝑑2, 𝑑
′
1
, 𝑑 ′

2
∈ 𝐷 , where 𝑑1 ≠ 𝑑 ′

1
, 𝑑2 ≠ 𝑑 ′

2
, 𝑑2 > 𝑑1 and 𝑑

′
2
> 𝑑 ′

1
, such that

𝑑2 − 𝑑1 = 𝑑 ′
2
− 𝑑 ′

1
. That contradicts the fact that 𝐷 is a Sidon set. □

As a result of Lemma 6, the extended uncoordinated superposition 𝑠 of 𝑘 extended shifted words 𝜎 (𝑐, 𝑡𝑖) has at most

𝑘 positions with bit 1 in common with a different (arbitrary) extended shifted word 𝑎′ = 𝜎 (𝑐, 𝑡 ′). However, 𝑎′ has
K > 𝑘 positions with bit 1, and at most 𝑘 of these in common with 𝑠 . Thus 𝑠 cannot contain 𝑎′. This guarantees the

𝑘-cover-free property of the USI(1,𝑘)-code (Definition 2). □

It is apparent (by slightly modifying the proof of Theorem 5) that a USI-code with multiple codewords can be obtained

by dividing the single codeword from the previous construction, into multiple smaller codewords, resulting in Theorem

7. Then, Corollary 8 results from Theorems 3 and 7.

Theorem 7. Let 𝐷 be an (𝑙, ℎ · K) Sidon set. Define the set 𝑆 as the set of integers {𝑑 + 1, 𝑑 ∈ 𝐷}, the sets 𝑆1, . . ., 𝑆ℎ as

partitions of 𝑆 where each 𝑆𝑖 is of size K , and for any 𝑖 ∈ {1, . . . , ℎ} the codeword 𝑐𝑖 as a binary word of length 𝑙 such that

𝑐𝑖 [𝑝] = 1 if 𝑝 ∈ 𝑆𝑖 . Then {𝑐1, . . . , 𝑐ℎ} is a USI(ℎ,K−1)-code of length 𝑙 .

10 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

Corollary 8. For any given ℎ and 𝑘 , one can construct a USI(ℎ,𝑘) of length 𝑙 ≤ 8ℎ2 (𝑘 + 1)2. Thus, for any given 𝑘 , one

can construct a USI(2,𝑘) of length 𝑙 ≤ 32(𝑘 + 1)2.

4 IMPLEMENTING 2-HOP COMMUNICATION PRIMITIVES

In this section, the BEEP2H and LISTEN2H primitives are presented. When executed in 𝐺 , they simulate the effect of

BEEP and LISTEN on the square communication graph 𝐺2
, albeit with some time delay 𝛿 (in number of rounds).

Just as invocations of BEEP and LISTEN define histories B and H , invocations of BEEP2H and LISTEN2H define the

2-hop histories B2
and H2

. These 2-hop histories correspond (exactly) to B and H on the square graph 𝐺2
(of awake

nodes). Implementations of the BEEP2H and LISTEN2H primitives compute the 2-hop histories in variables denoted (by

abuse of notation) by H2
and B2

. These variables should be coherent within 2-hop neighborhoods, that is, they should

satisfy the following condition for any node 𝑣 in some local round 𝑟𝑣 :

H2

𝑣 [𝑟𝑣] = 1 ⇔ (B2

𝑣 [𝑟𝑣] = 1 or ∃ 𝑢 ∈ N𝑎
2
(𝑣, 𝑔𝑣 (𝑟𝑣)) s.t. B2

𝑢 [𝑔−1𝑢 (𝑔𝑣 (𝑟𝑣))] = 1) .

From the above condition, we derive a specification of BEEP2H and LISTEN2H (Definition 5 below) that allows

a time delay 𝛿 > 1 for 2-hop beeps (to satisfy the condition). The specification requires that the computed variables

H2
and B2

of all nodes are coherent within a delay of 𝛿 rounds. More precisely, for any global round 𝑟 , the permanent

factors (i.e., factors that no longer change from round 𝑟 onwards according to the specification) of the computed 2-hop

history variables,H2

𝑣 [1, 𝑔−1𝑣 (𝑟 − 𝛿)] and B2

𝑣 [1, 𝑔−1𝑣 (𝑟 − 𝛿)] for any node 𝑣 awake in global round 𝑟 − 𝛿 , are coherent. We

present algorithms for the two primitives (Algorithms 1 and 2) satisfying this specification for some even integer 𝛿 > 1

(see Theorem 12).

Definition 5 (Specification of BEEP2H and LISTEN2H). A node 𝑣 implements the BEEP2H and LISTEN2H primi-

tives—through its variablesH2

𝑣 and B2

𝑣 (each initialized to 0𝜔)—with some delay 𝛿 ≥ 1 if:

• 𝑣 invokes BEEP2H or LISTEN2H in every local round 𝑟𝑣 .

• If 𝑣 invokes BEEP2H in local round 𝑟𝑣 , then 𝑣 sets B2

𝑣 [𝑟𝑣] := 1 and H2

𝑣 [𝑟𝑣] := 1 at the end of round 𝑟𝑣 .

• If 𝑣 invokes LISTEN2H in local round 𝑟𝑣 , then:

– If ∃ 𝑢 ∈ N𝑎
2
(𝑣, 𝑔𝑣 (𝑟𝑣)) invoking BEEP2H in 𝑔𝑣 (𝑟𝑣), 𝑣 setsH2

𝑣 [𝑟𝑣] := 1 at the latest in round 𝑟𝑣 + 𝛿 .

– If � 𝑢 ∈ N𝑎
2
(𝑣, 𝑔𝑣 (𝑟𝑣)) invoking BEEP2H in 𝑔𝑣 (𝑟𝑣), 𝑣 never setsH2

𝑣 [𝑟𝑣] to 1.

Implementing communication with nodes at distance 2 (on the square of the communication graph) raises several

issues. Communicating to a non-neighboring node (within distance 2) requires coordinating with an awake neighboring

node relaying the communication. Moreover, nodes must be careful to relay communication up to distance 2 and no

further. Algorithms 1 and 2 deal with these issues. In what follows, Section 4.1 presents the high-level intuition behind

the proposed algorithms. Then, a detailed description is given in Section 4.2 and the analysis in Section 4.3.

4.1 High-level Description of the BEEP2H and LISTEN2H Algorithms

The BEEP2H and LISTEN2H algorithms rely on some USI(2,𝑘)-code 𝐶 = {𝑐1, 𝑐2}, for some well-chosen integer 𝑘 . All

nodes should know the same two codewords 𝑐1 and 𝑐2 (of length 𝑙). By encoding the distance from any node executing

BEEP2H using 𝑐1 (distance 0: source) and 𝑐2 (distance 1: relay), nodes communicate over distance 2 with a delay of 𝛿 = 2𝑙

rounds. The source 𝑠 of a 2-hop beep transmits 𝑐1. Due to the 𝑘-cover-free property of 𝐶 , collisions between (at most 𝑘)

uncoordinated transmissions of codewords do not affect the decoding. Thus, neighbors of node 𝑠 decode (by simply

checking whether 𝑐1 is contained in some history factor H𝑣 [𝑟, 𝑟 + 𝑙 − 1], defined in Section 2.) the 𝑐1 transmission,

Can Uncoordinated Beeps tell Stories? 11

which they relay by transmitting 𝑐2. When a node decodes a 𝑐1 or 𝑐2 transmission, it learns that it is at most 2 hops

away from a 2-hop beep’s source.

