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Multicriteria Decision Making

Christophe Gonzales1 and Patrice Perny2

Abstract This chapter aims to present the main models used for preference aggre-
gation and decision support in a unified framework. After recalling the definition of
a multicriteria decision making problem, we distinguish two approaches for pref-
erence aggregation: the compare then aggregate approach (denoted CA) and the
aggregate then compare approach (denoted AC). We first present some procedures
allowing the construction of an overall preference relation (e.g., a dominance or con-
cordance relation) from several binary relations. Then we consider the AC approach
and present some scalarizing functions allowing the definition of an overall score
from partial numerical evaluations. In particular we review the min, Tchebycheff,
OWA, WOWA aggregators and Choquet and Sugeno integrals.

1 Introduction

Taking into account multiple and conflicting points of view in the analysis of prefer-
ences and studying the properties of preference aggregation procedures is quite old.
Long before the birth of multicriteria optimization, collective decision-making prob-
lems and aggregation of preferences were addressed through the theory of voting, as
can be seen in the writings of Borda [Borda, 1781] and Condorcet [Marquis de Con-
dorcet, 1785]; these topics remained active until today, giving birth to the theory of
social choice [Arrow, 1951; Sen, 1986a]. In economics, the account of multiple cri-
teria to explain rational behaviors dates back to the 1900s, notably with the works
of Pareto [Pareto, 1906]. The consideration of multiple objectives in mathemati-
cal programming was introduced in the middle of the 20th century with the goal-
programming [Charnes et al., 1955]. This work was then developed in the 1970s
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under the impetus of Geoffrion (see for example [Geoffrion et al., 1973]). The first
international conference dedicated to multicriteria decision-making took place in
1973 in South Carolina. This activity continued in Europe with the first Euro Work-
ing Group on multi-criteria decision-making led by Bernard Roy who appeared in
1975. The work on multiobjective combinatorial optimization followed a few years
later and the first international conference on the subject (MOPGP) was established
in 1994. In Artificial intelligence, taking into account multiple objectives in problem
solving also appears in the same period, in particular in multiobjective state-space
search [Stewart and White III, 1991; Laumanns et al., 2002], multicriteria planning
problems [White, 1982; Gábor et al., 1998], and problems of satisfaction of flexible
constraints [Schiex et al., 1995]. Concerning modeling and aggregation of prefer-
ences, the work in AI is distinguished by the emphasis on qualitative models and,
more recently, on the aspects of representation and automatic learning of prefer-
ences. The latter two aspects go beyond the scope of this chapter, which focuses on
the main models used for preference aggregation.

2 Multicriteria Decision Problems

A multicriteria decision problem is characterized by the explicit consideration of
several objectives to be optimized simultaneously in the analysis of preferences,
the comparison of solutions and the determination of the optimal solution(s). To
formally introduce a multicriteria decision problem, we first define a set A of alter-
natives (potential actions, feasible solutions, candidates) that can be given explicitly
(for example by listing the solutions considered) or implicitly (for example by spec-
ifying a set of constraints or properties that the solutions must satisfy). In all cases,
the A set defines the solutions on which one wishes to make the decision analysis,
that is to say that they are the only ones available, the only ones realizable or the
only ones admissible. We then introduce a finite set of criteria N = {1, . . . ,n} taking
the form of functions fi, i ∈ N, modeling the objectives of the decision maker. For
every x ∈ A and every i ∈ N, we call performance of x on criterion i the quantity
fi(x) reflecting the value of a with respect to criterion i. This formalism also applies
to problems of collective decision-making. In such problems, N represents a set of
agents and the performance fi(x) then represents the utility of the solution x from
the point of view of agent i. The criteria fi are defined on A and respectively valued
in an ordered set Xi, i ∈ N.

