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Cross flow induced vibration in a single tube of
square array using LES

Vilas Shinde, Elisabeth Longatte, Franck Baj, Yannick Hoarau, Marianna Braza

Abstract Large eddy simulations (LES) of a single phase water flow through a
square normal tube bundle at Reynolds numbers from 2000 to 6000 is performed to
investigate the fluid-elastic instability. A single cylinder of the array is allowed to
oscillate in one degree of freedom (1-DOF) in the flow normal direction, similar as
in the corresponding experiments. The fluid-structure coupling is simulated using
the Arbitrary Lagrangian-Eulerian (ALE) approach. The subgrid scale turbulence is
modeled using the standard Smagorinsky’s eddy-viscosity model. The LES results
show a good agreement with the experimental results, in terms of the response fre-
quency and damping ratio of the cylinder vibration. The dynamic case simulations
are compared with static cases over the range of Reynolds numbers by means of the
pressure profiles on the cylinder surface and the probe velocity spectra.

1 Introduction

Heat exchangers are vital component of the energy industries. The flow of fluids
through the heat exchanger tube bundles can induce vibrations and may result in
severe breakdown of the tubes. The cross flow induced vibrations in tube arrays are
classified mainly in four categories, namely: turbulent buffeting, vibrations due to
flow periodicity (or vortex induced vibrations), acoustic vibrations and fluid-elastic
instability. The fluid-elastic instability is most devastating compared to the rest, yet
it is less understood. A substantial amount of research work is conducted in order
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to enhance the understanding of the stability limit criteria, and thereby prevent its
occurrence. Many theoretical models are developed since the phenomenon was first
brought to notice by Roberts [4] and later by Connors [7]. The models proposed for
the phenomenon include Blevins [5], Tanaka et al. [9], Chen et al. [19,20], Paidous-
sis and Price [13], Lever and Weaver [10], Granger et. al [8] etc.. Thus providing
an insight into the fluid-elastic instability by means of different instability mech-
anisms such as ‘fluid flow jet switching mechanism’, ‘stiffness controlled mecha-
nism’, ‘damping controlled mechanism’ and so on. In addition, the dynamic features
of the instability such as the phase lag between fluid force and displacement, flow
cell with boundary layer effect are considered while modeling the phenomenon. Al-
though many approaches exist, all fall short individually to predict the phenomenon
in all situations for wide range of parameters.

In addition to the experiments, Computational Fluid Dynamics (CFD) provides
a possibility to simulate and better understand such phenomena. In the industrial
context, Direct Numerical Simulation (DNS) is computationally very expensive. Al-
though, the URANS approach is computationally less expensive, the transient fea-
tures of the fluid flow and fluid-structure interaction are not well captured. The Large
Eddy Simulation (LES) approach overcomes the shortcoming of URANS approach.
Furthermore, contrary to the DNS approach, LES is computationally less expensive.
The large scale transient flow is directly captured in LES, while as the small scale
(subgrid scale) turbulence is modeled. Some of the early works on simulation of the
flow through tube bundles using LES include the work of Hassan and Barsamian
(1997, 1999). Further, the work of Rollet-Miet et al [15], Benhamadouche and
Laurence [17] and C. Liang and G. Papadakis [6] confirmed the benefits of LES
over URANS in the tube bundle configurations. Although Large Eddy Simulation
(LES) is still expensive for high Reynolds number flows, it is well suited for the
low Reynolds number flows. Recently, similar benefits of LES were reported for the
vortex-induced vibrations at a moderate Reynolds number in Jus et. al. [11].

In present work, LES of a single phase cross flow through a square normal tube
array is performed, in order to investigate the fluid-elastic instability. The Reynolds
numbers are in a range from 2000 to 6000 approximately. The vibration in a single
cylinder of the array is simulated by the Arbitrary Lagrangian Eulerian (ALE) ap-
proach. In many experiments, it has been observed that the fluid-elastic vibrations
are pre-dominant in the flow normal direction, especially in water-flow experiments
(Price et al. [18]). Also there are several studies performed on a single cylinder os-
cillating in a fixed cylinders arrangement (Price et al. [18], Khalifa et al. [1]). It leads
to essentially the same critical velocities as for the fully flexible array of cylinders.
Therefore the central cylinder is only monitored and allowed to oscillate in flow
normal direction. Although, in some studies such as Kevlahan [14], the instability
is found to be dominant in in-flow direction for wide range of mass-damping pa-
rameter and the critical velocities predicted using a single cylinder in fixed array
are overestimated compared to the fully flexible array. The length of computational
domain in spanwise direction is taken as 4D, which provides enough space for LES
vortex dynamics. The article is arranged as follows: configuration of the flow, sim-
ulation results and analysis.
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2 Configuration

In experiments, the tube bundle (5× 5) is located in a vertical flow channel. The
cylinders are in square normal arrangement. The two side columns are half wall
mounted. Only the cylinder at center is flexibly mounted, while the remaining cylin-
ders are fixed. The channel depth (the length of cylinders) and width are 100×10−3

m and 70× 10−3 m respectively. The central cylinder is supported on a flexible
blade at one end. It is allowed to move in flow normal direction only. The flexible
supporting blade is connected to a strain gauge in order to measure the displacement
of cylinder.

