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ABSTRACT 

Low-bandgap polymers are widely used as a p-type components in photoactive layers of organic 

solar cells, due to their ability to capture a large portion of the solar spectrum. The comprehension 

of their supramolecular assembly is crucial in achieving high-performance organic electronic 

devices. Here we synthetized two exemplar low-bandgap cyclopentadithiophene 

(CPDT):diketopyrrolopyrrole (DPP)-based polymers, with either a twelve carbon (C12) or a tri 

etyleneglycol (TEG) side chains on the DPP units (respectively denoted PCPDTDPP_C12 and 

PCPDTDPP_TEG). We deposited Langmuir-Schaefer films of these polymers blended with the 

widely used electron donor material [6,6]-phenyl-C61-butyric-acid methyl ester (PCBM). We then 

characterized the conformational, optical and morphological properties of these films. From the 

monolayers to the solid films, we observed distinct self-organization and surface properties for 

each polymer due to the distinct nature of their side chains. Emphasizing their attraction 

interactions with PCBM and the phase transitions according to the surface pressure. The elements 

amount on the surface, calculated through the XPS, gave us a good insight on the polymers’

conformations. Through UV-visible absorption spectroscopy, the improvement in the PCPDTDPP 

film ordering upon PCBM addition is evident and we saw the contribution of the polymer units on 

the optical response. Chemical attributions of the polymers were assigned using FTIR 

Spectroscopy and Raman Scattering, revealing the physical interaction after mixing the materials. 

We showed that it is possible to build nanostructured PCPDTDPPs films with a high control of 

their molecular properties through an understanding of their self-assembly and interactions with 

an n-type material. 
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1. INTRODUCTION

The bulk heterojunction (BHJ) is based on an interpenetrating network of donor (D) and 

acceptor (A) materials and has given rise to the current, most efficient solar cells, be it in single or 

in tandem devices [1,2]. Absorption of a photon by the photoactive layer of an organic photovoltaic 

device (OPV) produces a neutral excited state (exciton) instead of the free charge carriers seen in 

inorganic photovoltaics. The exciton diffuses to the D/A interface in order to dissociate and form 

free charge carriers, that can migrate to the respective electrodes. The bicontinuous and 

interpenetrating network ensures that any light-absorbing site in the bulk-heterojunction (BHJ) is 

within few nanometers from the D/A interface, while simultaneously allowing the presence of 

percolation paths towards the electrodes. Respectively, this enhances the quantum efficiency of 

charge separation, and increases charge collection. The resulting morphology of the phase 

separated BHJ layer is crucial for the performance of the solar cell [3], and its understanding and 

control is fundamental to improve device efficiency. Alterations in photovoltaic performance can 

be obtained by varying the volume ratio of the donor and acceptor phases [4], using different 

additives [5], processing temperatures [6], and processing solvents [7]. Then, the development of 

a way to evaluate the materials’ interaction and miscibility is critical. Thus, a setup of techniques

to characterize the interaction between the active layer materials can be used to perform a previous 

in-depth analysis that furnish a way to assist the construction of future devices. 

The morphology of devices manufactured from organic materials affects significantly their 

optoelectronic characteristics [8]. In thin films form, the morphology changes can also occur 

according to the chosen deposition technique. There are many techniques available for the 

production of films from organic materials [9,10], among them we highlight the Langmuir 

deposition techniques [11], which provides a mean to evaluate the film even before its transfer to 
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a solid substrate. Moreover, Langmuir methods are commonly used for the manufacture of films 

in which greater ordering and good control at the molecular level are desired [12]. The Langmuir-

Blodgett technique is, however, a rather complicated method for making films from non-

amphiphilic and/or rigid materials [13,14]. For such cases, the Langmuir-Schaefer (LS) technique 

is often preferred, as it removes many of the constraints associated with Langmuir-Blodgett 

techniques [15]. Recently, Noh et. al [16] reported the deposition onto different substrates of a 

polymer initially spread onto water to apply as solar cells, therefore, Langmuir analysis may also 

serve as a guide on how is the assembling and possible interactions for who uses such method. 