The set X = X1 × ·· · × Xn which constitutes a new description space of the
alternatives, is called the space of criteria. To simplify the notations, we will set
xi = fi(x) for all x ∈ A and all i ∈ N. Any solution x is therefore represented in
X by a vector (x1, . . . ,xn). We will assume that Xi ⊆ R for all i ∈ N and therefore
that X ⊆ Rn. To simplify the presentation, it will also be assumed that functions
fi are to be maximized (this is not restrictive because we can change the sign of
evaluations to pass from minimization to maximization). Sometimes performances
have no cardinal meaning and only their order matters to state preferences. In other
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cases they may represent a cardinal utility (uniquely defined up to a positive affine
transformation) or even an absolute evaluation reflecting the intrinsic attractiveness
of a solution on each of the criteria considered.

Multicriteria decision problems vary depending on the question asked. We can
distinguish choice problems where we try to determine the best solutions, ranking
problems where the aim is to order, at least partially, the solutions according to their
relative merit, or sorting problems where one seeks to assign the solutions to pre-
defined categories according to their intrinsic value. To summarize, a multicriteria
decision problem can always be formally characterized by a triple of the form:

(A,{ f1, . . . , fn},Q)

where Q ∈ {choice, ranking, sorting} is the question formulated. The choice prob-
lem is the one most often encountered in the theory and practice of multicriteria
analysis. It aims to find a solution that optimizes the different criteria as well as
possible, or to find a subset of solutions, as small as possible, containing the best so-
lutions. Formulated in this way, multicriteria optimization is an ill-posed problem.
Indeed, due to the potentially conflicting nature of the criteria, there is generally
no solution optimizing all the criteria simultaneously. The only natural preference
weak-order that can be built on A without adding preferential information to the
description of the problem is in fact the so-called weak Pareto dominance relation
denoted %P and is defined as follows:

x %P y iff [∀i ∈ N, xi ≥ yi]

Relation %P is a weak partial order on A (i.e. a reflexive and antisymmetric binary
relation, transitive but not complete) and it generally leaves many pairs of solutions
incomparable. It is enough that a solution x is better than a solution y on one criterion
and that it is the opposite on another criterion so that we can no longer compare
them. To circumvent this difficulty, one generally seeks to construct a richer and
more discriminating preference relation on the set of alternatives. This relation will
be denoted here % with the convention that x % y means that x is judged at least as
good as y given the performance vectors (x1, . . . ,xn) and (y1, . . .yn). Obviously one
will generally be interested in constructing a transitive preference relation % such
that x %P y⇒ x % y for all x,y ∈ A, thus refining the weak Pareto dominance.

We can also define a strict preference relation� as the asymmetric part of %. We
obtain x� y iff [x % y and not(y % x)]. For example, the asymmetric part of relation
%P is the so-called Pareto dominance denoted �P. We have:

x�P y iff
{
∀i ∈ N, xi ≥ yi
∃k ∈ N, xk > yk

Given a strict preference relation � defined on A, the non-dominated solutions of
A are formally defined as follows: ND(A,�) = {x ∈ A : ∀y ∈ A,non(y � x)}. This
set is non-empty as soon as � is transitive. For example, the set ND(A,�P) is never
empty; this is the set of Pareto-optimal solutions also known as the Pareto set. If,
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as suggested above, we work with a preference relation � which refines the Pareto
dominance �P, the set ND(A,�) will therefore be a subset of the Pareto set.

The overall weak preference relation % must be constructed from the n criteria
representing the different points of view considered relevant in the analysis, taking
into account how the decision-maker wants to define the resultant of potentially
conflicting criteria. This is the multicriteria aggregation phase that we present in the
next subsection.

