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Decision under uncertainty

Christophe Gonzales1 and Patrice Perny2

Abstract The goal of this chapter is to provide a general introduction to decision
making under uncertainty. The mathematical foundations of the most popular mod-
els used in artificial intelligence are described, notably the Expected Utility model
(EU), but also new decision making models, like Rank Dependent Utility (RDU),
which significantly extend the descriptive power of EU. Decision making under un-
certainty naturally involves risks when decisions are made. The notion of risk is
formalized as well as the attitude of agents w.r.t. risk. For this purpose, probabilities
are often exploited to model uncertainties. But there exist situations in which agents
do not have sufficient knowledge or data available to determine these probability
distributions. In this case, more general models of uncertainty are needed and this
chapter describes some of them, notably belief functions. Finally, in most artificial
intelligence problems, sequences of decisions need be made and, to get an optimal
sequence, decisions must not be considered separately but as a whole. We thus study
at the end of this chapter models of sequential decision making under uncertainty,
notably the most widely used graphical models.

1 Introduction

Uncertainty and, more generally, decision making under uncertainty are central in
artificial intelligence (AI). Indeed, even though AI addresses a wide range of prob-
lems, most of them involve to some extent uncertainties. This is the case, for in-
stance, in diagnosis [Franklin et al., 1991; Jensen et al., 2001], prediction [Conati
et al., 1997; Horvitz et al., 1998], robotics [Argall et al., 2009], planning [Puterman,
1994], machine learning and image processing [Doucet and Johansen, 2011]. Deci-
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sion Theory proposes sophisticated mathematical tools to reason in such contexts.
These tools can be roughly divided into two classes: decision support systems (or
decision aiding systems) and automatic decision systems. The goal of the former is
to help, to guide, human agents to make their decisions, especially when those are
very complex (e.g., when many conflicting “decision criteria” need be taken into
account). As such, they prove to be very useful in critical domains like, e.g., in med-
ical decision making [Franklin et al., 1991; Bleichrodt, 1996], in space shuttle fly-
ing assistance [Horvitz and Barry, 1995] and in strategic applications like choosing
the location of a future airport [Keeney and Raiffa, 1993]. As for automatic deci-
sion systems, they are designed to enable non-human agents (robots or software) to
choose the best actions to reach their goals. They prove to be useful, for instance,
in robotics [Argall et al., 2009], in missiles or drones control [Dasgupta, 2006], in
serious games [Sordoni et al., 2010].

The decision theoretic tools developed in both decision aiding systems and au-
tomatic decision systems rely on mathematical models for representing the agents’
preferences. Those enable, for instance, to justify why the majority of agents who
are asked which envelope they would prefer to get between two envelopes A and
B containing 100e and 200e respectively answer they prefer B. Actually, Deci-
sion “choose envelope B” yields the consequence of winning 200e, which is often
judged more preferable than the consequence of winning only 100e. Unfortunately,
in real-world applications, decisions are not so simple especially because, when de-
cisions are made, their consequences are to some extent uncertain, i.e., they depend
on the occurrences of some events that are still uncertain at the time the decision
is made. For instance, when a physician must determine the best treatment to pre-
scribe to his patient, his diagnosis does not allow him to know for sure the exact
illness of the patient. Therefore, to take into account all the parameters involved in
the decision making, decision models under uncertainty combine two components:
a “preference model” and a “representation of uncertainties”.

Models and algorithms originating from the field of “decision theory under un-
certainty” are widely used in artificial intelligence. This is essentially due to two
reasons: i) these models have strong mathematical foundations; and ii) their ax-
iomatic justifications rely on rationality arguments with which everybody seems to
agree. As a consequence, the conclusions reached by these algorithms can be justi-
fied using essentially common sense arguments. The rationality justification incited
the majority of the artificial intelligence community to adopt the “expected utility”
(EU) criterion as its decision criterion. In Section 2, we describe this criterion and
we focus on its axiomatic foundation. The notion of risk and how it translates in
the EU model are also investigated. Finally, this section ends with a discussion on
the descriptive limits of this model. This naturally calls for other models that can
go beyond these limits: in Section 4, the emphasis is made on representing uncer-
tainties outside the probabilistic framework while, in Section 3, the linear model
of preferences itself is questioned. Finally, Section 5, addresses sequential decision
problems, especially their representations and the issues raised by non-linear mod-
els.



Decision under uncertainty 3

2 The Expected Utility Criterion (EU)

Let D denote the set of decisions that can be made by an agent. In the rest of this
chapter, we assume that the agents have well defined preferences on D and we de-
note by %D their preference relation. Thus, d1 %D d2 means that the agent prefers
Decision d1 to Decision d2 or she is indifferent between the two decisions. Strict
preference is denoted as usual by �D . As we have seen in the introduction, when
making decisions under certainty, preferring d1 to d2 amounts to prefer the conse-
quence yielded by decision d1 to that yielded by d2. Let X denote the space of all
the possible consequences. Preference relation %D over D is thus induced by pref-
erence relation %X over X as follows: d1 %D d2 if and only if x(d1) %X x(d2),
where x(d) represents the consequence of decision d.

Under uncertainty, i.e., when the consequence of a decision is not fully known
when the decision is made, the equivalence between %D and %X does not exist
anymore. However, in this case, it is reasonable to assume that preference relation
%D takes into account not only the agent’s preferences over the consequences of the
decisions but also her attitude w.r.t. the uncertainty over the fulfillment of these con-
sequences. As an example, when asked to choose between an envelope A containing
100e and an envelope B randomly chosen among a heap of 100 envelopes in which
97 contain 1e and 3 contain 1000e, most of people prefer envelop A because the
probability of getting 1000e with envelope B is too low. From this simple example,
we can deduce that the agent translates the uncertainty over the 100 envelopes into
an uncertainty over the amount of money contained in envelope B, i.e., on the con-
sequence yielded by decision d2, and the decision is made taking into account the
latter. Before investigating further how agents make their decisions, we need to de-
fine more precisely the notion of uncertainty from the agent’s perspective. Similarly
to probability theory, we need to define what are an event and an elementary event:
an event is a set of possible results of a random experiment (above, the choice of
an envelope) and an elementary event, which is called a state of nature in decision
theory, corresponds to only one possible result. Thus, if the envelopes are numbered
from 1 to 100, the fact that the envelope chosen is the 3rd one is a state of nature
whereas the fact that it has an even number is a (non-elementary) event. Let S and
A = 2S denote the set of the states of natures and the set of events respectively.
The above example of the envelopes suggests that probabilities are an attractive rep-
resentation of the uncertainties with which the agent has to cope. This is the very
representation exploited in the model presented in this section. Note however that
this is not the only possible choice, as we will see later.

In the EU model, uncertainties are represented by probabilities and the decision
criterion is simply the maximum of the expectation of the satisfaction provided by
the decisions (a.k.a. a utility). Let u : X 7→ R be a function such that x %X y if
and only if u(x) ≥ u(y). Such a function is called a utility function or, for short, a
utility. A utility function therefore assigns to each consequence a real number such
that the preferred the consequence, the higher the number. The utility expectation
criterion has been popularized by Daniel Bernoulli in the 18th century [Bernoulli,
1738], although a letter by Gabriel Cramer to Nicolas Bernoulli seems to establish
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that Cramer proposed this criterion earlier. But its modern axiomatic foundations are
due, on one hand to von Neumann and Morgenstern [von Neumann and Morgen-
stern, 1944] and, on the other hand, to Savage [Savage, 1954]. These two axiomatics
differ essentially by the fact that the former assume the existence of a probability
distribution on (S ,A ) whereas the latter derives its existence from the rationality
of the agent.

2.1 von Neumann-Morgenstern’s Axiomatic Foundation

von Neumann and Morgenstern assume that (S ,A ,P) is a probabilistic space. In
other words, P is a probability distribution over (S ,A ). As we have seen before,
for each decision d, this distribution induces another probability distribution Pd over
the space of consequences (X ,C ), where C = 2X . When the support of Pd is finite,
i.e., when the number of possible consequences (those with nonzero probabilities)
resulting from making decision d is finite, distribution Pd is called a lottery. A lottery
can therefore be represented as a tuple 〈x1, p1; . . . ;xn, pn〉, where the xi’s are some
consequences and the pi’s correspond to their probability of occurrence. Note that
a lottery is a representation, a summary, of what a decision really is: indeed it only
represents synthetically what can result from making the decision. If this summary
is faithful, then we can conclude that there exists an equivalence between the pref-
erences of the agent over the decisions and those over their associated lotteries. Let
L be the set of all the possible lotteries and let % be the preference relation of the
agent over L . Then we can conclude that d1 %D d2 if and only if Pd1 % Pd2 , where
Pd represents the lottery associated with decision d. von Neumann and Morgenstern
[von Neumann and Morgenstern, 1944] show that the preferences over L (and thus
over D) of any rational agent necessarily follow the expected utility criterion:

For all P,Q ∈L , P % Q⇐⇒
n

∑
i=1

piu(xi)≥
r

∑
j=1

q ju(y j), (1)

where P = 〈x1, p1; . . . ;xn, pn〉, Q = 〈y1,q1; . . . ;yr,qr〉, and u(x) is a utility func-
tion over the space of consequences X (this function is called the von Neumann-
Morgenstern utility function). The first axiom exploited by von Neumann and Mor-
genstern to prove this result is the following:

Axiom 1 (Complete weak order) % is a complete weak order on L . In other
words, % is reflexive (for all P ∈ L , P % P), transitive (for all P,Q,R ∈ L ,
(P%Q)∧(Q% R) =⇒ P% R) and complete (for all P,Q∈L , (P%Q)∨(Q% P)).

In addition, % is non-trivial, i.e., there exist P,Q ∈L such that P� Q.

This axiom simply expresses the idea that, given any pair of lotteries, the agent
is always capable of determining which one she prefers (completeness) and that if
she prefers P to Q and Q to R, then, logically, she will also prefer P to R. This last
property conveys some kind of rationality, although it is possible to find examples in
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which rational decision makers have intransitive preferences [Anand, 1993]. Finally,
non-triviality just guarantees that we study only situations in which all the decisions
are not judged as equivalent by the agent, the decision maker (if this were not the
case, a decision making model would be useless).

For the next two axioms, we need to define mixtures of lotteries: let P and Q be
two lotteries and let λ ∈ [0,1] be a real number, then R= λP+(1−λ )Q, the mixture
of P and Q w.r.t. λ , represents the lottery such that, for any consequence x ∈X , the
probability of occurrence of x is R(x) = λP(x)+(1−λ )Q(x). Intuitively, a mixture
essentially amounts to create R in two steps: first, a coin with a probability λ to land
on head (and therefore 1−λ to land on tail) is flipped; second, if the coin landed on
head, then we get lottery P, else we get lottery Q. The probability of occurrence of
each consequence x is consequently λP(x)+(1−λ )Q(x).