Among the various polymeric semiconductors that have been studied in recent decades, low-

bandgap polymers (LBGs) appear as one of the more intriguing donor materials for polymeric 

solar cells [7,17]. This class of π-conjugated polymers shows a better overlap between the

absorption spectrum of the polymer and the solar spectrum [18–20]. Their absorption towards the

near infrared (NIR) allows the generation of additional photocurrent, increasing the overall short-

circuit current, and consequently the efficiency of the cell. In addition, LBGs have more 

delocalized π-electrons, greater conjugation lengths and higher polymer chain planarity when

compared to other polymers [21,22]. These characteristics lead to a decrease in the energy level of 

the higher occupied molecular orbital (HOMO) of the donor polymer, ease of intermolecular hole 

transport, and a closer (although still often imbalanced) equilibrium in the transport of the electrons 

and holes between the electron donor polymer and the electron acceptor material. 

In this work, we synthesized and characterized the physico-chemical, optical and 

morphological properties of two new LBGs based on the diketopyrrolo[3,4-c] pyrrole-1,4-dione 

(DPP) derivative and a cyclopentadithiophene derivative (CPDT), bearing an alkyl and ester side 

chain either by themselves or in a blend with the electron acceptor [6,6]-phenyl-C61-butyric-acid 
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methyl ester (PCBM). BHJ films were fabricated via LS methods. We evaluated the conformation 

and morphologies of such films aiming to understand the interaction and phase segregation of self-

conformation of the low-bandgap polymers and the PCBM. 

2. EXPERIMENTAL SECTION

2.1 Materials 

Di-isopropylsuccinate, anhydrous iron (III) chloride and anhydrous potassium carbonate 

(K2CO3) were purchased from ABCR. 4,4-Bis(2-ethylhexyl)-2,6-bis(trimethylstannyl)-4H-

cyclopenta[2,1-b:3,4-b']dithiophene was purchased from 1-Materials. PCBM and all other 

reagents and solvents were purchased from Sigma Aldrich. All the chemicals and solvents were 

used without further purification, unless otherwise stated. All reactions using dry solvents were 

carried out with oven-dried glassware and under inert atmosphere (N2), unless otherwise stated. 

2.2 Polymers syntheses and characterizations 

Scheme 1.  Synthesis of PCPDTDPP_C12 and PCPDTDPP_TEG. 

The diketopyrrolopyrrole (DPP) monomers 3.a and 3.b were synthesized according to the 

synthetic route reported in Scheme 1, adapted from the literature [23]. DPP (Scheme 1, 1) was 

prepared by reacting 2 equivalents of 2-thiophene-carbonitrile with 1 of di-isopropylsuccinate in 
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t-amyl alcohol. To improve the solubility of the DPP (1), the lactame units should be N-

functionalized, preventing the formation of hydrogen bonding between different DPP units. In this 

work, the DPPs were N-alkylated (Scheme 1, 2.a and 2.b) using the corresponding bromo-

alkanes/ether in presence of K2CO3 and 18-crown-6 [23]. Finally, we introduced a suitable 

polymerizable group on the thiophene units, functionalizing them with bromine atoms by free-

radical substitution, using N-bromosuccinimide (NBS) as brominating agent (3.a and 3.b). 

Poly[4,4’-diethylhexyl-4H-cyclopenta[2,1-b;3,4-b’]dithiophene-alt-2,5-didodecyl-3,6-bis

(thiophen-2-yl)pyrrolo[3,4-c]-pyrrole-1,4-dione], PCPDTDPP_C12 (5.a), and poly[4,4’-

diethylhexyl-4H-cyclopenta[2,1-b;3,4-b’]dithiophene-alt-2,5-di(2-(2-(2-methoxyethoxy)ethoxy)

ethyl-3,6-bis(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4-dione], PCPDTDPP_TEG (5.b), were 

synthetized by Stille polycondensations (Scheme 1), reacting the dibrominated dithieno-DPPs 

monomers (Scheme 1, 3.a and 3.b) with 4,4-bis(2-ethylhexyl)-2,6-bis(trimethylstannyl)-4H-

cyclopenta[2,1-b:3,4-b']dithiophene (CPDT-(SnMe3)2) (Scheme 1, 4). The polymerizations were 

performed in anhydrous chlorobenzene with Pd(0) as catalyst at 150 °C for several hours. The 

Pd(0) was generated in-situ from bis(dibenzylideneacetone)-palladium(0) [Pd2(dba)3] and tris(2-

methylphenyl)phosphine [(o-Tolyl)3P] as ligand [24]. The number average molecular weight, Mn, 

of the polymers are 15300 g mol-1 and 16200 g mol-1 for the PCPDTDPP_C12 and 

PCPDTDPP_TEG, respectively. 