2.1 Preference Aggregation

The preference aggregation problem consists of synthesizing information that re-
flects different aspects or points of view (e.g., performance indices, utilities, prefer-
ences), sometimes conflicting, on a same set of alternatives. It is critically important
in many procedures used for assessment, comparison or classification in multicri-
teria decision support. Whether it is a problem of choice, ranking or sorting, the
central question is always a problem of comparison. Thus, in a problem of choice,
the identification of the best candidate needs to be able to compare it to all others; in
a ranking problem, we need to compare any pair of alternatives; in sorting problems,
assigning a solution to a category is often done by comparing the solution to a ref-
erence vector. In a multicriteria decision problem, the comparison of two solutions
is performed on the basis of their respective performance vectors. For this purpose,
one necessarily resorts to an aggregation rule to construct the overall preference
relation %. Aggregation rules can formally be introduced as follows:

Definition 1. An aggregation rule is a function that defines the preference x % y for
any pair of alternatives (x,y) in A×A from performance vectors (x1, . . . ,xn) and
(y1, . . . ,yn) as follows:

x % y iff h(x1, . . . ,xn,y1, . . . ,yn)≥ 0 (1)

where h is a real-valued function defined on R2n, non-decreasing in the n first ar-
guments and non-increasing in the n last arguments such that h(x,x) ≥ 0 for all
x ∈ Rn (which enforces the reflexivity of % and the compatibility with the weak
Pareto-dominance).

The h function which tests the preference of x over y performs on the one hand
the aggregation of performances xi and yi, i = 1, . . . ,N and, on the other hand, the
comparison of solutions x and y through their performance vectors. Generally, these
two steps (aggregation and comparison) are clearly distinguished and h is then de-
fined as the combination of an aggregation function (also known as a scalarizing
function) ψ : Rn → R allowing the synthesis of a vector of n performances in one
scalar, and a performance comparison function φ : R2 → R which compares two
performances. We can thus distinguish two different modes of operation giving rise
to two distinct approaches to multicriteria aggregation.
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The “Aggregate then Compare” approach (AC)

It consists of summarizing the value of any solution x by an overall score ψ(x) cal-
culated from its performance vector. This score is intended to summarize the overall
value of the action and serves as a basis for the multicriteria comparison of solu-
tions. This way of evaluating and comparing vectors of grades is very widespread,
for example in the academic world where the comparison of two students is based
on the average of their marks. The general form of the decision rules under the AC
approach is as follows:

x % y iff φ(ψ(x1, . . . ,xn),ψ(y1, . . . ,yn))≥ 0 (2)

where ψ is a non-decreasing function of its arguments. On the other hand, function
φ allows the comparison of x and y on the basis of ψ(x) and ψ(y). The most common
choice for φ is φ(x,y) = x− y. In this case, x % y holds when ψ(x)≥ ψ(y).

Example 1. The Nash product often used in Game Theory is an aggregation function
leading to the following preference relation:

x % y iff
n

∏
i=1

xi ≥
n

∏
i=1

yi

This is clearly an instance of the AC approach where ψ is the product function and
φ(x,y) = x− y.

The “Compare then Aggregate” Approach (CA)

It consists of comparing, criterion by criterion, the performances of the alternatives
and then to aggregate these comparisons. Thus, for each pair (x,y) and each criterion
i, one can define a binary index of partial preference φi(x,y) where φi is an increasing
function of xi, decreasing of yi. The preference x % y is then defined by aggregating
partial preference indices. Formally, we have:

x % y iff ψ(φ1(x,y), . . . ,φn(x,y))≥ 0 (3)

Generally in this approach, each φi function is used to compare the performances
of two alternatives on the same criterion (criterion i). There are however a few ex-
ceptions in the case of criteria sharing the same valuation scale (e.g., the Lorenz
dominance relation introduced later in the chapter). In this latter case, φi is used to
compare two performances associated with different criteria. In the CA approach,
one can use the same aggregation functions ψ as for the AC approach but it is used
for the aggregation of partial preference indices φi(x,y) and not for aggregating the
performances themselves. It must therefore be assumed that one can compare quan-
tities of type φi(x,y) and φk(x,y) for i 6= k but it is not necessary to assume that
we can compare the performances of an alternative on different criteria. If φi(x,y)
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depends only on xi and yi, then it defines a preference relation on A restricted to
criterion i. For example, we can consider preorders constructed from performances
by setting x %i y if and only if φi(x,y)≥ 0 with:

