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A Symbolic-Numeric Method to Capture the Impact of Varied Geometrical Parameters on the Translational Workspace of a Planar Cable-Driven Parallel Robot

In this paper, an approach to capture and visualize the impact of a geometrical adjustments of a cabledriven parallel robot is presented. This method combines the precision of an analytic description with the efficiency of numeric methods. The translational workspace of the robot, corresponding to a set of geometrical parameters, is determined by a piecewise assembly of boundary segments. The intersections of the curves, defining the workspace border, are computed by utilizing their shape as conic sections. Calculation examples are also given, comparing the impact of different parameter sets on the workspace.

I. INTRODUCTION

The parallel constitution of the cable robot simplifies the procedure of a system reconfiguration. An example of the examined system class is illustrated in Fig. 1. The cable robot is used to carry the extruding tool of a 3D-printer. As depicted, the position of the pulleys and anchor points are fixed and can not be varied. In consequence, the usable workspace of the printer remains constant. To equip the printer with an option for reconfiguration results in a noticeable gain of flexibility.

The term reconfiguration denotes a modification of the original system with the goal to improve a specific property. In the field of cable robotics, conceivable properties are for example the workspace, maximum payload, or the stiffness. Measures to obtain a gain in these properties could exemplary be the number of winches or shifting the pulley positions. In this contribution, the term reconfiguration is meant to be in the context of adjusting the usable workspace.

To characterize the workspace of a cable-driven parallel robot (CDPR), there exists numerous concepts. An early inspection of the properties was reported by Albus et al. [START_REF] Albus | The NIST ROBOCRANE[END_REF]: to express the usable workspace, the concept of wrench-closure workspace (WCW) is used. A definition and analysis of the WCW was given in [START_REF] Verhoeven | Workspace of tendon-driven stewart platforms: basics, classification, details on the planar-2-dof class[END_REF], [START_REF] Verhoeven | Workspace, stiffness, singularities and classification of tendon driven stewart platforms[END_REF]. Verhoeven showed in [START_REF] Verhoeven | Analysis of the Workspace of Tendonbased Stewart Platforms[END_REF] that the translational WCW of a CDPR is, in general, bounded by polynomial surfaces and also derived an explicit formula. Gouttefarde and Gosselin showed in [START_REF] Gouttefarde | On the properties and the determination of the wrench-closure workspace of planar parallel cable-driven mechanisms[END_REF] and [START_REF] Gouttefarde | Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms[END_REF] that the workspace boundary of a planar robot consists of 1 Felix Trautwein, Philipp Tempel, and Andreas Pott are with the Institute for Control Engineering of Machine Tools and Manufacturing Units, University of Stuttgart, Seidenstrasse 36, 70174 Stuttgart, Germany -felix.trautwein@isw.uni-stuttgart.de bivariate polynomials of degree two. For spatial systems, Gouttefarde et al. showed in [START_REF] Gouttefarde | Determination of the Wrench-Closure Workspace of 6-dof Parallel Cable-driven Mechanisms[END_REF] analogously that the hull is defined by cubic polynomial surfaces. Beside the aforementioned concepts, there exists numerous alternatives to characterize the workspace. The wrenchfeasible workspace (WFW) is a further concept, taking into account limitation in the cable forces [START_REF] Ebert-Uphoff | On the Connections Between Cable-Driven Parallel Manipulators and Grasping[END_REF], [START_REF] Gouttefarde | Wrench-Feasible Workspace of Parallel Cable-Driven Mechanisms[END_REF], [START_REF] Verhoeven | Estimating the Controllable Workspace of Tendon-Based Stewart Platforms[END_REF]. In this contribution, the workspace is regarded as an indicator to assess the quality of system modification. Other approaches to use a system reconfiguration are e.g., Gagliardini [START_REF] Gagliardini | Discrete reconfiguration planning for cable-driven parallel robots[END_REF], [START_REF] Gagliardini | Discrete Reconfigurations of Cable-Driven Parallel Robots[END_REF], and Nguyen [START_REF] Quan Nguyen | On the Study of Large-Dimension Reconfigurable Cable-Driven Parallel Robots[END_REF]. The focus of previous reports often relies on optimization of a reconfiguration strategy to achieve a specific task e.g., Gagliardini et al. [START_REF] Gagliardini | A reconfiguration strategy for reconfigurable cable-driven parallel robots[END_REF] and Barbazza [2].
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Vector loop for geometry and kinematics of a general spatial cable robot