The tube diameter is D = 12.15×10−3 m. The pitch ratio (p = P/D) of the tube
arrangement is p = 1.44 in both (in-flow and flow normal) directions. The modal
mass of the cylinder per unit length is m = 0.298 kg/m. The natural frequency ( fn)
and damping ratio (ζ ) of the cylinder in air are 14.39 Hz and 0.25% respectively.

The computational domain for LES is 70× 10−3 m wide and 48.6× 10−3 m
deep. The cylinders length is thus 4D against about 8D in the experimental facility.
The domain is 269.5× 10−3 m long in in-flow direction. The inflow boundary is
5D upstream the tube bundle, while as the outflow is 10D downstream of the tube
bundle. The tube diameter (D), array pitch ratio (p) and arrangement of the tube
bundle (90o) is identical to the experiment. The geometry of the LES computational
domain is shown in Figure 1(a).

The computational domain is descretized in nearly 25.3 million finite volume
cells. The mesh near the cylinder surface region is fine enough to resolve the bound-
ary layers of the fluid flow. The first layer of the mesh is placed at a distance of
1.8× 10−5 m away from the cylinder surface ensuring the y+ below 1. The cir-
cumference of each cylinder is discretized in 360 elements, while the 50 cells are
placed in spanwise direction. The mesh is coarser (2× 10−3 m) far upstream and
downstream the tube array. Figure 1 (b) shows the details of mesh inside tube array.

In the Large Eddy Simulation (LES) approach of turbulence modeling, the large
eddies (bigger than the size of mesh cells) are resolved directly. It contains most of
the turbulent energy, however the sub-grid scale turbulence needs to be modeled in
order to balance the truncated turbulence energy spectrum. The unfiltered eddies are
assumed to be isotropic and they can be modeled by simple Boussinesq type eddy
viscosity relations. There exist several models for the sub-grid scale turbulence. The
standard Smagarinsky model is considered in this work with an appropriate value of
the proportionality constant. However, the choice of sub-grid scale model has little
influence on the results (Rollet-Miet et al [15], Benhamadouche and Laurence [17])
of interest.

The filtered Navier-Stokes equations in incompressible form can be written as,
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(a) Geometry

(b) Mesh

Fig. 1: Computational Domain with probes (P1, P2, P3 and P4)

Where ũi is the filtered instantaneous velocity in i direction. The space and time are
represented by xi and t respectively. ρ is the fluid density, while ν , νt are the fluid
kinematic viscosity and turbulent viscosity respectively. p̃ is the filtered pressure.
The subg-grid scale stress tensor is given by Equation (3).

τi j =−2νt S̃i j +
1
3

τkkδi j (3)

The trace term of the sub-grid scale stress tensor is grouped with the pressure (p̃).
The value for the turbulent viscosity νt is provided by Smagorinsky’s model (Equa-
tion 4).

νt = (Cslg)2
√

2S̃i jS̃i j (4)

Where, lg, Cs are the grid size and Smagorinsky’s constant respectively. S̃i j rep-
resents the strain rate tensor. The value of constant Cs is about 0.18 for isotropic
turbulence at high Reynolds number. It decrease near wall or in shear flows to about
0.1. The value taken here is 0.065.

The computations are performed by using Code saturne, an open-source in-
compressible Navier-Stokes solver developed by Électricité de France (EDF). It is
based on a co-located finite volume method. The second order central difference
and Crank-Nicolson schemes are used to perform the space and time discretization
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respectively. A time step has a predictor and a correction steps. In the predictor step
all physical properties are calculated along with the velocity field, while as in the
correction step the pressure equation is accounted implicitly. The time-step used for
all simulations is 2×10−4 s. The simulations are carried out for about 40 s each, in
order to have reasonable statistics of results.