4.2 Algorithms for the 2-hop Communication Primitives

Recall that Δ denotes the maximum degree of the communication graph and that an upper bound Δ𝑢𝑝 = 𝑂 (Δ) is known
by all nodes. Moreover, we assume the common knowledge of some integer 𝑓 ≥ 1. Thus, each node can compute the

same USI(2,𝑘)-code 𝐶 = {𝑐1, 𝑐2} of length 𝑙 = 𝑂 (Δ4

𝑢𝑝) with 𝑘 ≥ 𝑓 (Δ𝑢𝑝 + 1)2.
Algorithms implementing BEEP2H and LISTEN2H are given below (Algorithms 1 and 2). Both rely on Algorithm 3,

which manages the transmission of codewords 𝑐1, 𝑐2 of the given USI(2,𝑘)-code and their decoding. Upon wake-up, a

node 𝑣 sets H2

𝑣 and B2

𝑣 to 0
𝜔
—the infinite binary word composed only of 0’s. After which, 𝑣 invokes either BEEP2H or

LISTEN2H in each local round 𝑟𝑣 ≥ 1, but cannot invoke BEEP2H more than 𝑓 times within 2𝑙 rounds.

• On the one hand, 𝑣 2-hop beeps in some round 𝑟𝑣 by invoking BEEP2H in 𝑟𝑣 . It is said that 𝑣 starts a 2-hop

beep in (global) round 𝑔𝑣 (𝑟𝑣) and 𝑣 conveys this information to its neighbors by transmitting the codeword 𝑐1

(beeping according to the ones in the binary word 𝑐1).

• On the other hand, 𝑣 listens to 2-hop beeps (and relays them if necessary) in the following manner. In each local

round 𝑟𝑣 , if the history factor H𝑣 [𝑟𝑣 − 𝑙, 𝑟𝑣 − 1] of 𝑣 contains 𝑐1 (resp. contains 𝑐2 and 𝑟𝑣 ≥ 2𝑙 + 1), 𝑣 knows that

a neighboring node started a 2-hop beep in 𝑟𝑣 − 𝑙 (resp. for 𝑐2, knows some 2-hop reachable node started a 2-hop

beep in 𝑟𝑣 − 2𝑙) and setsH2

𝑣 [𝑟𝑣 − 𝑙] to 1 (resp. for 𝑐2, setsH2

𝑣 [𝑟𝑣 − 2𝑙] to 1). Furthermore, 𝑣 transmits another

codeword 𝑐2 (relaying the information that one of its neighbors transmitted 𝑐1 previously) to relay the 2-hop

beep (resp. transmits nothing).

Each invocation of BEEP2H is stored in the 2-hop beep history variable B2
—the beep history of the (simulated)

communication on the square communication graph. More precisely, for some node 𝑣 , assume 𝑣 invokes BEEP2H in

some local round 𝑟𝑣 . Then 𝑣 sets B2

𝑣 [𝑟𝑣] to 1 at the end of round 𝑟𝑣 . This also allows 𝑣 to know how it should transmit

𝑐1 in the 𝑙 − 1 following rounds.

In the analysis of Algorithms 1, 2 and 3 (in Section 4.3), we prove that the 2-hop histories variables computed by all

nodes are coherent within a delay of 2𝑙 rounds (see Theorem 12). For that, it is important to impose some (frequency)

constraint on 2-hop beeps—that is, on the B2
variables—which is described in the following remark. Lemma 9 directly

follows from Remark 1 and the fact that a node 𝑣 transmits 𝑐1 in round 𝑟𝑣 if and only if 𝑣 starts a 2-hop beep in 𝑟𝑣 .

Remark 1. For any given node 𝑣 and local round 𝑟𝑣 : |{𝑟 ′𝑣 ∈ {𝑟𝑣, . . . , 𝑟𝑣 + 2𝑙 − 1} | B2

𝑣 [𝑟 ′𝑣] = 1}| ≤ 𝑓 .

Lemma 9. For any global round 𝑟 and for any node 𝑣 awake in 𝑟 , there are at most 𝑓 (Δ𝑢𝑝 + 1) (respectively, 𝑓 (Δ2

𝑢𝑝 + 1))
2-hop beeps, or equivalently 𝑐1 transmissions, started in node 𝑣 ’s neighborhood (resp., in node 𝑣 ’s 2-hop neighborhood)

within 𝑙 − 1 rounds of 𝑟 .

Algorithm 1. BEEP2H

1: IN: {𝑐1, 𝑐2}: USI(2,𝑘)-code of length l, 𝑓 : maximum frequency, 𝑟 : current (local) round

2: INOUT: B2
: infinite binary word,H2

: infinite binary word

3: if |{𝑟 ′ ∈ {𝑟 − 2𝑙 + 1, . . . , 𝑟 − 1} | B2 [𝑟 ′] = 1}| < 𝑓 then
4: B2 [𝑟] := 1,H2 [𝑟] := 1 ⊲ At most 𝑓 BEEP2H invocations allowed within 2𝑙 rounds for a node.

5: CodewordTransmission({𝑐1, 𝑐2}, 𝑟 , B2
,H2

) ⊲ Transfer updated 2-hop beep history B2
to Algorithm 3

12 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

Algorithm 2. LISTEN2H

1: IN: {𝑐1, 𝑐2}: USI(2,𝑘)-code of length l, 𝑓 : maximum frequency, 𝑟 : current (local) round

2: INOUT: B2
: infinite binary word,H2

: infinite binary word

3: CodewordTransmission({𝑐1, 𝑐2}, 𝑟 , B2
,H2

) ⊲ Algorithm 3

Algorithm 3. CodewordTransmission

1: IN: {𝑐1, 𝑐2}: USI(2,𝑘)-code of length l, 𝑟 : current (local) round
2: INOUT: B2

: infinite binary word,H2
: infinite binary word ⊲ With the frequency constraint on B2

.

3: // Transmit a bit of codeword 𝑐1, according to 2-hop beep history B2.
4: for integer 𝑗 := 1 ; 𝑗 ≤ 𝑙 ; 𝑗++ do ⊲ At most 𝑓 · 𝑐1 transmissions by the executing node.

5: if B2 [𝑟 + 1 − 𝑗] = 1 and 𝑐1 [𝑗] = 1 then BEEP

6: for integer 𝑖 := 1 ; 𝑖 ≤ 𝑙 ; 𝑖++ do ⊲ Listen to beeps to detect bits of 𝑐1.

7: // If 𝑐1 is decoded (starting in 𝑟 − 𝑙 − (𝑖 − 1)), 𝑣 relays information by transmitting 𝑐2.
8: if the history factorH[𝑟 − 𝑙 − (𝑖 − 1), 𝑟 − 1 − (𝑖 − 1)] contains 𝑐1 then
9: if 𝑐2 [𝑖] = 1 then BEEP

10: // If 𝑐1 or 𝑐2 were decoded in the history factorH[𝑟 − 𝑙, 𝑟 − 1], then updateH2.
11: if the history factorH[𝑟 − 𝑙, 𝑟 − 1] contains 𝑐1 then H2 [𝑟 − 𝑙] := 1

12: else if the history factorH[𝑟 − 𝑙, 𝑟 − 1] contains 𝑐2 and 𝑟 ≥ 2𝑙 + 1 then H2 [𝑟 − 2𝑙] := 1

4.3 Analysis of the 2-hop Communication Primitives

The analysis of Algorithms 1, 2 and 3 is given below. The main result—Theorem 12—states that BEEP2H and LISTEN2H

(as defined by Algorithms 1 and 2) satisfy Definition 5 given at the beginning of Section 4 (with a delay 𝛿 of 2𝑙 = 𝑂 (Δ4

𝑢𝑝)),
albeit with a constraint on the frequencies of BEEP2H invocations: a single node cannot invoke BEEP2H more than 𝑓

times within 2𝑙 rounds when using Algorithms 1 and 2.

In Algorithms 1, 2 and 3, nodes use codewords to communicate the distance to the source of a 2-hop beep. This

codeword-based communication can be reduced to an uncoordinated transmission scenario: nodes transmit codewords

to send, listen to and relay 2-hop beeps in an uncoordinated manner.