The focus of this paper rather relies on providing a method to efficiently capture and quantize the impact of parameter variation. In the group of admissible reconfigurable parameters, only the geometrical properties like the proximal and distal anchor points are considered. The paper is structured as follows: Sec. II provides the elementary definitions of the kinematics and statics (II-A), the workspace (II-B) and a calculation method (II-C). The introduced foundations are utilized and applied in III. In III-A, an exemplary possible reconfiguration is visualized, followed by an implementation strategy in III-B. The mentioned concepts are demonstrated on a planar system in IV.

II. THEORETICAL FUNDAMENTALS

A. Kinematic and Static

To ease the understanding of the examined group of systems, a general example of a cable robot is depicted in Fig. 2, showing a cable robot embedded in the three dimensional Euclidean space E 3 . Let us parametrize the platform pose by the position vector r ∈ R 3 and the orientation matrix R ∈ SO3, giving the system n = 6 degrees of freedom (dof) in total. The position is given with respect to the global coordinate frame K 0 . For better clarity of the figure, only the i-th cable denoted by l i is drawn which connects the proximal point A i at the frame with the distal point B i on the platform. In general, the platform is suspended by m cables.

The physical behavior of the cables is assumed to be ideal, which means they are seen as perfect unilateral constraints. By using this assumption, the cables can be expressed as the closing condition of the kinematic loop,

l i = a i -r -Rb i for i = 1, . . . , m. (1) 
Where a i ∈ R 3 represents the proximal anchor points attached to the frame, b i ∈ R 3 are the distal anchor points on the mobile platform. The rotation Θ between K 0 and K P is captured by the matrix R. The cables itself are represented by the straight line l i with the cable direction denoted as

u i = l i ||l i || 2 . ( 2 
)
Obtained by normalizing the vector l i with the physical cable length, denoted by the Euclidean distance || • || 2 . Thus, the cable length can be expressed as

l i = ||l i || 2 .
The unit vector u i then represents the direction pointing towards the proximal points. After defining the kinematic framework, one can express the equilibrium state of the system as follows

u 1 . . . u m Rb 1 × u 1 . . . Rb m × u m A T (r, R)    f 1 . . . f m    f + f p τ p w P = 0. (3) 
The structure matrix A T ∈ R n×m distributes the vector of cable forces f ∈ R m on the system's degrees of freedom. The wrench vector w p ∈ R n aggregates the forces f p and torques τ p acting on the platform. As stated in Eq. (3), the structure matrix connects values from configurational space with their representation in operational space. By substituting (2) into (3), the structure matrix in non-normalized form,

A T = l 1 . . . l m Rb 1 × l 1 . . . Rb m × l m = A T L, (4) 
can be expressed. The matrix L = diag(l 1 , . . . , l m ) contains the lengths of the cables as diagonal elements. Since all cable lengths are always positive, L is regular and can be regarded as a scaling matrix.

B. Workspace

In the previous section, the equilibrium state Eq. ( 3) of a general spatial CDPR was derived. An important property of the CDPR is the usable workspace. As aforementioned, there exist numerous definitions to express the characteristics. In this paper, only the wrenchclosure workspace is examined. The key property of poses contained in the WCW is their independence from external forces. A basic assumption is that each external wrench can be balanced by tightening the cables, thus, the WCW can be regarded as a geometric property of the robot.

For a fixed orientation of the platform, Sheng et al. [START_REF] Sheng | Analytic Determination of Wrench Closure Workspace of Spatial Cable Driven Parallel Mechanisms[END_REF] showed that the hull of the workspace exhibits polynomial structure. The hull can be constructed by the union of several boundary parts where the number of segments corresponds with the system redundancy, defined as r = m -n. A single boundary element can be obtained by analytically evaluating the determinant of a quadratic subsystem of the structure matrix A T . Dropping excessive columns leads to the square shaped submatrix. Sheng et al. reported that under consideration of a planar system with single redundancy the polynomials can be stated as,

