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Improved Many-Objective Optimization Algorithms for the 3D Indoor 
Deployment Problem

Sami Mnasri1 · Nejah Nasri2 · Adrien van den Bossche1 · Thierry Val1

Abstract

Compared with the two-dimensional deployment, the three-dimensional deployment of sensor networks is more

challenging. We studied the problem of 3D repositioning of sensor nodes in wireless sensor networks. We aim essentially to
add a set of nodes to the initial architecture. The positions of the added nodes are determined by the proposed algorithms

while optimizing a set of objectives. In this paper, we suggest two main contributions. The first one is an analysis

contribution where the modelling of the problem is given and a set of modifications is incorporated on the tested multi-

objective evolutionary algorithms to resolve the issues encountered when resolving many-objective problems. These

modifications concern essentially an adaptive mutation and recombination operators with neighbourhood mating

restrictions, the use of a multiple scalarizing functions concept and the incorporation of the reduction in dimensionality. The

second contribution is an application one, where an experimental study on real testbeds is detailed to test the behaviour of

the enhanced algorithms on a real-world context. Experimental tests followed by numerical results prove the efficiency of

the proposed modifications against original algorithms.

Keywords 3D indoor deployment · Experimental validation · Many-objective optimization · Neighbourhood · Adaptive

operators

1 Introduction

In wireless sensor networks (WSNs), the 3D deployment is

a strategy that defines the number of nodes, their positions

and the network topology in a 3D space. In fact, the pro-

cess of deploying and positioning nodes greatly influences
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the efficiency of the network. On both 2D and 3D spaces,

the coverage is the most considered objective when deploy-

ing nodes in WSNs. It can be considered as a measurement

of the reliability and the network quality of service. A full

probability of coverage cannot be ensured by increasing the

number of sensors when deploying nodes randomly. Further-

more, it is expensive to maintain high-density networks on

a large scale. Hence, other approaches should be proposed

to resolve these issues and to enhance the coverage degree

of the initial deployment. In the literature, different coverage

problems are investigated [1]. Among them are area cover-

age, target coverage, barrier coverage, sweep coverage and

k-coverage problem.

In most 3D deployment formulations, the coverage prob-

lem is proven and considered as a NP-hard problem [2].

Hence, this problem is unsolved using deterministic

approaches like the Branch and Bound especially for large-

scale instances. Therefore, in this study, the problem is

defined formally and a heuristic approach based on modified

algorithms is proposed to resolve it. Specially, we are inter-

ested in deploying WSN in smart buildings areas. The model

we suggest differs from existing models thanks to the fact that



it integrates a realistic coverage model based on experimen-

tal assumptions, and a hybrid localization approach in one

model. For more details about the 3D deployment problem,

we can refer to the surveys in [3,4].

The essential goal in this study is minimizing the num-

ber of deployed nodes and maximizing the coverage and

localization rates. Other objectives which are linked to the

coverage and localization issues are also considered, such

as minimizing the energy consumption and maximizing the

network lifetime. Achieving these objectives together makes

the problem more complex and harder to resolve using classi-

cal optimization algorithms, hence the need to improve these

optimization algorithms.

Indeed, the community of evolutionary multi-objective

optimization (EMO) is increasingly interested in many-

objective optimization (MaOO) aiming at simultaneously

optimizing more than three objectives. This is essentially

because of the unlike behaviours of EMO algorithms in

MaOO against optimization with three objectives or less. In

this regard, several EMO algorithms, known for a high per-

formance when resolving two and three objective problems,

encounter difficulties with problems having spaces with

high-dimensional objectives. Thus, a big challenge for both

practitioners and researchers in the area is faced. Different

studies are proposed in order to resolve many-objective opti-

mization problems (MaOP). However, existing approaches

are limited to a small number of studies on a few number of

test problems. The major difficulties encountered by multi-

objective evolutionary algorithms (MOEAs) when resolving

MaOPs can be summarized as follows:

– Inefficiency of the Pareto-based EMOs.

– Inaccuracy of the density estimation.

– Ineffectiveness of the recombination operation.

– Exponential increase in cost (time and space).

– Difficulty in representing the trade-off surface.

The rest of the paper is structured as follows: A set of

related recent works are investigated in Sect. 2 Then, the

problem formulation is detailed in Sect. 3, and a set of well-

justified modifications incorporated into the optimization

algorithms are presented in Sect. 4. Afterwards, an exper-

imental study based on real testbeds is discussed in Sect. 5.

Next, the behaviour of the tested modified algorithms is

assessed using the hypervolume (HV) metric in Sect. 6.

Finally, Sect. 7 concludes the paper.

2 RelatedWorks

In the literature, different works aim at resolving the problem

of deploying sensors in wireless networks. Table 1 illustrates

a comparison between the recent approaches used to resolve

the deployment problem in WSN.

More details on the coverage problems and their resolving

methods can be found on the following recent surveys: [20–

22].

Nevertheless, other than the 3D deployment, different

other methods aim to ensure the optimal coverage in wire-

less networks. Table 2 illustrates a comparison between our

approach and another one called ‘the collision free data link

layer’.

Among the main drawbacks of these studies is the non-

consideration of the many-objective case of the problem.

Even more, the majority of these studies did not test the pro-

posed approaches on real-world problems which are more

complex. Hence, the proposed contributions can be summed

up as follows: First, we suggest a set of well-studied modifi-

cations applied to the ∈-NSGA-II [24], the U-NSGA-III [25]

and the MOEA/DD [26] algorithms. Except the NSGA-II,

these modifications are applied for the first time on the pro-

posed algorithms. These modifications concern an adaptive

neighbourhood-based variation of the operators and a multi-

ple use of scalarizing functions. Moreover, in most studies,

the performance of the algorithm is not proven by empiri-

cal real-world scenarios and only simulations or theoretical

multi-objective problems (like ZDT or DTLZ) are used.

Thus, another major contribution is that in this study, exper-

imental tests are given based on a real-world environment

allowing demonstrating the real contribution of the modifi-

cation through the proposed algorithms. Thus, the originality

of this work compared to other works appears in the used

algorithms relying on real measurements allowing them to

provide more realistic hypothesis.

3 The Problem Formulation

3.1 Network Architecture

The following types of nodes are considered:

– Fixed nodes stationary nodes representing the nodes ini-

tially installed in the RoI (region of interest) with known

positions. They may be distributed randomly, or accord-

ing to a strategy. In our simulations, they are disseminated

according to the distribution law of the simulator. In

our experiments, they are disseminated according to the

applicative needs of the users.

– Mobile nodes targets representing the persons to control

which are equipped with a sensor receiving and transmit-

ting the signal. Its positions are predefined but susceptible

to be changed. In simulations, the mobile node is used

as a launcher of the first message, while in experiments,

this type of nodes is attached to a moving person in the

RoI in order to take measures in different positions.



