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Abstract

The unsteady loads in a tube bundle are studied at moderate and high
Reynolds number by means of URANS and hybrid (DDES) modelling. The
onset of fluid-elastic instability is analysed for different structural parameters,
Scruton number and reduced velocity. The simulations have been carried out
with the code NSMB (Navier-Stokes Multi Block) by using turbulence mod-
elling methods URANS and DDES (Delayed Detached Eddy Simulation).
The CEA-DIVA configuration is considered for the cylinders array for an
inter-tube Reynolds number 60, 000. The study is carried out for a configu-
ration of (4× 5) cylinders in static conditions as well as for the vertical free
motion of one of the central cylinders in one DOF (Degree Of Freedom).The
inter-tube Reynolds number is 60, 000. It is found that this cylinder spon-
taneously displays an oscillatory motion which first corresponds to Vortex
Induced Vibration (VIV), associated to a lock-in mechanism for low values
of the reduced velocity and secondly develops Movement Induced Vibration,
MIV for higher values of the reduced velocity. The variation of the cylinder’s
oscillations frequency, of the unsteady loads and the structure’s displacement
are studied as a function of the reduced velocity for low and high values of the
Scruton number. The increase of the phase-lag between the forces and the
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displacement is predicted and discussed for different Scruton number values
and reduced velocities.

Keywords: 1 DOF Fluid-structure interaction, Cylinder array, Turbulent
flow, Numerical simulation

1. Introduction

The prediction of fluid-elastic instabilities developed in a tube bundle is
of major importance for the design of heat exchangers for vapor cooling in
nuclear reactors and for the prevention of accidents associated with mate-
rial fatigue, shocks between beams and severance of the solid walls. The
fluid-elastic instabilities leading to flutter in tube-arrays appear in the lami-
nar regime and persist as far as the turbulent regime.This kind of galloping
instability has been identified for the past forty years. However, little has
been achieved in the domain of detailed numerical simulations for the pre-
diction of the unsteady loads and of the displacement of the solid structure.
Many studies have been devoted to enhancing understanding and to offer
phenomenological models for the design. A considerable number of this kind
of models have been developed since the work of Connors (1970), Blevins
(1974), Blevins (1979),Tanaka and Takahara (1981), Tanaka and Takahara
(1982), Chen (1983), Paidoussis and Price (1988), Lever and Weaver (1982)
among others.

Explaining and understanding the instability onset and its dependence
on the flow-structure parameters such as the reduced velocity and Scruton
number increase, is an important aspect concerning fundamental phenomena
in the domain of fluid-structure interaction. A key point for the understand-
ing of this instability is related to the appearance of negative damping which
comes from the fluid forces interacting with the structure. This occurs when
the transverse flow velocity increases, where the phase difference between the
force applied by the fluid and the cylinder’s movement changes sign and re-
sults in a sign change of the apparent damping, thereby creating fluid-elastic
instability. The main problem is to correctly evaluate this phase shift model.
Despite various modelling attempts, the question remains open, as noted by
Weaver (2008) : “Despite more than 40 years of research, this mechanism
is not fully understood”. However quasi-static models are used to charac-
terize the instability in high Scruton numbers Scruton (Sc > 30) and in
two or more degrees of freedom. For low Scruton numbers, the instability
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develops already for a single degree of freedom. This phenomenon can be
modeled by taking into account a delay time between the movement and the
efforts. The pure delay model is “amnesia.” Granger and Paidoussis (1996)
proposed a model “with memory” of first or second-order in respect of the
time constants.

In the industrial context, the high Reynolds number causes a complex
interaction between the instability due to the movement of the solid struc-
ture and the near-wall unsteady turbulence around the cylinders. To take
sufficient account of this interaction and to accurately predict the unsteady
loads, it is necessary to use reliable turbulence modelling approaches. These
methods have to simultaneously include the low frequency organised motion
effects associated with the structure’s movement and the fluid’s coherent vor-
tices as well as the random turbulence effects. In this context, approaches
such as Unsteady Reynolds Average Navier-Stokes (URANS), derived from
turbulence in statistical equilibrium assumptions, tend to underestimate the
global coefficients (drag, lift) and their amplitudes (see collected papers after
the European research program “Detached Eddy Simulation for Industrial
Aerodynamics” (DESIDER), Haase et al. (2009)).

The Large Eddy Simulation (LES) is appropriate and offers a rich physi-
cal content in the moderate Reynolds number range. However, this approach
is mandatorily 3-D and quite costly for design purposes at this stage. On
the other hand, in higher Reynolds numbers it becomes more difficult to
apply it by using realistic grid sizes, in respect of industrial design require-
ments. In this flow category, it is noticeable that the upstream nominal
Reynolds number based on the free-stream velocity corresponds to a much
higher inter-tube Reynolds number which can be three or four times higher
than the nominal Re, depending on the pitch distance. Therefore, a ’mod-
erate’ upstream Reynolds number flow for the cylinders array corresponds
to a high - Reynolds range in the flow physics context. These facts have
to be considered for the CFD method choice in the Computational Fluid
Dynamics-Computational Structural Mechanics (CFD-CSM) coupling.