The detailed experimental procedures and chemical characterization are reported in the 

supporting information (SI). 

2.3 Instrumentation 

2.3.1 Monomer and polymer characterizations. 1H-NMR, spectra were recorded on a Bruker 

(400 MHz) spectrometer; chemical shifts are given relative to tetramethylsilane (TMS). Gel 
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permeation chromatography (GPC) was performed using a bank of 4 columns (Shodex KF801, 

802.5, 804, and 806), each 300 mm x 8mm at 30 °C with tetrahydrofuran eluent at a flow rate of 

1.0 mL min−1 controlled by a Malvern pump (Viskotek, VE1122) and connected to Malvern

VE3580 refractive index and Malvern VE3210 UV−visible detectors. Conventional calibration 

was performed against polystyrene standards. 

2.3.2 Langmuir and LS experiments. For the fabrication and analysis of the Langmuir films, the 

low-bandgap polymers and PCBM were dissolved in chloroform at room temperature (23 °C). The 

Langmuir and LS films were deposited using the Langmuir trough KSV 5000, and its subphase 

was filled with ultrapure water (Millipore system, resistivity of 18.2 MΩ). The polymer solutions

had a concentration of 0.2 mg ml-1, while the PCBM and polymer:PCBM blend (1:1 w/w) of 0.3 

mg ml-1. Surface pressure isotherms were performed under symmetric barrier compression at a 

speed of 10 mm min-1, to achieve a target deposition pressure of 20 mN m-1 and 25 mN m-1 for, 

respectively, monolayers containing PCPDTDPP_C12 and PCPDTDPP_TEG. To fabricate the LS 

films, we performed consecutive horizontal manual depositions onto solid substrates. 

2.3.4 Atomic Force Microscopy (AFM). AFM images of 10 layers LS films deposited onto 

glass/ITO substrates were recorded in tapping mode using a Park XE7 microscope. The 

topographic images were analyzed with the proprietary XEI software. 

2.3.5 X-ray Photoelectron Spectroscopy (XPS). XPS measurements of 10 layers LS films onto 

ITO substrate were carried out using a K-Alpha X-ray Photoelectron Spectrometer, with a micro-

focused monochromatic Al Kα source (Al Kα 1486.6 eV, spot diameter of about 400 μm, power 

72 W), at a pressure of 2·10-7 Pa. This equipment utilizes a hemispheric analyzer, a transfer column 

and a microchannel plate (MCP) detection. 
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2.3.6 UV-visible Absorbance. The characterization of the optical properties of LBGs and their 

mixtures with PCBM, both in solution and in thin film on glass substrates, was performed with a 

Varian Cary 100 UV-Visible spectrophotometer. 

2.3.7 Raman and Fourier-transform infrared (FTIR) absorption spectroscopy. The Raman 

spectra were acquired using a micro-Raman Renishaw spectrograph, model in-Via, coupled to an 

optical Leica microscope (50X objective lens), equipped with a CCD detector and laser at 633 nm. 

The measurements were carried out on films deposited on the golden area of gold interdigitated 

electrode (IDE) on glass substrates (Brazilian Nanotechnology National Laboratory, LNNano) in 

the range between 4000 and 320 cm-1. The FTIR spectra were acquired in the equipment Tensor 

27 from Bruker, in the range from 4000 to 400 cm-1, for the LS films deposited on germanium 

substrates. 

3. RESULTS AND DISCUSSIONS

3.1 Langmuir films. Figure 1 shows the PCBM isotherm. We highlight the presence of a high 

compressibility linear region and the absence of the sharp phase transitions, characteristic of 

amphiphilic molecules. These characteristics give a strong indication that this is a liquid-

condensed (LC) isotherm, according to Harkins’ classification [25]. The calculated area per

repeating unit for PCBM at the air-water interface was 29 Å2, in good agreement with the literature 

[26]. Moreover, studies on fullerene behaviors spreading onto the air-water interface revealed that 

its films do not form a true monolayer [27,28]. This is due to the non-amphiphilic nature of these 

molecules, together with the aggregation phenomena that arise from strong fullerene-fullerene 

interactions [27,29]. 
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Figure 1. Surface pressure–area isotherms of the PCBM.

In Figure 2, we see the isotherms of the pristine polymers and of their mixture with PCBM 

attained in the Langmuir trough. The areas per monomer found for these polymers were 68 Å2 for 

PCPDTDPP_C12 (a) and 110 Å2 for PCPDTDPP_TEG (b). These values are really low, since the 

minimum expected surface areas are 242 and 264 Å2 for PCPDTDPP_C12 and PCPDTDPP_TEG, 

respectively, indicating highly coiled polymers within the trough. 