φi(x,y) =

 1 if xi > yi
0 if xi = yi
−1 if xi < yi

(4)

It is also possible to use, for φi, functions with thresholds such as φi(x,y) =
x− y+qi where qi is a positive quantity representing an indifference threshold, i.e.,
the biggest difference that is not significant of a preference. In this case, if we set
x % y iff φi(x,y) ≥ 0, we obtain a semi-order structure1 well known in preference
modeling. Other choices are possible for φi, leading to more general ordinal struc-
tures defined from numerical evaluations, see [Roubens and Vincke, 1985; Pirlot and
Vincke, 1997]. Alternatively, the φi(x,y) indices can be used to represent preference
intensities, monotonically increasing with differences of type xi− yi; this amounts
to defining a fuzzy preference relation %i for every criterion i ∈ N [Perny and Roy,
1992; Fodor and Roubens, 1994]). In all these cases, we see that the CA approach
amounts to construct n preference relations (one per criterion) and then to aggregate
these relations. By way of illustration, let us give the following example:

Example 2. The lexicographic aggregation is characterized by the following defini-
tion of the overall preference:

x� y iff ∃k ∈ N,

{
xk > yk
∀i < k,xi = yi

this is clearly an instance of the CA approach with ψ(z1, . . . ,zn) = ∑
n
i=1 2n−izi and

φi defined as in Equation (4).

Comparison of AC and CA

Both approaches AC and CA are represented in the following diagram showing
the two possible paths to decide whether x is preferred to y from two performance
vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn):

(x1, . . . ,xn),(y1, . . . ,yn)
ψ−−−−→ ψ(x), ψ(y)

φi

y yφ

φ1(x,y), . . . ,φn(x,y)
ψ−−−−→ x % y?

1 We recall that a semi-order is a complete, Ferrers and semi-transitive binary relation (see [Pirlot
and Vincke, 1997]). In a semi-order %i defined with threshold qi, we have x�i y if xi−yi > qi and
x∼i y if |xi− yi| ≤ qi.
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The fundamental difference between AC and CA lies in the fact that the aggrega-
tion does not involve the same objects due to the inversion of the order of execution
of the aggregation and comparison operations. In AC, function ψ aggregates the
performances xi on the one hand and the performances yi on the other hand whereas
in CA we aggregate the preference indices φi(x,y). It should be emphasized that this
distinction concerns the process of computing h in Equation (1) and thus remains
essentially formal. There are indeed some aggregation rules whose function h can
be written either in one or the other of the two forms distinguished. For example,
this is the case of preferences defined from linear aggregations of performances as
follows:

x % y iff
n

∑
i=1

xi ≥
n

∑
i=1

yi (5)

In this case, one naturally recognizes an instance of the AC approach:

h(x1, . . . ,xn, y1, . . . ,yn) = φ(ψ(x1, . . . , xn), ψ(y1, . . . , yn))

ψ(z1, . . . ,zn) =
n

∑
j=1

z j

φ(u,v) = u− v

Nevertheless, using the same ψ function, one may also consider that it is an
instance of the CA approach by setting:

h(x1, . . . , xn,y1, . . . ,yn) = ψ(φ1(x,y), . . . ,φn(x,y))

φi(x,y) = xi− yi

Despite this non-empty intersection due to some singular cases, the distinction
between the AC and CA approaches is important for structuring the field of mul-
ticriteria aggregation rules (but also for transposing them into the field of decision
under uncertainty) and to differentiate between the main benefits and disadvantages
of each of these approaches.