First, we prove that in every round 𝑟 and for any node 𝑣 awake in 𝑟 , there are at most 𝑓 (Δ𝑢𝑝 +1)2 codeword transmissions

started in node 𝑣 ’s neighborhood within 𝑙 − 1 rounds of 𝑟 (see Theorem 10). Thus the 𝑘-cover-free property (of the

USI(2,𝑘)-code with 𝑘 ≥ 𝑓 (Δ𝑢𝑝 + 1)2) guarantees that nodes correctly decode transmissions and their starting rounds,

by simply checking whether codewords are contained in history factors of length 𝑙 (see Lemma 11). Consequently, the

2-hop histories variables of all nodes, computed by Algorithm 3, are coherent within a delay of 2𝑙 rounds (Theorem 12).

Theorem 10. For any global round 𝑟 and for any node 𝑣 awake in 𝑟 , there are at most 𝑓 (Δ𝑢𝑝 +1)2 codeword transmissions

started in node 𝑣 ’s neighborhood within 𝑙 − 1 rounds of 𝑟 .

Proof. We prove Theorem 10 by strong induction. First, consider the base case: 𝑟 = 1. By the definition of Algorithm 3,

no node starts transmitting 𝑐2 in rounds 1 to 𝑙 . Since by Lemma 9, there are at most 𝑓 (Δ𝑢𝑝 + 1) 𝑐1 transmissions started

in any given node 𝑣 ’s neighborhood within rounds {1, . . . , 𝑙}, then the induction hypothesis holds for 𝑟 = 1.

Now, consider that the induction hypothesis holds for all rounds 𝑟 ′ ≤ 𝑟 . Let 𝑣 be any given node awake in round 𝑟 + 1.
On the one hand, by Lemma 9 there are at most 𝑓 (Δ𝑢𝑝 + 1) 𝑐1 transmissions started in 𝑣 ’s neighborhood within 𝑙 − 1

rounds of 𝑟 + 1. On the other hand, we upper bound, below, the number of 𝑐2 transmissions started in 𝑣 ’s neighborhood

within 𝑙 − 1 rounds of 𝑟 + 1 by 𝑓 (Δ2

𝑢𝑝 + 1). Combining both, there are at most 𝑓 (Δ2

𝑢𝑝 +Δ𝑢𝑝 + 2) ≤ 𝑓 (Δ𝑢𝑝 + 1)2 codeword
transmissions started in 𝑣 ’s neighborhood within 𝑙 − 1 rounds of 𝑟 + 1.

Can Uncoordinated Beeps tell Stories? 13

To upper bound the number of 𝑐2 transmissions started within 𝑙 − 1 rounds of 𝑟 + 1 (i.e., in {𝑟 − 𝑙 + 2, . . . , 𝑟 + 𝑙}), we
first show that any given node 𝑢 transmits 𝑐2 starting in some round 𝑟 ′′ (such that 𝑟 ′′ ≤ 𝑟 + 𝑙) if and only if node 𝑢 or its

neighbors transmitted 𝑐1 starting in round 𝑟 ′′ − 𝑙 . By definition of Algorithm 3, any given node 𝑢 transmits 𝑐2 starting

in any given round 𝑟 ′′ if and only if 𝑐1 is contained in its history factor H𝑢 [𝑔−1𝑢 (𝑟 ′′ − 𝑙), 𝑔−1𝑢 (𝑟 ′′ − 1)]. Additionally,
since 𝑟 ′′ − 𝑙 ≤ 𝑟 , then Lemma 11 (which relies on the induction hypothesis) applies in round 𝑟 ′′ − 𝑙 and 𝑐1 is contained

in the history factor H𝑢 [𝑔−1𝑢 (𝑟 ′′ − 𝑙), 𝑔−1𝑢 (𝑟 ′′ − 1)] of any given node 𝑢 if and only if node 𝑢 or one of its neighbors

transmitted 𝑐1 starting in round 𝑟 ′′ − 𝑙 .

Lemma 11. For any global round 𝑟 ′ ≤ 𝑟 and for any node 𝑢 awake in 𝑟 ′, the history factorH𝑢 [𝑔−1𝑢 (𝑟 ′), 𝑔−1𝑢 (𝑟 ′) + 𝑙 − 1]
(of 𝑢) contains a codeword 𝑐 ′ ∈ 𝐶 if and only if node 𝑢 or one of its neighbors transmitted 𝑐 ′ starting in round 𝑟 ′.

Proof. The induction hypothesis holds for all rounds 𝑟 ′ ≤ 𝑟 . Then, for any such round 𝑟 ′ and for any node 𝑢 awake in

𝑟 ′, there are at most 𝑓 (Δ𝑢𝑝 + 1)2 codeword transmissions started in node 𝑢’s neighborhood within 𝑙 − 1 rounds of 𝑟 ′.

For node 𝑢, this corresponds to an uncoordinated transmission scenario with conflict 𝜒 ≤ 𝑓 (Δ𝑢𝑝 + 1)2. Since𝐶 satisfies

the 𝑘-cover-free property for 𝑘 ≥ 𝑓 (Δ𝑢𝑝 + 1)2, by Theorem 2, the lemma follows. □

Now, by Lemma 9 there are at most 𝑓 (Δ2

𝑢𝑝 + 1) 𝑐1 transmissions started in 𝑣 ’s 2-hop neighborhood within 𝑙 − 1

rounds of 𝑟 + 1 − 𝑙 . Then, there are at most 𝑓 (Δ2

𝑢𝑝 + 1) 𝑐2 transmissions started in 𝑣 ’s neighborhood within 𝑙 − 1 rounds

of 𝑟 + 1. Notice that when multiple nodes hear the same 𝑐1 transmission, the resulting (relay) 𝑐2 transmissions are all

started in the same round and are thus considered as a single 𝑐2 transmission. □

Theorem 12. For any given node 𝑣 in some local round 𝑟𝑣 ≥ 2𝑙 + 1 (accounting for the 𝛿 = 2𝑙 delay), the permanent

factors of the computed 2-hop history variables,H2

𝑣 [1, 𝑟𝑣 − 2𝑙] and B2

𝑣 [1, 𝑟𝑣 − 2𝑙], are coherent. In other words, for any

local round 𝑟 ′𝑣 ∈ {1, . . . , 𝑟𝑣 − 2𝑙}, H2

𝑣 [𝑟 ′𝑣] = 1 ⇔ (B2

𝑣 [𝑟 ′𝑣] = 1 or ∃𝑢 ∈ N𝑎
2
(𝑣, 𝑔𝑣 (𝑟 ′𝑣)) s.t. B2

𝑢 [𝑔−1𝑢 (𝑔𝑣 (𝑟 ′𝑣))] = 1).

Proof. From the definition of Algorithms 1 and 3,H2

𝑣 [𝑟 ′𝑣] = 1 if and only if B2

𝑣 [𝑟 ′𝑣] = 1 (line 4 of Algorithm 1) or the

history factorH𝑣 [𝑟 ′𝑣, 𝑟 ′𝑣 + 𝑙 − 1] contains 𝑐1 (line 11 of Algorithm 3) or the history factorH𝑣 [𝑟 ′𝑣 + 𝑙, 𝑟 ′𝑣 + 2𝑙 − 1] contains
𝑐2 (line 12 of Algorithm 3).

By Lemma 11 (and Theorem 10) the history factor H𝑣 [𝑟 ′𝑣, 𝑟 ′𝑣 + 𝑙 − 1] contains 𝑐1 if and only if some node 𝑢 ∈ N (𝑣)
(i.e., 𝑣 or some neighboring node of 𝑣) transmits 𝑐1 starting in 𝑔𝑣 (𝑟 ′𝑣) (i.e., starts a 2-hop beep in 𝑔𝑣 (𝑟 ′𝑣)), that is if and
only if ∃𝑢 ∈ N (𝑣) such that B2

𝑢 [𝑔−1𝑢 (𝑔𝑣 (𝑟 ′𝑣))] = 1.