N 1 : det(A 4 , A 2 , A 3 ) = 0, (5a) N 2 : det(A 1 , A 4 , A 3 ) = 0, (5b) N 3 : det(A 1 , A 2 , A 4 ) = 0, (5c) N 4 : det(A 1 , A 2 , A 3 ) = 0. ( 5d 
)
The subscript of N (•) denotes the column which was dropped. For a spatial systems with single redundancy, the boundary consists of seven surface patches defined as,

N 1 : det(A 7 , A 2 , A 3 , A 4 , A 5 , A 6 ) = 0, (6a) N 2 : det(A 1 , A 7 , A 3 , A 4 , A 5 , A 6 ) = 0, (6b) . . . N 6 : det(A 1 , A 2 , A 3 , A 4 , A 5 , A 7 ) = 0, (6c) N 7 : det(A 1 , A 2 , A 3 , A 4 , A 5 , A 6 ) = 0. (6d) 
The mentioned equations are multivariate polynomials. For planar systems the borders defined by (5a)-(5d) are bivariate curves of degree two. The analogous spatial system results in polynomial surfaces of degree three, respectively.

C. Workspace Calculation

Evaluating the determinants in section II-B for a general robot leads to polynomials with fixed structure. The curves for a planar system exhibit the well known shape of a conic section A conic is defined by six coefficients as,

N i : a i xx x 2 + a i xy xy + a i yy y 2 + a i x x + a i y y + a i 0 = 0. (7)
In which the super-and subscript of the coefficients a

(•) (•),(•)
indicate the number of boundary segment and the corresponding monomial, respectively. The analogous cubic surface for the spatial system stating as,

N i : a i xxx x 3 + a i yyy y 3 + a i zzz z 3 + a i xxy x 2 y+ a i xxz x 2 z + a i xyy xy 2 + a i yyz y 2 z + a i xzz xz 2 + a i yzz yz 2 + a i xx x 2 + a i yy y 2 + a i zz z 2 + a i xy xy + a i xz xz + a i yz yz + a i x x a i y y + a i z z + a i xyz xyz + a i 0 . (8) 
Herein, the shape is defined by 20 coefficients in total.

The notation is the same as already presented in Eq. ( 7). The straight forward approach to computing the workspace is to use any computer algebra system and derive the equations in symbolic form. Afterwards, substitute the geometrical parameters into the equation to obtain a closed form solution of the workspace.

The critical point in this procedure is the symbolic evaluation of the determinants. Even for planar systems, the equations consist of several thousand terms. The computation of the surfaces for general spatial systems are exceeding the memory limits of today's standard personal computers. Thus, the mentioned workflow is only of limited interest for a practical use.

To avoid the problem of extensive calculation effort, Pott proposed in [START_REF] Pott | Determination of the Wrench-Closure Translational Workspace in Closed-Form for Cable-Driven Parallel Robots[END_REF] a symbolic-numeric approach to determine the boundary curves. The central idea is to obtain the polynomial coefficients by solving a linear system of equation. The system is built up by evaluating the determinant at characteristic poses numerically and interpret them as the right-hand side of the system. The left hand side is defined as the product of the system matrix and a coefficient vector. By inverting the matrix, one can finally determine the coefficients. The dimension is defined by the number of unknowns i.e., six for planar and 20 for spatial systems.

In the following, an exemplary calculation is done for the planar system given in [START_REF] Gouttefarde | On the properties and the determination of the wrench-closure workspace of planar parallel cable-driven mechanisms[END_REF]. The right-hand side and the sought coefficient vector take the form,

k =         a 0 a xx a x a yy a y a xy         , h =         N i (0, 0) N i (1, 0) N i (-1, 0) N i (0, 1) N i (0, -1) N i (1, 1)         , (9) 
with the coefficients aggregated in k and the positions as chosen in h. The system matrix can be formed as,

S =         1 0 0 0 0 0 1 1 1 0 0 0 1 1 -1 0 0 0 1 0 0 1 1 0 1 0 0 1 -1 0 1 1 1 1 1 1         . ( 10 
)
By using ( 9) and ( 10), the linear system of equation

Sk = h, (11) 
can be defined. The matrix S is defined by evaluating the equations ( 7) at the chosen positions. To minimize the computational effort, the positions are chosen such that as much as possible coefficients are equal zero. In general the method is valid for each pose, thus, the evaluation points can be chosen arbitrarily. Applied to spatial systems, the same procedure is presented by Pott [START_REF] Pott | Determination of the Wrench-Closure Translational Workspace in Closed-Form for Cable-Driven Parallel Robots[END_REF].