Table 1 Comparison between different recent works resolving the deployment problem in WSNs

References Application(s) Space Sensing model Approach Objective(s) (+)Advantages/(−)Draw

backs/(*)Characteristics

Jiang et al. [5] Thermal sensor placement

in smart grid

2D Stochastic A genetic approach based

on a gappy proper

orthogonal decomposition

(GPOD-GA)

Minimize the thermal

sensor number

(−) A single objective is

considered

(−) No evaluation of the

proposed approach using

known metrics

Alia and Al-Ajouri [6] No application is given 2D Deterministic Harmony search-based

algorithm

Maximizing the coverage,

maximizing the deployed

sensor number

(−) A simple model of the

network

(−) A bi-objective model:

only two objectives are

considered

(−) No simulator is used:

only MATLAB results are

presented

Sweidan and Havens [7] Context of terrain-aware

wireless sensor networks

2D Deterministic Normalized genetic

approach (NGA), artificial

immune system (AIS)

approach and particle

swarm optimization

(PSO)-based approach

Minimize the cost of

mobility and maximize

the coverage

(−) High execution time of

the proposed AIS and

NGA

Khalfallah et al. [8] Water river monitoring: a

3D underwater

deployment for detecting

the pollution in rivers

3D Deterministic ‘3D-UWSN-Deploy’ : a

‘divide and conquer’

technique relying on a

mixed integer linear

programming and a

sub-cube tessellation of

the monitored field

Number of deployed

sensors

* Main steps of the

proposed strategy:

generating sub-cubes

tessellation, generation

sub-cubes tree and

optimal solution of

sub-cube

Connectivity ∗The CPLEX 12.5.1.0

solver is used

Quality of monitoring

(QoM)

(+) Large-scale

deployment : About 500

sensors are used

(−) No dedicated simulator

is used

(−) No experimental study

is proposed



Table 1 continued

References Application(s) Space Sensing model Approach Objective(s) (+)Advantages/(−)Draw

backs/(*)Characteristics

Brown et al. [9] 3D indoor video sensor

network deployment

3D Heuristic A greedy heuristic

algorithm based on an

enhanced depth-first

search

3D indoor space coverage (+) The proposed approach

reduces the required video

sensors by up to half over

a baseline algorithm

(+) A lattice grid model for

a discrete real-world

applicable environment

Liu et al. [10] Heterogeneous camera

sensor networks

3D Predictive k-coverage estimation

problem in heterogeneous

camera sensor networks

with boundary

deployment

k-coverage (+) A detailed mathematical

model is given

(−) Only MATLAB is used

to construct the simulation

scenario (no dedicated

simulator is used)

Cotta et al. [11] Placement of suicide

bomber detectors

2D Heuristic GRASP: a greedy

randomized adaptive

search procedure

Different objectives (+) Different numbers of

objectives are considered

HC: a hill climber * The Hill climbing

technique obtains the best

results

EA: an evolutionary

algorithm

(−) The Hill climbing is a

time-consuming

algorithm

UMDA: a Univariate

marginal distribution

algorithm

Wu et al. [12] Placing the minimum set of

wireless sensors at

locations in a constrained

3D space

3D Heuristic A genetic algorithm based

approach

Number of deployed

sensors

(−) The performance

evaluation is

simulation-based

k-coverage (−) The problem is tested

only for small and

medium-scale cases

Connectivity



Table 1 continued

References Application(s) Space Sensing model Approach Objective(s) (+)Advantages/(−)Draw

backs/(*)Characteristics

Hu et al. [13] Energy harvesting

cooperative wireless

sensor networks

– Deterministic A grid deployment

algorithm relying on a

Graphene-based Energy

Cooperative Charging

(GECC) strategy and a

Graphene-based

Opportunistic Cooperative

Routing (GOCR) strategy

Energy efficiency (−) The proposed approach

is not compared with

other known deployment

approaches

Network connectivity

Network lifetime

Zhang et al. [14] Deployment of post-disaster

environments using

unmanned aerial vehicle

(UAV)

3D Stochastic A stochastic geometrical

framework estimating the

coverage probability

Coverage probability (−) The proposed

geometrical framework is

dedicated to the problem

of post-disaster

deployment and cannot be

easily generalized to other

deployment problems

Yüce et al. [15] Hybrid Ultra-Dense

Networks

– Heuristic An optimization framework

based on genetic

algorithms (GA)

Coverage (+) A case study is detailed

and discussed

(−) A standard version of

the GA is proposed,

without resolving the

difficulties that GA

encounter when resolving

real-world many-objective

problems (difficulties like

the local optima and

exponential increase in

complexity)

Cao et al. [16] Monitoring maritime

environments

3D Heuristic A distributed multi

objective evolutionary

parallel algorithm

Coverage (+) The proposed algorithm

is parallel, cooperative,

multi-objective and

largescale

Reliability (+) The Wilcoxon test

results and the average

rankings of algorithms

(Friedman) are computed

and discussed

Lifetime (−) An uncertain coverage

model is used based on

distance-sensing and

angularsensing



Table 1 continued

References Application(s) Space Sensing model Approach Objective(s) (+)Advantages/(−)Draw

backs/(*)Characteristics

Cui et al. [17] Non-uniform 3D wireless

sensor network in forest

environment

3D Heuristic A genetic algorithm and a

minimum spanning tree

strategy

Convergence Connectivity * A new fitness function,

which considers the

connectivity and the

convergence, is proposed

Zhou et al. [18] Distributed detection

network in complex

electromagnetic

environments

2D Heuristic An improved particle

swarm optimization

algorithm

Coverage (+) The proposed PSO is

compared with another

heuristic evolutionary

algorithm (SPSO) and

another deployment

approach (virtual force

algorithm)

Localization (−) The used signal

propagation model and

RSSD location algorithm

are simplistic

Hildmann et al. [19] Deployment of indoor

distributed antenna

systems

2D Heuristic A particle swarm

optimization algorithm

with intra-floor and

inter-floor optimization

Coverage (+) The scalability and the

quality of solutions are

evaluated

Power budget (−) The modelling of the

problem is not well

explained (assumptions

and constraints are not

detailed)

Deployment cost



Table 2 Comparison between the 3D deployment and the free collision data link layer approaches

Our approach (3D indoor

deployment for coverage

problem)

Avoidance of collision data link

layer (Meribout et al. [23])

Type of deployment Offline (nodes are added after

running the last iteration of the

optimization algorithm) Indoor

Online (a real-time application)

Outdoor

Considered objectives Different objectives are considered

(from 2 to 8): coverage,

connectivity, localization, etc.

Security, reliability, link collision

Used method for resolving the coverage problem Evolutionary optimization Data link free collision

Advantages Real experimentation are given and

discussed

Reliability and security of

real-time data transfer is taken

into account

Drawbacks The used approach is complex: It is

based on adaptive operators,

neighbourhood mating, multiple

scalarizing functions and

dimensionality reduction

Real deployment is high cost

(more than simulations) since it

requires a base station every

125 m of the road

– Nomad nodes to be added in order to improve the 3D

deployment. Its positions are defined by the tested algo-

rithms.

3.2 Notation

• Sets

Sps represents the different sites where to install nodes.

Stn represents the different types of nodes.

Smt represents the set of mobile targets to detect.

Snd represents the set of nodes. Each one has a type in Stn

and is deployed in site in S ps .

• Parameters

Nmt the number of targets.

Nsa the number of deployed stationary anchors.

Nnd the number of nomad nodes to add.

Dg the degree of coverage of a target, which is the mini-

mum needed number of nodes to localize it.

L > 0 the total lifetime of the network, Li is the lifetime

of the sensor i ∈ Snd.

Hwa
b the hardware cost for deploying a node having a

type a ∈ Stn, to be installed at a site b ∈ Sps.

Coord the 3D position of a sensor: its coordinates

(i, j, k) in the indoor space.

PowT r
i the emitted RSSI ((received signal strength indi-

cator) is the transmitted power of the signal) of the sender

node i ∈ Snd.

PowRr
i the emitted RSSI (the received power of the sig-

nal) at a distance r from the sender node i ∈ Snd.

Powa
min a threshold representing the minimum needed

RSSI transmitted by (received from) a node having a type

a ∈ Snd to detect it.

• Decision variables

CvPos a 0–1 variable, equal to 1 if there is a node covering the

position with the minimum needed power of transmission.

Rtbc
qq ′ a 0–1 variable, equal to 1 if the link (q, q ′) to route the

traffic flow from a source b ∈ Sps to a destination c ∈ Sps is

the shortest.