Axiom 2 (continuity) For all P,Q,R ∈L such that P� Q � R, there exist α,β ∈
]0,1[ such that:

αP+(1−α)R� Q� βP+(1−β )R.

This axiom conveys the idea that if the agent strictly prefers P to Q, then a lottery
resulting from a very small perturbation of P should still be preferred to Q. For
instance, if P = 〈100,1〉, i.e., P is the lottery which yields 100e with certainty,
and if Q = 〈10,1〉 and R = 〈5,1〉, then an agent who likes money should have the
following preference relation: P� Q� R. If α = 1−10−20, lottery αP+(1−α)R
is equal to 〈100,1− 10−20;5,10−20〉. The chance of receiving 5e is so small that
the agent is almost assured to win 100e, which is preferable to Q. Therefore, it is
very likely that the agent prefers αP+(1−α)R to Q. A similar argument can be
used with β very close to 0. Here again, Axiom 2 seems quite reasonable. The last
axiom used by von Neumann and Morgenstern is the following:

Axiom 3 (independence) For every P,Q,R ∈L and every α ∈]0,1]:

P % Q⇐⇒ αP+(1−α)R % αQ+(1−α)R.

The interpretation of this axiom follows that of mixtures. We have seen that αP+
(1−α)R corresponds to a lottery created in two steps: first a coin is flipped, with
probabilities α and 1−α to land on head and tail respectively and, then, depending
on the side on which the coin landed, the agent receives lottery P or R. Following this
principle, Axiom 3 can be interpreted as follows: if the coin lands on tail, from both
lotteries αP+(1−α)R and αQ+(1−α)R, the agent receives the same induced
lottery R so, logically, in this case, she should be indifferent between αP+(1−α)R
and αQ+(1−α)R. If, on the other hand, the coin lands on head, then, from αP+
(1−α)R and αQ+(1−α)R, she receives lotteries P and Q respectively. As she
(weakly) prefers P to Q or is indifferent between these two lotteries, she should also
prefer αP+(1−α)R to αQ+(1−α)R or be indifferent between them, hence the
axiom.

The three above axioms therefore express properties that can be expected from
a rational agent. As the next theorem shows, they imply that there exists a unique
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decision criterion representing the preferences of the agent, and this one is precisely
the expected utility criterion:

Theorem 1 (von Neumann-Morgenstern). The following two assertions are equiv-
alent:

1. The preference relation % over L satisfies axioms 1,2 and 3.
2. % is representable by a utility function U : L 7→R such that U(P)=∑

n
i=1 piu(xi),

where u(xi) =U(〈xi,1〉).
Function u : X 7→ R is called the von Neumann-Morgenstern utility function of

the agent and is unique up to scale and location (i.e., up to strictly positive affine
transforms).

This strong relationship between rationality and the EU criterion explains why
EU is so popular in the artificial intelligence community but also among decision
theorists and operations research scientists. Note also that the above theorem can be
generalized, notably by using more general probability measures [Fishburn, 1970,
1982]. There also exist other axiomatics, like, e.g., the one provided in [Jensen,
1967], [Herstein and Milnor, 1953] or in [Fishburn and Roberts, 1978].

The von Neumann-Morgenstern axiomatics raises one issue: it assumes the exis-
tence of an “objective” probability distribution over the space of the states of nature
—in decision theory, this situation is called “decision under risk” [Knight, 1921]—
and one may wonder whether such a hypothesis is so reasonable in practical decision
theory problems and, more generally, in artificial intelligence. As we will see, the
answer to this question seems positive because the existence of a probability distri-
bution over the states of nature necessarily follows from the rationality of the agent.
This idea has been initially introduced in [Ramsey, 1931] but went largely unnoticed
until the seminal book by Savage [Savage, 1954] got published. Sixty years later,
the idea that probabilities are the only “rational” representation of uncertainties is
so deeply anchored into people’s minds that, up to recently, it was very difficult in
artificial intelligence to imagine a rational decision making process outside the EU
framework1. When the probability distribution over the states of nature results from
the rationality of the agent, this distribution is said to be “subjective” and the de-
cisional context is called “decision under uncertainty” instead of “decision under
risk”, which is dedicated to the case of objective probabilities.

Let us now study Savage’s axiomatics [Savage, 1954], which has led to the de-
cision model called “Subjective Expected Utility” (SEU). Of course, since the prob-
ability distribution over the space of the states of nature (S ,A ) results from the
rationality of the decision maker, this is no more a primitive of the decisional lan-
guage. The primitive, here, is called an “act”. Quite similarly to a lottery, this cor-
responds to the representation/summary of a decision but its description is more

1 Outside the EU framework, the behavior of an agent cannot be rational (w.r.t. Savage’s meaning)
and, therefore, it is thought in artificial intelligence that such a behavior must be proscribed. In
the 70’s and 80’s, decision theorists, notably Kahneman, Tversky and Quiggin, suggested that
Savage’s rationality was not the only possible form of rationality and they proposed to depart from
the Savagian framework and developed their own kinds of “rationality”. This paved the way to new
decision models like, e.g., RDU, that recently attracted the attention of AI researchers.
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precise than a lottery. An act f is a function whose domain and codomain are S
and X respectively. In other words, to each state of nature e, function f assigns the
consequence that would result from the occurrence of e if the decision represented
by f were made. For pedagogical purposes, let us first consider “simple acts”, i.e.,
finite-valued and A -measurable functions. For any simple act f , there exists a finite
partition {Ei, i∈ I} of S such that, for all i∈ I, { f (e) : e∈Ei}= {ci}, where ci ∈X
is a consequence. To put it differently, a simple act yields a finite set of possible con-
sequences and those depend on the realization of some states of nature belonging
to Ei. To draw a parallel with lotteries, a simple act corresponds to a description of
a lottery with finite support, although this description is more precise than just the
lottery. Table 1 highlights their differences: this table shows two acts, f1 and f2. In
the former, when state e1 obtains, the resulting consequence is c1. For both acts, the
probabilities of getting c1 and c2 are 0.3 and 0.7 respectively. Consequently, both
acts correspond to the same lottery 〈c1,0.3;c2,0.7〉. However, as can be seen in the
table, act f1 is different from f2. An act is therefore a description of a decision which
is more precise than a lottery. In the sequel, we will explain the interpretations of
new concepts and axioms using simple acts but those apply on general acts, not only
on simple ones. Finally, let δc denote the “constant” act yielding consequence c, i.e.,
the act such that δc(S ) = {c}. To illustrate visually what acts represent and how
they will be combined, we will use figures in which the X and Y axes represent sets
S and X respectively. In this setting, a simple act is just a stepwise function, as
shown in Figure 1.

event probability act f1 act f2

e1 0.3 cons. c1 cons. c2

e2 0.3 cons. c2 cons. c1

e3 0.4 cons. c2 cons. c2

Table 1 Comparison between acts and lotteries.

act f
act g

E Ec

S

X

E Ec

S

X act h

b) act h = f Ega) two acts f and g

Fig. 1 The concept of splicing.
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In the axiomatic theory of von Neumann-Morgenstern, one of the key ideas was
the possibility to combine by “mixture” different lotteries to produce new ones. This
was the core of their proof. Here, there exists an equivalent operation on acts, that
we will call a “splicing” to distinguish it from mixtures2. Let f and g be two acts
and let E ⊆ S be an event. The splicing of f and g w.r.t. E, denoted by f Eg is
the act h = f Eg such that h(s) = f (s) for all s ∈ E and h(s) = g(s) for all s ∈
EC = S \E. Figure 1 illustrates this operation. All the primitives and operations
necessary to describe the axiomatic theory of SEU are defined, we can now study
the axioms provided by Savage. The first one corresponds in essence to Axiom 1 of
von Neumann-Morgenstern.

Axiom 4 (P1: Weak order on acts) The set of all the acts is closed under splicing
and there exists a complete weak order % over the set of acts.

But Savage’s key axiom is the “Sure Thing Principle”3.

Axiom 5 (P2: Sure Thing Principle) For all acts f ,g,h,k ∈X S and all E ⊆S :

f Eh % gEh⇐⇒ f Ek % gEk.

This axiom corresponds in spirit to the independence axiom of von Neumann-
Morgenstern. Figure 2 provides an illustration: let f Eh and gEh be two acts. They
yield the same consequences over EC. Consequently, if the state of nature that ob-
tains belongs to EC, the agent should be indifferent between both acts. So, if glob-
ally, she prefers f Eh to gEh, this means that, over E, she prefers the consequences
yielded by f to those by g. Now, substitute the common part of both acts h on EC

by another act k. Then, the resulting acts are f Ek and gEk. These new acts yield
precisely the same consequences over EC, so the agent should still be indifferent
between them if the state of nature that obtains belongs to EC. And if the state that

E Ec

S

X

E Ec

S

X act f Ek
act gEk

act f Eh
act gEh

Fig. 2 Illustration of the Sure Thing Principle.

2 In his book, Savage did not name this operation. The term “splicing” was introduced in [Gilboa,
2009].
3 Most authors name P2 as the “sure thing principle” but it was pointed out by Peter Wakker that,
in Savage’s book, the sure thing principle refers to axioms P2, P3 and P7.
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obtains belongs to E, then both acts yield the same consequences as f Eh and gEh,
so, globally, if the agent preferred f Eh to gEh, she should also prefer f Ek to gEk.
In other words, the sure thing principle states that, when comparing two acts, the
agent only compares the acts on the events on which they differ. This axiom looks
quite reasonable.

Note that Axiom P2 implies the existence of a weak order %E for every event
E defined as f %E g if and only if f Eh % gEh for all h. The next axiom exploits
this new preference relation to guarantee, using constant acts, that the agent has a
well-defined preference relation %X over the space of consequences. This axiom
relies on non-null events, i.e., on events E such that there exist at least two acts f
and g such that f �E g.

Axiom 6 (P3: Preferences among consequences) For all consequences x,y ∈X
and all non-null events E ⊆S , δx %E δy if and only if x %X y, where δx and δy are
constant acts.

In the SEU framework, the existence of an “objective” probability distribution
over the states of nature is never assumed. Rather, the existence of a “subjective”
distribution results from the beliefs of the agent herself. The agent must therefore
have beliefs that an event A is more or less likely to occur than another event B. This
is exactly what the next axiom induces:

Axiom 7 (P4: Preferences over events) For all consequences x,x′,y,y′ ∈X such
that x�X y and x′ �X y′, and for all A,B⊆S ,

δxAδy % δxBδy⇐⇒ δx′Aδy′ % δx′Bδy′ .

