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ABSTRACT. We use subsequence and moving average ergodic theorems applied to Boole’s

transformation and its variants and their invariant measures on the real line to give new

characterisations of the Lindelöf Hypothesis and the Riemann Hypothesis. These ideas are

then used to study the value distribution of Dirichlet L -functions, and the zeta functions of

Dedekind, Hurwitz and Riemann and their derivatives. This builds on earlier work of R. L.
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1. INTRODUCTION

Equivalent statements of the Riemann Hypothesis are well-known and can be found

e.g. in Titchmarsh [T] or more recently e.g. in Mazur and Stein [MSt]. The Lindelöf

Hypothesis asserts that for every ε > 0 we have

(1.1) |ζ (1/2+ it)|= O(|t|ε) as |t| → ∞,

where ζ (z) is the Riemann zeta funtion, and Landau’s notation “O” means that there exists

a neighbourhood V of ∞ and a constant c ≥ 0 such that: |ζ (1/2+ it)| ≤ c|t|ε for all t ∈ V .

Before stating the main Theorems 1.1–1.5, and Theorem 7.2 in the context of moving

average ergodic theorems, let us make precise the context in probability theory.

Let (Xi)i≥1 be a sequence of independent Cauchy random variables, with characteristic

function φ(t) = e|t| and consider the partial sums Sn = X1+ . . .+Xn (n = 1,2, . . .).
M. Lifshits and M. Weber [LW3] studied the value distribution of the Riemann zeta

function ζ (s) sampled along the random walk (Sn)n≥1 showing, for b > 2, that

(1.2) lim
N→∞

1

N

N

∑
n=1

ζ

(
1

2
+ iSn

)
= 1+o

(
(logN)b

N
1
2

)
.

They also showed that

(1.3)

∥∥∥∥∥sup
n≥1

|∑n
q=1 ζ (1

2
+ iSq)−n|

n
1
2 (logn)b

∥∥∥∥∥
2

< ∞.

Here of course f (x) = o(g(x)) means limx→∞
f (x)
g(x) = 0. This result was extended to L-

functions and Hurwitz zeta functions by T. Srichan [Sr]. In [St2] J. Steuding replaced

(Sn)n≥1 in [LW3] by (T nx)n≥1 for almost all x on R with respect the Lebesgue measure, for

the Boolean dynamical system by T x := x− 1
x
. This result has its roots in the observation,

due to G. Boole [Bo ], subsequently developed by J.W.L. Glashier [G1] [G2], that if f is

integrable on the real numbers, then
∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
f
(

x−
1

x

)
dx.

See [AdW] for a proof of the ergodicity of this dynamical system. In Theorem 3.1 in [LS],

the maps

(1.4) Tα,β (x) =

{
α
2

(
x+β

α − α
x−β

)
if x 6= β ,

β if x = β ,

for α > 0 and real β , are shown to be measure preserving and ergodic with respect to the

probability measure

(1.5) µα,β (A) =
α

π

∫

A

dt

α2 +(t −β )2
,

for any Lebesgue measureable subset A of the real numbers.

As noted in [LS], if λ denotes Lebesgue measure then µα,β (A)≤
1

απ λ (A) for all A ∈B,

where B denotes the Lebesgue σ -algebra. Also if φα,β (x) = αx+β , with T = T1,0 and
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µ = µ1,0 we have

(1.6) Tα,β = φα,β ◦T ◦φ−1
α,β ,

which implies the µα,β -measure preservation and ergodicity of Tα,β . The referee of this

paper has brought to the authors’ attention the paper [MSr], which considers a family

of rational maps more general than that in [LS], which we consider in this paper. The

suggestion is that our methods in this paper will adapt to the more general framework in

[MSr] – at least to a degree. We will not however explore this possibility in this paper, as

it would be too much of a digression.

We consider a number of general definitions.

We say (kn)n≥1 ∈ N is Lp-good universal if for each dynamical system (X ,β ,µ,T ) and

for each g ∈ Lp(X ,β ,µ) the limit

(1.7) ℓT,g(x) = lim
N→∞

1

N

N−1

∑
n=0

g(T knx)

exists µ almost everywhere.

Also throughout the rest of this paper B will be the Lebesgue σ - algebra on R and when

a σ -algebra on R is not explicitly mentioned it is in fact B.

We say that a sequence x1, . . . ,xN , . . . is uniformly distributed modulo one if

(1.8) lim
N→∞

1

N
#{1 ≤ n ≤ N : {xn} ∈ I}= |I|

for every interval I ⊆ [0,1). For a real number y we have used {y} to denote its fractional

part and let [y] = y−{y} denote its integer part. We say a sequence of integers is uniformly

distributed on Z if it is uniformly distributed among the residue classes modulo m, for each

natural number m> 1. We say a sequence of natural numbers (kn)n≥1 is Hartman uniformly

distributed (on Z) if it is uniformly distributed on Z, and for each irrational number α , the

sequence ({knα})n≥1 is uniformly distributed modulo one . This condition coincides with

(kn)n≥1 being uniformly distributed on the Bohr compactification of Z. Some basics on

Hartman uniform distribution can be found in the book of Kuipers and Niederreiter [KN].

Note that if (kn)n≥1 is Hartman uniformly distributed on Z, and if for z with |z|= 1 we set

(1.9) F(N,z) :=
1

N

N−1

∑
n=0

zkn (N = 1,2, · · ·)

then

(1.10) lim
N→∞

F(N,z) =

{
1 if z = 1,
0 otherwise.

For a c ∈ R we use Hc to denote the half plane {z ∈ C : ℜ(z)> c} and use Lc to denote

the line {z ∈ C : ℜ(z) = c}. We establish the following theorem.

Theorem 1.1. Let f be a meromorphic function on Hc satisfying the following conditions:

(1) there exists a K > 0 and a c′ > c such that for any t ∈ R, we have

(1.11) | f ({σ + it|σ > c′})| ≤ K;
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(2) there exists a non-increasing ν : (c,∞)→ R such that if σ is sufficiently near c then

ν(σ)≤ 1+ c−σ and that for any ε > 0, we have f (σ + it)≪ f ,ε |t|
ν(σ)+ε as |t| → ∞;

(3) f has at most one pole of order m in Hc at s0 = σ0 + it0, that is, we can write its

Laurent expansion near s = s0 as

a−m

(s− s0)m
+

a−(m−1)

(s− s0)(m−1)
+ . . .

a−1

(s− s0)−1
+a0 +

∞

∑
n=1

an(s− s0)
n

for m ≥ 0 where we set m = 0 if f has no pole in Hc.

Then if (kn)n≥1 is Lp-good universal and Hartman uniformly distributed, for any s ∈
Hc\Lσ0

, we have

(1.12) lim
N→∞

1

N

N−1

∑
n=0

f (s+ iT
kn

α,β
(x)) =

α

π

∫

R

f (s+ iτ)

α2 +(τ −β )2
dτ,

for almost all x in R.

In the case kn = n (n = 1,2, . . .) Theorem 1.1 appears in [LS], where it is shown, using

(1), (2) and (3) and contour integration, for

lα,β (s) :=
α

π

∫

R

f (s+ iτ)

α2 +(τ −β )2
dτ,

that if f has a pole at s0 = σ0 + it0,

(1.13) lα,β (s) =





f (s+α + iβ )+ B̃m(so), if c < ℜ(s)< σo, s 6= so −α − iβ ,
m

∑
n=0

a−n

(−2α)n
, if c < ℜ(s)< σo, s = so −α − iβ ,

f (s+α + iβ ), if ℜ(s)> σo,

or lα,β (s) = f (s−α + iβ ) if s ∈Hc and f has no pole. Here ℜ(s) denotes the real part of

s and

B̃m(s0) =
m

∑
n=1

{ a−n

in(β + iα − i(s− s0))n
−

a−n

in(β − iα − i(s− s0))n

}
.

Moreover, when m = 1, we can extend Theorem 1.1 to the line Lσ0
by setting

lα,β (σ0 + it) = f (σ0 +α + i(t +β ))−
a−1α

α2 +(t0− t −β )2
.

Applications will be given in the next section.

As noted earlier Steuding [St2] showed that if ζ denotes the Riemann zeta function

(1.14) lim
N→∞

1

N

N−1

∑
n=0

ζ (s+ iT nx) =
1

π

∫

R

ζ (s+ iτ)

1+ τ2
dτ

exists µ almost everywhere (for x). We can measure the stability of these averages another

way. Henceforth C, possibly with subscripts, will denote a positive constant, though non-

necessarily the same on each occasion.
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Theorem 1.2. Suppose s = σ + it with 1
2
< σ < 1. Let

YN(σ) = YN(σ ,x) :=
1

N

N−1

∑
n=0

ζ (s+ iT nx). (N = 1,2, . . .)

Suppose (Nk)k≥1 is a strictly increasing sequence of positive integers. Then there exists an

absolute C > 0 such that

(1.15)
∞

∑
k=1

‖ sup
Nk≤N<Nk+1

|YN(s)−YNk
(s)| ‖2

2 ≤
C

πσ

∣∣∣ζ (2σ)

2
+

ζ (2σ −1)

2σ −1

∣∣∣.

There are other ergodic theoretic measures of the stability of the Riemann zeta function.

In this direction we consider the frequencies associated to the sequences
(ζ (s+ iT nx)

n

)
n≥1

.

Evidently

lim
n→∞

ζ (s+ iT nx)

n
= 0,

for almost all x. It is possible to make this more precise as follows. Suppose 0 < p < ∞.

For a sequence of real numbers x = {xn : n ≥ 1} set

(1.16) ‖x‖p,∞ :=
(
sup
t>0

{t p #{n : |xn|> t}}
) 1

p .