The overall polymer isotherms are quite divergent from each other, showing a strong 

dependence on the side-chains. On the one hand PCPDTDPP_C12 behaves as a liquid-expanded 

(LE) type, characterized by the absence of a clear phase transition and a reduced compressible 

linear region. Moreover, this polymer has a rather steady upward trend, until it reaches its collapse 

pressure at 65 mN m-1. On the other hand, the pressure values of PCPDTDPP_TEG start to raise 

(corresponding to the transition from the “gas” to the “liquid” state) at a high mean area of 120 Å2.

Another steep variation in the slope of the graph occurs at approximately 35 mN m-1, which is 

associated with the coexistence of two phases [30], and/or the formation of bilayers within the air-

water interface in amphiphilic polymers [31]. PCPDTDPP_TEG shows a lower collapse surface 

pressure (53 mN m-1) than PCPDTDPP_C12 (65 mN m-1), indicating a lower resistance of the 

monolayer structure to compression [32,33]. 
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Figure 2.  Surface pressure–area isotherms of the a) PCPDTDPP_C12 and b) PCPDTDPP_TEG (in blue),

and their mixtures with PCBM (in green) 

The PCPDTDPP_C12:PCBM film occupies an area per molecule of 30 Å2, quite close to the 

area achieved by PCBM itself and the shapes of the respective isotherms are fairly similar (Figure 

1). This result indicates that the polymer is not incorporated into the PCBM domains in higher 

surface pressures, being expelled either to the air phase or to the aqueous subphase. The surface 

pressure isotherm of PCPDTDPP_TEG:PCBM is closer to that of PCBM than the polymer 

isotherm, including the collapse pressure value and the LC phase features. Its area per repeating 

unit (52 Å2) is between those of the two separate materials. Therefore, the PCBM molecules seem 

to be mingled with the polymers’ chains of the PCPDTDPP_TEG. However, some parts of the

polymer may be lying above the mixed monolayer. This last affirmation is based on the fact that 

the mean molecular area is below the average between the area of the two materials. 

To gain further insight on the phase changes of the monolayers, we calculated the 

compressibility modulus as 𝐶𝑠−1 = −𝐴 (𝜕𝜋𝜕𝐴)𝑇 , where A is the area per molecule/polymer unit, π

is the surface pressure and T is the temperature. These graphs are displayed in Figures S.1, where 

the peaks coincide to the maximum compressibility condition that the monolayers can attain [34]. 
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Through the 𝐶𝑠−1 it is possible to ascertain the surface pressure and specific regions of transition,

by associating 𝐶𝑠−1 and tabulated values [35]. In all plots, when the compression starts, 𝐶𝑠−1
oscillates consistently over zero, due to the lack of, or rather low interaction between the molecules 

over the subphase, corresponding to the “gaseous” phase. At higher compression, an increase in

the compressibility modulus is observed, pointing that a transition from a gas-like to a more packed 

phase occurs in the films [36]. The maxima of compressibility moduli of all the monolayers but 

the pristine PCPDTDPP_C12, reflected the behavior of a liquid-condensed phase interval 

attribution (100 to 250 mN m-1) [37]. Their maxima were 100, 120, 100 and 150 mN m-1 for the 

PCBM, PCPDTDPP_TEG, PCPDTDPP_C12:PCBM and PCPDTDPP_TEG:PCBM, 

respectively. The peak of 𝐶𝑠−1 found for the PCPDTDPP_C12 film (Figure S.1b) was around 70

mN m-1 corresponding to a liquid-expanded regime. Additionally, the asymmetry of the peaks 

indicates that the phase transition consists of at least two steps, implying that two types of 

reorientation are taking place [38]. These can be either related to the LE-LC transitions within the 

monolayers, or to the rearrangement due to the molecules interactions until reaching the final 

conformation. 

Comparing the isotherms of the pristine polymers (Figure 2, blue lines) to the isotherms of 

the polymer:PCBM blends (Figure 2, green lines), we also noticed a low miscibility between the 

two materials. Typically, when two materials are miscible with each other the collapse pressure 

value is included between the ones found for the single materials [25]. For both our 

polymer:PCBM mixtures, the collapse pressures are roughly the same as PCBM, indicating the 

PCBM dominant characteristic on the interface. Furthermore, the phase separation and miscibility 

information of mixed monolayers at the air-liquid interface can be obtained quantitatively [39]. 