Figure 3 illustrates this axiom: acts δxAδy and δxBδy differ only on the gray area.
On this one, δxAδy yields consequence x and δxBδy yields y, which is not preferred
to x. This explains why δxAδy % δxBδy. In this figure, the existence of the gray
area results from the fact that A contains B and, consequently, it is more “probable”
to happen than B. In general, it can be shown that, whenever the agent believes
that A is more likely to happen than B, then the preferences of the agent satisfy
Axiom P4. Axiom P5 below expresses the fact that all the consequences are not

y′
y
x′
x

S

A
Bc

Ac

B

δxAδy δxBδy

Fig. 3 Interpretation of Axiom P4.
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judged as equivalent by the agent (otherwise, it would be impossible to discriminate
between acts and SEU would be useless to help the agent in her decision making
process):

Axiom 8 (P5: Non-triviality of preferences over the consequences) There exist
two outcomes x,y ∈X such that δx � δy.

The five above axioms seem rather reasonable and do not seem too restrictive
in the sense that they tend to win unanimous support from people. Yet, as Savage
showed, their combination necessarily induces that the agent models uncertainties
using a qualitative probability4. To establish the existence of a subjective probability,
an additional axiom is needed, that is closely related to the continuity axiom of von
Neumann-Morgenstern: assuming that Ei is a highly unlikely event, if f and g are
two acts such that f � g and if x is an arbitrary consequence, then δxEi f should be
very close to f and, therefore, as f � g, the agent should also prefer δxEi f to g. For
the same reason, she should also prefer f to δxEig:

Axiom 9 (P6: Continuity) For all acts f ,g ∈ X S such that f � g and for all
x ∈X , there exists a finite partition {E1, . . . ,En} of S such that δxEi f � g and
f � δxEig for every i ∈ {1, . . . ,n}.

Adding Axiom P6 to the five other axioms necessarily induces the existence of
a subjective probability distribution. In addition, all these axioms induce that the
agent is an expected utility maximizer, as shown in the following theorem:

Theorem 2 (Savage, 19545). If the preferences of an agent satisfy axioms P1 to P6,
then preference relation % over the set of acts with finite support is representable by
a utility function U( f ) = ∑s∈S p(s)u( f (s)), where p(s) is the subjective probability
of the agent over the state of nature s. In addition, u, the utility function over the set
of consequences, is unique up to scale and location.

Savage has also extended this theorem, notably to the case in which acts are only
constrained to be bounded [Savage, 1954]. Note that there also exist other axiomat-
ics of the EU criterion under uncertainty, notably that of [Anscombe and Aumann,
1963]. All these axiomatics have however in common to rely on axioms that are
easily justifiable and that, to some extent, reflect a logical reasoning. In this sense,
they constitute the foundation of a rational behavior. From all these axiomatics, it
could be easily inferred that only probabilities can “rationally” model uncertainties.
This assertion has also been supported for a long time by what decision theorists
call “Dutch books”, which are situations in which using a model of uncertainties
different from probabilities inevitably leads the agent to loose some money. As an
example, let us consider a bookmaker proposing bets on the three horses of a race.

4 Note that qualitative probabilities are slightly different from probabilities, see [Kraft et al., 1959]
for a proof of this assertion.
5 Savage’s theorem is somewhat more general than the theorem mentioned here: acts need not have
a finite support, it is sufficient that the set of consequences X is finite. In this case, the summation
needs be substituted by an integral w.r.t. the subjective probability measure.
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He offers the odds shown in Table 2. Note that the sum of the induced “probabilities”
estimated by the bookmaker is equal to 0.95, not to 1. This deviation from a valid
probability distribution implies that there is a possibility for gamblers to always win
money from the bookmaker. Indeed, gamblers betting the amounts of money shown
in the fourth column of the table are guaranteed to win 200e even though they bet
only 190e. This type of money pump argument has also significantly contributed
to establish probabilities as the only reasonable representation of uncertainties in a
decision making context.

horse odds induced proba. bet price reimbursement

1 1 against 1 1
1+1 = 0.5 100e 100e of bet + 100e = 200e

2 3 against 1 1
3+1 = 0.25 50e 50e of bet + 150e = 200e

3 4 against 1 1
4+1 = 0.2 40e 40e of bet + 160e = 200e

Table 2 Example of a Dutch book.

In the two axiomatics above, that of von Neumann-Morgenstern and that of Sav-
age, the von Neumann-Morgenstern utility function, i.e., the utility representing the
agent’s preferences over the consequences, is unique up to scale and location. But in
decision under certainty, i.e., when the consequences of each action are known with
certainty, utility functions (over outcomes) are unique only up to strictly positive in-
creasing transforms. Consequently, we can deduce that von Neumann-Morgenstern
utilities must implicitly include some factor related to uncertainties. We will see
now that, in reality, this factor represents the attitude of the agent w.r.t. risk.

2.2 Risk Measures

Before defining formally the agent’s attitude w.r.t. risk, we need to define the con-
cept of risk, and especially how the quantity of risk involved in a decision can be
measured. A decision can be summarized by an act or a lottery 〈x1, p1; . . . ,xn, pn〉.
In a sense, the latter correspond to a random variable x whose domain is x1, . . . ,xn
and the usual risk measure of a real-valued random variable is its variance. So it is
tempting to exploit variance as the measure of risk involved in a decision. This idea
is supported by the celebrated Arrow-Pratt formula for approximating utility func-
tions, which contains a component related to variance [Pratt, 1964; Arrow, 1965].
But as shows the following example in [Ingersoll, 1987], this measure is not very
well suited: let L1 = 〈0, 0.5 ; 4, 0.5〉 and L2 = 〈1, 7/8 ; 9, 1/8〉 be two lotteries.
Intuitively, observing L1 and L2, lottery L1 seems more risky than L2 since its con-
sequences are equiprobable whereas, in L2, it is very likely that the decision yields
consequence 1. Unfortunately, the variances of both lotteries are equal.



12 Christophe Gonzales and Patrice Perny

In decision theory, the most commonly used risk measure is due to [Rotschild
and Stiglitz, 1970, 1971]. It is much more robust than variance. It relies on the
concept of “mean-preserving risk increase” or, as stated usually, “Mean Preserving
Spread” (MPS). Let us consider the three lotteries P,Q,R of Table 3. Observe the
only difference between P and Q: Lottery P yields consequence 4 with probability
0.3 whereas, Q yields consequences 3 and 5 with probability 0.15 (hence, globally,
a probability of 0.3 to get consequence “3 or 5”). As a result, Q can be judged as
more risky than P since, with a probability of 0.3, the consequence yielded by P is
known (i.e., 4) whereas, in Q, with the same probability, we only know that 3 or 5
will be yielded, and there still exists a lottery 〈3,0.5 ; 5,0.5〉 to determine which
consequence will be yielded. Remark that the expectations of random variables X
and Y of Table 3 are equal. This explains why Y is said to be a mean-preserving
(same expectation as X) risk increase (w.r.t. X) or, for short, a MPS of X . Similarly,
Z is a MPS of Y because their expectations are equal and Y yields consequence 16
with probability 0.21 whereas Z induces lottery 〈12,0.07 ; 18,0.14〉 instead.

X P(X)
−2 0.09

4 0.30

10 0.40
16 0.21

Y Q(Y )
−2 0.09

3 0.15
5 0.15

10 0.40
16 0.21

Z R(Z)
−2 0.09

3 0.15
5 0.15

10 0.40
12 0.07
18 0.14

Table 3 Mean preserving spread: Y = MPS(X), Z = MPS(Y ) and Z = MPS(X).

In the rest of this subsection, we will consider that X is equal to R and, more
generally, that it is a monetary space (this will make the interpretations of the results
easier to understand).

Definition 1 (Mean preserving spread). Let X and Y be two real-valued random
variables. Y is said to be a Mean Preserving Spread of X if and only if there exists
a white noise Θ , i.e., a random variable whose expectation is equal to 0, such that
Y = X +Θ .

Let us call FX and FY the cumulative distribution functions (CDF) of random
variables X and Y respectively. In other words, if PX is the probability distribu-
tion of X , then FX (x) = PX (z : z≤ x) for every x ∈ X . Figure 4 displays the CDFs
of variables X and Z of Table 3. When X ,Z < 3, the two CDFs are identical.
Then, when x ∈ [3,4[, we have that FZ(x) > FX (x). Therefore, we also have that∫

x<4 FZ(x)dx >
∫

x<4 FX (x)dx. When x ∈ [4,5[, the difference FX (x)−FZ(x) is posi-
tive, so the gap between the two integrals decreases but the two gray regions on the
left of Figure 4 have the same area so, overall, the integral of FZ is always greater
than or equal to that of FX . This property is general and provides an alternative
characterization of MPS:
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Fig. 4 Interpretation of MPS in terms of cumulative distributions.

Definition 2 (Mean preserving spread). Let X and Y be two real-valued random
variables. Y is said to be a Mean Preserving Spread of X if and only if i) X and Y
have the same expectations; and ii) X and Y satisfy the following equation:∫ T

−∞

FY (x)dx≥
∫ T

−∞

FX (x)dx for every T ∈ R. (2)

Definition 3 (2nd order stochastic dominance). Let X and Y be two real-valued
random variables. X dominates stochastically Y at the second order if and only if
Equation (2) is satisfied.

Rotschild and Stiglitz proved that Definitions 1 and 2 are equivalent. They also
provided a characterization in terms of risk aversion, as we will define it in the next
subsection: Assertion 3 of the theorem below expresses the fact that Y is a MPS of
X if and only if any weakly risk averse agent prefers X to Y .

Theorem 3 (Rotschild and Stiglitz, 1970). Let X and Y be two real-valued random
variables with the same expectation. The following three assertions are equivalent:

1. Y = MPS(X) (in the sense of Definition 2);
2. Y has the same distribution as X +Θ , where Θ is a white noise;
3. for any increasing and concave function u : R 7→R, we have that

∫
u(x)dFX (x)≥∫

u(x)dFY (x).

We can now characterize the behavior of agents w.r.t. lotteries with different
amounts of risk. Of special interest, we can now determine if the agent would prefer
“taking risks” or not.

2.3 Attitude of Agents with respect to Risk

The simplest way to estimate whether an agent is risk seeking or risk averse con-
sists of asking her which lottery she would prefer among one lottery X without any
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risk (it can yield only one consequence, known for sure) and another lottery Y with
the same expectation but containing some risk (the lottery can yield several con-
sequences). Note that, as both lotteries have the same expectation, Y = MPS(X).
Assume now that the agent’s von Neumann-Morgenstern utility is linear (u(x) = x
for simplicity). Then the expected utility of the lottery corresponding to Y is equal
to the expectation of Y which, by definition, is equal to that of X and, also, to the
expected utility of the lottery associated to X . An agent who is expected utility max-
imizer shall therefore be indifferent between X and Y . For instance, for the agent,〈 x1+x2

2 ,1
〉
∼
〈
x1,

1
2 ;x2; 1

2

〉
. These two lotteries have the same expectation (this is the

reason why the agent is indifferent between them), but the first one is not risky while
the second one is. So we can conclude that the preferences of the agent do not take
into account the amount of risk involved in the lotteries. The agent is thus said to be
“risk neutral”. Of course, if the agent had strictly preferred X to Y , we would say that
she has some aversion w.r.t. risk and, therefore, he would be “risk averse”. Finally,
if the agent had strictly preferred Y to X , she would be said to be “risk seeking”.
Arrow and Pratt propose the following definition [Pratt, 1964; Arrow, 1965]:

Definition 4 (Weak risk attitudes). An agent is weakly risk averse if, for ev-
ery real-valued random variable X , she prefers E(X) to random variable X itself:
〈E(X),1〉 � X . An agent is weakly risk neutral (resp. seeking) if 〈E(X),1〉 ∼ X
(resp. X � 〈E(X),1〉).