Theorem 1.3. (i) Suppose 1
2
< σ < 1. Then

(1.17) lim
m→∞

#{n :
|ζ (σ+iT nx)|

n
≥ 1

m
}

m
= ζ (σ +1)−

2

σ(2−σ)
,

for almost all x ∈ R. and in L1(µ) norm.

(ii) Further

(1.18)

∥∥∥∥∥

∥∥∥∥
{
|ζ (σ + iT nx)|

n
: n ≥ 1

}∥∥∥∥
1,∞

∥∥∥∥∥
1

< ∞.

Moreover,

Theorem 1.4. Suppose s = σ + it with 1
2
< σ < 1. Suppose κ = (kn)n≥1 is Lp- good

universal for p > 2 and let

(1.19) RN(s,x,κ) :=
1

N

N−1

∑
n=0

ζ (s+ iT knx). (N = 1,2, . . .).

Then

(i) there exists a constant C > 0 such that

(1.20)
∞

∑
N=1

∥∥RN+1(s, .,κ)−RN(s, .,κ)
∥∥2

2
≤

C

πσ

∣∣∣ζ (2σ)

2
+

ζ (2σ −1)

2σ −1

∣∣∣,

(ii) there exists C > 0

(1.21) µα,β

({
x :

∞

∑
N=1

|RN+1(s,x,κ)−RN(s,x,κ)|
2 ≥ λ

})
≤

C

λ 2

∣∣∣ζ (2σ)

2
+

ζ (2σ −1)

2σ −1

∣∣∣.
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We will provide additional information about various special families of sequences in

Section 4 and Section 8. On the other hand if we consider the L1-norm we have the follow-

ing theorem in the opposite direction.

Theorem 1.5. Suppose κ = (kn)n≥1 is Hartman uniformly distributed and Lp- good uni-

versal for fixed p ≥ 1 and σ ∈ (1
2
,1). Then

(1.22) ∑
N≥1

∣∣RN+1(σ ,x,κ)−RN(σ ,x,κ)
∣∣ = +∞,

almost everywhere in x with respect to Lebesgue measure.

It would be interesting to get good bounds almost everywhere in x for

J

∑
N=1

∣∣RN+1(σ ,x,κ)−RN(σ ,x,κ)
∣∣, (J = 1,2 . . .)

even for specific cases of κ .

The paper is organized as follows: in Section 2 new characterisations of the (extended)

Lindelöf Hypothesis are obtained for the Riemann zeta function, and for Dirichlet L-

functions, Dedekind zeta functions of number fields, Hurwitz zeta functions, as applica-

tions of Theorem 1.1. The sequences here are assumed to be Hartman uniformly distributed

and Lp-good universal. Replacing this assumption by being Stoltz leads to similar limit

theorems, which are reported in Section 7. The role played by sublinear sequences hav-

ing controlled growth is investigated in Section 8 for the Riemann zeta function. Section

6 contains some examples of Lp-good universal sequences and Hartman uniformly dis-

tributed sequences. Comparison between the dynamical and probabilistic models of Weber

[W], resp. Srichan [Sr], is done in Section 5.

2. APPLICATIONS OF THEOREM 1.1

From now, we assume that (kn)n≥1 satisfies the hypothesis in Theorem 1.1.

In the sequel, for a function f denote f (0) = f and f (k) the k-th derivative of f and set

Pk(s) :=
(−1)kk!

ik+1

(
1

(β + iα − i(s−1))k+1
−

1

(β − iα − i(s−1))k+1

)

for any non-negative integer k.

2.1. The Riemann zeta function.

Theorem 2.1. Suppose (kn)n≥1 is Lp-good universal for some p ∈ [1,∞] and Hartman

uniformly distributed. Then for any k ≥ 0 and s ∈H− 1
2
\L1 we have

(2.1) lim
N→∞

1

N

N−1

∑
n=0

ζ (k)(s+ iT
kn

α,β (x)) =
α

π

∫

R

ζ (k)(s+ iτ)

α2 +(τ −β )2
dτ

for almost all x in R.
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Denote the right hand side of this limit by l
(k)
α,β . Then

(2.2) l
(k)
α,β =





ζ (k)(s+α + iβ )+Pk(s), if − 1
2
< ℜ(s)< 1, s 6= 1−α − iβ ,

(−1)kγk −
k!

(2α)k+1 , if − 1
2
< ℜ(s)< 1, s = 1−α − iβ ,

ζ (k)(s+α + iβ ), if ℜ(s)> 1,

where

(2.3) γk = lim
N→∞

(
N

∑
n=1

logk n

n
−

logk+1 N

k+1

)
.

In the case k = 0 we can extend the result to the line L1 by setting

(2.4) l
(0)
α,β = l

(0)
α,β (1+ it) = ζ (0)(1+α + i(t +β ))−

α

α2 +(t2+β 2)
.

If we set kn = n (n = 1,2, . . .) Theorem 2.1 appears in [LS] and this is in the case α =
1,β = 0 and k = 1 in [St2].

We also mention here that the case kn = n (n= 1,2, . . .) and T = T1,0 of Theorems 2.3 and

2.4 to follow, appeared in [St2], of Theorem 2.4 appeared first in [BSY] and of Theorems

2.6 and 2.7 appeared in [LS].

Proof. Note that for k ≥ 0, we know that ζ (k) is meromorphic and has an absolutely con-

vergent Dirichlet series for ℜ(s)> 1. Thus the condition (1) of Theorem 1.1 is satisfied for

c′ > 1. This is because the Laurent expansion of ζ near the pole at s = 1 is known [Br] and

then that the Laurent expansion of ζ (k) has the form

ζ (k)(s) =
(−1)k k!

(s−1)k+1
+(−1)kγk +

∞

∑
n=k

(−1)n+1γn

(n− k+1)!
(s−1)n−k+1.

Thus if k ≥ 0 the function ζ (k) has a pole of order k+1 at s = 1. We can in addition show

(Titchmarsh [T], pp. 95–96) that given ε > 0 we have

ζ (k)(σ + it)≪ |t|µ(σ)+ε ,

where

µ(σ) =





0, if σ > 1,
(1−σ)

2
, if 0 ≤ σ ≤ 1,

1
2
−σ , if σ < 0,

if k ≥ 0. Therefore Theorem 2.1 follows from Theorem 1.1 with c = −1
2
, s0 = 1 and

m = k+1 to ζ (k)(s) as required. �

We now state a formulation of the Lindelöf Hypothesis in terms of ζ (k) from [LS].

Lemma 2.2. The Lindelöf Hypothesis (1.1) is equivalent, for every ε > 0, to

(2.5)

∣∣∣∣ζ
(k)(

1

2
+ it)

∣∣∣∣≪ |t|ε

as |t| tends to ∞, for any k ≥ 0.
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We now give a new characterization of the Lindelöf Hypothesis for the Riemann zeta

function, which generalizes the classical one. The classical case kn = n(n = 0,1,2, . . .)
appears in [LS].

Theorem 2.3. Suppose (kn)n≥1 is Lp-good universal for some p ∈ [1,∞] and Hartman

uniformly distributed. Suppose k is any non-negative integer. Then the statement, for any

natural number l,

(2.6) lim
N→∞

1

N

N−1

∑
n=0

∣∣∣∣ζ
(k)

(
1

2
+ iT

kn

α,β
(x)

)∣∣∣∣
2l =

α

π

∫

R

|ζ (k)(1
2
+ iτ)|2l

α2 +(τ −β )2
dτ

for µα,β -almost all x in R, is equivalent to the Lindelöf Hypothesis.

Proof. Via Lemma 2.2 the Lindelöf Hypothesis implies that given ε > 0 we have

∣∣∣∣ζ
(k)

(
1

2
+ .

)∣∣∣∣
2m

∈ Lp(R,B,µα,β )

for each pair of natural numbers k,m. Here . represents the variable t ∈ R. Theorem 1.1

and the ergodicity of Tα,β implies that

lim
N→∞

1

N

N−1

∑
n=0

∣∣∣∣ζ
(k)

(
1

2
+ iT

kn

α,β
(x)

)∣∣∣∣
2l

=
α

π

∫

R

|ζ (k)(1
2
+ iτ)|2l

α2 +(τ −β )2
dτ.

We now prove the converse. First

ζ (k)(s) = (−1)k−1
∫ ∞

1

[x]− x+ 1
2

xs+1
(logx)k−1(−s logx+ k)dx+

(−1)kk!

(s−1)k+1
.

Thus there exists Ck > 0, dependent only on k,α and β , such that for |t| ≥ 1 we have

|ζ (k)(
1

2
+ it)|<Ck|t|.

Also evidently there exists cα,β > 0 such that if |τ| ≥ 1

1

α2 +(τ −β )2
≥ cα,β

1

1+ τ2
.

Assuming that the Lindelöf Hypothesis is false, implies there exists η > 0 and τm → ∞ and

C1
α,β such that ∣∣∣∣ζ

(m)(
1

2
+ it)

∣∣∣∣>C1
α,β τη

m .

Now, |ζ (k)(1
2
+ it)|<Ck|t| for any |t| ≥ 1 with Ck > 0, and

∣∣∣∣ζ
(k)(

1

2
+ iτ)−ζ (

1

2
+ iτm)

∣∣∣∣=
∣∣∣∣
∫ τ

τm

|ζ (k+1)(
1

2
+ it)dt

∣∣∣∣<C2
α,β |τ − τm|τ.