Similarly, by Lemma 11 the history factorH𝑣 [𝑟 ′𝑣 + 𝑙, 𝑟 ′𝑣 + 2𝑙 − 1] contains 𝑐2 if and only if some node𝑤 ∈ N (𝑣) transmits

𝑐2 starting in 𝑔𝑣 (𝑟 ′𝑣 + 𝑙). Let 𝑟 ′′ = 𝑔𝑣 (𝑟 ′𝑣). By definition of Algorithm 3,𝑤 transmits 𝑐2 starting in 𝑟
′′ + 𝑙 if and only if 𝑐1 is

contained in its history factorH𝑤 [𝑔−1𝑤 (𝑟 ′′), 𝑔−1𝑤 (𝑟 ′′+𝑙−1)]. By Lemma 11 the history factorH𝑤 [𝑔−1𝑤 (𝑟 ′′), 𝑔−1𝑤 (𝑟 ′′+𝑙−1)]
of𝑤 contains 𝑐1 if and only if some node 𝑢 ∈ N (𝑤) transmits 𝑐1 starting in round 𝑟 ′′ (i.e., starts a 2-hop beep in 𝑟 ′′),

that is if and only if ∃𝑢 ∈ N𝑎
2
(𝑣, 𝑟 ′′) such that B2

𝑢 [𝑔−1𝑢 (𝑟 ′′)] = 1.

One now gets thatH2

𝑣 [𝑟 ′𝑣] = 1 ⇔ (B2

𝑣 [𝑟 ′𝑣] = 1 or ∃𝑢 ∈ N𝑎
2
(𝑣, 𝑔𝑣 (𝑟 ′𝑣)) s.t. B2

𝑢 [𝑔−1𝑢 (𝑔𝑣 (𝑟 ′𝑣))] = 1). □

Remark 2. For any global round 𝑟 , if no node in the reachable 2-hop neighborhood of some node 𝑣 2-hop beeps

in 𝑟 , H2

𝑣 [𝑔−1𝑣 (𝑟)] is never set to 1. That is also the case if some unreachable node 𝑧 ∈ N2 (𝑣) 2-hop beeps in 𝑟 (i.e.,

𝑧 ∈ N2 (𝑣) \ N𝑎
2
(𝑣, 𝑟)).

5 SOLVING 2-HOP DESYNCHRONIZATION

Solving the 1-hop desynchronization problem [6] allows nodes to avoid sender-side collisions but not receiver-side

collisions. Two neighbors of a node, at distance 2 of each other, may compute non-disjoint communication schemes

14 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

with a correct 1-hop desynchronization solution. In contrast, in the 2-hop desynchronization problem, nodes compute

(periodic) communication schemes that must be disjoint from those of all nodes in their 2-hop neighborhood. This

allows nodes to communicate in a predictable manner while avoiding both sender and receiver-side collisions. However,

to compute a 2-hop desynchronization scheme, a node must communicate with other nodes at distance 2. That is

the reason why the proposed 2-hop desynchronization solution is implemented by using the 2-hop communication

primitives presented in Section 4.

Phases. In the following solutions, nodes consider consecutive sequences of 𝑇 (local) rounds, starting from their

wake-up round, called phases. The local phase number is denoted by 𝑝 ≥ 1 and the 𝑝𝑡ℎ local phase by P(𝑝) =

{(𝑝 −1) ·𝑇 +1, . . . , 𝑝 ·𝑇 −1}. If 𝑖 ∈ {1, . . . ,𝑇 } is a round number inside phase 𝑝 , the local round number corresponding to

𝑖 is P(𝑝, 𝑖). Notice that the local phases of different nodes may be different with respect to global rounds. For that reason,

we give the following definitions. For any two nodes 𝑢 and 𝑣 (and respectively, phase numbers 𝑝𝑢 and 𝑝𝑣), the phases

P𝑢 (𝑝𝑢) and P𝑣 (𝑝𝑣) are said to intersect if {𝑔𝑢 (P𝑢 (𝑝𝑢 , 1)), . . . , 𝑔𝑢 (P𝑢 (𝑝𝑢 ,𝑇))}∩{𝑔𝑣 (P𝑣 (𝑝𝑣, 1)), . . . , 𝑔𝑣 (P𝑣 (𝑝𝑣,𝑇))} ≠ ∅,
or in other words, if they intersect in the global round structure. Furthermore, for any two nodes 𝑢, 𝑣 , we denote the set

of phases of 𝑢 that intersect with any phase P𝑣 (𝑝𝑣) of 𝑣 , by I(P𝑣 (𝑝𝑣), 𝑢). This set has cardinality at most 2.

High-level Description of the 2-hop Desynchronization Solution. By leveraging our 2-hop communication primitives,

we extend a simple 1-hop desynchronization solution to the 2-hop desynchronization problem. More precisely, we adapt

a streamlined version of the 1-hop desynchronization solution presented in [6], but with period length 𝑇 = 𝑂 (Δ4

𝑢𝑝), to
suit the 2-hop communication primitives and in particular, the resulting communication delay.

Briefly, the overall solution works as follows. During each phase, a node first computes a (finite) communication

scheme S = 0
𝑡
1 0

𝑇−1−𝑡
(for some integer 𝑡 ∈ {1, . . . ,𝑇 − 1}) of length 𝑇 . Then, the node beeps according to a jittered

version—S′
—of S, in which it jitters (i.e., delays its beep) by 1 round with probability

1

2
. This allows the node to detect

sender-side collisions with probability
1

2
.

When computingS, a node first computes with a true-biased one-sided error of 1
2
(i.e., always computes true correctly but

computes false correctly with probability at least
1

2
) whether its communication scheme during the previous phase was

2-disjoint
6
with the communication schemes S𝑢 of all 2-hop neighbors. If so, then it keeps the communication scheme

S from the previous phase (but computes a new jittered version S′
). Otherwise, it computes a new communication

scheme S, which is 2-disjoint with all those of its 2-hop neighbors (possibly also recomputed) with some constant

probability. Eventually, a node no longer changes its finite communication scheme S. As a result, the node computes

the infinite periodic (of period S) communication scheme S𝜔
, disjoint from those of its neighbors.

5.1 Description of the 2-hop Desynchronization Solution

It is assumed that nodes are given the same period length 𝑇 = ^ (Δ𝑢𝑝 + 2)4, where ^ is set to 86. Additionally, nodes

compute the same USI(2,(Δ𝑢𝑝 + 1)2)-code 𝐶 of length 𝑙 ≤ 32(Δ𝑢𝑝 + 2)4 (𝑙 = 𝑂 (Δ4

𝑢𝑝))—which satisfies the conditions in

Section 4.2 with 𝑓 = 1. Next, we provide a precise description of the proposed 2-hop desynchronization solution (the

algorithm is deferred to Appendix A.1) using the 2-hop communication primitives from Section 4.

Nodes decide, for each phase, on some positive integer 𝑖𝐸 ∈ 𝐴 (where 𝐴 = {2𝑙 + 1, . . . ,𝑇 − 2} is the set of allowed
indexes within the phase) and on some jitter bit 𝐽 (chosen uniformly at random in {0, 1})—see details below. Then,
nodes compute, for each phase, a (finite) length 𝑇 communication scheme S = 0

𝑖𝐸−1
1 0

𝑇−𝑖𝐸
and a corresponding

6
A more precise statement is given in Section 5.1 using Definition 6.

Can Uncoordinated Beeps tell Stories? 15

jittered communication scheme S′ = 0
𝑖𝐸+𝐽 −1

1 0
𝑇−𝑖𝐸−𝐽

(except for the first phase, in which S = S′ = 0
𝑇
). Importantly,

during each phase a node 2-hop beeps—instead of beeping—according to S′
. In other words, a node (2-hop) listens for

the first 𝑖𝐸 + 𝐽 − 1 ≥ 2𝑙 rounds of a phase, 2-hop beeps once and then (2-hop) listens again for the remaining rounds of

the phase.