The cylinder movement is coupled with the fluid flow by the method of Arbitrary-
Lagrangian-Eulerian (ALE). The moving mesh (boundary) is considered in flow
equations in terms of the mesh velocity. In response, the forces experted by the
fluid flow are used to displace the cylinder boundary surface. In the experiment, the
cylinder is rigid and flexibly mounted. An equivalent numerical arrangement is a
mass on spring physics, where, m is the mass of cylinder, k and c are the stiffness
and damping coefficients of the cylinder oscillations. The equation of motion for the
cylinder can be given by,

m
d2y
dt2 + c

dy
dt

+ ky = Fy (5)

Where, y is the displacement of the cylinder in flow normal direction, while as the
fluid force in the same direction is represented by Fy on the right hand side of equa-
tion. The experimental values of modal mass and damping ratio can be used to
estimate the stiffness and damping coefficients in air, by using following relations

k = (2π fn)
2m and c = 2ζ

√
km

The ordinary differential equation (Equation (5)) is numerically solved using
Newmark HHT algorithm, in which the fluid forces are used to estimate the dis-
placement y. The new position of the cylinder is achieved by solving Poisson’s
equation for re-meshing before the next flow iteration. The deformation of near-
wall mesh is controlled by assigning a high value for an artificial mesh viscosity.

3 Results and analysis

3.1 Results comparison with experiments

The experiments are performed for Reynolds number Reg ranging from 2000 up to
6000. The Reynolds number is defined using intertube (gap) velocity ug m/s and
cylinder diameter D m as Reg = (ρugD)/(µ), where ρ and µ are fluid density and
dynamic viscosity respectively. The non-dimensional reduced velocity is defined as
u∗= (ug)/( fnD), where fn is the cylinder response frequency in water at a particular
flow velocity (ug). Figure 2 shows the response frequency and damping ratio against
the increasing intertube flow velocity. The experimental plots (shown in red color)
and the LES simulation plots (shown in green color) show a decreasing trend at the
beginning for reduced velocity upto u∗ ≈ 1.8. The curves show increasing treads
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from u∗ ≈ 1.8 upto u∗ ≈ 2.10. It is followed by the decreasing values at the onset of
instability for u∗ ≈ 3.19.

(a) fn versus u∗ (b) ζ versus u∗

Fig. 2: Comparison of the cylinder response frequency fn and damping ratio ζ

The Time Domain Modal Analysis (TDMA) of Poly Reference (PR) type is used
to identify the modes and corresponding damping ratios for experimental results,
while as the Half Power Bandwith method is suited for LES time response signals.
The damping of the cylinder vibrations initially decreases with increase in the gap
velocity up to ug ≈ 0.25 m/s (u∗ ≈ 1.8) (see Figure 2(b)). It is followed by increased
values of the damping ratio for reduced velocities u∗ ≈ 1.8 up to u∗ ≈ 2.5. The
damping ratio, then follows a monotonous decrease until reaches zero, onset of the
instability, in both the experiments and LES results. The critical reduced velocity
predicted by LES computations is u∗c ≈ 3.14, against an experimental value of u∗c ≈
3.19.

3.2 Results analysis

In order to understand the development of fluid-elastic instability, a comparison is
done between static case Large Eddy Simulations (LES) results with the dynamic
case LES computations. The spectra of Y velocity (u2) at probe locations P1 and
P3 are compared between static and dynamic cases for increasing reduced velocity
(u∗). Further, the velocity spectra at these upstream and downstream locations are
compared with the spectrum of cylinder vibration (y) in Figure (3). The frequen-
cies are normalized by the natural frequency of the cylinder in still fluid medium.
The natural frequency of the cylinder in the still water is ≈ 11.5 Hz. In static case,
the red curves in Figures 3(a) and 3(b), the shear layer frequency at gap velocity
ug = 0.175 m/s is 6.5 Hz ( f ∗sh ≈ 0.5652). In addition, there are higher harmonics
of this frequency in the spectra computed at the downstream location P3. In the
dynamic case, the green curves in Figures 3(a) and 3(b), there appears an extra
frequency peak at both the upstream and downstream locations. It corresponds to
the response frequency of cylinder. On other hand, the response spectrum of cylin-
der, the blue curve in Figures 3(a) and 3(b)) shows a frequency peak at 6.5 Hz
( f ∗ ≈ 0.5652). Figures 3(c) and 3(d) show a similar comparison for the intertube
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(c) Location P1, ug = 0.262 (m/s)
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(d) Location P3, ug = 0.262 (m/s)
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(e) Location P1, ug = 0.350 (m/s)
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(f) Location P3, ug = 0.350 (m/s)