So |ζ (1
2
+ iτ)| ≥ 1

2
C1

α,β τ
η
m for τ with |τ − τm| ≤ τ−1

m with m large enough. Let L := 2
3
τm;

then the interval I := (τm− τ−1
m ,τm+ τ−1

m ) contains the interval (L,2L) for large m. Hence

∫ 2L

L

∣∣∣ζ (k)

(
1

2
+ iτ

)∣∣∣
2l
(

1

2

dτ

1+ τ2

)
≥

(
C1

2

)2l ∫

I
τ2lη−2

m dτ = 2.

(
C1

2

)2l

.τ2lη−3
m ,



ON GOOD UNIVERSALITY AND THE RIEMANN HYPOTHESIS 9

which is ≫ T 2lη−3, and this is impossible as l → ∞. So our theorem is proved. �

We now specialize to the case T = T1,0 and give a condition in terms of ergodic averages

equivalent to the Riemann Hypothesis. We denote by ρ = β + iγ , a representative complex

zeros of the Riemann zeta function. See Titschmarsh [T], p. 30 for instance for details.

Theorem 2.4. Suppose (kn)n≥1 is both Hartman uniformly distributed and Lp-good uni-

versal for some p > 1. Then for almost all x in R with respect to Lebesgue measure we

have

(2.7) lim
N→∞

1

N

N

∑
n=1

log

∣∣∣∣ζ
(

1

2
+

1

2
iT knx

)∣∣∣∣= ∑
ρ:ℜ(ρ)> 1

2

log

∣∣∣∣
ρ

1−ρ

∣∣∣∣ .

Evidently, the Riemann Hypothesis follows if either side is zero.

To prove Theorem 2.4, we need the following lemma due to M. Balazard, E. Saias and

M. Yor [BSY].

Lemma 2.5. We have

(2.8)
1

2π

∫

ℜ(s)= 1
2

log |ζ (s)|

|s|2
|ds|= ∑

ρ:ℜ(ρ)> 1
2

log

∣∣∣∣
ρ

1−ρ

∣∣∣∣ .

Proof. We wish to use Theorem 1.1 to deduce Theorem 2.4 using Lemma 2.5. To show

Theorem 1.1 is relevant we need to show that

log

∣∣∣∣ζ
(

1

2
+ i.

)∣∣∣∣ ∈ Lp(R,µ1,0),

(where . denotes t ∈ R), i.e. that
∫

ℜ(s)= 1
2

(
| log |ζ (s))|p|

|s|2

)
|ds|< ∞.

We mentioned earlier that there exists C > 0 such that if |t|> 1,

∣∣∣ζ
(

1

2
+ it

)∣∣∣≤C|t|.

Also notice that
(log |ζ (s)|)p

|s|2
is continuous on an interval on ℜ(s) = 1

2
centred on s = 1

2
. Away

from that interval on ℜ(s) = 1
2

we use the observation that
∣∣ζ (1

2
+ it)

∣∣≤ C|t|. Hence (for

s = 1
2
+ it), given δ > 0 we have

(log |ζ (s)|)p

|s|2
≪

1

|s|2−δ
.

This means

log

∣∣∣∣ζ
(

1

2
+ i.

)∣∣∣∣ ∈ Lp(R,µ1,0),
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as required. Using the fact that T preserves the measure µ1,0 and is ergodic with respect to

this measure, we have

lim
N→∞

1

N

N

∑
n=1

log

∣∣∣∣ζ
(

1

2
+

1

2
iT knx

)∣∣∣∣=
1

2π

∫

ℜ(s)> 1
2

log |ζ (s)|

|s|2
|ds|.

µ1,0 almost everywhere. Theorem 2.4 now follows from Lemma 2.5. �

2.2. Dirichlet L-functions.

Theorem 2.6. Let L(s,χ) denote the L-functions associated to the character χ . Suppose

(kn)n≥1 is Hartman uniformly distributed and Lp-good universal for some p > 1. Then, for

k ≥ 1,

(i) if χ is non-principal, for s ∈H− 1
2

we have

lim
N→∞

1

N

N−1

∑
n=0

L(k)(s+ iT
kn

α,β (x),χ) =
α

π

∫

R

L(k)(s+ iτ,χ)

α2 +(τ −β )2
dτ

(2.9) = L(k)(s+α + iβ ,χ) for almost all x in R,

(ii) if χ(= χ0) is principal, for s ∈H− 1
2
\L1 we have

(2.10) lim
N→∞

1

N

N−1

∑
n=0

L(k)(s+ iT
kn

α,β (x),χ) =
α

π

∫

R

L(k)(s+ iτ,χ)

α2 +(τ −β )2
dτ,

for almost all x in R.

Denote this limit, i.e. the right hand side of (2.10), by l
(k)
α,β

(s,χ0). Then

(2.11)

l
(k)
α,β (s,χ0)=





L(k)(s+α + iβ ,χ0)+ γ−1(χ0)Pk(s), if − 1
2
< ℜ(s)< 1, s 6= 1−α − iβ ,

γk(χ0)−
k!γ−1(χ0)
(2α)k+1 , if − 1

2
< ℜ(s)< 1, s = 1−α − iβ ,

L(k)(s+α + iβ ,χ0), if ℜ(s)> 1,

where γ−1(χ0),γk(γ0), are constants that depend on χ0. These are the coefficients of the

Laurent expansion of L(k)(s,χ0) near s = 1. If k = 0 we can extend the result to the line L1

by defining

l
(0)
α,β = l

(0)
α,β (1+ it,χ0) = L(1+α + i(t +β ),χ0)−

αγ−1(χ0)

α2 +(t2+β 2)
.

Proof. We know that L(k)(s,χ) has a Dirichlet series expansion for ℜ(s) > 1, for each

non-negative integer k. From this we can show that
∣∣L(k)(s,χ)

∣∣≪k,ε |t|
µ(σ)+ε

where

µ(σ) =





0, if σ > 1,
(1−σ)

2
, if 0 ≤ σ ≤ 1,

1
2
−σ , if σ < 0.

If χ is non-principal then L(k)(s,χ) is entire for all k ≥ 0, so L(k)(s,χ) satisfies Theorem 1.1

for all s ∈H− 1
2
. If χ = χ0 is principal, L(k)(s,χ0) (k ≥ 1) has a pole of order k+1 at s = 1.
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We can therefore apply Theorem 1.1 with c =−1
2

, s0 = 1 and m = k+1, to L(k)(s,χ0) with

Laurent coefficients coming from [IK]. �

2.3. The Dedekind zeta function of a number field. We now consider the Dedekind

ζK(s) function of a number field K of degree dK over the rationals Q which is defined by

as follows. For s ∈ C such that ℜ(s)> 1, let

ζK(s) = ∑
I⊂OK

1

(NK/Q(I))
s
.

Here I runs over the ideals contained in the ring of integers of K denoted OK and NK/Q(I)
denotes the absolute norm of I in K, which is the cardinality of the quotient OK/I. In the

case K = Q, the function ζK(s) reduces to the Riemann zeta function ζ (s). The complex

function ζK(s) can be extended meromorphically to the entire complex plane with a simple

pole at s = 1. See [Coh] p. 216, for more details.

Theorem 2.7. Suppose (kn)n≥1 is Lp-good universal for some p ∈ [1,∞] and Hartman

uniformly distributed. For any k ≥ 0 and any s ∈H 1
2−

1
dK

\L1 we have

(2.12) lim
N→∞

1

N

N−1

∑
n=0

ζ
(k)
K

(s+ iT
kn

α,β (x)) =
α

π

∫

R

ζ
(k)
K

(s+ iτ)

α2 +(τ −β )2
dτ

for almost all x in R.

Denote the right hand side of this limit by l
(k)
Kα ,β

. We have

(2.13)

l
(k)
Kα ,β

(s) =





ζ
(k)
K

(s+α + iβ )+ γ−1(K)Pk(s), if 1
2
− 1

dK
< ℜ(s)< 1, s 6= 1−α − iβ ,

k!γk(K)−
k!γ−1(K)
(2α)k+1 , if 1

2
− 1

dK
< ℜ(s)< 1, s = 1−α − iβ ,

ζ (k)(s+α + iβ ), if ℜ(s)> 1.

Here γ−1(K) and γk(K) are constants dependent only on K, which are coefficients of the

Laurent expansion of ζ
(k)
K

near s = 1. Also in the case k = 0 we can extend the result to the

line L1 by setting

(2.14) l
(0)
Kα ,β

(1+ it) = ζ (0)(1+α + i(t +β ))−
αγ−1(K)

α2 +(t2+β 2)
.

Proof. We refer to [St1] for a bound for L on the half line and to [HIKW] for the coeffi-

cients of the Laurent expansion ζK(s) near the pole s = 1. We then proceed as earlier with

Theorem 2.1, c = 1
2
− 1

dK
, s0 = 1 and m = k+1. �

Remark 2.8. Results analogous to the ergodic characterisation of the Lindelöf Hypothesis

just given, can be proved for L-functions associated to primitive characters and Dedekind

ζ function. In both cases, the statements of ergodic characterisation are of the type: there

exist constants k, ε > 0 such that

f

(
1

2
+ it

)
≪ f ,k,ε |t|

ε,

as |t|→ ∞, for suitable L -functions f . This inequality when f is an L-function arising from

Dirichlet series is called the Generalized Lindelöf Hypothesis.



ON GOOD UNIVERSALITY AND THE RIEMANN HYPOTHESIS 12

2.4. The Hurwitz zeta function. Recall that the Hurwitz zeta function is defined for a> 0

and s ∈ C with ℜ(s)> 1 by

ζ (s,a) =
∞

∑
n=1

1

(n+a)s
.

It is continued meromorphically to the whole of C with a single pole at s = 1.