Atb a 0–1 variable, equal to 1 if a node in the site b ∈ Sps,

can receive a signal from a target in a position t ∈ Smt.

Rcvaa′ a 0–1 variable, equal to 1 if a node at a site a ∈ Sps

can receive a signal from a node in a site a′ ∈ Sps.

Trsaa′ a 0–1 variable, equal to 1 if the node at a site a ∈ Sps

can transmit a signal from a node at a site a′ ∈ Sps.

Fxa
b a 0–1 variable, equal to 1 if a fixed node with a type

a ∈ Stn is set at a site b ∈ Sps; 0 otherwise.

Nda
b a 0–1 variable, equal to 1 if a nomad sensor with a type

a ∈ Stn is set at a site b ∈ Sps; 0 otherwise.

3.3 Objectives

• Number of nomad nodes to be added

Minimizing the number of nomad nodes to add:

Minimize
∑

b∈Sps

Nda
b (1)

Subject to
∑

b∈Sps

Nda
b ≤ Nnd ∀b ∈ Sps, a ∈ Stn (2)

• Deployment cost

The cost of deployment of a node (a ∈ Stn) is related to its

site (b ∈ Sps). For example, attaching a node to a wall is

considered as ‘cheaper’ than attaching it in the middle of the

space. Then, the deployment cost is an objective to minimize,



separately, the number of nomad nodes:

Minimize
∑

b∈Sps

∑

a∈Stn

Nda
b Hwa

b (3)

• Localization

To enhance the localization, at least Dg anchor nodes are con-

sidered to monitor each target t ∈ Smt. Then,
∑

s∈Sps Ats ≥

Dg ∀t ∈ Smt. Hence, the following function is proposed to

model the localization:

Maximize
∑

t∈T

(

∑

b∈Sps

Atb − Dg

)

(4)

Subject to
∑

b∈Sps

Atb ≥ Dg ∀t ∈ Smt (5)

• Coverage

To achieve a full coverage, at least Dg nodes are used

to monitor each position in the 3D indoor space. Then:
∑

b∈Sps CvPos ≥ Dg. Hence, the following function is pro-

posed to model the coverage:

Maximize
∑

t∈T

(

∑

b∈Sps

CvPos − Dg

)

(6)

Subject to
∑

b∈Sps

CvPos ≥ Dg (7)

• Connectivity

Each node should have at least one incoming and one out-

going link to consider the network as connected. Thus, the

connectivity probability is in general related to the strength

of the received signal and the transmission range.

Maximize PowRr
i (8)

Subject to

PowRr
i ≤ T rsaa′ ∗ Rcvaa′ ∗ α ∗ u−� ∗ PowT r

i (9)

where � is the path loss exponent and u is the distance from

the sender. u = uc ⇔ PowRr
i = Powa

min indicating that

the data may be received only if the power at the receiver

is higher or equal to Powa
min. The transmission range uc is

defined by PowRr
i (u = uc) = Powa

min.

• Energy consumption

Because sensing and being idle energies are negligible com-

pared to the receiving and transmitting energies, we propose

a model where Eelec
i is the dissipated energy to activate the

receiver/ transmitter circuit. According to the 802.15.4 pro-

tocol used in experiments, the reception energy is generally

more expensive than the transmitting one:

Minimize
∑

E transm
i +

∑

E recv
i (10)

where E recv
i = Eelec

i * m and E transm
i = Eelec

i ∗ m+ ∈amp

∗m ∗ d2 which is the energy consumed to transmit an m-bit

packet to a distance d, and the energy consumed to receive

the same packet is E recv
i . ∈amp represents the transmitter

amplifier to communicate. Different constraints are consid-

ered such as constraint (11) indicating that if there is a route

Rtab
qq ′ passing through a sensor a to another one b, then the

sensor a must be in activity:

Rtbc
qq ′ ≤ Z k

a (11)

where Z k
a is equal to 1 if the sensor a is activated during

a period k ∈ K. Besides, constraint (12) indicates that the

expenditure Bti of each sensor i in energy cannot exceed the

available energy in the battery of this sensor:

0 ≤ Bti ≤ E0 ≤ E transm
i + E recv

i ∀i ∈ Snd (12)

where Eo is the initial amount of energy.

• Network lifetime

The network lifetime is often defined as the time in which the

first node dissipates its energy. Several parameters affect the

network lifetime such as the node density, the initial energy

and the used routing strategies.

Maximize L (13)

Subject to L = min
i=1,2,...,max

L i (14)

where max is the maximum number of nodes that may be

deployed within the network. Constraint (14) indicates that

the lifetime is equal to the minimum lifetime Li among

all the sensors lifetimes where L i = Bti/ max(E transm
i +

E recv
i ),∀i ∈ Snd.

Other constraints can be considered:

∑

q ′∈Sps

Rtbc
qq ′ ∗ L −

∑

q ′∈Sps

Rtbc
q ′q ∗ L

= Qc ∗ L ∗ Fxa
b ∀b ∈ Sps, a ∈ Stn (15)

∑

q ′∈Sps

Rtbc
qq ′ ∗ L +

∑

q ′∈Sps

Rtbc
q ′q ∗ L

≤ Capnd ∗ L ∗ Fxa
b + Capnd ∗ L ∗ Nda

b

∀b ∈ Sps, a ∈ Stn (16)
∑

q ′∈Sps

E transm
i ∗ Rtbc

qq ′ ∗ L



+
∑

q ′∈Sps

E recv
i ∗ Rtbc

q ′q ∗ L + Qc ∗ L ∗ Fxa
b

≤ Bti ∗ Fxa
b + Bti ∗ Nda

b ∀a ∈ Sps, b ∈ Stn (17)
∑

b∈Sps

Fxa
b +

∑

b∈Sps

Nda
b

≤ Nmax + |Sps| − |Sps| ∗ (Fxa
b + Nda

b )

∀a ∈ Sps, b ∈ Stn (18)

0 ≤ Rtbc
qq ′ ∗ L ≤ Wlbb′ ∗ L ∗ Fxa

b

+ Wlbb′ ∗ L ∗ Nda
b ∀b, b′ ∈ Sps, a ∈ Stn (19)

where Qc is the rate of generating information of a sensor

located at b′ ∈ Sps, Capnd is the capacity (maximum amount

of data a node can transmit or receive) and Wlbb′ is the wire-

less link (b, b′) capacity.

• Utilization of the network

To enhance the network lifetime, many nodes can be placed

near to the base station. However, this may increase cost and

cause a poor utilization of the resources. As a result, it is

recommended to maximize the lifetime while deploying a

reasonable number of nodes. Thus, the network utilization

(NU) is defined as:

Maximize L/
∑

(Fxa
b + Nda

b ), ∀ a ∈ Sps, b ∈ Stn

(20)

Subject to
∑

(Fxa
b + Nda

b )/L ≤ (1/Lup) (21)

where Lup is an L upper-bound.

4 Chromosomes Coding and Suggested
Modifications in theMaOEAs

In this section, the specifications of the proposed algo-

rithms like the manner in which chromosomes are coded

are detailed. Then, a set of suggested modifications, incor-

porated into the many-objective algorithms, are presented.

These modifications concern the use of the neighbourhood

and an adaptive guided concept in mutation and recombina-

tion operators, and the use of multiple scalarizing functions

in the aggregation-based approaches.

4.1 Chromosomes Coding for the ProposedMaOEAs

For all EMOs, the chromosome coding must be specified.