We have analyzed the interactions between the PCPDTDPPs and PCBM within the monolayer in 
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terms of the excess Gibbs free energy of mixing (∆𝐺𝑚𝑖𝑥𝑒𝑥𝑐 ), which can be calculated using the

following equation [34]: 

∆𝐺𝑚𝑖𝑥𝑒𝑥𝑐 = ∫ (𝐴12 − 𝑋1𝐴1 + 𝑋2𝐴2)Π
0 𝑑Π 

Where A12 is the area per molecule in a two-constituent film, Xi and Ai are the molar fractions 

and the molecular areas of the constituent i, respectively, at the same pressure. When ∆𝐺𝑚𝑖𝑥𝑒𝑥𝑐  is

zero, the interaction between the two components is identical, which means that they are either 

ideally mixed or not mixed at all [40]. We performed the calculation of the Gibbs excess energy 

on the surface pressure of the films deposition (20 mN m-1 for the PCPDTDPP_C12 and 25 mN 

m-1 for the PCPDTDPP_TEG), mainly to observe the compounds behavior on the working settings. 

The results attained were non-zero revealing that there is a level of miscibility and non-ideal 

standard behavior of the constituents while they are being compressed. More specifically, the 

excess areas (𝐴𝐸 = 𝐴12 − 𝑋1𝐴1 + 𝑋2𝐴2) were negative, -13 Å2 for C12 and -11 Å2 for the TEG-

based polymer, indicating an attractive interaction between the polymers and the PCBM [41]. This 

information confirms the small areas per unit of the molecules on the trough. 

3.2 Atomic Force Microscopy. The 9 x 9 µm2 topographic images of the pristine polymer LS 

films are presented in Figure 3, where the difference in topography between the two films is 

evident. The PCPDTDPP_C12 film exhibits a quite irregular structure, with big and tall 

agglomerates and some valleys, while the PCPDTDPP_TEG LS film is more homogeneous. Their 

root mean square (RMS) roughness are, respectively, 50 nm and 4.3 nm. This finding confirms the 

isotherms results, because the film with the smaller mean molecular area (PCPDTDPP_C12) at 

the Langmuir trough presents big polymer agglomerates on the film. For the PCPDTDPP_TEG, 

which showed a larger surface area over the water and a more homogeneous structure, presumably 
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by its more hydrophilic properties and inhibition of high aggregation [42] when compared to the 

alkyl chain of PCPDTDPP_C12, the agglomerates are noticeably smaller. This behavior reflects 

the different interaction between glycol and alkyl side chains [43,44], which determines the 

packing of the polymer chains. 

Figure 3. AFM 9  9 µm2 images of low-bandgap polymer LS films and their mixtures with PCBM deposited via

Langmuir-Schaefer. 

In Figure 3, we also report the AFM images of polymer:PCBM blends. 

PCPDTDPP_C12:PCBM shows a higher RMS of 36 nm, compared to the rather flat 

PCPDTDPP_TEG:PCBM (7.2 nm). After choosing a rather flat area of the 

PCPDTDPP_TEG:PCBM film, we could observe smaller and denser domains, homogeneously 

spread on the surface. As observed in the surface pressure isotherms (Figure 2), the interaction 

between PCPDTDPP_TEG and PCBM is stronger than the interaction between PCPDTDPP_C12 
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and PCBM, indicated by the more significant topographic inhomogeneities. This validates our 

hypothesis about the conformation at the air-water interface, where PCPDTDPP_C12 is over the 

PCBM, while the PCPDTDPP_TEG mixes better with the PCBM forming a single, yet not 

homogeneous, layer. 

 3.3 X-ray Photoelectron Spectroscopy (XPS). After AFM and isotherms measurements, 

the materials proportion in the mixtures still remains an issue. In order to evaluate the amount of 

PCBM in the polymer:PCBM films, we performed XPS analyses. XPS survey spectra (not shown 

here) revealed that carbon, oxygen, sulfur and nitrogen elements are present in all the samples. 

Figure 4 presents C 1s and O 1s high-resolution XPS spectra for PCPDTDPP_C12, 

PCPDTDPP_TEG and PCPDTDPP_C12:PCBM, PCPDTDPP_TEG:PCBM mixed films. 