Theorem 2.9. Suppose (kn)n≥1 is Lp-good universal for some p ∈ [1,∞] and Hartman

uniformly distributed. Then for any s such that ℜ(s) > −1
2
,s 6= 1, with 0 ≤ a < 1 and k a

non-negative integer, we have

(2.15) lim
N→∞

1

N

N−1

∑
n=0

ζ (k)(s+ iT
kn

α,β (x),a) =
α

π

∫

R

ζ (k)(s+ iτ,a)

α2 +(τ −β )2
dτ,

for almost all x in R.

Denote the right hand side of this limit by l
(k)
α,β

(s,a). Then

(2.16) l
(k)
α,β

(s,a) =





ζ (k)(s+α + iβ ,a)+Pk(s), if − 1
2
< ℜ(s)< 1, s 6= 1−α − iβ ,

(−1)kγk(a)−
k!

(2α)k+1 , if − 1
2
< ℜ(s)< 1, s = 1−α − iβ ,

ζ (k)(s+α + iβ ,a), if ℜ(s)> 1,

where

(2.17) γk(a) = lim
N→∞

(
N

∑
n=1

logk(n+a)

n+a
−

logk+1(N +a)

k+1

)
.

In the case k = 0 we can extend the result to the line L1 by setting

(2.18) l
(0)
α,β (1+ it,a) = ζ (0)(1+α + i(t +β ),a)−

α

α2 +(t2+β 2)
.

If we set kn = n (n= 1,2, . . .) Theorem 2.1 appears in [LS] and this is the case α = 1,β = 0,

and k = 1 in [St2].

Proof. Following the proof of Theorem 2.1 choose c =−1
2
,s0 = 1 and m = k+1. For the

bound on |ζ (k)(s,a)| on the half line and the coefficients of the Laurent series of ζ (k)(s,a)
near s = 1 we refer to [St1]. �

3. PROOF OF THEOREM 1.1

The proof is in the continuation, and a generalization, of a Theorem of [LS] in which

conditions (1), (2) and (3) are used. We first recall a special case of a Theorem of S. Sawyer

[Sa]:

Suppose for a dynamical system (R,B,µα,β ,Tα,β ) that g∈ Lp(R,B,µα,β ) and let ‖g‖=

(
∫

X | f |pdµα,β )
1
p . Set

Mg(x) = sup
N≥1

∣∣∣ 1

N

N

∑
n=1

g(s+ iT
kn

α,β (x))
∣∣∣. (N = 1,2, . . .)
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If (kn)n≥1 is Lp-good universal for p > 1, then there exists C > 0 such that

(3.1)
∥∥Mg

∥∥
p
≤C‖g‖p.

Because

∣∣∣ 1
N ∑N

n=1 g(s+ iT
kn

α,β (x))
∣∣∣≤Mg(x) (N = 1,2, . . .) and Mg∈ Lp, the dominated con-

vergence theorem implies

h(x) = lim
N→∞

1

N

N

∑
n=1

h(s+ iT
kn

α,β (x))

exists in Lp-norm. Our next order of business is to show that h(s+ iTα,β (x)) = h(s+ ix).
Let Uα,β g(s+ ix) = g(s+ iTα,β (x)). This is a norm preserving operator on Lp as Tα,β is

µα,β measure preserving. Also let U−1
α,β denote the L2 adjoint of Uα,β . Recall that we

say any sequence (cn)n∈Z is positive definite if given a bi-sequence of complex numbers

(zn)n∈Z, only finitely many of whose terms are non-zero, we have ∑n,m∈Z cn−mznzm ≥ 0.

Here z is the conjugate of the complex number z. Let 〈a,b〉=
∫
R abdµα,β (i.e. the standard

inner product on L2). Notice that
(〈

Un
α,β g,g

〉)
n∈Z

is positive definite. Recall that the

Bochner-Herglotz theorem [Kt] says that there is a measure ωg on T, such that
〈

Un
α,β g,g

〉
=
∫

T
zndωg(z). (n ∈ Z)

This tells us that

∥∥∥ 1

N

N

∑
n=1

g(s+ iT
kn+1

α,β
(x))−

1

N

N

∑
n=1

g(s+ iT
kn

α,β
(x))

∥∥∥
2

=
∫

T
(2− z− z−1)

∣∣∣ 1

N

N

∑
n=1

zkn

∣∣∣
2

dωg(z)

using the parametrization z = e2πiθ for θ ∈ [0,1), this is

= 4

∫

T
sin2

(
θ

2

)∣∣∣ 1

N

N

∑
n=1

zkn

∣∣∣
2

dωg(z).

Using the fact that sin θ
2
= 0 if θ = 0 and the fact that (kn)n≥1 is Hartman uniformly dis-

tributed, by (1.9) and (1.10), we see that g(s+ iTα,β (x)) = g(x). A standard fact from

ergodic theory is that if Tα,β is ergodic and g(s+ iTα,β (x)) = g(x) for measurable g then

g(x) is constant, which must be
∫
R gdµα,β . This extends to the Lp-norm for all p > 1.

All we have to do now is to show that the pointwise limit is the same as the norm limit,

i.e. that g(x) = g(x) =
∫
R gdµα,β . We consider the sequence of natural numbers (Nt)t≥1

such that
∣∣∣ 1

Nt

Nt

∑
n=1

g(s+ iT
kn

α,β (x))−

∫

R
g(x)dµα,β

∣∣∣
p
≤

1

t
.

Thus
∞

∑
t=1

∫

X

∣∣∣ 1

Nt

Nt

∑
n=1

g(s+ iT
kn

α,β (x))−

∫

R
g(x)dµα,β

∣∣∣
p

dµ < ∞.
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Fatou’s lemma gives

∫

R

( ∞

∑
t=1

∣∣∣ 1

Nt

Nt

∑
n=1

g(s+ iT
kn

α,β (x))−

∫

R
g(x)dµα,β

∣∣∣
p)

dµ < ∞.

This implies
∞

∑
t=1

∣∣∣ 1

Nt

Nt

∑
n=1

g(s+ iT
kn

α,β
(x))−

∫

R
g(x)dµα,β

∣∣∣
p

< ∞.

almost everywhere. This means

∣∣∣ 1

Nt

Nt

∑
n=1

g(s+ iT
kn

α,β (x))−

∫

X
g(x)dµα,β

∣∣∣= o(1).

µα,β almost everywhere. As (kn)n≥1 is Lp-good universal we must have

lim
N→∞

1

N

N−1

∑
n=0

g(s+ iT
kn

α,β x) =

∫

R
g(s+ ix)dµα,β

µα,β almost everywhere as required to prove Theorem 1.1.

4. PROOF OF THEOREMS 1.2 TO 1.5

We begin by recalling the spectral regularization method of Lifshits and Weber [LW1]

[LW2], and some technical preliminaries. Assume (X ,β ,ν) is a measure space with fi-

nite measure ν and that S is a ν measure preserving transformation of (X ,β ,ν). For

f ∈ L1(X ,β ,ν) let

(4.1) BN( f ) =
1

N

N−1

∑
k=0

f ◦T k. (N = 1,2, . . .)

We need the following lemma, due to R. Jones, R. Kaufman, J. Rosenblatt and M. Wierdl

[JKRW].

Lemma 4.1. Suppose (Np)p≥ is a strictly increasing sequence of positive integers. Then

there exists an absolute constant C > 0 such that

(4.2)
∞

∑
p=1

∥∥ sup
Np≤N<Np+1

|BN( f )−BNp
( f )|

∥∥2

2
≤ C‖ f‖2.

Write log+(u) = max(1, log(u)) for u ≥ 1. Let ω denote the spectral measure associated

to the element f and define its regularised measure ω̂ via its Radon-Nykodim derivative by

dω̂

dx
(x) =

∫ π

−π
Q(θ ,x)ω(dθ),

where

Q(θ ,x) =

{
|θ |−1 log2

+(
∣∣θ

x

∣∣) if |x|< |θ |,
θ 2|x|−3 if |θ | ≤ |x| ≤ π .

The following is a theorem of Lifshits and Weber [LW1].
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Lemma 4.2. Suppose N0 and N1 with N0 < N1 are positive integers. Then there exists an

absolute constant C > 0 such that

(4.3)
∥∥ sup

N0≤N<N1

|BN( f )−BN0
( f )|

∥∥2

2
≤ Cω̂

(
[

1

N1

1

N0
)
)
.

Suppose 0 < p < ∞. For a sequence of real numbers x = {xn : n ≥ 1} the quantity ‖x‖p,∞

is defined in (1.16). Also if r < p we have

‖x‖p,∞ ≤ ‖x‖p ≤

(
p

p− r

) 1
p

‖x‖p,∞.

We also consider

N∗
x = sup

m≥1

#{n : xn

n
> 1

m
}

m
.

In our considerations, xn = f (τn(x)) (n = 1,2, . . .) and x = O f (x) = ( f (τn(x))n≥1 which

is the value of f along the orbit of a point x ∈ X . Also let N f (x) = N∗
O f (x)

. We have the

following Lemma due to I. Assani [As] (see also [W] - we refer to Jamison, Orey and Pruitt

[JOP] for more on the random variable case, and [RR] for Birnbaum-Orlicz spaces and the

“L log+ L” notation).

Lemma 4.3. (i) For any non-negative f ∈ L1(µ) the function N f (x) is weak-(p, p) for all

p ∈ (1,∞). Further

(4.4) lim
m→∞

#{n :
f (τn(x))

n
> 1

m
}

m
=
∫

X
f dµ,

µ almost everywhere and also in L1(µ)-norm.

(ii) For f ∈ L log+L

(4.5)

∥∥∥∥∥

∥∥∥∥
{

f (τn(x))

n

}∥∥∥∥
1,∞

∥∥∥∥∥
1

< ∞.