Indeed, a 3D position of a node is represented by a chromo-

some indicating the potential locations of nomad nodes in

the RoI. A point (X , Y , Z ) models this position. Each gene

in the chromosome represents a binary digit gathering the

position’s value on the X, Y and Z axes. Different factors

influence choosing the chromosomes population size. The

most important ones are the network configuration and the

RoI. For example, considering that the node radius is equal

to 9 metres and the sensing area is equal to 70*80*120 m,

the number of needed fixed nodes to deploy can be equal

to 661, (because (70*80*120)/(4*π*92)=660,19 ∼= 661);

then, the initial population should be equal to 661 chro-

mosomes randomly disseminated in the coverage area. This

value is calculated assuming that 661 sensor nodes can ensure

the coverage of the entire RoI in the case of a uniform deter-

ministic deployment in the 1-coverage case (each target must

be monitored by one node at least). In the case of k-coverage,

the initial population to start with should be equal to 661 * k

chromosomes.

The choice of the binary coding is justified by its easiness

of use and its low computational cost (a low complexity)

which is required when resolving MaOPs. Another reason

is related to the use of the neighbourhood in recombina-

tion and mutation (as explained in the next section): Indeed,

compared with other coding methods (such as the real cod-

ing), binary coding allows better assessing the differences

in genes between two chromosomes, thus better comparing

chromosomes according to their distances from each other.

Nevertheless, the binary coding may lead to non-feasible

solutions. These solutions will be penalized by a weighting

coefficient and will not be selected by the algorithm after-

wards.

Next, the used EMOs are detailed. So are the modifications

proposed to enhance these algorithms in order to allow them

properly handling MaOPs.

4.2 Including Diversity: Neighbourhood Restriction
and Adaptive Multi-Operators

In MaOEAs, due to the high-dimensional objective space, the

population diversity increases and mutation/crossover oper-

ators become inefficient and may create an offspring which

may be not selected as a parent. To overcome this problem,

the suggested mechanism relies on two strategies: an adaptive

multi-recombination (multi-mutation, respectively) opera-

tors with neighbourhood restrictions, named AxN (named

AmN, respectively).

4.2.1 Principles of Mutation and Recombination with the

Neighbourhood (AxN and AmN)

• The neighbourhood restriction concept

As example of the utility of using the neighbourhood in the

operator’s variation in MaOEAs, it is shown in [27] that

MaOEAs can often apply effectively recombination to solu-

tions having relatively similar gene structure where there is

a high dependency between objectives. Thus, the neighbour-

hood is used aiming at improving the effectiveness of the

mutation/recombination operators by increasing the number



of objectives. This helps to reduce dissimilarities between

new individuals since recombining (and mutating) individu-

als which are too distinct may be penalizing and could affect

the efficiency of the operators. To achieve this, the proposed

neighbourhood concept computes the distance between indi-

viduals in the objective space. Then, it determines the set of

Nh ∗ |P| nearest neighbours for each individual where |P| is

the individual’s population and Nh is the neighbourhood size

(Nh = |P| ∗ 0.1 in this study). Moreover, the proposed strat-

egy facilitates multiple convergences by permitting higher

exploitation of the move-guiding areas.

– Neighbourhood Crossover (xN)

In EMOs, the crossover operation allows generating good

individuals as an offspring from parents. Ideally, this off-

spring must be composed of non-dominated solutions which

are uniformly scattered in the population. Initially, the idea

of using selection scheme mating supposes that each couple

of individuals from the current population can be chosen as

parents. Among the drawbacks of such mating scheme is the

random choice of individuals and the large Euclidian distance

between individuals in the variable space. As a consequence,

the obtained solutions are more probably to be dominated.

As a solution to this problem, some studies suggest a more

determinist selection scheme based on the idea of considering

the proximity and picking closer individuals to achieve the

recombination which is very interesting for several multi-

objective and many-objective problems. Thus, we propose

a neighbourhood crossover that selects individuals having

short Euclidian distance in the objective space so that the

search ability can be reinforced by crossed individuals that

are close to each other in the objective space. When cross-

ing adjacent individuals in the variable space, the obtained

offspring is generated near parent individuals in terms of

their objective values and may be a non-dominated solution,

which greatly increase the population diversity although the

Euclidian distance in the variable space may not be defined in

several cases like combinational functions. In the case of con-

tinuous functions, adjacent individuals in the objective space

have often a high probability to be adjacent in the variable

space. Thus, in this study, crossover is performed on adja-

cent individuals in the objective space instead of the variable

space.

– Neighbourhood mutation (mN)

Same as the neighbourhood crossover, the neighbourhood

mutation aims at restricting the production of solutions within

the same niche (local area) as their parents which imply

inducing a stable niching behaviour. In this study, we aim

to minimize φ(i,j)∀i ∈ V, j ∈ V where i and j are two can-

didate sensors to cross and φ is the distance (in the search

space) between the two sensors. To perform the neighbour-

hood mutation, only one parameter is needed, which is the

neighbourhood size ns. This parameter specifies the number

of members to be considered as mutation vectors in each sub-

population. In this context, the authors in [28] investigated

the effect of varying neighbourhood size on the behaviour

of the algorithm. Their works prove that the preferred range

of the neighbourhood size is between: 1/20 and 1/5 of the

overall population. For this reason, the neighbourhood size

is considered as a special niching parameter which is easy

to choose since it may be taken proportionally to the popu-

lation size. Thus, as proven later by the experimental results

(Sect. 5), the neighbourhood size does not affect the effi-

ciency of the algorithm. This strategy guarantees evolving

each individual towards its nearest optimal point. Another

advantage is the performance of the algorithm which is not

dependent on the variation of the neighbourhood size.

• The adaptive multi-operators concept

There is another problem confronted when MOEAs are used

to resolve many-objective real-world problems. This problem

is the choice of the appropriate recombination and muta-

tion operators for each problem. In the proposed strategy,

the operator variations are applied adaptively. The contri-

bution of each operator is taken into account. Indeed, the

operator which succeeded in the last iteration is used to

adjust the selection probability of this operator. Hence, each

operator has a selection probability in the next generation

which is relative to its contribution. In the adaptive mutation,

the mutation probability is modified, while the algorithm is

executed. This adaptive mutation relies on the feedback infor-

mation from the previous generation without modifying the

probabilistic nature of the mutation. Thus, new solutions are

deterministically generated in the search space and are guided

towards the optimum by earlier individuals.

The proposed AxN strategy is based on a crossover with

neighbourhood operation which can be performed on a pair of

parents after the selection step in the EMO algorithm. Indeed,

we propose to use an adaptive multi-operator recombination

operator which allows the improvement of the search and

adapt it to the local characteristics of the problem. The AmN

strategy is based on a mutation with neighbourhood operation

which is used to avoid the local optima and to increase the

diversity by changing the chromosomes values. The used

mutation operators are chosen adaptively.

4.2.2 Implementation of the AxN and AmN Strategies on

the Proposed Algorithms

• ∈-NSGA-II-AxN-AmN

Our proposed adaptive neighbour scheme of the selection

operators of the ∈-NSGA-II stems from the selection pro-

cess of the AMALGAM algorithm [29], which uses a set of



MOEAs controlled by a master algorithm. The AMALGAM

algorithm measures each method contribution in the previous

iteration. Then, these methods are admitted according to their

contributions rates exhibiting the most relevant reproductive

success.

• U-NSGA-III-AxN-AmN

The third proposed algorithm is the U-NSGA-II-AxN-AmN

which is also based on the original U-NSGA-III algorithm

[25] within a modified neighbourhood mutation and recom-

bination phase which uses adaptively all the previously

indicated mutation operators.

• MOEA/DD-AxN-AmN

Although the original MOEA/DD [26] relies on a neigh-

bourhood strategy, as in the previous presented algorithms,

the same variations of operators are applied to the original

MOEA/DD in order to take advantage of the suggested adap-

tive multi-operators concept.