III. RECONFIGURATION METHOD A. Reconfiguration Idea

In section II, a definition to express the reachable workspace with a corresponding computational method, was presented. By using this tools one can calculate the WCW for a given geometry in an efficient way. Originally, a reconfiguration feature should enable the operator of the robot to optimize and adapt the system to a specific scenario. In the field of 3D printing, for example, it is necessary to extend the workspace in a specific direction to enable the robot to print larger structures. Thus, it is useful to have a method which predicts the effect of a parameter variation. To express the operational space of the printer, the concept of the wrench-closure workspace is suitable. A real application of the hull calculation is conceivably only in combination with the efficient algorithm in section II-C.
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The presented procedure is applied to a planar 1R2T robot, shown in Fig. 3, with two translational and one rotational degree of freedom. Therefore, in total the robot possesses n = 3 dofs and m = 4 cables, thus, having a redundancy value of 1.

B. Implementation of the Approach

As described in the previous sections, the hull is assembled by curve segments. The workspace boundary ∂W is expressed as

∂W = i Ni , ( 12 
)
where Ni is the segment of the polynomial N i satisfying the criterion to be part of the boundary. Now, one states that the hull inherits convenient properties from the polynomials like continuity and, except at the intersections, differentiability.

A critical point of the procedure is to efficiently find the intersections of the boundary curves. In the following, the procedure is performed for the illustrated 1R2T robot. The method to intersect two conics is mainly taken from Richter-Gebert [START_REF] Richter-Gebert | Perspectives on Projective Geometry[END_REF].

As described, the single curves have the structure of a conic section. Eq. ( 7) is formulated in homogeneous coordinates and in matrix notation as

C i :   x y 1   T   a i xx 1 2 a i xy 1 2 a i x 1 2 a i xy a i yy 1 2 a i y 1 2 a i x 1 2 a i y a i 0   Ci   x y 1   = 0. ( 13 
)
The matrix C i contains the conics coefficients allowing us to derive the conics shape from its properties. Based on the determinant det(C i ), one can distinguish the following different cases:

• det(C i ) = 0: The conics shape is degenerated; possible shapes of the conic are:

-Two intersecting lines -Two parallel straight lines -Two coincident lines -A single point

• det(C i ) = 0:
The conic possesses a proper shape; a further distinction can be done by examining the third minor

C 33 i = a i xx 1 2 a i xy 1 2 a i xy a i yy . ( 14 
)
By evaluating the determinant of C 33 i one can distinguish the cases:

-det(C 33 i ) < 0 is a hyperbola, -det(C 33 i ) = 0 is a parabola, -det(C 33
i ) > 0 is an ellipse. The following list gives a brief overview of the measures to be done to obtain the intersections between two given conics C u and C v . In-depth information and the theoretical derivations may be found in [START_REF] Richter-Gebert | Perspectives on Projective Geometry[END_REF].

1) Create a pencil of infinitely many conics which all share the mutual intersection points. 2) Choose a degenerate conic C λ out of the pencil; as mentioned, such a conic is identified by det(C λ ) = 0. 3) Decompose the degenerate conic into two distinct lines, connecting the intersections. 4) Decompose each of the two lines in the two intersection points.

An advantage of this method is that the intersections can be calculated analytically and no iterative solver has to be used. Each of the steps mentioned can be calculated by basic linear algebra operations.

IV. Example

A. Initial State

In this section, the methods are combined and used to determine the effect of a parameter variation. The initial 

0 1 2 3 4 5 -4 -2 0 2 x [m] y [m] C 1 C 2 C 3 C 4 ∂W
a 1 = 0 0 , a 2 = 5 0 , a 3 = 0 -4 , a 4 = 5 -4 , b 1 = -1 0.5 , b 2 = 1 0.5 , b 3 = 0.8 -0.5 , b 4 = -0.8 -0.5 . (15) 
The robot with its corresponding initial workspace is illustrated in Fig. 4. One can see the single redundancy resulting in four potential boundary segments. Let the orientation of the platform be defined by α = 0 • , resulting in conic sections with a degenerated shape. In contrast to the system illustrated in Fig. 3, the platform is defined with trapezoidal shape, which results in tilting of the boundary curves. In Fig. 5, the system is depicted for a constant orientation of α = 10 • . It can be easily seen that the orientation has a big impact on the workspace appearance. The tilting of the platform results in nondegenerate conic sections and curved boundary segments, respectively.