We have seen above that a linear von Neumann-Morgenstern utility implies
that the agent is risk neutral. Arrow and Pratt have shown that, more generally,
the agent’s risk attitude is characterized by the concavity or convexity of the von
Neumann-Morgenstern utility function:

Theorem 4. An agent is (weakly) risk averse if and only if her von Neumann-
Morgenstern utility function u is concave. She is (weakly) risk neutral if and only if
u is linear. Finally, she is (weakly) risk seeking if and only if u is convex.

Up to now, the risk attitude of the agent was characterized by comparing one risky
lottery with a lottery involving no risk. It could be objected that such a comparison
is extreme and could introduce some biases. So it might be more appropriate to
compare only lotteries involving some risk, some being more risky than others. The
concept of mean preserving spread allows to specify such lotteries: it is sufficient to
compare lotteries X and Y such that one of them is an MPS of the other. In this case,
an agent is risk averse if and only if she prefers lottery X to any MPS(X):

Definition 5 (Strong risk attitudes). An agent is strongly risk averse if, for every
real-valued random variable X , she prefers lottery X to any lottery Y such that Y =
MPS(X). An agent is strongly risk neutral (resp. seeking) if X ∼ Y (resp. Y � X).

Of course, by definition, strong risk aversion implies weak risk aversion. But in
the EU model, the converse is also true:

Theorem 5 (Rotschild and Stiglitz, 1970). In the EU model, the following three
assertions are equivalent:
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1. the agent is weakly risk averse;
2. the agent is strongly risk averse;
3. the agent’s von Neumann-Morgenstern utility is concave.

As the concavity of the von Neumann-Morgenstern utility function u character-
izes the agent’s aversion w.r.t. risk, it seems natural to define the intensity of this
aversion in terms of properties of u. Arrow and Pratt have proposed to character-
ize it in terms of a coefficient of absolute risk aversion: assume that u is strictly
increasing and twice continuously differentiable, with a strictly positive derivative.
The coefficient of absolute risk aversion is defined as function RA : R 7→R such that
RA(x) =−u′′(x)/u′(x).

This definition can be easily interpreted by considering a risk averse agent. As-
sume that the set of consequences X is a monetary space. A common agent prefers
in general to win more money than less, so her utility u(x) strictly increases with x
and, consequently, u′(x) > 0. In addition, being risk averse, u(x) is concave, hence
u′′(x) < 0. From these properties, it can be deduced that RA(x) > 0. Consider now
utility function u1(x) = lnx, which implies coefficient R1

A(x) = 1/x. In Figure 5, it
can be observed that the concavity rate of u1 decreases with x. This translates in
terms of coefficient of absolute risk aversion into a decreasing coefficient R1

A. The
level of aversion w.r.t. risk therefore varies with x and, in practice, it is generally
strictly decreasing. As a matter of fact, a poor agent is not often prone to take the
risk of loosing some money in order to gain more money whereas a wealthy agent is
inclined to take such a risk because the same loss of money seems to her relatively
much less important than to the poor agent.
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Fig. 5 Coefficients of absolute risk aversion.

Note that RA can also be exploited to compare the aversions among several
agents. Indeed, consider now two utility functions u1(x) = lnx and u2(x) =

√
x+2.

These functions induce two coefficients R1
A(x) = 1/x and R2

A(x) = 3/(2x+4). Fig-
ure 5 displays functions u1, u2 as well as their respective coefficients of aversion.
From this figure, it can be remarked that the second agent (u2) is more risk averse
for small amounts of money whereas this trend is inverted for larger amounts. Note
that such a comparison is meaningful because von Neumann-Morgenstern utilities
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being unique up to scale and location, RA remains invariant w.r.t. affine transforms
of u.

Clearly, the EU model presents very nice properties. As we have seen, it is justi-
fiable from the viewpoint of the agent’s rationality. In addition, its linearity allows
for very efficient algorithms, notably in the context of sequential decision mak-
ing and in that of preference elicitation [Keeney and Raiffa, 1993; Chajewska et al.,
2000; Boutilier, 2002; Wang and Boutilier, 2003]. However, during the last decades,
several criticisms were raised against this model, which led to alternative decision
models. The next section shows some of the most important criticisms.

2.4 Some Descriptive Limits of the EU Model

Among the first detractors of the EU model, Allais proposed a celebrated example
known as the “Allais paradox” [Allais, 1953], about which experimental studies
have shown that the majority of the surveyed agents have preferences that violate
the independence axiom (Axiom 3) and are, therefore, not representable in the EU
model. Actually, consider the following two lotteries:

• L1 = 〈win 1Me,1〉;
• L2 = 〈win 1Me,0.89 ; 5Me,0.1 ; 0e,0.01〉.

Most of the surveyed agents prefer L1 to L2 because the uncertainty contained in L2
is not counterbalanced by the potential gain of 5Me. When faced to the following
alternatives:

• L′1 = 〈win 1Me,0.11 ; 0e,0.89〉,
• L′2 = 〈win 5Me,0.10 ; 0e,0.90〉,

the same agents usually prefer L′2 to L′1 because the difference in probability between
0.11 and 0.10 is judged as relatively low and the agents therefore base essentially
their preferences on the potential gains of the lotteries. But, if we set: P= 〈1Me,1〉,
Q = 〈5Me,10/11 ; 0e,1/11〉, R = 〈1Me,1〉 and S = 〈0e,1〉, then:

L1 = 0.11P+0.89R L2 = 0.11Q+0.89R
L′1 = 0.11P+0,89S L′2 = 0.11Q+0,89S.

Therefore, according to the independence axiom, if L1 � L2, the agent shall also
have the following preference: L′1 � L′2. Obviously, this is not observed experimen-
tally. This example is quite unsettling because this preference reversal can be ex-
plained easily and does not seem to result from some irrational behavior. As we will
see in the next section, this example has led researchers to develop new decision
models based on different rationality criteria. These models have a higher descrip-
tive power than the EU model and are notably capable of explaining why people
tend to prefer L1 to L2 and L′2 to L′1. Other experimental studies, in particular [Kah-
neman and Tversky, 1972, 1979], highlight other biases w.r.t. the predictions made
by the EU model. This is the case, for instance, of the certainty effects.
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The second criticism addressed against the EU model concerns the interpreta-
tion of the concavity of the von Neumann-Morgenstern utility function u. Indeed,
we have seen that in this model a concave utility represents an aversion w.r.t. risk.
But u represents the agent’s preferences over the space of the consequences and, in
general, agents have decreasing marginal preferences over money, i.e., the amount
of increase of the agent’s satisfaction (as measured by the utility function) tends to
decrease when the amounts of money tend to rise. Thus, the satisfaction to increase
the agent’s wealth from 10e to 20e is higher than that to increase it from 10010e
to 10020e. In terms of preferences, this decrease necessarily induces the concavity
of u. This double interpretation of u’s concavity implies that the EU model is unable
to describe the behavior of agents that are at the same time risk averse and that have
decreasing marginal preferences.

The third main criticism against the EU model lies in its lack of flexibility to
model different types of risk aversions. Indeed, in EU, it is impossible to model an
agent who is weakly but not strongly risk averse. But this kind of agent can exist and,
more generally, there exist several notions of risk aversion that are not necessarily
all equivalent [Chateauneuf et al., 2004]. We will see in the next section some “new”
decision models that can cope with this lack of flexibility.

The set of criticisms presented here cannot be exhaustive due to lack of space.
However, we shall mention two important additional criticisms. First, the formula
of the expected utility model combines through multiplications the probabilities of
occurrence of the consequences with the utilities. As a consequence, EU necessar-
ily requires the commensurability of preferences and uncertainties: one can “trade”
uncertainty for preference satisfaction. For instance, if 〈x1,0.5 ; x2,0.5〉 ∼ 〈x3,1〉,
the agent is willing to trade/discard some uncertainty (0.5) for a change in conse-
quences (winning x3 instead of x1 or x2, hence a modification in her satisfaction). In
addition, even though commensurability may be a reasonable assumption in some
practical applications, is it always sensible to model uncertainties by probabilities?
According to Savage, this is the only rational representation. However, when con-
sidering the example of the Ellsberg’s urn [Ellsberg, 1961], this justification seems
far from being convincing: consider an urn containing red, yellow and black balls.
The only information available about these balls is that one third are red and the
two remaining third are either yellow or black (but we do not know their respective
proportions). With so few information available, it seems difficult for a “rational”
agent to estimate the underlying probability distribution over the colors of the balls,
and experimental studies highlight this fact. When agents are invited to determine
the alternative they prefer among the following ones, whose outcome depends on
the color of a ball drawn randomly from the urn:

• Alternative A : win 1Me if the ball is red, else 0e,
• Alternative B : win 1Me if the ball is black, else 0e,

most of the agents prefer A to B because, potentially, the urn contains no black ball
whereas the urn is guaranteed to contains 1/3 of red balls. On the other hand, when
facing the following alternatives:

• Alternative C : win 1Me if the ball is red or yellow, else 0e,
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• Alternative D : win 1Me if the ball is black or yellow, else 0e,

the agents prefer in general alternative D to C. But this kind of behavior is incom-
patible with the EU model because it violates the Sure Thing Principle. Indeed, if E
represents the event “the drawn ball is red or black”, if a1 and a2 represent the acts
yielding “1Me if red ball, else 0e” and “1Me if black ball, else 0e”, and if δh and
δk represent the “constant” acts yielding with certainty 0e and 1Me respectively,
then alternatives A and B can be represented by acts a1Eδh and a2Eδh respectively,
whereas alternatives C and D correspond to acts a1Eδk and a2Eδk respectively. Ac-
cording to the Sure Thing Principle, one of the fundamental principles underlying
EU, A� B should imply C � D, which is not the case observed experimentally.

All these descriptive limits have led researchers to propose new models, also re-
lying on rationality criteria, but with a higher expressive power. We will now briefly
describe some of them.