4.3 Including Single-Grid andMultiple Scalarizing
Functions in MOEA/DD

Among the advantages of the algorithms based on scalariz-

ing functions compared to the algorithms based on Pareto

dominance, their low-cost computation and scalability, dif-

ferent scalarizing functions exist. Choosing the appropriate

scalarizing function is a relevant issue to be considered when

designing scalarizing function-based algorithms since choos-

ing the suitable scalarizing function is problem-dependent

[30]. For example, according to [31], the weighted sum is

generally used when the PF is convex, but it is not suit-

able for non-convex PFs. The weighted Tchebycheff is often

used when the PF is non-convex, but its efficiency could be

affected by the increase in the objectives number. Hence, it

is interesting, to adapt the MOEA/DD, in order to have the

ability to automatically choose between several scalarizing

functions for each individual in each generation. Authors in

[30] used two ideas for simultaneously using multiple scalar-

izing functions in a single MOEA/DD algorithm. The first

idea is the use of several scalarizing functions in a multi-grid

scheme where each scalarizing function has its unique weight

vectors complete grid. The second idea is alternately assign-

ing a different scalarizing function to every weight vector

in a single grid. Their results showed that, for 0/1 knap-

sack problems with six objectives, simultaneously using the

weighted Tchebycheff and the weighted sum in MOEA/D

outperforms their individual use. However, the number of

used scalarizing functions is limited to two. The aim is to use

this second idea with more than two scalarizing functions.

Indeed, as opposed to the original MOEA/D having a single

complete grid with up to 15 weight vectors, the single-grid

scheme proposed in this study relies on multiple scalarizing

functions and suppose that each weight vector has a differ-

ent scalarizing function. The following scalarizing functions

are considered: the weighted sum (WS) [31], the weighted

Tchebycheff distance (TCB) [31], the penalty-based bound-

ary intersection (PBI) [32]. Other scalarizing functions may

be considered such as the inverted PBI scalarizing function

(iPBI) [32] and the vector angle distance (VA) [33]. The

proposed algorithm using multiple scalarizing functions is

named mMOEA/DD-AxN-AmN.

4.4 Including Reduction: Incorporating the Feature
Selection

Since the 3D indoor deployment problem has dependent

objectives, we propose to incorporate a reduction algorithm

that identifies the non-essential (redundant) objectives in

order to reduce the objectives number of the problem. For

this purpose, an unsupervised feature selection approach is

used based on the original algorithm of Mitra et al. [34].

Indeed, the feature selection is a procedure which chooses a

minimum subset of correlated essential features from a given

data sets in order to construct an optimal learning model to

reduce the feature space dimensionality. In our context, a

feature is an objective.

5 Experimental Results

In this section, we present the results of the proposed con-

tributions which are experimented on a real-world problem

by deploying real testbeds. The experiments are based on

Arduino software programming platform and Teensyduino

nodes. The proposed algorithms are implemented using the

jMetal platform on an Intel core i3-3217U CPU 1.80 GHz

computer. The number of constraints is determined based on

the formulation proposed in Sect. 3. Unless indicated after-

wards, other parameters are set as follows: the length of the

area (x) = 23.21 m.

– Width of the area (y) = 13.95 m.

– Height of the area (z) = 6.75 m.

– Maximum execution time = 4280 s.

5.1 Network Architecture

The proposed network is composed of 11 fixed nodes initially

deployed, 3 nomad nodes (named ‘D’, ‘E’ and ‘F’) and a

mobile node (named ‘C’). The node ‘C’ is attached to a person

who can move on the building. The nomad nodes to be added

can be placed everywhere in the 3D space except the position

where there is a fixed node or an obstacle such as a wall

(several infeasible positions are discarded from the beginning

by the implemented algorithms). The RSSI value of each



Fig. 1 The 2D and 3D architecture of the real deployed indoor network

node is indicated by a value between 0 and 255 as shown

in Figs. 2 and 3. This value can be convertible in dBm).

Although the number of all deployed nodes does not exceed

twenty in the experiments, the use of meta-heuristics as a

resolution approach is justified, since, according to [2], the

3D deployment problem is considered as an NP-hard problem

starting from two nodes to deploy. Figure 1 illustrates the

deployment scheme in 2D and 3D plans. The origin of the

local-taken coordinate system is set at the point Po (0,0,0)

indicated in Fig. 1a. In the same figure, the nodes represented

by triangles are the fixed nodes and the ones represented

by circles are the nomad added nodes. The positions of the

fixed nodes are chosen by the users according to their needed

applicative objectives which explain the use of two nodes

in the same room, while there are no ones in other rooms.

The proposed deployment is considered as 3D (not a 2D

multistage deployment) because of the connections between

nodes situated in different floors of the building. Besides, the

height of the deployed nodes is not negligible compared to the

length and width of the RoI. Consequently, it is recommended

to consider the indoor area as a continuous 3D space.

The technical and localization specifications of the

installed nodes are listed in Table 3. Table 4 illustrates a set

of chosen positions taken by the mobile node ‘C’ on the 3D

space to assess coverage and localization. These positions

are dispersed uniformly in different regions of the 3D space.

In both mentioned tables, the x axis represents the horizontal

axis, the y axis is the vertical axis, and the z axis represents

the height. The point Po (0,0,0) corresponds to the following

WGS84 GPS coordinates expressed in sexagesimal degrees

(in degrees, minutes and seconds): latitude = 43◦38′57.4′′E;

longitude = 1◦22′28.4′′E and altitude = 164 m. These GPS

coordinates can be easily converted into the local coordinates

using appropriate formulas.

5.2 Objectives

The purpose is to add nomad nodes to the indicated loca-

tions guaranteeing a set of objectives. These objectives can

be either network objectives or applicative objectives. The

applicative objectives represent metrics measuring physical

parameters linked to sensors such as brightness, temperature

or opening and closing doors. The network objectives are

considered when the algorithms search the positions of the

nomad nodes to add. In experiments, the considered objec-

tives concern essentially in maximization: the lifetime of the

network, the coverage quality and the localization quality,

and in minimization: the consumed energy and the hardware

deployment cost. To assess those objectives, the measure-

ment of the links strength between nodes over time is used.



Table 3 Localization and technical specifications of the installed node

N◦ Decimal

nomenclature

Short address

(the node’s 16-bit address)