Fig. 3: Power spectral densities (PSD) of Y velocity in static and dynamic cases at
an upstream (P1) and a downstream (P3) locations, in comparison with the cylinder
response spectrum

velocity ug = 0.262 m/s. The red curves of the static case simulation show two fre-
quency peaks, first at 9.2 Hz ( f ∗sh ≈ 0.8) and second at ∼ 19 Hz ( f ∗sh ≈ 1.652), at
both P1 and P2 locations. On the contrary, the velocity spectra in the dynamic case
(green curves in Figures 3(c) and 3(d)) show a distinct frequency at the cylinder
response frequency ( f ∗ ≈ 1). Further, the power spectral density values are elevated
at this velocity (ug = 0.262 m/s), when compared with the other two gap velocities,
indicating a possibility of the synchronization between the shear layer frequencies
and cylinder response frequency. The flow velocity spectra at gap velocity ug = 0.35
m/s show a wider peak at frequency f ∗sh ≈ 1.91, at the upstream (P1) location only.
The frequency peak corresponding to the cylinder vibration do not reflect in the
velocity spectra (Figures 3(e) and 3(f)). The shear layer frequencies increase with
a further increase in the Reynolds number. The fluid-elastic instability in LES cal-
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culations occurs at Reynolds number Reg = 5310, where the flow frequencies at
upstream locations (P1, P2) are about∼ 3.35. There is no distinct frequency peak at
downstream locations (P3, P4). Thus, the time periodicity in flow is less likely the
cause of fluid-elastic instability.

(a) ug = 0.175 (m/s) static (b) ug = 0.175 (m/s) dynamic (c) ug = 0.262 (m/s) static

(d) ug = 0.262 (m/s) dynamic (e) ug = 0.350 (m/s) static (f) ug = 0.350 (m/s) dynamic

(g) ug = 0.437 (m/s) static (h) ug = 0.437 (m/s) dynamic (i) Iso-surfaces velocity plot

Fig. 4: Comparison of time evolving instantaneous surface pressure between static
and dynamic cases (a - h) and flow visualization (i)

The interactions between the cylinder and its adjacent flow streams can be moni-
tored at the interface, the cylinder surface, by means of the fluid forces. The pressure
force constitutes major part of the fluid force, even at these low Reynolds numbers
(Reg ≈ 6000). The time evolution of pressure profiles on cylinder surface in static
and dynamic configurations is presented in Figure (4). The time duration considered
on y axis is 0.2 s, which approximately corresponds to two periods of the cylinder
frequency in water ( fn ≈ 11.5 Hz). In all static case configurations (Figures 4(a),
4(c), 4(e) and 4(g)), the pressure profiles evolve symmetrically in time with respect
to the azimuthal angle θ = 180o. The pressure profile in static case at intertube ve-
locity ug = 0.175 m/s (Figure 4(a)), when compared with the dynamic case (figure
4(b)) at same intertube velocity shows more or less symmetrical time evolution with
∼ 40% increase in the pressure drop in dynamic case. The time-pressure profiles in
static and dynamic cases at gap velocity ug = 0.262 m/s are compared in Figures
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4(c) and 4(d) respectively. It shows a considerable difference in the time-evolution
and the value of pressure drop. The pressure difference in dynamic case has in-
creased by ∼ 3 times the static case. The pressure time evolution is changed from
symmetrical to nearly anti-symmetric with respect to θ = 180o location. It indicates
that, one flow stream adjacent to the cylinder (θ = 0o to θ = 180o) when exerts pos-
itive pressure on the cylinder, the other flow stream (θ = 180o to θ = 360o) exerts
negative pressure on the cylinder surface. Further increase in intertube velocity to
ug = 0.35 m/s, results in a symmetry of the time-evolving pressure profile in dy-
namic case, similar to the static case for the same Reynolds number (Figures 4(f)
and 4(f) respectively). The value of instantaneous pressure drop is ∼ 14% higher
in dynamic case. The cylinder oscillations become unstable at intertube velocity
ug = 0.437 m/s. The transient development of the pressure profile in dynamic case
is shown in Figure 4(h). The pressure profile is antisymmetric with sudden increase
in pressure drop value (to 1000 Pa) against the symmetrical pressure profile in static
case (Figure 4(g)) with pressure drop of 220 Pa. The dynamic interaction between
the cylinder and adjacent flow streams results in changing the time-pressure profile
on cylinder surface for increasing intertube velocity (Figures 4(b), 4(d), 4(f) and
4(h)). A flow visualization is provided in Figure 4(i), in terms of the iso-surface
plots for three values of velocity.

4 Conclusion

Large Eddy Simulation (LES) carried out to study fluid structure interaction in an in-
line cylinder array. An Arbitrary-Lagrangian-Eulerian (ALE) approach is adapted to
simulate the coupling of fluid flow and motion of cylinder. The response frequency
( fn) and damping ratio (ζ ) of the cylinder for the range of reduced velocities are
in agreement with the experimental values. This shows, the dynamic unsteady in-
teractions between fluid load and cylinder vibration are well captured by LES. In
the analysis, we shed some light on the dynamic interactions of the cylinder vibra-
tion and the adjacent flow streams. The time evolution of the pressure profiles on
the cylinder surface is indeed linked with flow stream perturbations induced by the
cylinder vibration.
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