To account for the 2-hop communication primitives’ delay and ensure nodes have a coherent 2-hop history variable

H2
for the previous phase, all computations are done at the end of round 2𝑙 of the phase. Before that, no computation

is necessary since the scheme S′
always start with at least 2𝑙 0’s. Since any variable 𝑣𝑎𝑟 changes at most once every

phase per node, then by abusing the notation, the value of 𝑣𝑎𝑟 computed at the end of round 2𝑙 of some phase P(𝑝) is
said to be the value of 𝑣𝑎𝑟 in P(𝑝) and is denoted by 𝑣𝑎𝑟 (𝑝). Finally, for any node 𝑣 in phase P𝑣 (𝑝𝑣) (for 𝑝𝑣 ≥ 1), we

denote the local round P𝑣 (𝑝𝑣, 𝑖𝐸 (𝑝𝑣)) by L𝑣 (𝑝𝑣) and the global round 𝑔𝑣 (P𝑣 (𝑝𝑣, 𝑖𝐸 (𝑝𝑣))) by G𝑣 (𝑝𝑣) for simplification

purposes (these rounds correspond to the 1 bit in S𝑣 (𝑝𝑣)).

Computing 𝑖𝐸 . Finally, we describe the computation of 𝑖𝐸𝑣 (𝑝𝑣) by some node 𝑣 in phase P𝑣 (𝑝𝑣) (for 𝑝𝑣 ≥ 2). First,

node 𝑣 computes the set of occupied indexes 𝑂𝑣 (𝑝𝑣) = {𝑖𝑂 ∈ {1, . . . ,𝑇 }| H2

𝑣 [P𝑣 (𝑝𝑣 − 1, 𝑖𝑂)] = 1}: indexes in which 𝑣

heard 2-hop beeps during the previous phase. Then, 𝑣 computes with a true-biased one-sided error of
1

2
whether it was

good (see Definition 6 below) in the previous phase P𝑣 (𝑝𝑣 − 1) and stores the result in the variable 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑𝑣 (𝑝𝑣).
More precisely, 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑𝑣 (𝑝𝑣) = (({𝑖𝐸 − 1, . . . , 𝑖𝐸 + 2} \ {𝑖𝐸 + 𝐽 }) ∩𝑂 = ∅).7

If 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑𝑣 (𝑝𝑣) = true, then 𝑖𝐸𝑣 (𝑝𝑣) = 𝑖𝐸𝑣 (𝑝𝑣 − 1). Otherwise, 𝑣 computes the set of free indexes 𝐹𝑣 (𝑝𝑣) = {𝑖𝐹 ∈
𝐴 | ∀𝑖𝑂 ∈ 𝑂𝑣 (𝑝𝑣), |𝑖𝐹 − 𝑖𝑂 | > 2}, consisting of all indexes within 𝐴 that are at least three rounds away from indexes in

𝑂𝑣 (𝑝𝑣). Then, 𝑣 chooses an index 𝑖𝐸𝑣 (𝑝𝑣) ∈ 𝐹𝑣 (𝑝𝑣) uniformly at random. By doing so, it is good in phase P𝑣 (𝑝𝑣) with
some constant probability (Lemma 19, deferred to Appendix A.2).

Definition 6. For any node 𝑣 and any phase P𝑣 (𝑝𝑣), 𝑣 is said to be a good node in P𝑣 (𝑝𝑣) if for any node𝑢 ∈ N2 (𝑣) in
some (intersecting) phaseP𝑢 (𝑝𝑢) ∈ I(P𝑣 (𝑝𝑣), 𝑢),S𝑣 (𝑝𝑣) andS𝑢 (𝑝𝑢) are 2-disjoint8, or equivalently, |G𝑣 (𝑝𝑣)−G𝑢 (𝑝𝑢) | >
2. Node 𝑣 is bad in P𝑣 (𝑝𝑣) if it is not good.

Importantly, notice that if a node 𝑣 is good in some phase P𝑣 (𝑝𝑣) then its communication scheme S𝑣 (𝑝𝑣) is disjoint
with all communication schemes S𝑢 (𝑝𝑢) of a 2-hop neighbor 𝑢 in some intersecting phase P𝑢 (𝑝𝑢) ∈ I(P𝑣 (𝑝𝑣), 𝑢).9

Furthermore, if 𝑣 is good in some phase P𝑣 (𝑝𝑣) for which all of its neighbors are awake, then it remains good in all

subsequent phases (see Lemma 13 below, its proof is deferred to Appendix A.2). Therefore, once a node 𝑣 is good in

some phase P𝑣 (𝑝𝑣) for which all of its neighbors are awake, it computes the 2-hop desynchronized communication

scheme S𝑣 (𝑝𝑣)𝜔 . In the following section, we show that a node becomes good w.h.p. in 𝑂 (log𝑛) phases after all of its
neighbors are awake (see Theorem 14).

Lemma 13. Once a node 𝑣 is good in some phase P𝑣 (𝑝𝑣) and all of its neighbors have woken up, it remains good in all

following phases.

5.2 Analysis

The proof of correctness (and of the upper bound on the time complexity) of the proposed solution is sketched below.

7
The property of the computed value 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) is proved in Lemma 17, which is deferred to Appendix A.2.

8
For S𝑣 (𝑝𝑣) starting in P𝑣 (𝑝𝑣 , 1) and S𝑢 (𝑝𝑢) starting in P𝑢 (𝑝𝑢 , 1) .

9
See footnote 8.

16 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

Theorem 14. 𝑂 (Δ4

𝑢𝑝 log𝑛) rounds after all nodes wake up, all nodes compute a 2-hop desynchronized communication

scheme w.h.p. Alternatively, for any given node 𝑣 , 𝑂 (Δ4

𝑢𝑝 log𝑛) rounds after all of its neighbors are awake, 𝑣 computes a

2-hop desynchronized communication scheme.

Notice that in the 2-hop desynchronization problem, any given node 𝑣 can only compute a 2-hop desynchronized

communication scheme after all of its neighbors have woken up. Indeed, before that, there might be an (as of yet)

unreachable awake node 𝑢 in N2 (𝑣) (𝑣 is also awake). As 𝑢 and 𝑣 cannot yet communicate using 2-hop beeps (see

Remark 2), neither 𝑢 nor 𝑣 can compute a 2-hop desynchronized scheme (if they decide on non-disjoint schemes 𝑆𝑢 and

𝑆𝑣 , these schemes will change when they become 2-hop connected). In contrast, with the 1-hop desynchronization

solution of [6], each node computes a (1-hop) desynchronized communication scheme 𝑂 (log𝑛) phases after it wakes
up.

Consequently, our results guarantee upper bounds on the time complexity—of computing a 2-hop desynchronized

communication scheme—starting from the first round in which a node’s whole neighborhood is awake. However, after

that, a node only requires 𝑂 (log𝑛) phases (w.h.p.) to compute a 2-hop desynchronized communication scheme.

Proof of Theorem 14. The following results concern nodes whose neighbors are all awake (i.e., all of a node’s 2-hop

neighbors are in its reachable 2-hop neighborhood). By Lemma 13, once such a node is good then it remains good

forever. On the other hand, if such a node is bad then it becomes good in the next phase with constant probability

(Lemma 15) and thus good w.h.p. after 𝑂 (log𝑛) phases (Theorem 16). The proof of Lemma 15 is deferred to Appendix

A.2.

Lemma 15. A bad node 𝑣 in phase P𝑣 (𝑝𝑣), after all of its neighbors have woken up, becomes good in phase P(𝑝𝑣 + 1)
with constant probability.

Theorem 16. Once all of its neighbors have woken up, a bad node becomes good after 𝑂 (log𝑛) phases w.h.p.

When a node becomes good, it computes an (infinite periodic) communication scheme S𝜔
—since its finite communi-

cation scheme S no longer changes—which is 2-hop desynchronized. Therefore, 𝑂 (log𝑛) phases after all nodes wake
up, all nodes compute a 2-hop desynchronized communication scheme w.h.p. □

6 LOCAL MESSAGE BROADCAST

Solving the 2-hop desynchronization problem allows nodes to break symmetry despite their uncoordinated starts. If

nodes communicate according to their computed 2-hop desynchronized communication schemes, they avoid both

sender-side and receiver-side collisions. Consequently, nodes can simulate message-passing (i.e., local message broadcast)

by sending (broadcasting) their messages bit by bit. More precisely, any given node 𝑣 can send a 𝐵𝑣-bit message (for

any individually chosen constant 𝐵𝑣 > 0) using 𝑂 (Δ4

𝑢𝑝 · 𝐵𝑣) rounds (without collisions nor information loss, once the

2-hop desynchronized schemes have been computed).