Type Local-coordinate position

X Y Z

N1 01 0x0001 Teensy 3.0 mk20dx128 278 545 523

N2 02 0x0002 Teensy 3.0 mk20dx128 1063 525 521

N3 03 0x0003 Teensy 3.0 mk20dx128 683 498 526

N4 14 0x0004 Teensy 3.1 mk20dx256 663 414 206

N5 05 0x0005 Teensy 3.0 mk20dx128 2093 305 519

N6 06 0x0006 Teensy 3.0 mk20dx128 1237 1256 443

N7 15 0x0007 Teensy 3.1 mk20dx256 450 00 290

N8 1c* 0x0008 Teensy 3.1 mk20dx256 1114 1252 422

N9 31* 0x0009 Teensy 3.1 mk20dx256 416 495 336

N10 1F* 0x000A Teensy 3.1 mk20dx256 1813 306 356

N11 34* 0x000B Teensy 3.1 mk20dx256 672 270 291

N12 58 0x000D Teensy 3.1 mk20dx256 Variable

N13 59 0x000E Teensy 3.1 mk20dx256 Variable

N14 60 0x000F Teensy 3.1 mk20dx256 Variable

N15 C 0x000C Teensy 3.1 mk20dx256 Mobile

Table 4 Locations of the positions taken by the mobile node

N◦ P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

Positions on the

local reference

X 943 938 624 345 1152 1393 1814 1646 2148 1904 1748 1167 1693 865 362 1142 2321

Y 265 422 870 1175 992 1197 1072 435 985 648 25 858 584 520 342 0 0

Z 392 386 343 518 478 462 394 502 413 517 383 187 10 100 28 140 165

The quality of links (thus the radio coverage quality) is

evaluated by measuring the FER (frame error rate). The local-

ization quality is evaluated by measuring the RSSI, and the

number of neighbours is evaluated by measuring the both

mentioned metrics. The following concept is used to define

a neighbour: A node ‘b’ is considered as a neighbour in the

neighbours table of another node ‘a’ only if the RSSI signal

of ‘b’, received by ‘a’ is sufficient (greater than a predefined

tuneable threshold). We define also a predefined tuneable

empirical threshold for the FER, below which a node is not

considered as a neighbour. Thus, a neighbour enters in the

table of neighbours only if the two mentioned thresholds are

respected. Indeed, to ensure the 3D coverage, each node must

have at least one neighbour and should be monitored by at

least one node. As regards the localization, it is based on a

hybrid 3D localization model based on 3D DV-Hop (distance

vector-hop) and RSSI protocol which requires that each node

must have four neighbours. Measures are taken during day

and night. Indeed, the existence of persons during day implies

that the majority of the doors are opened which improve the

quality of the received signals. While overnight, the majority

of the doors are closed.

5.3 Variation of the Localization

To measure the localization, a localization model based on

RSSI and 3D DV-Hop hybridization is used. Indeed, the

localization quality is proportional to the RSSI value. A

neighbour may be included in the table of neighbours of a

node only if its received RSSI value is greater than the prede-

fined threshold (set to 100). Based on the obtained numerical

results, the effect of the value of the RSSI threshold and its

relationship with the FER is investigated. The value of the

RSSI can change over time, and the period of its stability

can be less than 1 s. Given this instability, we take an average

value of RSSI extracted from four values for each pair of

nodes (node i–node C); i ∈ [1, 14]. A period of waiting of

20 s between the four values is used. The RSSI value (noted

Rci) that represents the relationship between the node ‘C’

(the mobile node) and each node ‘i’ is taken as the maximum

value between the detection value of ‘C’ by ‘i’ (signal gen-

erated by ‘C’) and the detection value of ‘i’ by ‘C’ (signal

detected by ‘C’). The average of the Rci values between ‘C’

and all other nodes reaching the fixed threshold in each posi-

tion Pi is represented by the ordinate axis in Fig. 2, expressed

in the negative value of the dBm (the RSSI values between 0
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Fig. 2 Variations of the RSSI, during day, for different positions
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Fig. 3 Variations of the RSSI, overnight, for different positions

and 255 are converted into values expressed in dBm), accord-

ing to the proposed algorithms, by day. The horizontal axis in

Fig. 2 represents the Pi positions indicated in Table 4. Figure 3

shows the variation of the same RSSI averages overnight.

Table I (in Appendix, ESM) illustrates the average values, in

different positions Pi, of the RSSI classified by neighbours

of the node ‘C’, during day. Table II (in Appendix, ESM)

illustrates the average values, in different positions Pi, of the

RSSI classified by neighbours of the node ‘C’, overnight. All

average values in the experiments are computed based on 25

executions of the algorithms.

5.4 Variation of the Coverage

The FER is used as a metric to measure the coverage and

to evaluate the quality of links between nodes. The above-

mentioned threshold of FER (used to introduce neighbours)

is fixed to 0,4. Although the FER values vary less than those

of the RSSI, we take an average value of FER extracted from

four values for each pair of nodes (node i–node C); i ∈ [1,14].

A period of waiting of 10 s between the four values is used.

The FER value (noted Covci) that represents the relationship

between the mobile node ‘C’ and each node ‘i’ is considered

as the average value between the detection value of ‘C’ by

‘i’ (signal generated by ‘C’) and the detection value of ‘i’ by

‘C’ (signal detected by ‘C’). The average of the Covci values

between ‘C’ and all other nodes reaching the fixed threshold

in each position Pi is represented by the ordinate axis in Fig. 4,

using the proposed algorithms, by day. The horizontal axis in

Fig. 4 represents the Pi positions indicated in Table 4. Figure 5

shows the variation of the same FER averages overnight.
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Fig. 6 Variation of the number of neighbours, during day

Table III (in Appendix, ESM) illustrates the average values,

in different positions Pi, of the FER, classified by neighbours

of the node ‘C’, during day. Table IV (in Appendix, ESM)

illustrates the average values, in different positions Pi, of the

FER, classified by neighbours of the node ‘C’, overnight.

5.5 Variation of the Number of Neighbours

Figure 6 illustrates the variation on the number of neigh-

bours, using the proposed algorithms, during day, for the Pi

positions. Figure 7 illustrates the variation on the number of

neighbours overnight, for the same Pi positions.

5.6 Comparing Experiments and Simulations

Using the same network architecture and parameters as in

the experiments, a simulation scenario is performed using

OMNeTpp. In order to compare experiments to simulations,

the average number of neighbours is compared in both cases

when varying the number of objectives. Figures 8, 9 and 10
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U-NSGA-III-AxN-AmN

illustrating these comparisons show a similar behaviour, for

each tested algorithm in both environments (experiments and

simulations). These similarities prove the effectiveness of the

proposed approach in different contexts.

5.7 Discussion

After the analysis of the experimental results, several findings

can be considered:

– In the majority of the instances, the average of RSSI sig-

nal strength is greater during day than night because of

the open doors by day, while the average of FER signal

strength is greater at night than day due to less human

activities at night involving less perturbations and signal

interference.

– When comparing the variation of the FER and the RSSI

rates between day and night, it is noted that the FER

rate is higher by day than night although the RSSI rate

is also higher by day than night: This indicates that the

introduction of neighbours according to the highest RSSI

does not always give the lowest error rate.

– The node range is not spherical: According to measures,

some nodes can be detected by a set of nodes, while

some other further near nodes cannot detect them. For

instance, the node ‘N4’ is the only one that detect the node

‘C’ which is in the location P1 although there are other

nodes which are less distant from the location P1. This

assumption has been considered when implementing the

proposed algorithms.

– The nature of the relationship between the RSSI and the

FER is investigated: Each neighbour is introduced in the

neighbours table based on a high RSSI rate, but after a

moment, the rate of lost frames may be very high. Thus,

increasing the RSSI value may not decrease the FER

value. So, the FER indicates the quality of links better

than the RSSI.

– The U-NSGA-III-AxN-AmN is more efficient in resolv-

ing the 3D deployment problem than the ∈-NSGA-II-

AxN-AmN. This is due to the selection procedure of

the U-NSGA-III-AxN-AmN which is based on reference

points and niching. This allows more diversity among

the members of the population. Although this selec-

tion procedure used on the U-NSGA-III-AxN-AmN, the

∈-NSGA-II-AxN-AmN seems to be (in several posi-

tions) more efficient than the U-NSGA-III-AxN-AmN:

This occurs because the U-NSGA-III-AxN-AmN is ded-

icated to resolve MaOPs and may have some difficulties

when objectives are high correlated (when the problem to

resolve can be reduced to a bi-objective or multi-objective

problem).

6 Numerical Results of EMOs Evaluation and
Interpretations

In this section, the performance indicators and the parame-

ters setting are presented. Afterwards, the performance of the



tested algorithms is demonstrated on the proposed real-world

MaOPs: the 3D deployment in indoor WSNs optimization

problem with eight objectives. This problem has seven deci-

sion variables as input and eight objectives as output. The HV

is used here as an evaluation metric because of the unknown

PF of the tested real-world problem. To overcome the prob-

lem of the complexity of computing the HV in our context,

we compute the HV using a procedure that achieves a balance

between the precision of the fitness and the cost of compu-

tation (time), so the HV computation will be possible in the

many-objective case. This procedure approximates the HV

based on a Monte Carlo sampling method proposed in [35].