Hybrid RANS-LES methods are quite suitable for this category of fluid-
elastic instability problems, because they associate the benefits of URANS
in the near-region and those of LES in the regions of flow detachment. In
particular, the Delayed Detached Eddy Simulation (DDES), Spalart et al.
(2006) is a hybrid method which is successfully used for strongly detached
unsteady flows as reported by the collected papers of the fourth ’Hybrid
RANS-LES Methods’ (HRLM) symposium, Fu et al. (2012). DDES can be
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considerably improved by using adapted URANS modelling in the near-wall
region and adapted LES modelling in the flow detachment areas, in order to
allow for modification of the turbulent scales accounting for non-equilibrium
turbulence. In this context, improved approaches can be used to take ac-
count of these effects, as for example the Scale Adaptive Simulation (SAS),
Menter and Egorov (2005), Menter and Bender (2003), the Organised Eddy
Simulation (OES), Braza et al. (2006), Bourguet et al. (2008) among others.
SAS adapts the Kolmogorov turbulence scale according to flow regions gov-
erned by non-equilibrium turbulence effects. OES accounts for stress-strain
directional misalignment in non-equilibrium turbulence regions thanks to a
tensorial eddy-viscosity concept derived from Differential Reynolds Stress
Modelling (DRSM) projection on the principal directions of the strain-rate
tensor.
The current efforts in turbulence modeling are devoted to accurately repro-
duce the flow physics in respect of instability amplification, of strong flow de-
tachment and to accurately predict the associated frequencies and unsteady
load fluctuations. Although a significant progress has been accomplished in
the last decade, there still remain open questions with regard to the pre-
diction of the above mechanisms with the accuracy required by the design
and in particular of these mechanisms modification due to the fluid-structure
coupling. To our knowledge, there do not exist predictions of vibration in-
stability in the high-Reynolds number range by using efficient CFD and pro-
ducing new results in this area. In particular, the progressive development
and assessment of the phase-lag between the forces and the displacement of
the solid structure from the Vortex Induced Vibration (VIV) state towards
the Movement Induced Vibration (MIV) dynamics are among main objec-
tives of the present study. Therefore, the present paper mainly focuses on
new results obtained by means of efficient CFD with regard to the physics of
Flow Induced Vibration (FIV) in a cylinders bundle in a Reynolds number
range corresponding to industrial applications. An exhaustive comparison of
turbulence models is not presented in this article. Only selected models from
the previously mentioned state-of-the-art, able to deal with strong unsteadi-
ness, with high-Reynolds number effects and with predominant instabilities,
are considered and coupled with efficient numerical schemes. The purpose
of a first part of the present study is to select among these few models, the
most appropriate for the static-case unsteady flow simulations, in order to
use them in the dynamic case simulations of FIV (central cylinder allowed
for one degree of freedom vertical motion). Furthermore, a special attention
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is paid to examine the predictive capabilities of the finally selected modelling
in two- and three-dimensions for the dynamic case at high Reynolds num-
ber. In the physical reality, the 2-D and 3-D mechanisms act simultaneously
and it is difficult to distinguish those of the physical mechanisms having a
two-dimensional origin from those which are three-dimensional. This can
be accomplished by means of the numerical simulation. Moreover, it is im-
portant for the industrial design to assess the part of realiability allowing
for two-dimensional predictions comparing to the full three-dimensional ap-
proach, which is much more costly. According to these elements, the present
article is structured in the following sections: the mechanisms of fluid-elastic
instability are studied for the configuration described in section 2, by using
fluid-structure coupling where the CFD part involves URANS and DDES
modelling as described in the same section. The motion of the solid struc-
ture is coupled with the fluid by means of the acceleration equation involving
mass, damping and stiffness. Modal structural analysis is not needed in this
context, because the solid remains rigid. The mesh is adapted to follow the
cylinder’s motion by means of the Arbitrary Lagrangian-Eulerian approach,
ALE. The results are presented in section 3 and 4. Section 3 refers to the
static case of cylinder’s bundle. The ’DIVA’ configuration is studied at an
inter-tube Reynolds number Re=60, 000. This section allows for validation
of the numerical method and of the turbulence modelling to be used for
the dynamic case, as well as for a physical analysis of the flow instabilities
occurring in the present Reynolds number range. Section 4 studies the fluid-
structure interaction in case of 1 DOF motion, carried out by URANS (in
2-D) and hybrid URANS-LES (DDES) turbulence modelling in 3-D at the
same Reynolds number value.