3 Non-linear Models for Decision under Risk

The descriptive limits mentioned above first led decision making researchers to pro-
pose models quite similar to EU but, still, weakening one or several axioms of von
Neumann-Morgenstern (or of Savage). Let us cite for instance the model proposed
in [Machina, 1982] which discards the independence axiom but is still locally co-
herent with EU. There also exist models based on security levels like, e.g., that of
[Jaffray, 1988] in which the independence axiom is defined only on pairs of proba-
bility distributions that share the same worst consequence.

However, these models have been replaced by what decision theorists call “new”
models, which are generalizations of EU. Among the first new models proposed,
“Prospect Theory” consists of deforming probabilities using an increasing trans-
form [Kahneman and Tversky, 1979] in order not to take into account the true prob-
abilities but rather the way agents perceive these probabilities. Although seminal,
this model is not used anymore, essentially because it could sometimes propose to
the agent to make dominated decisions, i.e., to choose an alternative D1 such that
there existed another alternative D2 such that, whatever the state of nature that could
occur, the consequence yielded by D2 was judged at least as good as that yielded
by D1 (and it was judged strictly better for at least one state of nature). This fea-
ture being very difficult to justify from a rationality point of view, the model is not
used anymore. However, it paved the way for the new models, notably for “Rank
Dependent Utility” (RDU), that we will now describe [Quiggin, 1982, 1993].

Let x1,x2,x3 be three consequences. Without loss of generality, let us assume that
u(x2)< u(x1)< u(x3). According to the EU model, lottery L= 〈x1, p1;x2, p2;x3, p3〉
is evaluated as EU(L) = p1u(x1)+ p2u(x2)+ p3u(x3). It is easy to show that this
expression is equivalent to:

EU(L) = (p1 + p2 + p3)u(x2)+(p1 + p3)[u(x1)−u(x2)]+ p3[u(x3)−u(x1)]. (3)
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This new expression can be interpreted as follows: at worst, the agent is guaranteed
with probability p1 + p2 + p3 = 1 to win consequence x2. Then, the probability that
she gets a consequence strictly better than x2, i.e., at least as good as consequence x1
is p1+ p3. Finally, the probability to win something better than x1, i.e., x3, is p3. The
key idea of RDU is to combine this expression with the probability transformation
principle of the Prospect Theory. Thus, in its decision making process, RDU does
not take into account the true probabilities but only their perceptions by the agent.
The score assigned to L by RDU is therefore:

RDU(L)=ϕ(p1+ p2+ p3)u(x2)+ϕ(p1+ p3)[u(x1)−u(x2)]+ϕ(p3)[u(x3)−u(x1)],
(4)

where ϕ is an increasing function from [0,1] to [0,1]. Experimental studies by Kah-
neman and Tversky have shown that this function is, in general, similar to that of
Figure 6, whose equation is ϕ(x) = e−

√
− ln(x).
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Fig. 6 Probability transformation function.

Definition 6 (Rank Dependent Utility (RDU)). An agent behaves according to the
RDU model if her preference relation over the set of lotteries L is representable by
two functions u and ϕ , where u is the von Neumann-Morgenstern utility over the set
of consequences and ϕ : [0,1] 7→ [0,1] is an increasing function such that ϕ(0) = 0
and ϕ(1) = 1. The agent assigns to every lottery L = 〈x1, p1 ; . . . ,xn, pn〉 such that
u(x1)≤ u(x2)≤ ·· · ≤ u(xn) utility:

RDU(L) = u(x1)+
n

∑
i=2

[
ϕ

(
n

∑
k=i

p(xk)

)
[u(xi)−u(xi−1)]

]
. (5)

As an example, if u(x) = x/2 and ϕ(x) = x2, then, to compute the RDU value
of lottery L = 〈3,0.2 ; 10,0.4 ; 5,0.1 ; 9,0.3〉, consequences must first be
sorted in increasing utility order: L = 〈3,0.2 ; 5,0.1 ; 9,0.3 ; 10,0.4〉. Then, the
application of Equation (5) yields:
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RDU(L)=ϕ(1)× 3
2
+ϕ(0.8)×

[
5
2
− 3

2

]
+ϕ(0.7)×

[
9
2
− 5

2

]
+ϕ(0.4)×

[
10
2
− 9

2

]
.

There exist alternative definitions of RDU. Let us show one of them that will
prove useful for highlighting the connection between RDU and another more gen-
eral model: Choquet expected utility.

Definition 7 (Rank dependent utility (RDU)). Let u and ϕ be the functions defined
in Definition 6. Let X be a random variable whose probability distribution is P.
Then:

RDU(X) =
∫ 0

−∞

[ϕ(P(u(X)> t))−1]dt +
∫

∞

0
ϕ(P(u(X)> t))dt.

Note that the Allais paradox can be explained by RDU. This is notably the case
when utility u is linear and the probability transform ϕ is like the one suggested by
Kahneman and Tversky: ϕ(x) = e−

√
− ln(x). The expressive power of RDU is there-

fore higher than that of EU. It generalizes the latter since, when ϕ(x) = x, RDU boils
down to EU. Note also that, when ϕ(p) ≤ p for every p, the agent always under-
estimate the probabilities of the utility increases u(xi)− u(xi−1) (see Equations (3)
and (4)). This can be interpreted as a kind of pessimism under risk (since the agent
takes more into account the worst consequences than the best ones).

The axiomatic foundations of RDU are quite complicated [Quiggin, 1982; Wakker,
1994; Chateauneuf, 1999], so in this chapter, we will not detail them. However, to let
the reader understand the key feature of RDU, we will now focus on RDU’s main
properties: the comonotonic independence axiom in von Neumann-Morgenstern’s
framework and the comonotonic sure thing principle in Savage’s framework [Chew
and Wakker, 1996]. Here, we chose to present only the latter because it is some-
what simpler to understand than the former. For this purpose, we need to define
“comonotonic acts”: two acts f and g are said to be comonotonic if there exists no
pair of states of nature s,s′ ∈ S such that f (s) �X f (s′) and g(s) ≺X g(s′). In-
tuitively, two acts are comonotonic if their variations (in terms of preferences over
the consequences) do not evolve in the opposite directions when moving from one
state of nature to another. For instance, in Figure 7, in which preferences over the
consequences increase along the vertical axis, f and g are comonotonic, as well as
g and k, and h and k. But g and h are not comonotonic because g(s3)�X g(s2) and
h(s2)�X h(s3). Note that comonotonicity is not a transitive property since g and k
are comonotonic, as well as k and h, but g and h are not comonotonic. The key idea
of RDU consists of imposing the “Sure Thing Principle” only over comonotonic
acts:

Axiom 10 (comonotonic sure thing principle) Let {A1, . . . ,An} be a partition of
S and let f : Ai 7→ xi and g : Ai 7→ yi be two acts such that x1 ≤ x2 ≤ ·· · ≤ xn and
y1 ≤ y2 ≤ ·· · ≤ yn. Assume that there exists i0 ∈ {1, . . . ,n} such that xi0 = yi0 . Let
f ′ : Ai 7→ x′i and g′ : Ai 7→ y′i be two other acts such that:
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Fig. 7 Illustration of comonotonicity.

{
x′i0 = y′i0 ; and x′i = xi and y′i = yi for every i 6= i0,
x′1 ≤ ·· · ≤ x′n and y′1 ≤ ·· · ≤ y′n.

Then f % g =⇒ f ′ % g′.

This principle is illustrated in Figure 8: The common part of acts f and g can
vary only between points A and B. Thus, acts f ′ and g′ satisfy the constraints of
the above definition, which is not the case for acts f ′′ and g′′. Table 4 shows the
acts corresponding to the Allais paradox mentioned in the preceding section. In this
table, the Ai’s are sorted in such a way that acts L1 and L2 correspond to f and g of
Axiom 10. It can be seen that quadruple (L1,L2,L′1,L

′
2) does not satisfy the premises

of Axiom 10 (see the difference between L1 and L′1). As a consequence, the Allais
paradox does not violate the comonotonic sure thing principle. This is the reason
why RDU can explain why agents prefer L1 to L2 and L′2 to L′1.

act g′

act f ′
X

S

act g′′

act f ′′
X

S

act g
act f

X

S

A

B

Fig. 8 The comonotonic sure thing principle.

The RDU model is in fact a particular case of a more general model: Choquet
expected utility (CEU), that we will briefly describe after introducing the concept of
capacity:

Definition 8 (Capacity). A capacity µ : 2S 7→ [0,1], where S is the set of states
of nature, is a function satisfying the following two properties:
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act A1 (P(A1) = 0.01) A2 (P(A2) = 0.89) A3 (P(A3) = 0.10)

L1 1Me 1Me 1Me
L2 0e 1Me 5Me
L′1 1Me 0e 1Me
L′2 0e 0e 5Me

Table 4 The Allais paradox and the comonotonic acts.

1. µ( /0) = 0 and µ(S ) = 1;
2. For every pair A,B⊆S , we have that A⊆ B =⇒ µ(A)≤ µ(B).

Here, a capacity must be understood as a generalization of the concept of prob-
ability distribution6. Indeed, any probability distribution satisfies properties 1) and
2) above. This is also the case for all the probability transforms of the RDU model.
Therefore, capacities allow to define a more general decision model:

Definition 9 (Choquet expected utility (CEU)). An agent behaves according to
the CEU model if her preference relation over the set of acts X S is representable
using two functions u and µ , where u is the utility function over the consequences
and µ : 2S 7→ [0,1] is a capacity. The agent assigns to each act f utility:

CEU( f ) =
∫

Ch
u( f )dµ =

∫ 0

−∞

[µ(u( f )> t)−1]dt +
∫

∞

0
µ(u( f )> t)dt. (6)

It has been proved in [Wakker, 1990] that CEU reduces to RDU when Axiom 11
below is added to the axiomatics of CEU [Schmeidler, 1986; Gilboa, 1987; Wakker,
1990]. It is generally believed that this axiom is attractive for a “rational” decision
model since it expresses the fact that if, for every consequence x, the probability of
winning at least x is higher with act f than with act g, the agent should prefer f to
g.

Definition 10 (First order stochastic dominance). For every act h, let Fh(x) =
P({s ∈S : h(s) ≤ x}) denote the cumulative distribution of h. Let f and g be two
acts and let Ff and Fg be their respective cumulative distributions. Then f stochas-
tically dominates g at the first order if, for every x ∈ R, we have that Ff (x)≤ Fg(x).

Axiom 11 (First order stochastic dominance) Let f and g be two acts. If f stochas-
tically dominates g at he first order, then f % g.