The implementation of the corresponding SEND and RECEIVE primitives can be explained as follows. The two

primitives implement local message broadcast (for messages of any size), 𝑂 (Δ4

𝑢𝑝 log𝑛) rounds after all nodes wake
up. They are built on top of the algorithm presented in Section 5 (Algorithm 4 in the appendix). Here, we assume

that instead of a USI(2,𝑘)-code, nodes communicate using codewords from a USI(6,𝑘)-code {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6} (where
𝑘 ≥ 2(Δ𝑢𝑝 + 1)2). The first two codewords 𝑐1 and 𝑐2 are reserved for the 2-hop communication primitives BEEP2H and

LISTEN2H. The other four—𝑐3, 𝑐4, 𝑐5 and 𝑐6—are used to transmit information by the SEND and RECEIVE primitives.

Can Uncoordinated Beeps tell Stories? 17

SEND. Consider some node 𝑣 that invokes SEND(𝑚) for some message 𝑚 (i.e., a binary word). To convey 𝑚, 𝑣

communicates one bit of the message𝑚 per phase P𝑣 (𝑝𝑣) (using overall |𝑚 | consecutive phases), according to the

period S𝑣 (𝑝𝑣) of the 2-hop desynchronized communication scheme computed by 𝑣 . More precisely:

• Node 𝑣 sends a 0 bit (respectively, a 1 bit) in some phase 𝑝𝑣 by transmitting the codeword 𝑐3 (resp., 𝑐4) starting in

round L𝑣 (𝑝𝑣).
• Node 𝑣 starts (respectively, ends) a message in some phase 𝑝𝑣 by transmitting the codeword 𝑐5 (resp, 𝑐6) starting

in round L𝑣 (𝑝𝑣).

Notice that node 𝑣 also transmits 𝑐1 (i.e., starts 2-hop beeps) starting in round L𝑣 (𝑝𝑣) (or L𝑣 (𝑝𝑣) + 1) in Algorithm 4.

Consequently, awake nodes in 𝑣 ’s neighborhood also transmit 𝑐2 (i.e., relay 2-hop beeps) starting 𝑙 rounds later. The

cover-free property of a USI(6,𝑘)-code (with 𝑘 ≥ 2(Δ𝑢𝑝 + 1)2, instead of 𝑘 ≥ (Δ𝑢𝑝 + 1)2 as in Section 5) allows—and is

necessary—to decode all codeword transmissions, both in the underlying 2-hop communication primitives BEEP2H and

LISTEN2H, as well as in SEND and RECEIVE.

RECEIVE. Node 𝑣 listens in all phases for any bit transmitted by neighboring nodes. More precisely, it decodes any

transmissions of 𝑐3, 𝑐4, 𝑐5 or 𝑐6. Upon decoding a 𝑐5 transmission, 𝑣 concatenates the bits decoded from the codewords

transmitted each 𝑇 rounds (𝑐3 or 𝑐4), until it decodes a 𝑐6 transmission. Any other sequence of decoded transmissions

is considered as a faulty message. Once 𝑣 and all of its neighbors are good, any such concatenation of bits,𝑚∗
, is a

message sent by some neighboring node. In particular, the bits of𝑚∗
were transmitted by the same node.

Notice that it is important, for the above property, that SEND and RECEIVE are built upon 2-hop desynchronization.

Indeed, when some neighbor 𝑢 of 𝑣 transmits 𝑐3, 𝑐4, 𝑐5 or 𝑐6 (i.e., a bit), it does so according to its scheme S𝑢 . Once 𝑢
is good, S𝑢 is the period of a 2-hop desynchronized communication scheme S𝜔

𝑢 , which is disjoint with those of all

other nodes within 𝑢’s 2-hop neighborhood. Thus, once 𝑣 and 𝑢 are good, then for 𝑣 , 𝑢 is the only neighboring node

to transmit a codeword in {𝑐3, 𝑐4, 𝑐5, 𝑐6} according to S𝜔
𝑢 . This ensures that, once 𝑣 and all of its neighbors are good,

the bits transmitted each 𝑇 rounds—decoded by 𝑣—were all transmitted by a single node. Additionally, a good node

transmits bits exactly every 𝑇 rounds. Thus the concatenation of these bits is the message of some neighboring node.

REFERENCES
[1] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. 2013. Beeping a Maximal Independent Set. Distributed Computing 26, 4 (2013),

195–208.

[2] J. Beauquier, J. Burman, F. Dufoulon, and S. Kutten. 2018. Fast Beeping Protocols for Deterministic MIS and (Δ+1)-Coloring in Sparse Graphs. In

Proceedings of the 37th IEEE Conference on Computer Communications (INFOCOM 2018). 1754–1762.
[3] B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. 2002. Deterministic broadcasting in ad hoc radio networks. Distributed Computing 15,

1 (2002), 27–38.

[4] B. S. Chlebus, L. Gąsieniec, D. R. Kowalski, and T. Radzik. 2005. On the Wake-Up Problem in Radio Networks. In Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming (ICALP 2005). 347–359.

[5] M. Chrobak, L. Gąsieniec, and D. Kowalski. 2007. The Wake-Up Problem in Multi-Hop Radio Networks. SIAM J. Comput. 36, 5 (2007), 1453–1471.
[6] A. Cornejo and F. Kuhn. 2010. Deploying Wireless Networks with Beeps. In Proceedings of the 24th International Symposium on Distributed Computing

(DISC 2010). 148–162.
[7] P. Erdös and P. Turán. 1941. On a Problem of Sidon in Additive Number Theory, and on some Related Problems. Journal of the London Mathematical

Society s1-16, 4 (1941), 212–215.

[8] M. Ghaffari and B. Haeupler. 2013. Near Optimal Leader Election in Multi-hop Radio Networks. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2013). 748–766.

[9] S. Gilbert and C. Newport. 2015. The Computational Power of Beeps. In Proceedings of the 29th International Symposium on Distributed Computing
(DISC 2015). 31–46.

[10] R. Guerraoui and A. Maurer. 2015. Byzantine Fireflies. In Proceedings of the 29th International Symposium on Distributed Computing (DISC 2015).
47–59.

18 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

[11] W. H. Kautz and R. C. Singleton. 1964. Nonrandom Binary Superimposed Codes. IEEE Transaction on Information Theory 10, 4 (1964), 363–377.

A THE 2-HOP DESYNCHRONIZATION ALGORITHM AND THE REMAINING PROOFS OF ITS ANALYSIS

A.1 2-hop Desynchronization Algorithm

The 2-hop desynchronization solution is described in Section 5.1. Below, we give the corresponding algorithm—Algorithm

4. The discrete uniform distribution on a set 𝑆 is denoted byU(𝑆).

Algorithm 4. 2-hop Desynchronization

1: IN: ^: integer, Δ𝑢𝑝 : upper bound on the maximum degree, 𝐶: USI-code of length 𝑙

2: 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 := false, 𝑇 := ^ (Δ𝑢𝑝 + 2)4, 𝐽 := 0, 𝑖𝐸 := 0

3: 𝐴 := {2𝑙 + 1, . . . ,𝑇 − 2} ⊲ The set of rounds in each phase in which 𝑣 can beep.

4: S := 0
𝑇
, S′

:= 0
𝑇 ⊲ Initialize the phases’ communication schemes.

5:

6: // H2 and B2 are the 2-hop histories variables of communication in the square graph.
7: H2

:= 0
𝜔
, B2

:= 0
𝜔 ⊲ Infinite binary words (at initialization, composed only of 0’s)

8: for local round 𝑟 := 1 ; 𝑟++ do
9: 𝑝 := 1 + 𝑟/𝑇 ⊲ Current phase number (computed by integer division), for 𝑣 .