Note that, for two positive constants C1,C2,

C1N f (x)≤

∥∥∥∥
{

f (τn(x))

n
,n ≥ 1

}∥∥∥∥
1,∞

≤C2N f (x).

We now turn to the proof of Theorem 1.2.

By Lemma 4.1,

∞

∑
k=1

∥∥ sup
Nk≤N<Nk+1

|YN(σ)−YNk
(σ)|

∥∥2

2
≤

C

π

∫

R

|ζ (σ + iτ)|2

1+ τ2
dτ,

where as before C is universal. We note that, for σ ∈ (1
2
,1),

∫

R

|ζ (σ + it)|2

1+ t2
dt =

∫ ∞

0

{x}

x2σ+1
dx =−

1

σ

(
ζ (2σ)

2
+

ζ (2σ −1)

2σ −1

)
.



ON GOOD UNIVERSALITY AND THE RIEMANN HYPOTHESIS 16

Here again {x}= x− [x] denotes the fractional part of x. The quantity in the bracket on the

right hand side is negative. Further,

1

2π

∫

R

|ζ (1
2
+ it)|2

1
4
+ t2

dt = log(2π)− γ.

where γ is Euler’s constant. See Prop. 7, Cor. 8 and (1.26) in Coffey [C]. Thus

(4.6)
C

π

∫

R

|ζ (σ + iτ)|2

1+ τ2
dτ ≤

C

πσ

∣∣∣∣
ζ (2σ)

2
+

ζ (2σ −1)

2σ −1

∣∣∣∣ .

completing the proof of Theorem 1.2. �

We now turn to the proof of Theorem 1.3. The first assertion is a consequence of Lemma

4.3 (i). The limit is

1

π

∫

R

|ζ (σ + it)|2

1+ τ2
dt.

This integral is a special case of integrals calculated in [St1]. As a consequence of Theorem

1.1 in [St2],

1

π

∫

R

|ζ (σ + it)|2

1+ τ2
dt = ζ (σ +1)−

2

σ(2−σ)
.

For the second assertion, it follows from Lemma 4.3 (ii). The function ζ (s) ∈ L log+L

is integrable, with respect to the Cauchy measure, because of the estimate

ζ (σ + it)≪ε t
1−σ

2 +ε .

See Titchmarsh, [T] section 5.1, for the details of this. Therefore Theorem 1.3 is proved as

required. �

To prove Theorem 1.4 we need the following two lemmas.

Suppose (X ,β ,µ) is a measure space and that T : X → X is a measure preserving map.

Let (ak)
∞
k=0 be a sequence of natural numbers and for any measurable f on X set

(4.7) CN f (x) :=
1

N

N−1

∑
k=0

f (T akx), (N = 1,2, · · ·)

that is the ergodic averages corresponding to the sequence and let

M f (x) := sup
N≥1

|CN f (x)|.

Further from the data (X ,β ,µ,T ) and f we construct the ergodic q-variation function

Vq f (x) = ( ∑
N≥1

|CN+1 f (x)−CN f (x)|q)
1
q . (q ≥ 1)

Our first lemma is Theorem 1 from [NW1].

Lemma 4.4. Suppose for a sequence of natural numbers (ak)
∞
k=0 that for some p > 1 and

C̃p > 0 depending only on p and (X ,β ,µ,T ) we have

(4.8)
∥∥M f

∥∥
p
≤ C̃p‖ f‖p.
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Then there exists another constant Dp > 0 depending only on p and (X ,β ,µ,T ) such that

if q > 1 then

(4.9)
∥∥Vq f

∥∥
p
≤ Dp‖ f‖p.

Further suppose there is a constant Ĉ > 0 depending only on (X ,β ,µ,T ) such that we

have

(4.10) µ({x : M f (x) > λ}) ≤
Ĉ

λ

∫

X
| f |dµ.

Then there is a constant D > 0 depending only on (X ,β ,µ,T ) such that if q > 1 then

(4.11) µ({x : Vq f (x) > λ}) ≤
D

λ

∫

X
| f |dµ.

Proof. Suppose (X ,L ,η) denote a finite measure space i.e. η(X) < ∞. Now, let (Tn)n≥1

denote a sequence of linear transformations of Lp(X ,L ,η) into measurable functions on

X , such that each Tn is continuous in measure, that is, such that if || f − fm||p tends to

0 as m tends to ∞, then ||Tn f − Tn fm||p also tends to 0 as m tends to ∞. Set T ∗ f (x) =
supn≥1 |Tn f (x)| for f ∈ Lp(X ,L ,η). We will say the family (Tn)n≥1 commutes with w :

X → X if T ∗ f (w(x)) ≤ T ∗g(x) where g(x) = f (w(x)) on X . Now suppose F is a family

of ergodic η preserving transformations on X , closed under composition. We will call

(Tn)n≥1 distributive if it commutes with all the elements of some family F on X . We have

the following result of S. Sawyer [Sa].

Lemma 4.5. Let (Tn)n≥1 be a distributive sequence of linear operators on Lp(X ,L ,η),
where each Tn is continuous in measure and maps Lp(X ,L ,η) to measurable functions on

X. If p∈ [1,2] and if T ∗ f (x)<∞ η almost everywhere, then there exists a uniform constant

C > 0 such that

(4.12) η
(
{x : T ∗ f (x)≥ λ}

)
≤

C

λ p

∫

X
| f (x)|pdη,

for all λ > 0 and f ∈ Lp(X ,L ,η).

The conclusion of Lemma 4.5 is that if T ∗ f (x) < ∞ η almost everywhere, then the

operator T ∗ satisfies a weak∗(p, p). If there is a C > 0 such that ||T ∗ f ||p ≤ C|| f ||p we

say T ∗ satisfies a strong (p, p) inequality. It is easy to check that strong (p, p) inequalities

imply the corresponding weak (p, p) inequalities for the operator T ∗. On the other hand it

follows from the Marcinkiewicz interpolation theorem [SW] that a weak (p, p) inequality

implies a strong (q,q) inequality if q > p. We now specialize (4.1) to the situation where f

is defined on X = R, L is the Lebesgue algebra on X = R and η = µα,β :

TN f (x) :=
1

N

N

∑
n=1

f (T kn

α,β
(x)) (n = 1,2, . . .)

with f (x) = ζ (σ + ix). One checks readily that (TN)N≥1 commutes with (T n
α,β )n≥1 and is

therefore distributive. In light of Lemma 4.5, we see that Theorem 1.4 follows by recalling
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our estimate
∫

R
|ζ (σ + ix)|2dµα,β ≤

C

π

∫

R

|ζ (σ + iτ)|2

1+ τ2
dτ ≤

C

πσ

∣∣∣∣
ζ (2σ)

2
+

ζ (2σ −1)

2σ −1

∣∣∣∣
arising in (4.6) in the Proof of Theorem 1.3, Theorem 1.4 is proved. �

It is possible to say more about specific sequences and families of sequences. Suppose

N = (Nk)k≥1 and (an)n≥1 are sequences of natural numbers. Consider the definition of CN

in (4.7). Let

S f (x) = S(N , f )(x) :=
(

∑
k≥1

∣∣CNk+1
f (x)−CNk

f (x)
∣∣2
) 1

2
.

In the first instance, we are interested in conditions under which there are constants C > 0

such that

(4.13)
∥∥S f

∥∥
2
≤C‖ f‖2.

We have the following lemma taken from [N2].

Lemma 4.6. Suppose 1 < a ≤
Nk+1

Nk
≤ b < ∞ and ak = φ(n), where φ is a non-constant

polynomial mapping the natural numbers to themselves. Then there is a constant C > 0

such that (4.13) holds.

The following lemmas are taken from [NW1].

Lemma 4.7. Suppose 1 < a ≤
Nk+1

Nk
≤ b < ∞ and ak = φ(pn), where φ is as in Lemma

4.6 and pn is the nth rational prime. Then there is a constant C > 0 such that (4.13) holds.

Let θ = (θk)k≥1 be a Z valued sequence of independent identically distributed random

variables with basic probability space (Ω,B,P). We assume the σ -algebra B is P complete

and that there exists γ > 0 such that E
(
(θ+

1 )γ
)

< ∞. Here we have used θ+
1 to denote

max(θ1,0). Consider a strictly increasing sequence (qk)k≥1 of natural numbers for which

S is a bounded map from L2 to itself when ak = qk and Nk = [ρk] for some ρ > 0, that

is such that

(4.14)

∥∥∥
(
∑
k≥1

∣∣CNk+1
( f ) − CNk

( f )
∣∣2(x)

) 1
2

∥∥∥
2
≤ C

∥∥ f
∥∥

2
.

Also assume there exists δ ∈ (0,1) such that

(4.15) qk = o(2kδ
)

with

(4.16) limsup
k→∞

log q2k

log qk

< ∞

and

P(q1 + θ1 ≥ 0) = 1.

Let

Cθ
N( f ) :=

1

N

N

∑
k=1

f (T qk+θkx).
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Lemma 4.8. If (qk)k≥1 satisfies (4.14), (4.15) and (4.16), then there is a set Ω0 contained

in Ω of full P measure such that if ω ∈ Ω0 there exists a constant C > 0 such that

(4.17)

∥∥∥
(
∑
k≥1

∣∣Cθ
Nk+1

( f ) − Cθ
Nk
( f )
∣∣2(x)

) 1
2

∥∥∥
2
≤ C‖ f‖2.

Consider two strictly increasing sequences of natural numbers (qk)k≥1 and N = (Nk)k≥1

such that if ak = qk then (4.14) holds. Let Iq = [2cq,2cq+1) denote the qth interval of the

form [2a,2a+1) containing an element of N . Let Φ(N) = (log[qn + q +2])
1
2 if N ∈ Iq

and assume

(4.18) ∑
N∈ N

Φ2(N)

N
< ∞.