2. Flow-structure configuration, numerical method and turbulence
modelling

2.1. Flow-structure configuration

The fluid-structure configuration corresponds to an experimental set-up
(DIVA) designed by the CEA where 20 cylinders are arranged in 5 columns
with a pitch of 1.5D, D being the cylinder’s diameter. The upstream Reynolds
number is of 20 000 which corresponds to an inter-tube Reynolds number of
60 000. The 2-D grid is composed by ∼ 400 000 cells distributed in 80
structured blocs.
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The first grid distance from the wall is located at the distance 1, 5.10−4 D
which assures a y+ value lower than 1, as required by the turbulence mod-
elling assumptions used in the present study, according to synthesis of works
collected by Haase et al. (2009) and Fu et al. (2012). The spanwise length
of this grid is 1D and 50 cells have been used in the z direction resulting in
a grid of ∼ 23M cells and 8192 blocks.

This mesh has been derived according to detailed grid-dependence studies
concerning the refinement near the wall, (Skopek et al. (2012)), as well as
in the PhD thesis of Marcel (2011), in order to provide grid-independent
results. The dimensionless time step ∆t = dt ∗ U∞/D used for the static
configuration is 10−3, according to the numerical study by Ferreira-Perez
(2013), providing time-step independence of the solution. In the following,
t∗ designates the dimensionless time, t∗ = t ∗ U∞/D. The influence of the
time step is presented in the present article in the section of the dynamic
motion.

The spanwise length of this grid is 1D and 50 cells have been used in this
direction. The domain size is presented in figure 1. The inflow distance is
10D, the outflow distance is 12D, the upper and lower boundary distances
from the central cylinder are 3-D.

The boundary conditions are presented in the following :

• the inlet velocity is uniform and a free-stream turbulence level of 0.1%
has been used.

• At the outlet boundary : subsonic outflow with imposed static pressure
based on Riemann invariants.

• top-bottom boundaries in the (x,y) plane : no-slip walls.

• spanwise boundary conditions : symmetry and periodic conditions have
been compared. The symmetry boundary conditions have been chosen
in order to not force a preferential spanwise wavelength.

2.2. Numerical method

The simulations have been performed with the Navier-Stokes Multi-Block
(NSMB) solver. The NSMB solver is the fruit of a european consortium
that included Airbus from the beginning of ’90’s, as well as main European
aeronautics research Institutes, as KTH, EPFL, IMFT, ICUBE, CERFACS,
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Figure 1: Grid overview and computational domain

Univ. of Karlsruhe, ETH-Ecole Polytechnique de Zurich, among other. This
consortium is coordinated by CFS Engineering in Lausanne, Switzerland.
NSMB is a structured code including a variety of efficient high-order numeri-
cal schemes and turbulence modelling closures in the context of LES, URANS
and RANS-LES hybrid turbulence modelling, especially DDES (Delayed De-
tached Eddy Simulation). A first reference of the code description can be
found in Vos et al. (1998) concerning the versions of this code in the decade
of ’90’s. Since then, NSMB highly evolved up to now and includes an en-
semble of the most efficient CFD methods, as well as efficient fluid-structure
coupling for moving and deformable structures. These developments can be
found in Hoarau (2002) regarding URANS modelling for strongly detached
flows, Martinat et al (2008), in the area of moving body configurations, Bar-
but et al (2010), Grossi et al. (2014) allowing for Detached Eddy Simulation
with the NSMB code.

The solid structure motion is taken into account by the Arbitrary La-
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grangian Eulerian method (ALE). The current version of NSMB code in-
cludes CHIMERA grid methods, Deloze et al. (2010), to handle very complex
geometries and body motion and deformation. NSMB solves the compress-
ible Navier-Stokes equations using a finite volume formulation on Multi-Block
structured grids. Furthermore, this code includes different preconditioning
numerical schemes to solve very low Mach number / incompressible flows.
The time integration relies on a second-order backward Euler scheme based
on the full matrix implicit LU-SGS (Lower-Upper Symmetric Gauss-Seidel)
method and on the dual-time stepping, performing internal iterations, to
reach convergence in each time step, Jameson (1991). For the present prob-
lem, a typical number of inner iterations of 100 was necessary for the conver-
gence in each time step. In the present study, the artificial compressibility
method, Chorin (1968), has been employed with a second-order centered
spatial scheme.

2.3. Turbulence modelling

The URANS turbulence models used in this study are the Spalart and
Allmaras (1992), the k − ω models (baseline and SST), Menter (1994), the
OES k − ε and the OES k − ω models, described in Braza et al. (2006),
Bourguet et al. (2008). The Delayed Detached Eddy Simulation (DDES),
Spalart et al. (2006), is employed by using the turbulence length scale from
the OES modelling.
The association of the OES modelling in the RANS part of the DES/DDES
is reported in a number of studies of the present research group, reported
in a variety of test cases in the European research programs in aeronautics,
DESIDER and “Advanced Turbulence Modelling for Aeronautics Applica-
tions Challenges” (ATAAC), Fu et al. (2012). The use of a turbulence length
scale from OES in the DDES is reported in Haase et al. (2009), Bourguet
et al. (2008) and in Skopek et al. (2012). In the present study, the use of
the above mentioned turbulence models allows assessment of their predictive
capabilities in respect of the strongly detached unsteady flow in the cylinder
array.