We will see again the CEU model and its usefulness for decision making under
uncertainty in the next section. To complete our overview of RDU, we must mention
some results about risk aversion.We have seen earlier that, in the EU model, strong
risk aversion is equivalent to weak risk aversion, which also corresponds to the con-
cavity of the von Neumann-Morgenstern utility u. Is this also the case in RDU? A

6 For an interpretation in terms of weights of agents’ coalitions or of criteria, see Chapter 16 of this
volume.
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first answer to this question can be found in [Chew et al., 1987], where it is proved
that a RDU agent is strongly risk averse if and only if her utility u is concave and
her probability transform ϕ is convex. Similarly, the agent is strongly risk seeking
if and only if u is convex and ϕ is concave. To our knowledge, there does not exist
yet any complete characterization of weak risk aversion in the RDU model. Only
sufficient conditions have been proposed and those do not require the concavity of
u [Chateauneuf and Cohen, 1994]. In terms of risk aversion, the expressive power
of RDU is therefore higher than that of EU. Finally, note that other concepts of
risk aversion designed specifically for RDU have been proposed. Those are differ-
ent from both strong and weak risk aversions. For instance, Quiggin suggested to
substitute strong risk aversion by monotonic risk aversion [Quiggin, 1992]: let X
and Y be two random variables. Y is said to be a monotonic mean preserving spread
(MMPS) of X if Y = X +Z, where Z is a white noise, and X and Z are comonotonic.
An agent is monotonic risk averse if she does not like monotonic risk increase, i.e.,
if Y = MMPS(X), then X % Y .

Up to now, we have only studied decision models relying on the existence of
probability distributions to model uncertainties. But, what can we do if there does
not exist sufficient information to construct one, like in the Ellsberg’s urn example?
The goal of the next section is to provide some keys to answer to this question.

4 Decision Models outside the Probabilistic Framework

Let us recall the Ellsberg’s urn problem: this is an urn containing 99 balls, which
can be either red, yellow or black. The only information available to the agent is
that one third of the balls is red and the remaining two third are either yellow or
black (but their respective proportions are unknown). Agents bet on the color of a
ball to be drawn from the urn. Thus, an agent is asked which alternative she prefers
between alternatives A and B below, and which one she prefers between C and D:

• Alternative A : win 1Me if the drawn ball is red, else win 0e,
• Alternative B : win 1Me if the drawn ball is black, else win 0e,
• Alternative C : win 1Me if the drawn ball is red or yellow, else win 0e,
• Alternative D : win 1Me if the drawn ball is black or yellow, else win 0e.

Most of the human agents prefer A to B and D to C. As we have seen before,
EU cannot account for such preferences (violation of the sure thing principle). RDU
can neither model these preferences. Indeed, if it could then, assuming that the agent
prefers winning more money than less, and denoting by Pr,Py,Pb the probabilities
that the drawn ball is red, yellow and black respectively, we have that A � B⇐⇒
RDU(A)> RDU(B)⇐⇒ ϕ(Pr)> ϕ(Pb) and D�C⇐⇒ ϕ(Pb +Py)> ϕ(Pr +Py).
But this is impossible to have both inequalities satisfied because ϕ is an increasing
function. Here, the problem is that there does not exist a unique probability dis-
tribution compatible with the information available to the agent. Therefore, in this
case, we should not try to use a decision model that relies on a unique probabil-



24 Christophe Gonzales and Patrice Perny

ity distribution but rather on a model that relies on the set of all the distributions
compatible with the available information. Here, it is easy to see that this set is con-
vex: if P and Q are two compatible probability distributions, for every α ∈ [0,1],
we have that αP+(1−α)Q is also compatible with the available information. As
a consequence, to represent the uncertainties in the Ellsberg’s urn, it is sufficient to
know the boundary of the convex hull of all the compatible distributions. But since
the probability of any event and that of its complementary event sum always to 1,
the lower bounds on the probabilities are sufficient to characterize all the convex
hull. Those correspond to a function µ : 2S 7→ [0,1] such that, for every A ⊆ S ,
µ(A) = min{P compatibles}P(A). For the Ellsberg’s urn, this function µ , also called
a “belief function”, is described in Table 5. Indeed, the min of P(Y ) is equal to
0 because it is possible that the urn contains no yellow ball. On the other hand,
minP(Y,B) = 2/3 because, for all the probability distributions P compatible with
the Ellsberg’s urn, we have P(Y,B) = 2/3. More formally, belief functions [Demp-
ster, 1967; Shafer, 1976] are defined as follows (see Chapter 4 of this volume):

Definition 11 (Belief function). A belief function µ is a capacity (in the sense
of Choquet) which is ∞-monotone, i.e., it is such that for all n ≥ 2, and for all
A1, . . . ,An ∈ 2S :

µ

(
n⋃

i=1

Ai

)
≥ ∑

/0⊂I⊆{1,...,n}
(−1)|I|+1

µ

(⋂
i∈I

Ai

)
.

To any capacity (and a fortiori to any belief function) is associated its Möbius in-
verse φ defined by: φ(A) =∑B⊆A(−1)|A\B|µ(B) for every A⊆S . Intuitively, φ rep-
resents the information/the belief about the realization of event A that is not captured
in its subevents. For instance, in Table 5, φ({R,Y}) = 0 because the agent has no
more information about the chances of realization of R or Y than she has of R alone
because there is no information available on the proportion of yellow balls in the urn.
Above, we have characterized φ in terms of µ but it is also possible to characterize µ

in terms of φ . Indeed, it is not difficult to show that µ(A) = ∑B⊆A φ(B) for all events
A. This formula simply states that the agent’s belief about event A corresponds to the
sum of all her “elementary” beliefs on the realizations of A’s subevents. Thus, Belief
µ({R,Y}) about the realization of event {R,Y} corresponds to the belief generated
by the sum of the information available about R alone, Y alone and the compound
(R or Y ) that could not be captured in singletons {R} and {Y}. From a mathematical
point of view, this translates as µ({R,Y}) = φ({R})+φ({Y})+φ({R,Y}).

Evt /0 {R} {Y} {B} {R,Y} {R,B} {Y,B} S

f 0 1/3 0 0 1/3 1/3 2/3 1
φ 0 1/3 0 0 0 0 2/3 0

Table 5 The belief function of the Ellsberg’s urn and its Möbius inverse.
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In [Jaffray, 1989], Jaffray observed that the set of all the belief functions is a
mixture set, i.e., it is closed under mixture operations or, in other words, any convex
combination of belief functions is another belief function. In addition, he remarked
that this is the key property used by von Neumann and Morgenstern to develop
their axiomatic foundation of EU. As a consequence, it is possible to substitute in
each axiom probabilities by belief functions. Expected utility thus boils down to
a Choquet integral with respect to capacity µ . More precisely, in von Neumann-
Morgenstern’s framework, the probability distribution over the space of the states
of nature generates, for each decision, a probability distribution over the outcomes
of the decision, which is translated as a lottery. Here, Jaffray showed that the belief
function over the space of the states of nature generates, for each decision, a belief
function over the space of consequences. Let us call G the space of these functions.

Theorem 6 (Jaffray, 1989). The two assertions below are equivalent:

1. Preference relation % over G satisfies axioms 1,2,3, where lotteries over L are
substituted by G , the set of belief functions over the space of consequences.

2. % is representable by a utility function

U : G 7→ R

such that U(µ) =
∫

udµ .

Function u : X 7→R is called the von Neumann-Morgenstern utility function of the
agent and is unique up to scale and location.

Therefore, the Choquet integral provides an attractive decision framework for sit-
uations in which probabilities are inadequate to model uncertainties. Thanks to the
following definitions, it can be appropriately redefined in terms of Möbius inverses
rather than belief functions: a belief function eB is said to be elementary and con-
centrated on B if eB(A) = 1 when A ⊇ B and eB(A) = 0 otherwise. In other words,
its Möbius inverse φB is such that φB(B) = 1 and φB(A) = 0 for every A 6= B. Let
µ be a belief function whose Möbius inverse is φ . The focal set Cµ of µ is de-
fined as Cµ = {B : φ(B) > 0}. From these two definitions, it can be inferred that,
for every belief function µ , and for every consequence set A, µ(A) = ∑B⊆A φ(B) =
∑B∈Cµ

φ(B)eB(A). But Theorem 6 trivially implies that, for every convex combina-
tion {λi, i = 1, . . . ,n : λi ≥ 0 and ∑

n
i=1 λi = 1}, U (∑n

i=1 λiµi) = ∑
n
i=1 λiU(µi). As

a consequence, if µ = ∑B∈Cµ
φ(B)eB, U(µ) = ∑B∈Cµ

φ(B)U(eB). Let us denote by
u(B) = U(eB) the utility of set of consequences B. Then, we get a linear utility
model called Belief expected utility (BEU):

Theorem 7 (Belief expected utility (BEU) – Jaffray, 1989). The following two
assertions are equivalent:

1. Preference relation % over G satisfies axioms 1,2,3, where lotteries over L are
substituted by belief functions over G .

2. % is representable by a utility function U : G 7→R such that U(µ)=∑B∈Cµ
φ(B)u(B),

where u(B) is the utility of set of consequences B and φ is the Möbius inverse of
µ .
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Table 6 illustrates the computation of U on the four alternatives A,B,C,D of the
Ellsberg’s urn. Assume that u({0}) = 0, u({1M}) = 1 and u({0,1M}) = α . Then
A�B and D�C is equivalent to α < 1/2. Therefore BEU is capable of representing
“common” agent’s preferences on the Ellsberg’s urn.

Evts 0 1Me {0,1Me}
balls {B,Y} {R} S

µ 2/3 1/3 1
φ 2/3 1/3 0

Evts 0 1Me {0,1Me}
balls {R,Y} {B} S

µ 1/3 0 1
φ 1/3 0 2/3

BEU(A) = 2/3u({0})+1/3u({1M}) = 1/3 BEU(B) = 1/3u({0})+2/3u({0,1M}) = 2/3α

Evts 0 1Me {0,1Me}
balls {B} {R,Y} S

µ 0 1/3 1
φ 0 1/3 2/3

Evts 0 1Me {0,1Me}
balls {R} {B,Y} S

µ 1/3 2/3 1
φ 1/3 2/3 0

BEU(C) = 1/3u({1M})+2/3u({0,1M}) BEU(D) = 1/3u({0})+2/3u({1M}) = 2/3

Table 6 BEU utilities for the Ellsberg’s urn problem.

However, the BEU formula clearly highlights its limits w.r.t. EU: in the EU
model, the agent’s utility function u needs be elicited only over the space of conse-
quences X whereas with BEU or CEU, it must be elicited on 2X . Unfortunately,
elicitation, i.e., the learning of the agent’s preferences, is a complex and time con-
suming process. Therefore, to fix this problem, Jaffray proposed to add a new axiom
called a “dominance” axiom to BEU. This axiom expresses the fact that, without any
knowledge, within a set of consequences {x1, . . . ,xk}, the agent has no reason to be-
lieve that a consequence is more likely to be yielded than any other. So the agent
can summarize the information about the set of consequences by defining her prefer-
ences taking into account only the worst and the best consequences of the set. Con-
sequently, utility u(B) of a set of consequences B boils down to utility u(mB,MB),
where mB and MB denote the worst and the best consequences of B respectively.