Let φ = (φk)k≥1 be a sequence of independent, identically distributed random variables

defined on a basic probability space (Ω,β ,P) with φ1 ∈ L1(Ω,β ,P) such that

(4.19) E

{
sup

N∈ N\{0}

(∑N
k=1(φk − E(φk))

2

N

) 1
2

}
< ∞.

Let

w
φ
N( f ) :=

1

N

N

∑
k=1

φk f (T qk x). (N = 1,2, · · ·)

Lemma 4.9. Suppose (qk)k≥1, N = (Nk)k≥1 and φ = (φk)k≥1 satisfy (4.16), (4.18) and

(4.19). Then for almost all ω in Ω

(4.20)
∥∥(∑

k≥1

|w
φk

Nk+1
( f ) − w

φk

Nk
( f )|2)

1
2

∥∥
2
≤ C‖ f‖2.

Some remarks about the nature of condition (4.19) are in order. If Nk = [kε ] (k =
1,2, . . .), with ε > 1 then (4.19) reduces to

∑
k≥1

log(q[kε ]+ logk)

kε
< ∞,

which is realised if qk = O(2kδ
) for δ > 0. Also if Nk = 2k (k = 1,2, . . .) then (4.19)

reduces to

∑
k≥1

log(q2k + logk)

2k
< ∞,

which is realized if qk = O(2kγ
). Given the earlier Lemma of this section these two

conditions are not difficult to satisfy.

Set kn = [g(n)] (n = 1,2, . . .) where g is a differentiable function from [0,∞) to itself

whose derivative increases with its argument. Let ZM denote the cardinality of the set

{n : kn ≤ M} and suppose for some function a : [1,∞) → [1,∞) increasing to infinity

as its argument does, that we set

b(M) := sup
{α}∈[ 1

a(M) ,
1
2 )

∣∣∣∣∣ ∑
n:kn≤M

e2πiknα

∣∣∣∣∣ .
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Suppose also for some decreasing function c : (1,∞) → (0,∞) that

b(M) + Z[a(M)] +
M

a(M)

ZM
≤ C c(M).

Then if we have
∞

∑
s=1

c(ρs) < ∞,

for every ρ > 1 we say (kn)n≥1 satisfies condition H (see examples in Section 6). Let

bk = g−1(k) − g−1(k−1) where g−1 here denotes the inverse function of g on its set of

definition. Also suppose that there is a constant C such that

(4.21)
(
g−1(

[
1

{α}

]
)
)2
(

∑[
1

{α}

]
Nk≥1

( 1

g−1(Nk)

)2)
≤ C.

Lemma 4.10. Suppose (kn)n≥1 satisfies condition H, and (4.21) and that 1 < a ≤
Nk+1

Nk
<

b. Then (4.16) holds for the corresponding square function.

In [N] it is shown that examples of sequences of integers which satisfy conditions H

include those given by g(n) = nω , for non-integer ω > 1, g(n) = e(logn)γ
for γ ∈ (1, 3

2
)

and g(n) = αknk + · · · + α1n + α0, where the real numbers α1, · · · ,αk are not all

multiples of the same real number. The reader will readily verify that these examples also

satisfy conditions H and (4.19). An important point of note is that, as shown in [N], the

ergodic averages, for an = kn and f in Lp with p > 1 converge to a T invariant limit.

We want to show that if (kn)n≥1 satisfies conditions H, (4.19) then (4.13) is satisfied with

1 < a ≤
Nk+1

Nk
≤ b.

By identifying it with its characteristic function we may view a strictly increasing se-

quence of natural numbers as a point in the power set of the natural numbers (i.e. 2N), or

as a point in the Cartesian product Π∞
n=1Xn where for each natural number n, we have set

Xn = {0,1}. As a consequence we may put a probability measure on the space of strictly

increasing sequences of integers, as a product measure π by setting πn({1}) = σn for

σn ∈ [0,1] and πn({0}) = 1 − σn and defining π to be the Cartesian product measure

Π∞
n=1πn. For a strictly increasing sequence of integers (Nk)k≥1 suppose also that

(4.22) ∑
k≥1

( log2 Nk

∑n≤Nk
σn

)
< ∞,

for arbitrary real α that we have some constant C dependent only on π such that

(4.23)
1

(
∑

n≤
[

1
{α}

]σn

)2 ∑
Nk

[
1

{α}

]
≥1

( 1

∑n≤Nk
σn

)2

< C.

Then with regard to the probability measure just defined, we have the following lemmas.

Lemma 4.11. For ergodic averages with regard to almost all strictly increasing sequences

(ak)k≥1 with respect to π , if (Nk)k≥1 and (σk)k≥1 satisfy (4.22) and (4.23) above then (4.16)

holds.
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Lemma 4.12. Fix a natural number d > 2 and let (kn)n≥1 denote the set

(4.24) Λ = {n ∈ N : n = ∑
j≥1

q jd
j with q j ∈ {0,1}},

ordered by size. Then if Nk = dk (k = 1,2, · · ·) then (4.13) holds.

For s = σ + it set

CN(s,ζ ,x) :=
1

N

N

∑
n=1

ζ (σ + iT kn(x)) (N = 1,2, . . .)

and set

S(s,ζ ,x) :=
(

∑
k≥1

∣∣CNk+1
(s,ζ ,x)−CNk

(s,ζ ,x)
∣∣2
) 1

2
.

We have the following theorem.

Theorem 4.13. If σ ∈ (1
2
,1) we have C > 0 such that

(4.25)
∥∥S(s,ζ , .)

∥∥2

2
≤

C

πσ

∣∣∣∣
ζ (2σ)

2σ
+

ζ (2σ −1)

2σ −1

∣∣∣∣ ,

for all the families and sequences (kn)n≥1 and N listed in Lemmas 4.6 – 4.12.

The situation is different if we replace L2-norms by L1-norms.

Lemma 4.14. Suppose (X ,β ,µ,T ) is an ergodic and measure preserving transformation

with µ non-ergodic. Suppose (kn)n≥1 is Hartman uniform distributed and Lp- good univer-

sal for fixed p ≥ 1. Then for any non-constant function f on (X ,β ,µ) we set

CN( f ) =
1

N

N

∑
n=1

f (T kn(x)) (N = 1,2, . . .).

Then we have

(4.26) ∑
N≥1

∣∣CN+1( f )−CN( f )
∣∣ = +∞, µ almost everywhere.

Applying Lemma 4.14 to f (x) = ζ (σ + ix) for σ ∈ (1
2
,1) and x ∈R we get Theorem 1.5.

5. COMPARING DYNAMICAL AND PROBABILISTIC MODELS

Let Y = Π∞
n=1Ω, that is the space of sequences (X1,X2, · · ·) in Ω. Let p1 denote the

projection p1 : Y → Ω defined by p1((X1,X2, · · ·)) = X1. Also let S : Y →Y denote the shift

map defined on Y by S((X1,X2, · · · ,)) = (X2,X3, · · ·). It is routine to check that S preserves

the infinite product measure µ∞ = Π∞
n=1µ on Y . That the shift map T is also ergodic with

respect to this infinite product measure is consequence of the Kolmogorov zero one law.

Now define f on Y by f (ω1,ω2, · · ·) = X1(ω1). This means that Xn(ω) = f (Sn−1y) where

y = (ω1,ω2, · · ·) and S denotes the above shift map. Also a simple computation shows that∫
Y f (y)dµ∞ = E (X1). This means that the strong law of large numbers follows from an

application of Birkhoff’s pointwise ergodic theorem and the weak law of large numbers

from an application of Von Neumann’s norm ergodic theorem respectively.

The upshot of this is that, under quite weak hypotheses, the comparison between the

random model described in [W] and the dynamical model in [Sr] is actually a comparison
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between two different dynamical systems. Now suppose that (kn)n≥1 is Hartman uniformly

distributed and Lp good universal for fixed p ∈ [1,∞) and µ is the Cauchy distribution µα,β

then

(5.1) lim
N→∞

1

N

N−1

∑
n=0

f (s+ iXkn
(ω)) =

α

π

∫

R

f (s+ iτ)

α2 +(τ −β )2
dτ,

for almost all ω in R. We can specialise this to

(5.2) lim
N→∞

1

N

N

∑
n=1

log

∣∣∣∣ζ
(

1

2
+

1

2
iXkn

(ω)

)∣∣∣∣= ∑
ρ:ℜ(ρ)> 1

2

log

∣∣∣ ρ

1−ρ

∣∣∣.

Again, the Riemann Hypothesis follows if either side is zero. As above similar observa-

tions can be obtained other zeta functions and L-functions.

The condition of good universality is an assumption about all dynamical systems. We

don’t need to assume so much and can deduce our conclusions from the properties of one

transformation. The following Theorem offers that link between the two models. See also

[JO ] where similar ideas appear.

Theorem 5.1. Consider two ergodic dynamical systems (X1,β1,µ1,T1) and (X2,β2,µ2,T2)
both on separable measure spaces. Suppose that µ1 and µ2 are non-atomic. Then if for a

particular sequence of integers (kn)n≥1 for each f1 ∈ Lp(X1,β ,µ1) for all p > 1 we have

(5.3) lim
N→∞

1

N

N

∑
n=1

f1(T
kn

1 x1) =

∫

X1

f1(x1)dµ1,

µ1 almost everywhere, then the same is true with 1 replaced by 2.

The condition of non-atomicity of µ1 and µ2 is not strictly necessary for the proof but it

simplifies the proof somewhat and our intended applications are to non-atomic dynamical

sytems.