3. Results for the static-case configuration

Regarding the 2-D simulations, the unsteady loads on the central cylin-
der are presented versus time in Fig. 2 in comparison with the experimental
results. It can be seen that these signals are qualitatively of a similar nature.
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Comparison of their rms values is presented in Table 1. As discussed in
a next paragraph, higher-order frequencies similar to the experimental his-
tories, appear in a more pronounced way in both cases and they are more
pronounced in the case of the k − ω-OES modeling. The predominant fre-
quencies are shown in Table 2.

a)

b)

Figure 2: Comparison of the lift coefficient signals (solid line) with the DIVA experiment
(dots). a) SA model; b) k − ω-OES model

Models CL,RMS

SA 0.44
k − ω−SST 0.19

k − ω−BL−OES 0.65
k − ε−OES 0.46

DIVA Experiment 0.45

Table 1: rms of the lift coefficient for different turbulence models compared with the
experiment.

The k − ε−OES and the URANS-SA models provide the closest predic-
tions of rms to the experiment. To our knowledge, it is the first time that
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unsteady numerical simulations through statistical turbulence modelling are
able to produce a significant part of the flow physics in the cylinder bundle
configuration at an inter-tube Reynolds number of 60, 000, even under the
two-dimensional approximation. This is an interesting issue for pre-design
needs in the industrial context of nuclear reactors, as pointed out by the CEA,
EDF and AREVA in the collaborative French ANR ’BARESAFE’ research
project in which the present study has been carried out. The k − ω-SST
model produces a rather high level of eddy-viscosity in the present case, hav-
ing the tendency to dampen the amplitudes of the von Kármán instability
and therefore to lower the rms of the lift coefficient. On the other hand,
the k − ω-BL-OES model has the tendency to decrease the eddy-viscosity
and therefore to enhance the amplification of this instability and of the over-
all flow fluctuations, yielding a higher rms value. Moreover, the differences
between the modeling approaches are mainly due to the fact that the flow
physics of the boundary layer upstream of the first cylinder separation point
correspond to laminar flow, due to the subcritical Reynolds number. The
turbulence models generally assume a turbulent boundary layer, except for
those models which specifically include transition modelling. Using transition
modelling in the context of the present URANS approaches is a recommended
issue which may improve the results. The OES approach, as shown in Jin
and Braza (1994) and Bourdet et al. (2007), allows a better capturing of the
boundary layer physics than standard URANS, thanks to the reduction of
an excessive turbulent kinetic energy production upstream of the body, often
occurring in URANS modeling when employing the Boussinesq approxima-
tion in the stress-strain law. Therefore, through this inherent reduction in
the turbulence level, the laminar flow regions are dynamically captured by
this approach. As an example, the well-known laminar separation bubble
developed in the leading - edge region of an aerofoil at incidence and in the
subcritical Reynolds number range can be captured by the present approach,
as shown by Hoarau (2002) and Bourdet et al. (2007). In the present study,
both SA and k − ω-OES models provide close results with the experiments,
although the first model produces a less rich statistical content in respect of
the fluctuation amplitudes. The PSD, (Power Spectral Density) figures are
presented in Fig. 3.

Three predominant frequencies appear in the spectra of the numerical
study. These spectra correspond to FFT of the lift coefficient signals. The
sampling rate is equal to the time step, ∆t = 10−3 and the signals length
contains an order of 50 vortex shedding periods.
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Figure 3: Power spectrum density of the lift coefficient, two-dimensional simulations using
the turbulence models: Spalart-Allmaras, k − ω−SST, k − ω−Baseline−OES and k −
ε−OES, in comparison with the experiments

The von Kármán vortex shedding dimensionless frequency is designated
by StVK. The Strouhal number corresponding to the accelerated (due to
the confinement) inter-tube velocity is represented by StC. The shear layer
vortices Strouhal number is designated by StSL. The experimental spectra
are more ‘noisy’ than the numerical ones in respect of chaotic turbulence
dynamics, which dampen the area of the von Kármán mode. They display
predominent peaks in the area of the shear-layer instability frequency, iden-
tified from the simulations fields, as discussed in a next paragraph.

Furthermore, the Strouhal number can be also defined as a function of
the inter-tube velocity, which we denote as

St·,it =
f d

uit
=

(
P ∗ − 1

P ∗

)
St with P ∗ =

P

d
, (1)

where P ∗ is the reduced step and P as the dimensional distance between the
cylinders (pitch). The values of these predominant frequencies are summa-
rized in Tab. 2.