10: 𝑖 := (𝑟 − 1) % 𝑇 + 1 ⊲ Round index in the current 𝑇 -round phase.

11:

12: // Communicate on the square graph (according to S′), with a 2𝑙 delay.
13: if 𝑝 = 1 or 𝑖 ≤ 2𝑙 then
14: // Listen in the first phase, and for the first 2𝑙 rounds (accounting for the 2-hop beeps’ delay) of every phase.
15: LISTEN2H(𝐶 ,1,𝑟 ,B2

,H2
)

16: else if 𝑖 = 𝑖𝐸 + 𝐽 then BEEP2H(𝐶 ,1,𝑟 ,B2
,H2

)

17: else LISTEN2H(𝐶 ,1,𝑟 ,B2
,H2

)

18:

19: // Local computation done once per phase P(𝑝), for 𝑝 > 1, at the end of the round P(𝑝, 2𝑙).
20: // This ensures that all 2-hop beeps from the previous phase have been detected.
21: if 𝑝 ≥ 2 and 𝑖 = 2𝑙 then
22: // 𝑂 contains the indexes of 2-hops beeps heard (these indexes are thus occupied) during the previous phase.
23: 𝑂 := {𝑖𝑂 ∈ {1, . . . ,𝑇 }| H2 [P(𝑝 − 1, 𝑖𝑂)] = 1} ⊲ Where P(𝑝 − 1, 𝑖𝑂) = 𝑟 + 𝑖𝑂 − 𝑖 −𝑇 .

24:

25: if 𝑝 > 2 then ⊲ 𝑖𝐸 and 𝐽 are correctly initialized now, after the second phase.

26: // If the node was good in the previous phase (after all neighbors have woken up), then 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 = true.
27: // If the node was bad, 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 = false with probability at least 1

2
(in part due to sender-side collisions).

28: 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 := (({𝑖𝐸 − 1, . . . , 𝑖𝐸 + 2} \ {𝑖𝐸 + 𝐽 }) ∩𝑂 = ∅)
29:

30: if not 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 then ⊲ If the node detects that it was bad in the previous phase.

31: 𝐹 := {𝑖𝐹 ∈ 𝐴 | ∀𝑖𝑂 ∈ 𝑂, |𝑖𝐹 − 𝑖𝑂 | > 2} ⊲ All free indexes 𝐹 are at least 3 rounds away from 𝑂 .

32: 𝑖𝐸 := U(𝐹), S := 0
𝑖𝐸−1

1 0
𝑇−𝑖𝐸 ⊲ Choose a new scheme.

33: 𝐽 := U({0, 1}), S′
:= 0

𝑖𝐸+𝐽 −1
1 0

𝑇−𝑖𝐸−𝐽 ⊲ Compute a new jitter bit and jittered communication scheme.

Can Uncoordinated Beeps tell Stories? 19

A.2 Analysis of the 2-hop Desynchronization Algorithm: Remaining Proofs

The analysis of Algorithm 4 is sketched in Section 5.2. We complete that analysis here. First we provide the auxiliary

Lemmas 17, 18 and 19. Lemma 17 states that a node 𝑣 , in some phase P𝑣 (𝑝𝑣) for which all of its neighbors have woken

up, computes with a true-biased one-sided error (of
1

2
) whether it was good in the previous phase P𝑣 (𝑝𝑣 − 1) and stores

the result in 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣)—see line 28 of Algorithm 4. Lemma 18 states that at least a constant fraction of any given

phase is composed of free indexes (see line 31 of Algorithm 4). Finally Lemma 19, building upon Lemma 18, states that a

node 𝑣 , in some phase P𝑣 (𝑝𝑣), that detects that it was bad in the previous phase, is good with some constant probability

in phase P𝑣 (𝑝𝑣)—see line 32 of Algorithm 4.

Lemma 17. Consider a node 𝑣 in some phase P𝑣 (𝑝𝑣) (with 𝑝𝑣 ≥ 3), such that all of its neighbors have woken up.

If 𝑣 was good in phase P𝑣 (𝑝𝑣 − 1) then 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = true. Otherwise, if 𝑣 was bad in phase P𝑣 (𝑝𝑣 − 1) then
𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = false with probability at least 1

2
.

Proof. First, assume that 𝑣 was good in phase P𝑣 (𝑝𝑣 − 1). Then for any node 𝑢 ∈ N2 (𝑣) in some (intersecting) phase

P𝑢 (𝑝𝑢) ∈ I(P𝑣 (𝑝𝑣), 𝑢), |G𝑣 (𝑝𝑣) −G𝑢 (𝑝𝑢) | > 2. Therefore,𝑢 does not 2-hop beep in rounds {𝑖𝐸𝑣 (𝑝𝑣) −1, . . . , 𝑖𝐸𝑣 (𝑝𝑣) +2},
even with the jitter. Consequently, 𝑣 heard no 2-hop beeps in rounds {𝑖𝐸𝑣 (𝑝𝑣) − 1, . . . , 𝑖𝐸𝑣 (𝑝𝑣) + 2} \ {𝑖𝐸𝑣 (𝑝𝑣) + 𝐽𝑣 (𝑝𝑣)} of
phase P𝑣 (𝑝𝑣 − 1) and 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = 𝑡𝑟𝑢𝑒 .

Now, assume that 𝑣 was bad in phase P𝑣 (𝑝𝑣 − 1). Then there exists a node 𝑢 ∈ N2 (𝑣) in some (intersecting) phase

P𝑢 (𝑝𝑢) ∈ I(P𝑣 (𝑝𝑣), 𝑢), |G𝑣 (𝑝𝑣) − G𝑢 (𝑝𝑢) | ≤ 2. Let 𝑟 ′ = G𝑢 (𝑝𝑢) + J𝑢 (𝑝𝑢) be the global round in which 𝑢 beeps during

its phase P𝑢 (𝑝𝑢). Since all neighbors of 𝑣 have woken up, then 𝑣 hears the 2-hop beep of 𝑢 in round 𝑟 ′—see Remark

2—if it does not itself 2-hop beep in 𝑟 ′. We consider the following three cases:

• Assume that |G𝑣 (𝑝𝑣) − G𝑢 (𝑝𝑢) | = 2. Then, due to the jitter bit, 𝑟 ′ ∈ {G𝑣 (𝑝𝑣) − 2,G𝑣 (𝑝𝑣) + 3} with probability

1

2
and 𝑣 incorrectly computes 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = true, or 𝑟 ′ ∈ {G𝑣 (𝑝𝑣) − 1,G𝑣 (𝑝𝑣) + 2} with probability

1

2
and 𝑣

correctly computes 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = false.

• Assume that |G𝑣 (𝑝𝑣) − G𝑢 (𝑝𝑢) | = 1. Then, G𝑣 (𝑝𝑣) + 𝐽𝑣 (𝑝𝑣) = G𝑢 (𝑝𝑢) + 𝐽𝑢 (𝑝𝑢) with probability
1

4
and 𝑣

incorrectly computes 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = true, or G𝑣 (𝑝𝑣) + 𝐽𝑣 (𝑝𝑣) ≠ G𝑢 (𝑝𝑢) + 𝐽𝑢 (𝑝𝑢) with probability
3

4
and 𝑣

correctly computes 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = false.

• Assume that G𝑣 (𝑝𝑣) = G𝑢 (𝑝𝑢). Then, G𝑣 (𝑝𝑣) + 𝐽𝑣 (𝑝𝑣) = G𝑢 (𝑝𝑢) + 𝐽𝑢 (𝑝𝑢) with probability
1

2
and 𝑣 incorrectly

computes 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = true, or G𝑣 (𝑝𝑣) + 𝐽𝑣 (𝑝𝑣) ≠ G𝑢 (𝑝𝑢) + 𝐽𝑢 (𝑝𝑢) with probability
1

2
and 𝑣 correctly

computes 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = false. Notice that this case corresponds to sender-side collision detection.