Proof. Let (X ,β ,µ,T ) denote a dynamical system and for sequence of natural numbers

(kn)n≥1 let

m( f ) = sup
N≥1

∣∣∣ 1

N

N

∑
n=1

f (T knx)
∣∣∣.

A special case of a theorem of S. Sawyer [Sa], tells us, after the hypothesis of Theorem

5.1, with m = m1, that there exists C′
p > 0 such that

µ
(
{x1 ∈ X1 : m1( f1)(x1)≥ λ}

)
≤

Cp‖ f1‖p

λ
.

Another way to say this is that the operator m1 satisfies a weak-(p, p) bound. A stronger

assertion is that there exists Cp∗> 0 such that

(5.4)
∥∥m1( f1)

∥∥
p
≤C∗

p‖ f1‖p.

Here we say m1 satisfies a strong-(p, p) inequality. For any fixed p, a strong-(p, p) inequal-

ity implies the corresponding weak-(p, p) inequality. On the other hand as a consequence

of the Marcinkiewicz interpolation theorem [SW] weak-(pa, pa) implies strong-(pb, pb) if

pa < pb. This means that the fact that the weak-(p, p) of m for all p > 1 is equivalent to it

being strong-(p, p) for all p > 1.
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We now show that inequality (5.1) implies

(5.5)
∥∥m2( f2)

∥∥
p
≤ C∗

p‖ f2‖p

Suppose that the dynamical systems (X1,β1,µ1,T1) and (X2,β2,µ2,T2) are both ergodic.

Now the argument used to deduce Theorem 1.1 from (3.1) together with the ergodicy

(X2,β2,µ2,T2) readily implies the conclusion of Theorem 2.1.

We now prove (5.5). As both the dynamical systems (X1,β1,µ1,T1) and (X2,β2,µ2,T2)
are ergodic, the Rokhlin-Halmos lemma says that given any integer N ≥ 1 and ε > 0, there

exist sets Ei ⊂ Xi (i = 1,2) with Ei,T
−1

i Ei, . . . ,T
−(N−1)

i Ei disjoint and

µi(Ei ∪T−1
i Ei . . .∪T

−(N−1)
i Ei)< 1− ε.

Let γ =
µ1(E2)
µ2(E2)

. Also for a set D and a function f let fD denote the restriction of f to D.

Let us observe that there always exists a bijection from E1 to E2 that preserves the mea-

sure from µ1 to γµ2. This is always possible by the measure isomorphism theorem between

separable spaces. Let us call δ such a 1-1 measure map from E1 to E2. It is not canonical.

Now set

FN
i = Ei ∪T−1

i Ei . . .∪T
−(N−1)

i Ei, (i = 1,2)

and extend the definition of ∆|E1
:= δ to F1 by setting ∆(x) = (T k

2 δT−k
1 )(x) for x ∈ T kE1.

Now set

W f (y) := f (∆−1y)γ
1
p .

Notice supp W f (y)⊂T k
2 E if supp f (y)⊂T k

1 E. Direct computation now gives for supp f (y)⊂

T k
1 E ∫

T kE1

| f |pdµ1 =

∫

T kE2

∣∣W f
∣∣pdµ2,

and so

(5.6)

∫

F1

| f |pdµ1 =
∫

F2

∣∣W f
∣∣pdµ2.

Let

Ci,l( f )(x) =
1

l

l

∑
n=1

f (T kn

i x), (l = 1,2, . . .)

and set

mi,N( f )(x) = sup
1≤l≤N

|Ci,l( f )(x)|, (N = 1,2, . . .)

and evidently

mi( f )(x) = lim
N→∞

mi,N( f )(x).

In proving (5.5) by splitting f into its real and imaginary parts and each of those into their

positive and non-negative parts we may assume f ≥ 0. Suppose x ∈ T k
1 E1 and for the

transformation T1 we have mN( f )(x)≥ 0. Then there exists l ∈ [1,N] such that

mi,l( f )(x) =Ci,l( f )(x).

Let y =Wx. Then a direct computation shows that for the transformation T2 we have

C2,l(W f )(y) =W (m1,N( f ))(x).
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From this we deduce that

m2,N(W f )(y)≥ m1,l( f )(x).

Thus ∥∥m2,N( f )
∥∥p

p
=

∫

X2

∣∣m2,N( f )(x)
∣∣pdµ2

which is

≤
∫

F2

∣∣m2,N( f )(x)
∣∣pdµ2 + ε.

and we know W fixes measure on F2 and hence Lp norms so we have
∫

F2

∣∣W (m2,N( f ))(y)
∣∣pdµ2 + ε =

∥∥(m2,N(W ( f )))(y)
∥∥p

p
dµ2 + ε

≤ c
∥∥W ( f )

∥∥p

p
+ ε ≤ c‖ f‖p

pd + ε.

Now let N → ∞ and let ε → 0 and the proof of the theorem is complete. �

The ergodicity of the random dynamical system is implied by the Kolmogorov 0−1 law.

If we choose µ = µα,β , we see that Theorem 1.1 is equivalent to (5.1). From this we deduce

all the applications of Theorems 5.1 with T kn replaced by Xkn
.

6. HARTMAN UNIFORMLY DISTRIBUTED AND GOOD UNIVERSAL SEQUENCES

In this section we give some examples of Lp-good universal sequences for some p ≥ 1.

The examples 1, 3–6 are Hartman uniformly distributed. Example 2 is not Hartman uni-

formly distributed in general.

1.- The natural numbers:

The sequence (n)∞
n=1 is L1-good universal. This is Birkhoff’s pointwise ergodic

theorem.

Let φ be any non-constant polynomial mapping the natural numbers to them-

selves. Note that if n∈N, then n2 6≡ 3 mod 4, so in general the sequences (φ(n))∞
n=1

and (φ(pn))
∞
n=1 are not Hartman uniformly distributed. We do, however, know that

if γ ∈R\Q, then (φ(n)γ)∞
n=1 and (φ(pn)γ)

∞
n=1 are uniformly distributed modulo 1.

2. Condition H:

Sequences (kn)
∞
n=1 that are both Lp-good universal and Hartman uniformly dis-

tributed can be constructed as follows. Set kn = [τ(n)] (n = 1,2, . . .c), where

τ : [1,∞) → [1,∞) is a differentiable function whose derivative increases with its

argument. Let Ωm denote the cardinality of the set {n : an ≤ m}, and suppose, for

some function ϕ : [1,∞) → [1,∞) increasing to infinity as its argument does, that

we set

ρ(m) = sup

{z}∈
[

1
ϕ(m)

, 1
2

)
∣∣∣ ∑
n : kn≤m

e(zkn)
∣∣∣.

Suppose also, for some decreasing function ρ : [1,∞)→ [1,∞) and some positive

constant ω > 0, that

ρ(m)+Ω[ϕ(m)]+
m

ϕ(m)
Ωm ≤ ωρ(m).
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Then if we have
∞

∑
n=1

ρ(θ n)< ∞

for all θ > 0, we say that (an)
∞
n=1 satisfies condition H, see [N].

Sequences satisfying condition H are known to be both Hartman uniformly dis-

tributed and Lp-good universal. Specific sequences of integers that satisfy condition

H include an = [τ(n)] (n = 1,2, . . .c) where:

[I.] τ(n) = nγ if γ > 1 and γ /∈ N.

[II.] τ(n) = e((logn)γ ) for γ ∈ (1, 3
2
).

[III.] τ(n) = bknk + . . .b+ b1n+ b0 for bk, . . .c,b1 not all rational multiplies of

the same real number.

[IV.] Hardy fields: By a Hardy field, we mean a closed subfield (under differenti-

ation) of the ring of germs at +∞ of continuous real-valued functions with addition

and multiplication taken to be pointwise. Let H denote the union of all Hardy

fields. Conditions for (an)
∞
n=1 = ([ψ(n)])∞

n=1, where ψ ∈ H to satisfy condition

H are given by the hypotheses of Theorems 3.4, 3.5 and 3.8. in [BKQW]. Note

the term ergodic is used in this paper in place of the older term Hartman uniformly

distributed.

3. A random example:

Suppose that S = (kn)
∞
n=1 is a strictly increasing sequence of natural numbers.

By identifying S with its characteristic function χS, we may view it as a point in

Λ = {0,1}N, the set of maps from N to {0,1}. We may endow Λ with a probability

measure by viewing it as a Cartesian product Λ = ∏∞
n=1 Xn, where, for each natural

number n, we have Xn = {0,1} and specify the probability νn on Xn by νn({1}) =
ωn with 0 ≤ ωn ≤ 1 and νn({0}) = 1−ωn such that limn→∞ ωnn = ∞. The desired

probability measure on Λ is the corresponding product measure ν = ∏∞
n=1 νn. The

underlying σ -algebra A is that generated by the cylinders
{
(∆n)

∞
n=1 ∈ Λ : ∆n1

= αn1
, . . .c,∆nk

= αnk

}

for all possible choices of n1, . . .c,nk and αn1
, . . .c,αnk

. Then almost every point

(an)
∞
n=1 in Λ, with respect to the measure ν , is Hartman uniformly distributed (see

Proposition 8.2 (i) in Bourgain [Bou ]). Hartman uniformly distributed sequences

are called ergodic sequences in [Bou ].

4. Block sequences:

Suppose that (an)
∞
n=1 =

⋃∞
n=1[dn,en] is ordered by absolute value for disjoint

([dn,en])
∞
n=1 with dn−1 = O(en) as n tends to infinity. Note that this allows the

possibility that (an)
∞
n=1 is zero density. This example is an immediate consequence

of Tempelman’s semigroup ergodic theorem. See page 218 of [BL]. Being a group

average ergodic theorem this pointwise limit must be invariant, which ensures that

the block sequence must be Hartman uniformly distributed.