The inter-tube Strouhal number corresponding to the von Kármán mode
is equal to 0.34, close to the well known value in the literature for a single
cylinder in the high Reynolds number range of 60, 000 (Stcyl. ≈ 0.2 for a single
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Models StVK StVK,it StC StSL
SA 0.34 0.11 0.99 2.25

k − ω−SST 0.36 0.12 0.99 2.25
k − ω−OES 0.39 0.13 1.01 2.25
k − ε−OES 0.39 0.13 1.01 2.25

Table 2: Values of predominant frequencies

cylinder). The four models practically predict the same values for the three
predominant frequencies. The spectra of the experimental study display a
’bump’ area in the region of the frequency peak of 0.34. This difference is
because the turbulence effects are more predominant in the experiment and
lead to a more chaotic vortex shedding.

The study of the separation point cartography is presented in Fig. 4.
The central cylinder is considered. The time-dependent evolution of the
separation points at the cylinder’s wall is illustrated. The positions on the
wall are marked as a function of the angle α defined in Fig. 4. The black
regions correspond to separation areas on the wall, as a function of time.

A periodic appearance of patterns is noticed. These patterns are as-
sociated with the instantaneous vorticity fields and illustrate the periodic
behaviors depicted in the spectra concerning the predominant frequencies
found in the spectra (Fig. 3).

Figure 4: Separation areas versus time. The ’black’ areas correspond to ωz = 0.

The von Kármán vortex shedding, whose frequency is rather low (rel-
atively to the two other), occurs at the rear of the cylinder, in the area
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Figure 5: Instantaneous vorticity contours showing the dynamics of the shear layers and
of the vortex structures in the (x, y) plane with the 2-D k− ω - OES model; on the right,
zoom around a central cylinder indicating the separation structure as well as the dynamics
of the shear layer and of the von Kármán vortices.
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(a) (b)

Figure 6: Instantaneous spanwise vorticity for (a) Spalart-Allmaras model and (b) the
k − ω−BL−OES model

|α| > 150◦. A frequency corresponding to the shear-layer vortices is also
depicted, by tracking these vortices in space-time and by evaluating their
convection velocity which allowed identifying their frequency peak in the
spectra. The frequency of the shear-layer eddies is higher (order 2.5), than
the von Kármán vortex shedding. It is worthwhile mentioning that the ma-
jority of URANS approaches has the tendency to dampen the instability
related to the appearance of the shear-layer mode, as a consequence of an
excessive kinetic energy production upstream of the first cylinder. As previ-
ously stated, this is due to an excessive level of turbulent viscosity, usually
produced by the Boussinesq law and by the standard values of the modeling
constants in URANS. This excessive turbulence viscosity has the tendency
to dampen the instability onset. A good representation of the shear-layer
instability is achieved in the present study. This fact plays an important
role in the evaluation of the amplitudes of the fluid forces. Finally, the third
frequency is linked to a phenomenon related to the impact of coherent struc-
tures on the zone |α| ≈ 60◦. This is the area where the structures issued by
the upstream rows of cylinders are destroyed. This predominant frequency
is linked to the confinement, caused by the adjacent cylinders in the bundle.

The present study associates the appearance of these frequency modes
with the related instabilities and vortex structures, Fig. 4 and 5, where these
frequencies are linked to the physical phenomena of the von Kármán and
shear-layer instability vortices. Moreover, the vorticity iso-contours corre-
sponding to OES reveal a more rich ensemble of vortex structures in the flow
than in the other URANS approaches (fig. 6) and the energy of the corre-
sponding frequency peaks is higher in the spectra. These peaks as well as the
organized vortex structures are directly linked with the unsteady load am-
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(a) (b)
Figure 7: ωz vorticity iso-surfaces for the DDES−k − ω−OES model (b) within a time
interval of 10 dimensionless time-units.

plitudes which are important in the dynamics of the fluid-elastic instability,
studied in section 4.

Fig. 7 shows the onset of the three-dimensional motion by means of
streamwise and ωz vorticity within a time interval of 10s. The initial con-
ditions are those of flow at rest. The DDES−k − ω−OES modelling has
been used. The onset of three-dimensional motion is organized according
to counter-rotating cells of positive-negative vorticity, displaying a regular
predominant wavelength, λ = 0.2D. This structure persists as a function of
time, as shown within the time interval of 10s in the present simulations.
This flow pattern is in qualitative accordance with experimental studies by
Wu et al (2005), where the cross-sectional size of secondary vortices range
between 0.2D and 0.5D past a normal flat plate in the Reynolds number
range 1800-27,000. Moreover, this wavelength is comparable to other simu-
lations on a single cylinder at high Reynolds number Bourguet et al. (2008),
El Akoury et al. (2009).