The choice of the AC approach based on the construction of a “scalarizing” func-
tion ψ often seduces by its operational simplicity and its intuitive appearance. When
the preferential information is sufficiently rich to enable the construction of the over-
all evaluation function ψ , the multicriteria decision problem reduces to the problem
of optimizing function ψ . However, it should be stressed that the AC approach re-
quires a particularly rich information. We need to know how to commensurate par-
tial evaluations on different criteria, what is the importance of every criteria and
group of criteria, and how they interact in the definition of preferences. Moreover,
the preference x % y is often defined using φ(ψ(x),ψ(y)) = ψ(x)−ψ(y) which
simply amounts to comparing the two values ψ(x) and ψ(y). This mode of compar-
ison therefore presupposes a priori that all solutions are reducible to scalar values
and are comparable, and that preferences are transitive. From a descriptive point of
view, this hypothesis is often debatable, given the necessarily imperfect information
available, the heterogeneity of the performances and also the existence possible con-
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flicts between the criteria considered, making it difficult to compare certain pairs of
solutions.

The CA approach, on the other hand, is particularly suited to multicriteria ag-
gregation when there is insufficient information to compare the performances is-
sued from distinct criteria and/or when certain criteria are quantitative and others
are qualitative, or when we want to relax the assumption that all the alternatives are
comparable. A binary relation %i is constructed using φi for every i∈N and then we
have to aggregate the (%1, . . . ,%n). This ordinal aggregation problem is generally
quite difficult to solve and a number of negative results have shown the prescriptive
limits of decision rules based on an ordinal aggregation (for a compilation of the
main results see [Sen, 1986b]). In particular, a method of aggregation defined by
Equations (3) and (4) does not guarantee any transitivity property for % except in
some very restrictive particular cases such as the lexicographic preferences intro-
duced in Example 2. If we consider, for example, the majority rule that appears nat-
urally as an instance of the CA approach obtained by setting ψ(z1, . . . ,zn) = ∑

n
i=1 zi

and φi(x,y) defined as in Equation (4), a non-transitive preference is easily obtained
as shown in the following example:

Example 3. Let us consider a problem with three criteria to be maximized and
three alternatives x = (3,1,2), y = (2,3,1) and z = (1,2,3). We have: φ1(x,y) =
φ3(x,y)= 1,φ2(x,y)=−1 and therefore x� y. On the other hand we have: φ1(y,z)=
φ2(y,z) = 1,φ3(y,z) =−1 and therefore y� z. Finally we have: φ2(z,x) = φ3(z,x) =
1,φ1(z,x) = −1 and therefore z � x. This intransitivity of the strict majority rule is
well known in voting theory under the name of Condorcet paradox.

Despite the descriptive appeal of the majority rule, this lack of transitivity is
rather problematic for determining a ranking of solutions or even a choice and an
additional exploitation phase is then necessary. For this reason, the CA approach
is mainly used for decision problems involving only a finite and small set of alter-
natives. The next section is intended to introduce some standard decision models
falling in the CA approach and, when necessary, some techniques for making a
choice or ranking from a non-transitive relation constructed with this approach. We
will review the main models of the AC approach in the following section.

3 Decision Models in the CA approach

Below, we introduce different binary relations % to compare the solutions of A on
the basis of their performance vectors. Let us first introduce dominance relations
and then outranking relations resulting from a concordance rule.



Multicriteria Decision Making 9

3.1 Dominance Relations

We have previously introduced the notions of weak Pareto dominance which is a
basic preference relation. It is not very discriminating but can be enriched in various
ways. We now present some richer dominance relations often used in decision the-
ory. Most of these dominance relations are obvious instances of the CA approach.
We will therefore not specify the functions ψ and φi characteristic of the CA ap-
proach, except in the few cases where membership to CA is less straightforward.