5. Random perturbation of good sequences:

Suppose that (an)
∞
n=1 is an Lp-good universal sequence which is also Hartman

uniformly distributed. Let θ = (θn)
∞
n=1 be a sequence of N-valued independent,

identically distributed random variables with basic probability space (Y,A ,P),
and a P-complete σ -field A . Let E denote expectation with respect to the basic
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probability space (Y,A ,P). Assume that there exist 0 < α < 1 and β > 1/α such

that

an = O(enα
)E log

β
+ |θ1|< ∞.

Then (kn+θn(ω))∞
n=1 is both Lp-good universal and Hartman uniformly distributed

[NW2].

7. MOVING AVERAGES

In this paragraph we show that the assumption of a (univariate) sequence which has the

property to be Lp good universal and Hartman uniformly distributed can be removed from

the Theorems 2.1, 2.3, 2.4, 2.6, 2.7, 2.9, and replaced by the assumption of a (bivariate)

Stoltz sequence.

7.1. Stoltz sequences and Theorem 7.2. Let Z be a collection of points in Z×N and let

Zh := {(n,k) : (n,k) ∈ Z and k ≥ h},

Zh
α := {(z,s) ∈ Z2 : |z − y| < α(s − r) for some (y,r) ∈ Zh}

and

Zh
α(λ ) := {n : (n,λ ) ∈ Zh

α} (λ ∈ N).

Geometrically we can think of Z1
α as the lattice points contained in the union of all solid

cones with aperture α and vertex contained in Z1 = Z. We say a sequence of pairs of natural

numbers (nl,kl)
∞
l=1 is Stoltz if there exists a collection of points Z in Z×N, and a function

h = h(t) tending to infinity with t such that (nl,kl)
∞
l=t ∈ Zh(t) and there exist h0, α0 and

A > 0 such that for all integers λ > 0 we have |Zh0
α0
(λ )| ≤ Aλ . This technical condition

is interesting because of the following theorem [BJR], which will be used in the proof of

Theorem 7.2. The Stoltz condition is related to the “cone condition” of Nagel and Stein

[NS] and of Sueiro [Su].

Theorem 7.1. Let (X ,β ,µ,T ) denote a dynamical system, with set X, a σ -algebra of its

subsets β , a measure µ defined on the measurable space (X ,β ) such that µ(X) = 1 and a

measurable, measure preserving map T : X → X. Suppose g is in L1(X ,β ,µ) and that the

sequence of pairs on natural numbers (nl,kl)
∞
l=1 is Stoltz. Then

(7.1) m̃g(x) := lim
l→∞

1

kl

kl

∑
j=1

g(T nl+ jx)

exists almost everywhere with respect to µ .

Theorem 7.2. Let f be a meromorphic function on Hc satisfying conditions (1), (2) and

(3) of Theorem 1.1. Then if (nl,kl)l≥1 is Stoltz, for any s ∈Hc\Lσ0
, we have

(7.2) lim
l→∞

1

kl

kl

∑
j=1

f (s+ iT
nl+ j

α,β (x)) =
α

π

∫

R

f (s+ iτ)

α2 +(τ −β )2
dτ

for almost all x in R.
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Proof. Let

(7.3) m̃l, f (x) :=
1

kl

kl

∑
j=1

f (s+ iT
nl+ j

α,β (x)) (l = 1,2, . . .)

and let

(7.4) m̃ f (x) := lim
l→∞

1

kl

kl

∑
j=1

f (s+ iT
nl+ j

α,β (x)).

Notice that

m̃l, f (s+ iTα,β (x))− m̃l, f (x) =
1

kl

( f (s+ iT
nl+kl+1

α,β (x))− f (s+ iT
nl+1

α,β (x))).

This means that m̃ f (s+ iTα,β (x)) = m̃ f (s+ i(x)) µα,β almost everywhere. As an ergodic

dynamical system constant along almost all orbits must be constant, we must have m̃ f (x) =∫
R f (s+ ix)dµα,β (x). We have therefore shown that

lim
l→∞

1

kl

kl

∑
j=1

f (s+ iT
nl+ j

α,β
(x)) =

α

π

∫

R

f (s+ iτ)

α2 +(τ −β )2
dτ,

for almost all x in R, as required. �

7.2. Applications and moving average ergodic Theorems. We will forgo the proof of

the Theorems below as they follow from those of Theorems 2.3, 2.4, 2.6, 2.7, 2.9 and 5.1

respectively via minor modification, in a similar way, using Theorem 7.1 and Theorem 7.2.

Theorem 7.3. Suppose (nq,kq)q≥1 is Stoltz. Suppose k is any non-negative integer. Then

the statement, for any natural number l,

(7.5) lim
q→∞

1

kq

kq

∑
j=1

∣∣ζ (k)(s+ iT
nq+ j

α,β (x))
∣∣l = α

π

∫

R

|ζ (k)(s+ iτ)|l

α2 +(τ −β )2
dτ

for µα,β -almost all x in R, is equivalent to the Lindelöf Hypothesis.

Theorem 7.4. Suppose (nq,kq)q≥1 is Stoltz. Then for almost all x in R with respect to

Lebesgue measure we have

(7.6) lim
q→∞

1

kq

kq

∑
j=1

log
∣∣ζ (1

2
+

1

2
iT nq+ jx)

∣∣= ∑
ρ:ℜ(ρ)> 1

2

log

∣∣∣ ρ

1−ρ

∣∣∣.

Again, if either side is zero, this is equivalent to the Riemann Hypothesis.

We now consider Dirichlet L-functions.

Theorem 7.5. Let L(s,χ) denote the L-series associated to the character χ . Suppose

(nq,kq)q≥1 is Stoltz, and let k be a nonnegative integer. Then,

(i) if χ is non-principal, for s ∈H− 1
2
\L1 we have

lim
q→∞

1

kq

kq

∑
q=1

L(k)(s+ iT
nq+ j

α,β (x),χ) =
α

π

∫

R

L(k)(s+ iτ,χ)

α2 +(τ −β )2
dτ
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(7.7) = L(k)(s+α + iβ ,χ) for almost all x in R,

(ii) if χ is principal, for s ∈H− 1
2
\L1 we have

(7.8) lim
q→∞

1

kq

kq

∑
j=1

L(k)(s+ iT
nq+ j

α,β (x),χ) =
α

π

∫

R

L(k)(s+ iτ,χ)

α2 +(τ −β )2
dτ,

for almost all x in R.

We now consider the Hurwitz zeta function.

Theorem 7.6. Suppose (nq,kq)q≥1 is Stoltz. For any s such that ℜ(s)>−1
2
,s 6= 1, 0≤ a< 1

and k a non-negative integer, we have

(7.9) lim
q→∞

1

kq

kq

∑
j=1

ζ (k)(s+ iT
nq+ j

α,β
(x),a) =

α

π

∫

R

ζ (k)(s+ iτ,a)

α2 +(τ −β )2
dτ,

for almost all x in R.

In (7.9) the right hand side is given by (2.16), (2.17) and (2.18).

The analogue of Theorem 5.1 is now the following.

Theorem 7.7. Consider two ergodic dynamical systems (X1,β1,µ1,T1) and (X2,β2,µ2,T2),
both on separable measure spaces. Suppose that µ1 and µ2 are non-atomic. Then if for a

Stoltz sequence of integers (nq,kq)q≥1 and each f1 ∈ Lp(X1,β1,µ1) we have

(7.10) lim
q→∞

1

kq

kq

∑
j=1

f1(T
nq+ j

1 x1) =
∫

X1

f1(x1)dµ1,

µ1 almost everywhere, then the same is true with 1 replaced by 2.

8. SUBLINEARITY AND THE RIEMANN ZETA FUNCTION

In the same vein as Theorem 1.2, Theorem 1.3 and Theorem 1.4, now with peculiar

sublinear sequences, the following Theorem can be deduced.

The following Lemma is taken from [LW2]. Let IA denote the indicator function of the

set A.

Lemma 8.1. Suppose kq = k(q),q = 1,2, . . . , with k sub-linear such that supu k′(u) is ab-

solutely bounded. Also assume

K(θ) =
1

|θ |

∫

min( 1
|θ | ,1)

k′(u)

|u|2
du+ k

(
1

|θ |

)
|θ | I{|θ |≤1},

is uniformly bounded on R. Suppose (X ,β ,µ,T ) is a dynamical system and f ∈ L2(X ,β ,µ)
and set

gk
n( f (x)) =

1

n

kn+n−1

∑
j=kn

f (T j(x)).

Then, for any strictly increasing sequence of natural numbers (nq)q≥1, there exists C > 0

such that ∥∥∥
(

∑
q≥1

|gk
nq+1

( f )−gk
nq
( f )|2

) 1
2
∥∥∥

2
≤C‖ f‖2.
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We now specialize to the case, f (x) = ζ (σ + ix) with σ ∈ [1
2
,1).

Theorem 8.2. Suppose k and K are as in Lemma 8.1. Now set, with σ ∈ [1
2
,1),

Gk
n,σ (x) = Gk

n(ζ (σ + ix)) =
1

n

kn+n−1

∑
j=kn

ζ (σ + iT j(x)).

Then, for any strictly increasing sequence of natural numbers (nq)q≥1, there exists a con-

stant C > 0 such that
∥∥∥
(

∑
q≥1

∣∣Gk
nq+1,σ

(ζ )−Gk
nq,σ (ζ )

∣∣2
) 1

2
∥∥∥

2
≤

C

πσ

∣∣∣∣
ζ (2σ)

2
+

ζ (2σ −1)

2σ −1

∣∣∣∣ .
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