4. Simulation of the fluid-structure interaction in the case of the
central cylinder one-DOF motion

In this section the central cylinder is allowed to move freely in the vertical
direction. A first part of this numerical study is 2-D by using in the CFD
part the k − ω-BL-OES model, studied in section 3. A second part of the
study is 3-D by using the DDES-k − ω-BL-OES model, after the static-case
study presented in section 3. The Reynolds number is of 60, 000 inter-tube.
With regard to the solid structure, three important parameters for the study
of the fluid-elastic instability are: the mass of the cylinder per unit length m,
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the natural frequency fs of the solid structure and the damping ratio ζ. The
definitions of these variables vary widely. These variables are often defined
in respect of the fluid medium at rest. In the present study, these parameters
are defined in vacuum (practically in air). All the structural parameters and
their definitions are listed in Table 3.

The equation of motion of the central cylinder has been non-dimensional
by using the flow parameters above and is given by Equation 2.

m∗ÿ∗ + b∗ẏ∗ + k∗y∗ = cy(t
∗), (2)

In this equation, y is the displacement of the cylinder in the vertical axis,
perpendicular to the cross flow and cy is the unsteady, non-dimensional lift
force per unit length in the y axis.

Variable name Definition Description

reduced velocity (U∗) U
fsD

U is inflow velocity, fs is structure frequency

mass (m∗) m
1
2
ρfD2L

m∗=6.76 is fixed, L - cylinder length

damping (b∗) b
1
2
ρfDUL

b∗ = 4Sc
U∗

Scruton number (Sc) πζm∗ or mδ
ρD2 , with δ = 2πζ√

1−ζ2

stiffness (k∗) k
1
2
ρfU2L

k∗ =
(
2π
U∗

)2
m∗

damping ratio (ζ) b∗

2
√
m∗k∗

changed using m∗ and Sc

reduced velocity (U∗) 2π
√

m∗

k∗
f ∗s = 1

U∗

Table 3: Variable definitions

4.1. 2-D simulation results

The influence of the time step on the induced cylinder’s movement is
firstly presented. The study has been carried out by means of the k−ω-BL-
OES model and for a Reynolds number of 60, 000. The results are shown in
Fig. 8.

A good convergence of the results is obtained for the time-steps 0.01 and
0.02. The time-step ∆t = 0.005 indicates a slight difference in the amplitudes
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Figure 8: Time evolution of the displacement (a) and the lift coefficient (c) and spectra
of the displacement (b) and the lift coefficient (d) for different time steps.

19



(a) (b)

Figure 9: (a) Cylinder displacement for Sc = 1 and different reduced velocities, (b) Quasi-
steady state for Sc = 1 and u∗ = 3

and in the phase. Reducing the time step beyond a ‘limit’ value in respect
of the grid refinement, which remains the same, typically leads to a loss of
convergence. This is the case in the present results corresponding to the
finer time-step. A finer grid would be necessary in order to respect the
decrease of the truncation error obtained by the time-step reduction. The
intermediate time-step value is adopted therefore (∆t = 0.01), in order to
provide realizable computations in the 3-D dynamic case.

The onset of the fluid-elastic instability in MIV (Movement Induced Vi-
bration) is shown in Fig. 9(a). This phenomenon is characterized by the
negative damping of the displacement amplification. This occurs because
the energy supplied by the fluid cannot be instantaneously destroyed by the
solid structure, which is excited by a progressively increasing energetic level.
This energy does not have the time to be consumed and consequently cre-
ates a negative damping appearance. According to the Connors (Connors
(1970)) diagram and to the studies by Paidoussis and Price (1988), as well
as Granger and Paidoussis (1996), this instability particularly occurs for val-
ues of the Scruton number and of reduced velocity beyond (1, 4). For lower
values of these parameters, the displacement amplitude versus time is either
dampened or reaches a steady state, Fig. (9).

For values of the reduced velocity up to 3, the frequency of the displace-
ment and of the lift coefficient is the same as the fluid’s vortex shedding
frequency (Fig. 8 (b) and (d)). This corresponds to a lock-in behavior
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characterizing the VIV mechanism. An important feature occurring as the
reduced velocity increases, is the increase of the phase lag in the displacement
(Fig. 10 and 11) for reduced velocities included in the MIV range, whereas
there is no phase-lag for reduced velocities lower or equal to 3 (Fig. 9(b)).

Figure 10 and 11 shows the phase-lag development between lift and dis-
placement of the central cylinder for two values of the Scruton number and
for various reduced velocities. The two Scruton numbers selected correspond
in the literature to regimes before and after the Movement Induced Vibra-
tion. For Sc = 1, the phase-lag is found to increase in the range of reduced
velocities from 5 to 14. For Sc = 5, the increase of the phase-lag is less dras-
tic. The phase-lag values are presented as a function of the reduced velocity
in Table 4. In all cases, the increase of the reduced velocity displays the
appearance of higher frequencies in the lift fluctuation. These frequencies do
not appear in the body’s oscillation.