Figure 4. C 1s and O 1s XPS spectra of LS films: PCPDTDPP_C12 and PCPDTDPP_TEG polymers and their 

mixtures with PCBM. 

For PCPDTDPP_TEG, a characteristic C 1s peak is observed at 286.5 eV, which corresponds 

to -CH2-O and CH3-O environments of carbon (blue component), and a characteristic O 1s peak 

is observed at 532.7 eV, corresponding to -CH2-O-CH2- and -CH2-O-CH3 environments of oxygen 
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(red component). For both polymers (TEG and C12), a characteristic O 1s peak is observed at 

531.1 eV, which corresponds to HN-C=O environment of oxygen (green component). Other C 1s 

and O 1s peaks cannot be considered as characteristic of these polymers since they are found in 

PCBM or in the surface contamination of the samples. Therefrom, after PCBM addition to the two 

polymers we can observe a decrease of their characteristic peaks. At the same time, we observe 

the increase of the main C 1s peak around 285 eV arising from PCBM addition.  

Now, with the objective to quantify in the most accurate way the amount of PCBM at the 

surface of these samples, we carefully investigated the XPS spectra of the two elements that are 

absent from PCBM, i.e. nitrogen and sulfur. Figure 5 shows N 1s and S 2p high-resolution spectra 

of these samples. As expected, PCBM addition to the polymers causes a drop of the amount of 

these two elements. 

Figure 5. N 1s and S 2p XPS spectra of LS films: PCPDTDPP_C12 and PCPDTDPP_TEG polymers and their 

mixtures with PCBM. 

As nitrogen and sulfur are present only in the polymer and not in PCBM, the proportion of 

PCBM on the samples surface was determined from the experimental ratios between the total 

amount of carbon, and the total amounts of sulfur and nitrogen measured by XPS: X = 

Ctotal/(Stotal+Ntotal). More details about the calculation can be found in the supporting information. 
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As a result of this analysis, the weight percentage of PCBM at the PCPDTDPP_C12:PCBM and 

the PCPDTDPP_TEG:PCBM surface is 45% and 24%, respectively. Therefore, we can assert that 

PCPDTDPP_C12 mixes well with PCBM, while for PCPDTDPP_TEG the lack of PCBM at the 

surface suggests a different phase segregation, where this material is mainly within the film bulk 

or in more separated domains. Such different phase segregation is consistent with the hydrophilic 

(TEG) and hydrophobic (C12) character of the side chains [43,44]. Taking into account the probe 

depth ( five nanometers) of this technique, the conformation assumptions made for the Langmuir 

technique may be correct. Where PCPDTDPP_C12 and PCBM form a bilayer of a few molecules 

magnitude - resulting in a comparable amount at the surface - the PCPDTDPP_TEG:PCBM blend 

forms cluster regions, due to their reduced affinity. The high amount of polymer on the surface 

gives origin to clusters, already observed in the AFM images. 

3.4 UV-Visible spectroscopy. The absorption spectra of the polymer solutions and LS films are 

shown in Figure 6. The absorption spectrum of PCPDTDPP_C12 in chloroform solution presents 

two bands with maximum absorption (λmax) centered at 431 and 782 nm, and the corresponding

LS film also possesses two bands centered at 440 and 754 nm. The PCPDTDPP_TEG solution 

features two absorption bands as well, with λmax in 424 and 780 nm, whilst in the LS film these

bands are centered at 444 and 806 nm. 

The first band originates from the CPDT portion, while the largest band, centered at higher 

energy, from the intramolecular charge transfer (ICT) between the CPDT and the DPP units [45]. 

The PCPDTDPP_TEG film exhibits a redshift, caused by the strong interaction between the donor-

acceptor portions within the monomer, depicting a more ordered structure of the material in solid 

state [46,47] . The PCPDTDPP_C12 peak presents a broadening and a blue-shift in the transition 

from solution to film, which are usually attributed to the formation of H-aggregates [48,49]. This 
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type of aggregates is originated, mainly, from the intrachain Coulomb interactions [50], where 

monomers of different chains stack over one another in a face-on configuration, perpendicular to 

the molecular plan [51].

Figure 6. UV–Vis absorption spectra of PCPDTDPP_C12 (a) and PCPDTDPP_TEG samples (b).

Figure 7 shows the absorption spectra of the polymer:PCBM blend in chloroform solution 

and in the LS films. In the films spectra, the first PCBM peak is shifted from 328 nm to 343 nm. 