B. Experimental Parameter Reconfiguration

In this part of the paper, the effects of a reconfiguration are examined. In Fig. 6, the situation of a shifted proximal anchor point a 2 is illustrated. The parameter was increased in e x -direction by ∆a x 2 = 0.5 m, resulting in a no longer trapezoidal workspace. The lower boundary remains the same and is not affected by the variation, however, the upper part of the workspace has noticably changed: The right-side edge has shifted far in direction of the displacement while the upper right corner translates more than the imposed parameter shift. In Fig. 7, the proximal point a y 2 is displaced by ∆a y 2 = 0.1 m in positive direction. The phenomenon that a variation of a 2 does not affect the lower edge of the workspace can be confirmed with the second experiment. Nevertheless, the shape of the upper part of the workspace reveals an interesting behavior. In Fig. 6, the upper right corner is defined by the intersection of several curves. The vertical displacement pulls the boundary curve of C 3 out of the common point. This effect also leads to a non-degenerate conic and the workspace has no longer a sharp edge at the top right corner. On the left side of the workspace, a sharp and thin extension contrives. Thus, one can say a variation of geometrical parameters does not always lead to intuitive system reactions. Furthermore, a local displacement of a proximal point leads to a non-local influence on the workspace. In consequence, a reconfiguration can not be seen as a local-only adjustment.

C. A Rudimentary Reconfiguration Procedure

In this last example an idea is given, how a practical application of the described method may look like. Given a situation, in which a component should be printed, which does not fit in the reachable printing area, the operator should be to adapt the printer to enable printing these structures. With reference to Fig. 1, the measures to achieve this goal is to shift the pulley positions. As shown in the section before, there exist no straight forward or intuitive system reaction to a performed modification.

To transfer and match the scenario to the mentioned system, the printer is interpreted as the planar system from III. The set of variational parameters consists of the proximal anchor points A i . As can be seen in Fig. 1, the pulleys are attached to rails and possess the degree In Fig. 8, four variants of geometric reconfiguration are illustrated. In the first and third row, the anchor point A 2 was displaced in horizontal direction e x , in row two and four a vertical shifting of A 2 is shown, respectively. The first column shows the initial and reconfigured robot, the second column shows the corresponding workspaces. Both horizontal shifts are resulting in an extension of the workspace, thus, these measures are suitable for the given objective. The vertical displacement tend to influence the workspace in an opposite way: in contrast to the total area of the frame, the reachable workspace is not enlarged. Despite the vertical displacement being doubled, there is no significant change in the workspace border. This behavior can be explained by the variation influences curves, which are not part of the workspace border, and therefore no effect is visible.

To sum up, one can state that an extension of the workspace in horizontal direction can be achieved by shifting the proximal anchor point. A similar enlargement in vertical direction can not obtained by the same procedure. A strategy for vertical expansion is thus based on shifting both upper anchor points.

V. DISCUSSION AND CONCLUSIONS

The objective of this paper is introducing a procedure to efficiently and accurately calculate the workspace of a planar cable-driven parallel robot. Therefore, a symbolicnumeric calculation scheme is introduced. Later, the computational method is used to capture the workspace boundary which is affected by the modification of geometrical parameters. This procedure enables one to gather and rate the effects of a parameter variation very easily. We show the algorithms exemplary on a planar cable robot with 3 dof and 4 cables. A conceivable next step is to extend the approach to the spatial domain. The computational method of the boundary segments is in itself no handicap here, because the algorithm can be extended to spatial systems, in which 20 coefficients of the cubic surfaces need to be calcualted. The most critical point is the determination of the intersection of the boundary parts. In this paper, an algorithm tailored to conic sections is used, for spatial systems, the intersection curves of cubic surfaces have to be determined. To tackle this issue, approaches from the field of computer-aided-design, especially collision detection of bodies, is of interest. 
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