Axiom 12 (Dominance) For every set of consequences B⊆X , let mB and MB de-
note the worst and the best consequences of B respectively. Let eB be the elementary
belief function concentrated on B. Then, for every B,B′ ⊆X , if mB %X mB′ and
MB %X MB′ then eB % eB′ .

Theorem 8 (Jaffray’s model, 1989). The following two assertions are equivalent:

1. Preference relation % over G satisfies axioms 1,2,3 and 12, where lotteries over
L are substituted by belief functions over G .

2. % is representable by a utility function U : G 7→ R such that

U(µ) = ∑
B∈Cµ

φ(B)u(mB,MB).
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Functions U and u are unique up to scale and location. In addition, u is a non-
decreasing function of m and M and the von Neumann-Morgenstern utility u(x) of
consequence x is equal to u(x,x).

As a consequence of this theorem, utility u(m,M) takes into account two factors:
i) the attitude of the agent w.r.t. risk (concavity of u(x,x)), but also ii) the attitude
w.r.t. ambiguity when M 6= m. The model can be further refined using the Hurwicz
criterion [Hurwicz, 1951]:

Definition 12 (Hurwicz criterion). for every (m,M), let us call the “local opti-
mism/pessimism criterion” the value α(m,M) for which the agent is indifferent
between the following two alternatives:

1. winning m with probability α(m,M) and M with probability 1−α(m,M),
2. winning at least m and at most M, without any further information.

Thanks to this criterion, utility u(m,M) can be redefined as α(m,M)u(m)+ [1−
α(m,M)]u(M), with u(x) the von Neumann-Morgenstern utility function of the
agent. In this context, coefficient α expresses the attitude of the agent w.r.t. ambigu-
ity and the concavity of u expresses the agent’s attitude w.r.t. risk. Now, the task of
eliciting the agent’s preferences (the learning of function u) has a complexity similar
to that in the EU model.

4.1 Qualitative Decision Models under Uncertainty

In parallel to the research works made in the field of mathematical economics, de-
cision under uncertainty has received attention in artificial intelligence. In partic-
ular, researchers investigated qualitative models, which describe preferences only
through ordinal information [Tan and Pearl, 1994; Boutilier, 1994; Dubois and
Prade, 1995; Brafman and Tennenholtz, 1996; Lehmann, 1996; Dubois et al., 1997].
Thus, within the framework of possibilistic lotteries [Dubois and Prade, 1995],
Dubois and Prade proposed a counterpart to the von Neumann-Morgenstern ax-
iomatic foundation: they axiomatized “qualitative utilities”, which generalize Wald
criterion [Wald, 1950] for comparing possibility distributions. A possibility distri-
bution is characterized by a function π which assigns to each consequence x its pos-
sibility π(x) ∈ L, L being an ordered set. The pessimistic qualitative utility model is
based on an L-valued utility function u defined over the set of consequences X , with
L an ordered set. This function assigns to every possibilistic lottery π the following
value:

U−(π) = min
x∈X

max{n(π(x)),u(x)}

where n is a decreasing function which inverses the scale of L. Typically, when
L = [0,1], n is chosen as n(x) = 1− x. Value U− indicates to which extent, by
choosing π , the agent is sure to get a consequence having a “good” utility value.
In the same possibilistic framework, there exists a more optimistic version which
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evaluates to which extent it is possible that the agent gets a consequence with a
“good” utility value. This version consists of assigning to every possibilistic lottery
the following quantity:

U+(π) = max
x∈X

min{π(x),u(x)}

The axiomatic foundation of Savage has also been revisited in order to pro-
pose qualitative counterparts to the EU model. Thus, Dubois, Prade and Sabbadin
[Dubois et al., 1998] proposed axiomatic justifications for the optimistic and pes-
simistic qualitative utility criteria when comparing acts in the sense of Savage. This
led to the following models:

U−( f ) = min
s∈S

max{n(π(s)),u( f (s))}

U+( f ) = max
s∈S

min{π(s),u( f (s))}

For every act f in X S . U+( f ) evaluates to which extent there exists a consequence
of f which is at the same time very good and very plausible. On the other hand,
U−( f ) evaluates to which extent all the consequences in act f are plausible and
good. These formula are therefore the numerical translations of logic principles. For
more details, see [Dubois et al., 1999]. Dubois, Prade and Sabbadin have also pro-
posed an axiomatic foundation of the Sugeno integral for comparing acts [Dubois
et al., 1998], which led to the following model:

Sv( f ) = max
x∈X

min{v(Fx),u(x)}

where Fx = {s ∈S : f (s)≥ x} and v is a capacity defined on 2S .
These models depart from EU notably by their weakening of the “sure thing

principle”, which becomes the “weak sure thing principle”:

Axiom 13 (Weak Sure Thing Principle) For every f ,g,h,h′ ∈X S and for every
A ∈ 2S , we have that f Ah� gAh⇒ f Ah′ % gAh′.

This axiom is important because, although it is weaker than the sure thing prin-
ciple, it is sufficient to enable the computation of optimal policies in dynamic deci-
sion problems by backward induction. For more details on this point, see [Sabbadin,
1998].

Finally, pure ordinal aggregation rules (derived from majority rules used in vot-
ing) have been proposed under the name of “lifting rules” [Dubois et al., 2002,
2003]. To compare acts, they only rely on relative events likelihoods and on a pref-
erence relation over the consequences. They are defined as:

f % g if and only if {s ∈S : f (s)%X g(s)}D {s ∈ S : g(s)%X f (s)}
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where %X is the projection on the consequence scale of preference relation % re-
stricted to the constant acts, and D is a relative likelihood relation over the events.
Their axiomatic justification is based on the introduction, in Savage’s framework,
of an axiom compelling the purely ordinal nature of the rule [Dubois et al., 2002,
2003]:

Axiom 14 (Ordinal invariance) [ for every s ∈ S , ( f (s) %X g(s) if and only if
f ′(s)%X g′(s)) and (g(s)%X f (s) if and only if g′(s)%X f ′(s))]
=⇒ ( f % g if and only if f ′ % g′).

This axiom states that preference f % g among two acts f and g, characterized by
consequence vectors ( f (s1), . . . , f (sn)) and (g(s1), . . . , g(sn)) respectively, does
not depend on the relative positions of these consequences in the agent’s preference
scale, i.e., it only depends on preferences f (s) %X g(s) and g(s) %X f (s) for all
the states of nature s ∈ S . This model reminds of the relative concordance rules
introduced in Chapter 16 of this volume in multicriteria decision making. Such rules
do not necessarily induce transitive preferences, except when the beliefs over the
events are highly hierarchical systems (see [Dubois et al., 2002, 2003] for more
details). Here again, in order to obtain transitive preferences without constraining
arbitrarily the beliefs over the events, it can be advantageous to introduce reference
points in the model and to propose rules like:

f %r g if and only if {s ∈S : f (s)%X r}D {s ∈S : g(s)%X r}

in which r represents a reference consequence on scale X . For more details on this
type of models, see [Perny and Rolland, 2006].

5 Sequential Decision Models

In practical situations, a decision is seldom made independently of the other deci-
sions. Therefore, agents often have to choose among sets of decisions that must be
made consecutively, each one having some impact on the next ones. In this section,
we will study such problems and some decision models that were designed for that
purpose.

Graphical models are well-suited for this task. “Decision trees” are certainly one
of the most popular models. Their graphs contain two types of nodes: “decision
nodes”, drawn as rectangles, which represent the alternatives among which the agent
has to choose; and “chance nodes”, draw as circles, which represent the uncertain-
ties about the events. All these nodes are put into the graph in such a way that time
always increases from the left to the right of the graph. Finally, to the leaves of the
tree are assigned the utilities of the consequences resulting from the sequence of de-
cisions and the set of events made from the root of the tree up to the leaves. Figure 9
represents a simple decision tree corresponding to the following problem [Raiffa,
1968]: An oil wildcatter must decide either to drill or not. He is uncertain whether
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the hole is dry, wet or soaking. If he decides to drill, then, his gain will depend on
the quantity of oil in the hole: if the hole is dry (no oil), he will loose 1Me; if the
hole is wet, he will win 2Me; finally, if the hole is soaking, he will win 10Me.
At a cost of 10Ke, the wildcatter can make seismic soundings which help deter-
mine the geological structure of the site. The soundings will disclose whether the
terrain below has no structure (NoS), in which case there is not much chance that
the hole contains some oil, or open structure (OpS), in which case the presence of
oil is somewhat more probable, or closed structure (ClS), in which case there are
high chances that the hole contains a lot of oil. This problem can be modeled by a
decision tree in the following way: The first decision to be made consists of making
or not seismic soundings. This decision is represented by node T in Figure 9. If the
oil wildcatter decides to make the soundings, we pass through the upper branch,
else in the lower branch. Once the test is made, the wildcatter gets back the result
R of the test. Of course, this result is only known after making the seismic sound-
ings and, therefore, after making the decision to make the seismic soundings. This
is the reason why node R must be located on the right of node T (time increases
from left to right). Whatever the result of the test, upon knowing this result, the oil
wildcatter must decide whether he will drill or not (nodes F1). If he decides not to
drill, then he will have lost the price of the seismic soundings, i.e., 10Ke. This
information can be found on the leaves of the tree. If the oil wildcatter decides to
drill, then he will win the amount of money depending on the quantity of oil in the
hole minus the price of the seismic soundings. This quantity (the Ei’s) is unknown
when the agent makes the decision to drill or not, hence the Ei’s must be located
on the right of F1 in the decision tree. In the end, we get Figure 9. In general, on
the branches outgoing chance nodes, are indicated the beliefs the agent has that the
events will occur. Those are often the conditional probability that the event will oc-
cur given the values taken by all the preceding nodes, i.e., all the nodes to the left,
up to the root. For instance, on the upper branch on the right of E3 should be stored
P(E3 = dry|F3 = yes,R = ClS,T = yes). Some variables can be independent from
others, so this expression can often be simplified. Here, for instance, it is obvious
that the state of the hole does not depend on the decisions of the agent, so the above
conditional probability is equivalent to P(E3 = dry|R = ClS). Probabilities on the
branches outgoing the Ei’s therefore differ from one Ei to the other.