The reduced velocity (U∗) in the simulations is increased by decreasing the
solid structure’s natural frequency fs. Figure 12(a) shows the vorticity plot,
where the central cylinder becomes unstable at Sc=1, U∗ = 3. Figure 12(b)
shows the rms of the cylinder’s displacement as a function of the reduced
velocity for three values of Sc. The low value of the mass-damping parameter
(Sc=0.0127 corresponding to the red curve) shows a sharp increase in the
amplitude of the oscillations at low reduced velocities. The instability seems
to occur at U∗ ≈ 1.2. A further increase in the value of the Scruton Sc=1
delays the occurrence of this instability. The curve shows a sudden increase
in the oscillations for the reduced velocity U∗ = 3. The green curve in
Figure 12(b) shows the response of the cylinder for the mass-damping ratio
Sc=5. Table 4 summarizes the global parameters, the Strouhal number of
the lift coefficient, of the cylinder’s displacement and the phase-shift angle
(rad) between the lift and the cylinder’s position, as a function of the reduced
velocity for the case of Scruton number 1. It is shown that the phase-lag is
practically equal to zero for the low values of the reduced velocities (VIV
regime) and it increases progressively in the range of the higher values (MIV
regime).

Figure 12(c) and (d) shows the drag and lift coefficient variations for the
three cases by increasing the reduced velocity.
The static case simulation shows the Strouhal number of the order St = 0.33,

a purple line in Figure 13(a). It is interesting to show the variation of this
response frequency with the change in the Scruton number (Sc). In the case
of the low value of the mass-damping parameter Sc = 0.0127, the fluid-
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Figure 10: Time-evolution of the displacement and the lift coefficient for (Sc = 1, u∗ = 2
(a), Sc = 1, u∗ = 3 (b), Sc = 1, u∗ = 5 (c), Sc = 1, u∗ = 10 (d).
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Figure 11: Time-evolution of the displacement and the lift coefficient for Sc = 5, u∗ = 2
(a), Sc = 5, u∗ = 3 (b), Sc = 5, u∗ = 5 (c), Sc = 5, u∗ = 10 (d).
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u∗ (StCL
) (StA∗) CD,rms CL,rms Shift(A∗rms) Amax ∗D

1 0.351 0.351 0.412 0.289 0.00π 0.007

2 0.384 0.384 0.394 0.374 0.02π 0.038

3 0.331 0.331 1.096 0.590 (1 + 0.07)π 0.277

4 0.261 0.261 0.603 0.321 (1 + 0.074)π 0.316

5 0.228 0.228 0.527 0.273 (1 + 0.078)π 0.292

6 0.192 0.192 0.449 0.222 (1 + 0.08)π 0.258

7 0.175 0.175 0.470 0.254 (1 + 0.09)π 0.278

8 0.159 0.159 0.500 0.339 (1 + 0.098)π 0.311

10 0.101 0.101 0.290 0.197 (1 + 0.104)π 0.194

12 0.098 0.098 0.336 0.240 (1 + 0.109)π 0.238

14 0.113 0.113 0.362 0.300 (1 + 0.11)π 0.276

16 0.110 0.110 0.370 0.330 (1 + 0.117)π 0.334

18 0.106 0.106 0.430 0.399 (1 + 0.119)π 0.365

20 0.101 0.101 0.421 0.400 (1 + 0.122)π 0.387

Table 4: Summary of the global parameters and of the phase-lag between the cylinder
displacement and the forces (in red) versus the reduced velocity for the dynamic case with
Scruton number of 1 and mass ratio of 6.76.

elastic instability (high amplitude oscillations) occurs without a decrease in
the Stouhal number below 0.33. Figure 13(b) shows the response frequency
spectra for the Scruton number Sc = 0.0127 for different values of the re-
duced velocity. The red curve for the Scruton Sc1 shows a smooth transition
and follows the structure’s natural frequency curve. This feature also is re-
flected in Figure 13(c). This figure shows the spectra for the response of the
cylinder at Sc = 1 for reduced velocities below and above the critical value
U∗ = 3. Furthermore, the increase in the mass-damping ratio, enhances this
transition.

The spectra of the cylinder’s displacements at Sc = 5 and reduced veloci-
ties U∗ = 3, 6, 7, 10 are shown in Figure 13(d). The spectrum at the reduced
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Figure 12: 1-DOF response of the central cylinder for Sc = 0.0127, 1 and 5, (a) Vor-
ticity plot for Sc = 1, U∗ = 3, (b) Root mean square non-dimensional displacement Vs
reduced velocity (U∗), (c) Drag coefficient variation with increasing reduced velocity (d)
Lift coefficient profile for increasing reduced velocity

velocity U∗ = 3 shows a peak about 0.37, while the spectra for U∗ = 6, 7
indicates peaks at 0.12 and at about 0.37. The spectrum at the reduced
velocity U∗ = 10 shows a peak at the dimensionless frequency of 0.12.