Moreover, an additional absorption band (from 400 to 550 nm) arises, overlapping with a small 

PCBM peak (430 nm), and the band related to the PCPDTDPP_C12 is at 781 nm. Concerning the 

aforementioned LS films, there is a shift with respect to that of solution in the spectrum, 

particularly for the PCBM peak from 328 nm to 335 nm and the polymer band from 779 to 812 

nm. In addition, an intermediary band centered at 435 nm emerges, which is related to the CPDT 

portion.  

Thereafter, with regard to the mixed films, comparing the solutions to the solid films, the 

overall behavior is that the PCBM peak is redshifted for both polymer:PCBM mixtures. On the 

other hand, the band associated to the interaction between the polymer portions does not change 

for the PCPDTDPP_C12:PCBM, whilst for the PCPDTDPP_TEG:PCBM it redshifts of 33 nm. 

Thereby for both mixed films a certain degree of general ordering and a greater conjugation length 
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are emerging when they pass to film form [52]. Correlating these results to the pristine films, the 

blends demonstrate an enhancement of the structural organization caused by the molecular 

rearrangement of the polymers backbone upon the grafting of the PCBM moieties. 

Figure 7. UV–Vis absorption spectra of PCPDTDPP_C12:PCBM (a) and PCPDTDPP_TEG:PCBM (b) samples.

3.5 Raman spectroscopy. The Raman spectra (excitation laser line at 633 nm) of PCBM and low-

bandgap polymers as bulky neat materials are presented in Figure 8. The PCBM (Figure 8.a) shows 

a strong photoluminescence signal [53,54], preventing the observation of any Raman bands. The 

spectra of the polymers PCPDTDPP_C12 and PCPDTDPP_TEG shown in Figure 8.b) and .c), 

respectively, are similar, presenting quite the same center positions and relative intensities for the 

Raman bands. There are three strong bands at 1512, 1409 and 1364 cm-1, which are tentatively 

attributed to thiophene C=C/C-C stretching/shrinking, thiophene ring C=C stretching, and DPP 

C=C and (C-N+C-C) stretching modes, respectively, as reported for similar polymers [55–57].

Other well-defined bands are seen at 1229 cm-1 and assigned to C-H bending, at 1075 cm-1 to C-

N and C-H stretching, and at 709 cm-1 to C-S stretching modes [56,58]. Moreover, there is a broad 

band from 2740 to 2900 cm-1, which is related to C-H and C=O stretching modes [59]. 
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Figure 8. Raman spectra for a) PCBM, b) PCPDTDPP_C12 and c) PCPDTDPP_TEG LS films. Laser line: 633 nm. 

We also measured the Raman scattering of the LS films of the polymer:PCBM mixtures. 

The spectra were taken from different regions of the films in order to analyze the 

morphology/composition and possible interactions. In Figure 9 displays the optical image of the 

LS film of PCPDTDPP_C12:PCBM with the Raman spectra of four distinct regions. It is possible 

to notice the fluorescence band from the PCBM (around 2200 cm-1) and the characteristic Raman 

bands of the polymers. This confirms the presence of both materials forming the LS films onto 
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IDE electrodes. Besides, the absence of new bands or significative spectral changes, such as center 

shift and relative intensities, indicate the materials keep their chemical integrity (no chemical 

interactions) even several days after fabricating the films. Concerning composition yet, the black 

spots on the optical image show a stronger relative PCBM fluorescence band (Figure 9.e), which 

indicates higher concentration of PCBM in this region. 
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Figure 9. Optical microscopy image (500X magnification) of film LS of PCPDTDPP_C12:PCBM (a) and the 

Raman spectra  for different regions of the films (b, c, d and e). Laser line: 633 nm. 

Performing the same measurements for the PCPDTDPP_TEG:PCBM LS films, the Raman 

spectra are shown in Figure 10. This film presents three different regions: the two light regions 

(Figure 10.a and b) show the same behavior of the other polymer:PCBM blend, indicating the 

presence of both materials forming the sample and only physical interaction has occurred. 
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Notwithstanding, the black clusters reveal only the PCBM fluorescence band on its spectrum, 

which demonstrates the absence or remarkably low amount of the polymer in such region. 

Figure 10. Optical microscopy image (500X magnification) of film LS of PCPDTDPP_TEG:PCBM and the Raman 

spectra  for different regions of the films (x and y). 