In addition to their capacity to model sequential decision making problems, de-
cision trees can also be exploited to help agents making the best decisions. For this
purpose, whatever the decision criterion chosen (EU, RDU, etc.), the idea is to look
for an optimal strategy, i.e., in every decision node accessible given the set of all
the decisions made previously, the choice of an alternative/decision among those
possible at that node. Thus, a strategy considers all the states of nature possible. For
instance, in Figure 9, the set of bold edges represents a strategy: when T =“yes” is
selected, as it is not possible to know which value R will take, we need to consider
all the possible values for R and an alternative needs be selected for each node Fi.
Note that, when the uncertainty within the chance nodes is modeled by probabil-



Decision under uncertainty 31
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Fig. 9 Decision tree for the oil wildcatter problem.

ities, a strategy precisely corresponds to a lottery. Indeed, consider the strategy in
bold edges in Figure 9. This one represent the fact that the agent will loose 10Ke
if R = “Ops” or R = “ClS” and that, if R = “NoS”, he will win 100M-10Ke if
E1 = “soak”, 2M-10Ke if E1 = “wet” and -1M-10Ke if E1 = “dry”. Therefore,
this corresponds to lottery:

〈 -10Ke,P(R = Ops or Cls) ; 100M-10Ke,P(R = NoS,E1 = soak) ;
2M-10Ke,P(R = NoS,E1 = wet) ; -1M-10Ke,P(R = NoS,E1 = dry)〉.

Therefore, finding the EU optimal strategy in a decision amounts to find the strategy
whose corresponding lottery is optimal, i.e., it is maximal w.r.t. the EU criterion.
Luckily, to determine it, it is not necessary to compute all the lotteries and to extract
the best one. Actually, the above strategy can be rewritten as follows:

〈 -10Ke , P(R = Ops) ;
-10Ke , P(R = Cls) ;

100M-10Ke , P(R = NoS)×P(E1 = soak|R = NoS) ;
2M-10Ke , P(R = NoS)×P(E1 = wet|R = NoS) ;

-1M-10Ke , P(R = NoS)×P(E1 = dry|R = NoS) 〉.

(7)

Remark that the last three lines correspond to P(R = NoS) times the following lot-
tery:

〈 100M-10Ke , P(E1 = soak|R = NoS) ;
2M-10Ke , P(E1 = wet|R = NoS) ;

-1M-10Ke , P(E1 = dry|R = NoS) 〉.
(8)
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which is nothing else than the lottery resulting from the bold strategy in the sub-
tree whose root is F1. If, in the bold strategy of Figure 9, Decision F1 = “yes” is
substituted by F1 = “no”, it is easy to see that the resulting lottery will differ from
that of Equation (7) only by the last three lines of the latter that are substituted
by P(R = NoS) times lottery 〈-10Ke , 1〉, which is nothing else than the lottery
corresponding to the strategy of the subtree rooted at the lower branch of F1. Conse-
quently, to compare according to the EU criterion two lotteries L1,L2 that differ only
in a subtree of the decision tree, it is sufficient to compute their respective lotteries
in this subtree and to select the one with the highest EU score. As a matter of fact,
the expectations of the sub-lotteries in the other subtrees are identical for both L1
and L2 so, due to the linearity of EU, they are irrelevant to compare L1 and L2. This
justifies that the following dynamic programming-based algorithm by backward in-
duction can determine the EU-optimal strategy in all the decision tree: first, select
the decisions that maximize EU in all the subtrees rooted at the decision nodes that
are the closest to the leaves of the decision tree (in Figure 9, this corresponds to
the subtrees rooted at Fi, i = 1, . . . ,4, respectively); then substitute these subtrees by
leaves whose utility values are the expectations of these decisions, and iterate this
process until reaching the root of the decision tree. The decision selected at each
step of this algorithm constitute the EU-optimal strategy.

The goal of this chapter is not to develop computational decisional algorithmics,
so we will not detail further this backward induction mechanism. However, it was
useful to mention it when considering features of the “new” decision models like
RDU. Actually, for these nonlinear models, backward induction produces incorrect
results, as we will show in the next example. Suppose that the probability transfor-
mation function of the agent is ϕ(x) = e−

√
−ln(x), as suggested by Kahneman and

Tversky, and that her utility function is u(x) = x. Now, consider the decision tree
of Figure 10. On the arcs outgoing from the chance nodes are indicated the prob-
abilities of occurrence of their respective events and, on the right of the leaves are
displayed the utilities of the consequences of the decisions. Calculating the RDU
values of the strategies in this decision tree, we have that:

RDU(a) = 2+(5−2)ϕ(0,73)+(30−5)ϕ(0,25) = 11,41
RDU(bc) = 5+(10−5)ϕ(0,5)+(20−10)ϕ(0,25) = 10,26
RDU(bd) = 2+(5−2)ϕ(0,75)+(30−5)ϕ(0,25) = 11,46
RDU(c) = 10+(20−10)ϕ(0,5) = 14,35
RDU(d) = 2+(30−2)ϕ(0,5) = 14,18.

In other words, in the subtree rotted at F , Strategy c is preferable to d, but in the
subtree rooted at E, the optimal strategy is bd rather than bc.

This phenomenon is not restricted to the RDU criterion: it is general and appears
as soon as the criterion departs from EU. In fact, to produce correct results, back-
ward induction requires two properties: consequentialism and dynamic consistency.
The first one states that, in each subtree, the optimal strategy depends only on this
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Fig. 10 Decision tree and the RDU criterion.

subtree and not on the rest of the decision tree. The second property states that an
optimal strategy in a subtree is an extension of optimal strategies in its own subtrees.
As an example, if, in Figure 10, bd is an optimal strategy for the subtree rooted at
E, then d must also be an optimal strategy in the subtree rooted at F . Unfortunately,
consequentialism + dynamic consistency implies the “sure thing principle” (or at
least a slightly weakened version) which leads to the EU criterion.

To complete our brief overview of sequential decision making, note that there ex-
ist compact representations of decision trees like, for instance, influence diagrams
[Howard and Matheson, 1984; Shachter, 1986; Jensen et al., 1994]. The first key
idea consists of considering decision trees as representations of “big” multivariate
functions. The case of the decision trees with a symmetric structure simplifies the
illustration of this idea: consider the trees of Figure 11. Instead of considering the
utility values independently from one leaf to the other, consider the set of all these
utility values as the result of a function depending on the values of D and O that led
to the corresponding leaves. Similarly for the probabilities indicated on the branches
of the decision tree, do not consider the values separately but as a whole as the prob-
ability distribution P(O|D) depending on the values of D and O. The second key idea
consists of exploiting the structural independences inherent to the decision problem.
There is often a large number of such independences and those usually greatly sim-
plify the “big” functions mentioned earlier. As an example, observe the 4 decision
trees of Figure 11. At first sight, they seem quite similar. However, upon examin-
ing carefully the probabilities and the consequences/utilities displayed beside the
branches of the tree, fundamental differences can be observed among these trees. In
the first one, probabilities and utilities differ from one another on all the branches
and, therefore, none of the functions P(O|D) and u(D,O) can be simplified. This
is precisely what is represented by influence diagram 1 in Figure 12: circles rep-
resent chance nodes, to which are associated the conditional probabilities of these
nodes given their parents in the graph (like in a Bayesian network [Pearl, 1988]);
lozenges represent the utility multivariate functions and the variables they depend
on correspond to those at the tails of their ingoing arcs. In tree 2 of Figure 11, it can
be noticed that utility values depend on the branch outgoing from O where they are
located but they do not depend on D. In other words, utility u(D,O) can be summa-
rized as u(O) and this is precisely what influence diagram 2 of Figure 12 represents.
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In Tree 3, utilities depend on D but not on O, hence influence diagram 3. Finally, in
Tree 4, probabilities P(O|D) do not depend on the value of D, which corresponds to
influence diagram 4. To complete our description of influence diagrams, note that,
although no function is associated with decision nodes, the latter can also have ingo-
ing arcs. In this case, these arcs indicate the nodes (decisions and/or chances) whose
values are known to the agent when she makes her decision.
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To conclude this section, note that models for representing sequential decision
making problems are not restricted to decision trees and their compact represen-
tations (e.g., influence diagrams). Other formalisms do exist, which can be better
suited for particular tasks. For instance, we can cite Markov decision processes
(MDP) [Bellman, 1957; Howard, 1960; Puterman, 1994] or partially observed
MDPs [Sondik, 1971; Monahan, 1982], which are especially useful in planning.
Although these models have been based initially on probabilities, their possibilistic
counterparts have been proposed in the literature [Fargier et al., 1998; Sabbadin,
2001]. In this chapter, we will not develop further these models since Chapter 10 of
Volume 2 is devoted to them.

6 Conclusion

This chapter has provided a brief and non exhaustive overview of the theory of de-
cision making under uncertainty. As we have seen, justifying mathematically the
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proposed decision making models, relying on simple axioms reflecting common-
sense features that are expected to be satisfied by any “rational” agent, has been one
of the major concerns in the decision theoretic community. These axioms enable to
justify to users these models and, more importantly, the recommendations they pro-
vide. This is a key point to make human agents/decision makers accept these mod-
els. Currently, the main research topics of the field are threefold and are focused on:
i) the elicitation of preferences; ii) the models of uncertainty and their learning; and
iii) the recommendation algorithms based on these models. Researches on prefer-
ence elicitation focus on the minimization of the number of questions to ask to the
agent to capture her preferences, but also on how to focus questions in order to elicit
only the parts of the utility function that are needed to make “good” recommenda-
tions [Wang and Boutilier, 2003; Gonzales and Perny, 2004; Boutilier et al., 2010;
Lu and Boutilier, 2011]. As for the uncertainties, new compact graphical models
have been introduced recently (Probabilistic Relational Models, Markov Logic Net-
works, Multi-Entity Bayesian networks, etc), which notably enable learning from
relational databases probability distributions defined over high-dimensional spaces,
taking into account generic domain knowledge [Getoor and Taskar, 2007; Kok
and Domingos, 2009; Khosravi et al., 2010]. Finally, recommendation algorithms
have to address problems over combinatorial spaces of ever increasing sizes [de
Salvo Braz et al., 2005; Regan and Boutilier, 2011].

For many years, in artificial intelligence, expected utility (EU) has been consid-
ered as the only reasonable model for decision under uncertainty. However, these
last years, new decision theoretic models like RDU or Choquet have been intro-
duced in the major AI conferences and their place shall increase in the next years.
Indeed, they are not only capable to model faithfully the behaviors of agents fac-
ing uncertainty and ambiguity, but they also proved to be very useful for modeling
fair and robust decision making problems. Finally, their expressive power should
make them the models of choice for preference elicitation for high stakes strategic
decision problems. However, exploiting such models requires a high level of infor-
mation about the preferences of the agents as well as about the likelihoods of the
events that may occur. Unfortunately, in some AI decision problems (like planning
in partially known environments, preference elicitation and recommendation), the
information available does not usually allow to precisely quantify the utility of an
action or the probability of an event. In such situations, by relying on an ordinal
representation of preferences and uncertainties, the qualitative models presented in
the preceding sections prove to be better suited. To a large extent, these models are
still unknown outside the academic world but, in the near future, their exploitation
in industrial applications should increase significantly.
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