6.1 Parameters Setting

The setting of the parameters affects considerably the per-

formance of the tested algorithm when resolving a particular

problem. Yet, a set of experimental tests using different sizes

of population, number of objectives, number of generations

and operators, are necessary when testing each MaOEA. In

all tables, the best performance for each instance is shown

with a grey background. Unless modification for testing the

impact of varying the concerned parameter, the common used

values of these parameters are as follows:

– The reproduction operators The SBX (simulated binary

crossover) is used, with a large distribution index. The

probability of crossover is pc = 0.9 with a distribution

index η c = 50. The probability of mutation is pm =

1/400 with a distribution index η m = 30.

– The population size and the number of reference points

Different specifications of the population size and the

weight vectors number are used for each test problem.

The number of reference points varies between 90 and

350. The population size varies between 100 and 1400.

– The number of runs To obtain statistically confident

results, each algorithm is performed using 25 indepen-

dent runs and a different initial population for each run.

– The objective number varies between 2 and 8 as follows:

three objectives in minimization (the number of added

nomad nodes, the hardware deployment cost and the

energy consumption) and five objectives in maximization

(the coverage rate, the localization rate, the connectivity

rate, the lifetime and the network utilization.

– The termination condition (The maximum number of

generations) is set to 50,000 solution evaluations.

– The used scalarizing functions are the weighted sum, the

weighted Tchebycheff and the PBI with a penalty param-

eter (θ = 0.01, 0.5, 1.0 and 5.0).

– The neighbourhood size is fixed to 1/10 of the popula-

tion size (between 1/20 and 1/5 as recommended in the

Sect. 4.2.1) and the probability of selecting a parent from

this neighbourhood is 0.9.

6.2 The Effect of the Interdependence Between
Objectives

In this section, the size of the population is set to 1000.

The used scalarizing function (for MOEA/DD-AxN-AmN)

is PBI (0.5). The mutation probability is 1/400 (bit-flip muta-

tion, index of 30), and the recombination probability is

0.9 [simulated binary crossover (SBX), index of 50]. No

neighbour mating in recombination and the objectives are

correlated (For each experiment with N objectives, at least

N/2 objectives are correlated). Two hundred and fifty refer-

ence points are used for the UNGSA-III algorithm. Table 5

(Table 6, respectively) illustrates the average values of HV

with non-correlated (correlated, respectively) objectives. N

is the whole number of objectives.

Table 5 Best, average and worst values of HV using non-correlated objectives, with 25 independent runs

Objective number Max Gen ∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN

3 400 0.899535 0.988986 0.983658

0.899492 0.988953 0.981922

0.899446 0.988911 0.981735

4 800 0.893884 0.974733 0.974893

0.893858 0.974578 0.974659

0.893812 0.974523 0.974468

6 1200 0.891972 0.972783 0.972589

0.891953 0.972692 0.972448

0.891927 0.972541 0.971925

8 1500 0.827925 0.964895 0.964365

0.827890 0.964772 0.964234

0.827836 0.964431 0.963827



Table 6 Best, average and worst values of HV using n correlated objectives (n >= N/2), with 25 independent runs

Objective number Max Gen ∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN

3 400 0.994562 0.994233 0.982356

0.973486 0.993568 0.981533

0.921357 0.993134 0.980621

4 800 0.968982 0.983652 0.977925

0.926065 0.981426 0.977409

0.925130 0.981124 0.977122

6 1200 0.921475 0.977123 0.975986

0.921209 0.976581 0.975574

0.920923 0.976130 0.975244

8 1500 0.920345 0.971841 0.967251

0.919803 0.969802 0.966828

0.919269 0.969023 0.966127

The obtained results show that in most cases, mMOEA/

DD-AxN-AmN is more efficient than the other algorithms.

Moreover, the HV increases if there is a correlation between

objectives, especially in the case of the ∈-NSGA-II-AxN-

AmN algorithm that has higher relative advantage improve-

ment compared to other algorithms. As a consequence, we

can conclude that ∈-NSGA-II-AxN-AmN is efficient on

resolving MaOPs having highly correlated objectives.

6.3 The Effect of Varying the Population Size

In this section, the HV values are presented for differ-

ent population sizes to test the effect of the variation in

the population size on the behaviour of MaOEAs. The

scalarizing function used in mMOEA/DD-AxN-AmN is PBI

(0.5). The probability of mutation is 1/400 (bit-flip muta-

tion), and the probability of recombination is 0.8 [simulated

binary crossover (SBX)]. No neighbour mating of parents

and the objectives are correlated. The number of reference

points is chosen according to the size of the population and

the number of objectives. Table 7 shows average HV val-

ues when varying the population size and the number of

populations.

For the majority of the used objectives number, better

results were performed by mMOEA/DD-AxN-AmN than

∈-NSGA-II-AxN-AmN. Obtained results demonstrate that

the increase in the size of the population does not affect

the ability of search of the mMOEA/DD-AxN-AmN. How-

ever, the ∈-NSGA-II-AxN-AmN efficiency is degraded by

the increase in the population size and did not work well

with large population sizes. As a result, an interesting

area of research is the determination of the appropriate

population size according to the number of considered

objectives.

6.4 The Effect of the Choice of the Scalarizing
Functions in MOEA/DD

Although it is proved that the mMOEA/DD-AxN-AmN per-

forms well on DTLZ and WFG test problems, this algorithm

was not evaluated on a real-world problem like ours. More-

over, its performance depends on the choice of the used

scalarizing function. Thus, the choice of the appropriate

scalarizing function or scalarizing function set is a relevant

field of research. To overcome the problem of choosing the

appropriate scalarizing function, we propose to use simul-

taneously several scalarizing function as described in the

approach (Sect. 4). In the experiments, mMOEA/DD-AxN-

AmN is applied with the weighted sum, the PBI function

(θ = 0,01, 0.5, 1.0, 5.0) and the weighed Tchebycheff with

α = 1, 1.01, 1.1. The performance of each scalarizing func-

tion is evaluated by calculating the average HV value over

25 runs. The population size in mMOEA/D-AxN-AmN was

specified as 1000. The mutation probability is 1/400 (bit-flip

mutation), and the recombination probability is 0.8 (SBX).

No neighbour mating in recombination and the objectives are

either non-correlated or correlated. The mMOEA/DD-AxN-

AmN algorithm is tested using the mentioned scalarizing

functions and then using the multiple scalarizing functions

concept discussed previously (Sect. 4.3). Table 8 shows the

average HV values when varying the scalarizing functions

with different correlation relations between objectives.