Figure 14 shows a comparison of the cylinder’s response spectra between
the experiment and the simulations. A good agreement is shown concerning
the predominent frequency close to the Strouhal number of 0.33, which cor-
responds to the fluid’s vortex shedding frequency, as expected in the context
of the VIV mechanism, in the low reduced velocity range.
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Figure 13: 1-DOF response of the central cylinder for different values of Scruton number
(Sc) and reduced velocity (U∗) (a) Variation of Strouhal number (St) in different cases;
(b) Frequency spectra of the central cylinder displacement for Sc = 0.0127; (c) Frequency
spectra of the cylinder displacement for Scruton number Sc = 1; (d) Frequency spectra of
the displacement for Scruton number Sc = 5

4.2. 2-D vs 3-D comparison

The turbulent motion is inherently three-dimensional, therefore it is in-
teresting to examine the influence of the third dimension on the results at
high Reynolds numbers. Static case simulations carried out by LES at low
upstream Reynolds number Rep = 2840, (Shinde et al. (2013)), indicated
that the flow is nearly invariant in the third (z) direction, except for a weak
large-scale spanwise wavelength undulation. However, in the higher Reynolds
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(a) (b)

Figure 14: Comparison of the dynamic response PSD between the experiment and the 2-D
simulations, k − ω-BL-OES model.

number range, the three-dimensional effects are more significant.
Figure 15 compares the response of the central cylinder in 2-D and 3-

D simulations. The computational domain length in spanwise direction is
1D. Figure 15(a) and Figure 15(b) are time-histories of the cylinder’s dis-
placement and of the lift coefficient of the central cylinder respectively. The
simulations have been carried out for the unstable case, at Sc=1 and U∗ = 3.
The 3-D simulation shows about 30% increase in the amplitude of the oscilla-
tions than in the two-dimensional case, (red curve in Figure 15(a)). The lift
coefficient versus time shows irregular fluctuations in 3-D compared to the
2-D signal (see Figure 15(b)). Figures 15(c) and (d) show the spectra in 2-D
and 3-D for the cylinder’s displacement and the lift coefficient respectively.
The spectra of the response signal of the cylinder show the same frequency of
the oscillations in 2-D and 3-D simulations. This confirms theoretical consid-
erations of the fluid-elastic instability, as well as experimental observations
reporting that the instability mainly appears in the perpendicular direction in
respect of the cross flow. In addition, the lift coefficient spectrum in 3-D dis-
plays higher frequencies, indicating that the turbulence energy increases due
to the spanwise direction dynamics. There are frequency peaks at Strouhal
numbers St = 0.6 and St = 0.9 approximately, which are related to the first
and second harmonics of the main vortex shedding. The peak at 0.6 is a first
harmonic of the main vortex shedding and indicates a coupling with the drag
coefficient, which is mainly influenced, as known, by this first harmonic of
the Strouhal number.
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Figure 15: Comparison between the 2D simulations carried out by the k−ω−OES model
and 3D simulations carried out by the DDES−k − ω−OES model: (a) and (b): time-
histories of the cylinder displacement and of the lift coefficient respectively. (c) and (d)
spectra of the above time-histories.

5. Conclusions

In this paper, the numerical simulation of the fluid-elastic instability in a
cylinder bundle has been carried out at in a high Reynolds number range, for
various reduced velocity values and for two Scruton numbers corresponding
to the low and high range of the Connors diagram. The turbulence motion
effect has been captured by means of URANS and DDES modelling. The
spontaneously amplified fluid-elastic instability of a central cylinder of the ar-
ray, freely moving in one DOF has been produced by the present simulations
and the phase-lag between the vertical oscillations displacement in respect
of the forces has been assessed. It has been shown that a first stage of the
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instability corresponds to a VIV lock-in mechanism of the displacements fre-
quency for the Scruton number 1 and reduced velocities lower or equal to 5,
as well as for the Scruton number 5 and reduced velocities lower than 3. The
successive stage for higher values of reduced velocity is an MIV mechanism
where the displacement frequency decreases and tends towards an asymptote,
slightly higher than the natural frequency of the solid structure. The present
study shows significant 3-D effects in the amplitude variation, whereas the
main frequency peaks are practically unaffected by the three-dimensionality.
The two-dimensional simulations, which are much faster than the 3-D ones,
produce the predominant instability frequencies but under-estimate the fluc-
tuation amplitudes. These facts are significant for the design of the cylinder
bundles in nuclear reactor engineering.
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