Therefore, 𝑣 correctly computes 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣) = false with probability at least
1

2
. □

Lemma 18. If ^ ≥ 76, then for any given node 𝑣 and any given phase P𝑣 (𝑝𝑣) (such that 𝑝𝑣 ≥ 2), |𝐹𝑣 (𝑝𝑣) | ≥ (1 − 76

^)𝑇 .

Proof. Since indexes that are within 2 rounds of𝑂𝑣 (𝑝𝑣) are not in 𝐹𝑣 (𝑝𝑣), |𝐹𝑣 (𝑝𝑣) | ≥ 𝑇 − (2𝑙 +2) −5(Δ2 +1). As 𝑙 ≤ 32

^ 𝑇 ,

|𝐹𝑣 (𝑝𝑣) | ≥ 𝑇 (1 − 64

^) − 5Δ2 − 7. Following which, |𝐹𝑣 (𝑝𝑣) | ≥ 𝑇 (1 − 64

^ − 12

^) (as 𝑇 = ^ ·𝑂 (Δ4
)).

Finally, |𝐹𝑣 (𝑝𝑣) | ≥ (1 − 76

^)𝑇 (and 1 − 76

^ ≥ 0 for ^ ≥ 76). □

Lemma 19. Consider a bad node 𝑣 in some phase P𝑣 (𝑝𝑣) with 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑𝑣 (𝑝𝑣 + 1) = false. Then 𝑣 is good in phase

P𝑣 (𝑝𝑣 + 1) with probability at least 𝑒−1.

Proof. First, we emphasize that the following analysis does not consider whether 𝑣 hears the 2-hop beeps started in

its 2-hop neighborhood. Instead, once 𝑣 knows that it was bad in the previous period, it can become good with some

20 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier

constant probability without coordinating with its 2-hop neighborhood. Notice that 𝑣 might not hear these beeps if

some of its neighbors have not woken up—see Remark 2.

Since 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑𝑣 (𝑝𝑣 +1) = false, 𝑖𝐸𝑣 (𝑝𝑣 +1) is chosen uniformly at random in 𝐹𝑣 (𝑝𝑣 +1). Then, node 𝑣 becomes good

in P𝑣 (𝑝𝑣 + 1) unless some non-empty subset of nodes 𝑁 ⊂ N2 (𝑣) satisfies ∀𝑢 ∈ 𝑁 , |G𝑣 (𝑝𝑣 + 1) − G𝑢 (𝑝𝑢) | ≤ 2 for some

phase P𝑢 (𝑝𝑢). Since a node’s consecutive G𝑢 values are at least 2𝑙 + 2 rounds apart, then for each node 𝑢 ∈ 𝑁 there is

at most one phase P𝑢 (𝑝𝑢) satisfying the previous condition. Therefore, the probability Q𝑢 that a node 𝑢 ∈ 𝑁 interferes

with 𝑣 is at most
5

|𝐹𝑢 (𝑝𝑢) | for a single phase P𝑢 (𝑝𝑢). By Lemma 18, this is at most
5

(1− 76

^
)𝑇 . Then, the probability that 𝑣

is good in phase P𝑣 (𝑝𝑣 + 1) is Q =
∏

𝑢∈𝑁
(1−Q𝑢) ≥

∏
𝑢∈𝑁

(1− 5

(1− 76

^
)𝑇) ≥ exp

−10 |𝑁 |
(1− 76

^
)^ (Δ𝑢𝑝+2)4

≥ exp
−10

(1− 76

^
)^ . The middle

inequality holds for
5

(1− 76

^
)^ ≤ 1

2
, or equivalently, for ^ ≥ 86. The last inequality holds because

|𝑁 |
(Δ𝑢𝑝+2)4 ≤ 1. Finally,

the probability that 𝑣 is good in phase P𝑣 (𝑝𝑣 + 1) is Q ≥ exp
−10

(^−76) ≥ 𝑒−1, since ^ = 86. □

Finally, using Lemmas 17, 18 and 19, we provide the proofs of Lemmas 13 and 15.

Proof of Lemma 13. We prove that once a node 𝑣 is good in some phase P𝑣 (𝑝 ′𝑣) and all of its neighbors have woken up,

it remains good in the following phase P𝑣 (𝑝 ′𝑣 + 1), for any 𝑝 ′𝑣 ≥ 𝑝𝑣 . Then, Lemma 13 follows by simple induction.

Now, consider some node 𝑣 , after all of its neighbors have woken up, which is good in some phase P𝑣 (𝑝 ′𝑣) such that

𝑝 ′𝑣 ≥ 𝑝𝑣 . By Lemma 17, 𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑𝑣 (𝑝 ′𝑣 + 1) = true and thus S𝑣 (𝑝 ′𝑣 + 1) = S𝑣 (𝑝 ′𝑣). Furthermore, consider an arbitrary

two-hop neighbor of 𝑣 , 𝑢 ∈ 𝑁2 (𝑣), in some phase P𝑢 (𝑝𝑢) ∈ I(P𝑣 (𝑝 ′𝑣 + 1), 𝑢). Then, P𝑢 (𝑝𝑢) starts after the start of
P𝑣 (𝑝 ′𝑣) (i.e., after 𝑔𝑣 (P(𝑝 ′𝑣, 1))). Thus, when𝑢 computes S𝑢 (𝑝𝑢), its 2-hop history during the previous phase is complete

and contains the 2-hop beep transmitted by 𝑣 during its 𝑝 ′𝑡ℎ𝑣 phase. Consequently, by the definition of Algorithm 4 (line

31) 𝑢 chooses a round index 𝑖𝐸𝑢 (𝑝𝑢) such that S𝑣 (𝑝 ′𝑣), starting in P𝑣 (𝑝 ′𝑣 + 1, 1), and S𝑢 (𝑝𝑢), starting in P𝑢 (𝑝𝑢 , 1), are
2-disjoint. Since S𝑣 (𝑝 ′𝑣 + 1) = S𝑣 (𝑝 ′𝑣), then S𝑣 (𝑝 ′𝑣 + 1), starting in P𝑣 (𝑝 ′𝑣 + 1, 1), and S𝑢 (𝑝𝑢), starting in P𝑢 (𝑝𝑢 , 1), are
2-disjoint. Consequently, 𝑣 is good in phase P𝑣 (𝑝 ′𝑣 + 1). □

Proof of Lemma 15. By Lemma 17, a bad node in phase P𝑣 (𝑝𝑣)—such that all of its neighbors have woken up—computes

𝑝𝑟𝑒𝑣𝐺𝑜𝑜𝑑 (𝑝𝑣 + 1) = 𝑓 𝑎𝑙𝑠𝑒 with probability at least
1

2
. Then, by Lemma 19 𝑣 becomes good in phase P𝑣 (𝑝𝑣 + 1) with

probability at least
1

2𝑒 . □

	Abstract
	1 Introduction
	1.1 Roadmap
	1.2 Related Work

	2 Model and Definitions
	2.1 Preliminaries
	2.2 Model Definitions
	2.3 Problem Definition

	3 Using Uncoordinated Superimposed Codes to construct Communication Schemes for the Uncoordinated Starts Setting
	3.1 Uncoordinated Superimposed Codes
	3.2 Using Sidon Sets to construct USI-Codes

	4 Implementing 2-hop Communication Primitives
	4.1 High-level Description of the BEEP2H and LISTEN2H Algorithms
	4.2 Algorithms for the 2-hop Communication Primitives
	4.3 Analysis of the 2-hop Communication Primitives

	5 Solving 2-hop Desynchronization
	5.1 Description of the 2-hop Desynchronization Solution
	5.2 Analysis

	6 Local Message Broadcast
	References
	A The 2-hop Desynchronization Algorithm and the Remaining Proofs of its Analysis
	A.1 2-hop Desynchronization Algorithm
	A.2 Analysis of the 2-hop Desynchronization Algorithm: Remaining Proofs