Thus, the LS film morphology of the two polymers when mixed with PCBM has different 

features, with PCPDTDPP_C12 showing higher miscibility with PCBM compared to 

PCPDTDPP_TEG, where PCPDTDPP_C12 PCPDTDPP_TEG well-defined clusters of PCBM 

are visible. These aggregates are probably already formed in the Langmuir trough during the 

compression of such films, as suggested by the compression isotherm areas and the attraction 

interaction from the excess area of Gibbs free energy. 
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3.6 FTIR Spectroscopy. As a complement for the Raman scattering analysis, FTIR absorption 

spectroscopy measurements were performed. The chemical composition of the pristine polymers 

and their mixture with PCBM was observed using FTIR results. Figure 11 shows the measured 

FTIR spectra of the PCBM, PCPDTDPP_C12 and PCPDTDPP_C12:PCBM mixed samples. 

Figure 11.a  reports the PCBM spectrum; the absorption bands at 2918 and 2850 cm−1 are attributed 

to asymmetric and symmetric C-H stretching modes in CH2 groups, respectively. The peak at 1737 

cm-1 corresponds to C=O group, at 754 cm-1 to Aryl-H bending vibration, and other peaks at 526, 

1186 and 1424 cm-1 are the characteristic peaks of fullerene [60–62]. PCPDTDPP_C12 (Figure

11.b) spectrum contains the peaks associated to C-H stretching (2920 and 2850 cm-1), C=O of the 

DPP unit (1664 cm-1) and C=C and C-C stretching modes of thiophene (1510 to 1545 cm-1). We 

identified the C-H bending and the C-N stretching modes (1438 to 1460 cm-1), the C=C stretching 

of the thiophene ring (1404 cm-1), the C=C and (C-N+C-C) stretching modes (1377 cm-1) localized 

on the DPP unit [33,63,64]. The peaks between 980 and 1300 cm-1 correspond to the C-S stretching 

and C−H bending coupled to thiophene ring stretches, and at 806 cm-1 to C-H out of plane [65].

As for the PCPDTDPP_C12:PCBM blend ((Figure 11.c), the results are quite similar to the 

polymer, with a more defined C=O peak due to the presence of PCBM, nevertheless, no chemical 

interaction seems to be present, consistent with Raman scattering results. 
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Figure 11. FTIR spectra recorded from drop-cast films of a) PCBM, b) PCPDTDPP_C12 and c) 

PCPDTDPP_C12:PCBM on Ge (transmission mode). 

Figure 12 depicts the FTIR spectra of the PCPDTDPP_TEG:PCBM blend and of the two 

separate materials. The pristine PCPDTDPP_TEG spectra is similar to that of PCPDTDPP_C12. 

The most noteworthy difference is the presence of the C-O-C asymmetric stretching mode between 

1000-1150 cm-1 (Figure 12.b, circled) due to the different side chain (TEG). For this polymer as 

well, the interaction between the polymer and the PCBM was merely physical. 
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Figure 12. FTIR spectra recorded from drop-cast films of a) PCBM, b) PCPDTDPP_TEG and c) PCPDTDPP_TEG:PCBM on Ge 

(transmission mode). 

To investigate the film stability, we recorded over 1 month FTIR spectra of the films exposed 

to air in the dark. We did not observe any significant variation during this period.  The PCBM 

band centered at 1750 cm-1 appears clearly in the mixture, however apparently did not occur any 

shifts/inversions or upsurge of bands. 

4. CONCLUSIONS

Structural, morphological and conformational investigations of pristine PCPDTDPP_C12 and 

PCPDTDPP_TEG LS films, as well as their BHJ configuration with PCBM were performed. 

Langmuir films revealed the influence of the DPP unit branch of each polymer on the monolayer 
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conformation. The insertion of PCBM at the Langmuir trough showed the remarkable interaction 

of the polymers with this fullerene derivative, although this interaction resulted in different 

conformation with each polymer. There was no chemical interaction and some miscibility between 

the polymers and PCBM in a BHJ configuration. The amount of the PCBM on the mixed films 

surfaces presented substantial discrepancy, confirming the disparity of the polymers self-assemble 

onto the substrates. Through absorption spectra we noticed that the introduction of PCBM into the 

polymer thin films improved the structural molecular arrangement. These assessments provided 

many information concerning this class of polymers in its pristine form or blended with a known 

electron acceptor in OPVs. Therefore, it opens the way for evaluating intra- and intermolecular 

interactions responsible for the development of optoelectronic devices. 
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