According to the results in Table 8, the weighted Tcheby-

cheff is not appropriate for the deployment problem with

no (or small) dependency relation between objectives, but

it is suitable when objectives are correlated. Concerning

the parameter θ , good results were performed by the PBI

function with θ = 0.01, 0.5 and 1, while the PBI with

θ = 5 is always the worst. Another constatation is that,

except for small penalty (θ) values, the deterioration of the



Table 7 Best, average and worst HV with different population sizes and objectives number

Objective

number

Population

size

∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN Number of reference points/

weigh vectors

(U-NSGA-III/ MOEA/DD )

4 100 0.927985 0.983461 0.976237 90

0.927109 0.982320 0.975698

0.926568 0.982029 0.975205

500 0.928631 0.985237 0.976844 130

0.928028 0.984562 0.976004

0.927563 0.984103 0.975236

1000 0.929870 0.985992 0.986773 255

0.928124 0.985128 0.976165

0.928007 0.984536 0.975896

1200 0.928896 0.986213 0.987971 280

0.928364 0.985897 0.975884

0.928103 0.985251 0.974656

1400 0.928987 0.986852 0.976852 290

0.928657 0.986238 0.975366

0.927223 0.985140 0.975101

8 100 0.915631 0.970145 0.967334 90

0.914122 0.969233 0.966785

0.914033 0.969002 0.966176

500 0.919778 0.969986 0.967889 230

0.919266 0.969645 0.967034

0.919025 0.969023 0.965361

1000 0.920244 0.970243 0.971913 320

0.919963 0.969886 0.967362

0.919332 0.969122 0.966772

1200 0.921563 0.970274 0.968946 350

0.919255 0.969962 0.967691

0.918334 0.969146 0.967123

1400 0.920477 0.970988 0.968214 350

0.919876 0.970231 0.967983

0.919241 0.969862 0.967227

performance of mMOEA/DD-AxN-AmN when increasing

the objectives number was less clear when using the PBI

than the weighted Tchebycheff function. Moreover, using

high penalty values, the mMOEA/DD-AxN-AmN encoun-

tered difficulties in finding better solutions with respect to

the weighted Tchebycheff function than the PBI. Besides,

it is concluded from results that the weighed sum is not

suitable for bi-objective problems, but it is a good choice

for four to eight objectives problems. Furthermore, for most

instances, the simultaneous use of scalarizing functions gives

better results than individually using scalarizing functions.

For further investigations, the evolution of the number of

non-dominated solutions according to the size of the popu-

lation, using different scalarizing functions, can be studied.

6.5 The Effect of Using Neighbourhood Restrictions
and Adaptive Operators

In this section, the efficiency of the proposed strategies

based on mating similar parents and adaptive mutation and

crossover operators (AxN and AmN) is examined. The per-

formance of each algorithm is assessed using the average

HV over 25 runs. The population size in mMOEA/DD-AxN-

AmN was set to 1000. The mutation probability is 1/400,

and the recombination probability is 0.8. Neighbour mating

is performed in recombination, and the objectives are corre-

lated. The number of reference points is set to 100. Table 9

shows average HV values when using the neighbourhood

restrictions and adaptive operators.



Table 8 Best, average and worst values of HV with different scalarizing functions

Objective number Weighted sum Weighted Tchebycheff PBI (θ = 0.01) PBI (θ = 0.5) PBI (θ = 1) PBI (θ = 5) Our implementation**

Non-correlated objectives 2 0.665895 0.976314 0.954122 0.957326 0.955232 0.949963 0.979107

0.665210 0.975235 0.953954 0.953623 0.953488 0.946126 0.978685

0.664339 0.974566 0.953203 0.952003 0.950536 0.945224 0.978022

4 0.854369 0.789992 0.973220 0.977998 0.974351 0.972783 0.976324

0.853201 0.789125 0.972674 0.972463 0.972367 0.971806 0.975788

0.852874 0.788331 0.972003 0.972026 0.971974 0.968122 0.975002

6 0.867922 0.783261 0.971852 0.972633 0.972678 0.969982 0.975457

0.867364 0.782975 0.970556 0.972022 0.972135 0.969856 0.974985

0.866893 0.782023 0.968423 0.971881 0.971364 0.969634 0.974454

8 0.869233 0.780968 0.962344 0.971989 0.972336 0.969877 0.974623

0.868809 0.780661 0.961913 0.971456 0.971874 0.969233 0.974161

0.868469 0.780424 0.961599 0.971123 0.971299 0.969024 0.974022

Correlated objectives 2 0.668644 0.982897 0.984442 0.954221 0.954330 0.948433 0.982889

0.667985 0.982468 0.983843 0.953965 0.953987 0.947852 0.982347

0.667362 0.982022 0.983110 0.953246 0.953224 0.948911 0.982102

4 0.859212 0.793066 0.981988 0.973366 0.973784 0.972922 0.981843

0.858548 0.792653 0.981416 0.972974 0.973166 0.972349 0.981324

0.858009 0.792023 0.981124 0.972231 0.972038 0.972121 0.981006

6 0.868983 0.783877 0.980986 0.973465 0.974354 0.970963 0.981877

0.868244 0.783366 0.980574 0.972896 0.972846 0.970684 0.981213

0.868013 0.782783 0.980129 0.972234 0.972023 0.970261 0.980688

8 0.869867 0.781782 0.981235 0.972356 0.972852 0.970979 0.973982

0.869136 0.781144 0.979815 0.971964 0.972133 0.970318 0.973564

0.868874 0.780633 0.978248 0.971211 0.971646 0.970002 0.978421

**Based on single-grid and simultaneously used multiple scalarizing functions



Table 9 Best, average and worst HV with neighbourhood restrictions and adaptive operators

Objective number ∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN

Bit-flip mutation/SBX crossover 4 0.928687 0.983475 0.979325

0.926324 0.981874 0.977693

0.925714 0.979371 0.977102

8 0.919879 0.970251 0.967351

0.919235 0.969682 0.966487

0.918953 0.968337 0.966022

Using AxN and AmN 4 0.944941 0.983129 0.980369

0.940239 0.981952 0.979121

0.929782 0.980237 0.978922

8 0.920174 0.971002 0.971352

0.919877 0.970254 0.966964

0.919003 0.968968 0.962237

Table 10 Comparing according to the best, average and worst HV values

Original objective number Reduced objective number HV using the feature selection (applied on the reduced objective set)

∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN

4,5 3 0.899535 0.988986 0.983658

0.899492 0.988953 0.981922

0.899446 0.988911 0.981735

6 4 0.893884 0.974733 0.974893

0.893858 0.974578 0.974659

0.893812 0.974523 0.974468

8 6 0.891972 0.972783 0.972589

0.891953 0.972692 0.972448

0.891927 0.972541 0.971925

Obtained results with different numbers of objectives indi-

cate that AxN and AmN improve considerably the search per-

formance. Better results were obtained for different numbers

of objectives on the mMOEA/DD-AxN-AmN algorithm.

When the number of objectives increases, the efficiency

of mMOEA/DD-AxN-AmN over ∈-NSGA-II-AxN-AmN

becomes clearer. Despite this, much larger improvement

in the average HV value (with and without similar par-

ent recombination) was obtained by ∈-NSGA-II-AxN-AmN

than other algorithms. Moreover, results prove that mating

similar parents improves the diversity without deteriorating

the convergence.

6.6 The Effect of Incorporating the Reduction Based
on Feature Selection

In order to test the effect of reducing the objectives using

the feature selection, we measure the HV (the best, aver-

age and worst values) issued from the proposed evolutionary

algorithm, when incorporating the feature selection pro-

cedure. Objectives are correlated. Table 10 illustrates the

results.

7 Conclusions and Perspectives

This paper aims to propose a deployment scheme in 3D

indoor wireless sensor networks. Different objectives are

considered. Three modified variants of the ∈-NSGA-II, the

U-NSGA-III and the MOEA/DD algorithms are proposed.

Different mutation operators are involved using and adaptive

neighbourhood method of operator’s selection. Moreover,

we investigate the proposed algorithms on a real deployed

testbed with real assumptions in the 3D case. The results

prove that the aggregation-based approach (MOEA/DD) is

generally more efficient than the other proposed algorithms

in resolving the 3D indoor deployment problem. In addition,

it is proven that the adaptive method of selection of mutation

and recombination operators with neighbourhood restric-

tions improves the efficiency of the algorithms. Besides, we



assess the behaviour of the algorithms when incorporating a

feature selection dimensionality reduction procedure. In the

future, different directions can be investigated. We can further

use a large-scale grid of nodes (as the IOT-Lab [36]) to test

the scalability and the behaviour of the proposed algorithms

in large scale. Moreover, we are working on well-studied and

justified hybridizations of EMOs by incorporating the user

preferences to minimize the execution time and the complex-

ity of the studied MaOP.
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