Oligarchic Dominance

An Oligarchic weak-dominance is a transitive preference relation that concentrates
the decisive power on a subset of criteria O⊆N, namely the Oligarchy. It is formally
defined as follows:

x % y iff ∀i ∈ O,xi ≥ yi (6)

When O=N we obtain the weak Pareto dominance introduced before. When O only
contains some of the criteria, the dominance defined by Equation (6) is all the more
discriminating than the cardinal of O is reduced. When O is reduced to a singleton
we obtain a dictatorial aggregation rule. A refinement of this dictatorial procedure
is given by the lexicographic procedure introduced in Example 2.

ε-dominance

An interesting weakening of the weak Pareto dominance is the ε-dominance defined
as follows:

x %ε y iff ∀i ∈ N,(1+ ε)xi ≥ yi

for some arbitrarily small ε > 0. This relation is not transitive but it enables to
“cover” the entire set of feasible alternatives with fewer solutions than needed for
the weak Pareto dominance, as shown in the following example:

Example 4. Consider a tri-criteria problem with 4 feasible solutions x= (10,10,10),
y = (11,5,10), z = (10,2,11), w = (4,10,3). In this example, the solutions x,y,z are
Pareto-optimal while w is Pareto-dominated by x. If we consider ε = 0.1 then we
can check that x %ε y, x %ε z and x %ε w. We thus observe that x is at least as good
as all the other solutions and covers by itself all the solutions under consideration.
This can be an argument for choosing this solution. One can even check here that
x strictly ε-dominates the solutions y,z,w, i.e., none of the following preferences
y %ε x, z %ε x and w %ε x holds.

More generally, the notion of covering can be introduced as follows:

Definition 2. For all ε > 0 a subset B⊆ A of solutions is said to be a ε-covering of
A when: ∀x ∈ A,∃y ∈ B,y %ε x.
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In general, for a given ε , several ε-coverings exist of different cardinalities, the
most interesting being those that are minimal w.r.t. inclusion. The interest of this
concept is particularly evident in multicriteria decision problems with a large num-
ber of potential solutions. For example, let us consider the multicriteria shortest path
problem; in this problem the set of Pareto-optimal solutions can grow exponentially
with the number of vertices of the graph. This is well illustrated by the family of
bi-criteria graphs introduced in [Hansen, 1980]. In this family, the graph admitting
2n+ 1 vertices includes 2n Pareto-optimal solution-paths with distinct cost vectors
of the form (c,2n−1− c),c ∈ {0, . . . ,2n−1}. It then becomes impossible and use-
less to propose them all to the decision-maker. Instead, we can perform a selection
of solutions that ε-covers the entire Pareto set. Under the assumption that the cri-
teria values are positive integers and bounded by a quantity K, Papadimitriou and
Yannakakis [Papadimitriou and Yannakakis, 2000] have indeed shown that for any
number of criteria n ≥ 2 and every set of alternatives A, there exists a ε-covering
of A whose size is bounded from above by dlogK/ log(1+ ε)en−1. This quantity
remains polynomial in the size of the problem, when the number of criteria is fixed.
For example, in the family of graphs considered by Hansen in [Hansen, 1980] the
instance with 33 nodes (n = 16) leads to 216 = 65536 Pareto-optimal paths with
distinct cost vectors of the form (c,216− 1− c),c ∈ {0, . . . ,216− 1}. If we choose
ε = 0.1 a covering of the Pareto-optimal cost vectors exists with at most 117 el-
ements; this number decreases to 61 if ε = 0.2. For more details on the potential
use of the ε-dominance and the associated covering concepts see [Papadimitriou
and Yannakakis, 2000; Diakonikolas and Yannakakis, 2008; Perny and Spanjaard,
2008; Bazgan et al., 2009].

Lorenz Dominance

Among the Pareto-optimal solutions, not all are of equal interest to the decision-
maker. Some are fairly balanced and show comparable levels of performance on
each of the criteria while others alternate excellent performance and very bad points.
In multicriteria analysis, the decision-maker often prefers a balanced solution, which
does not favor a criterion at the expense of others. A similar principle appears in
multi-agent decision problems found with the notion of equity; in this case the cri-
teria measure individual utilities (see chapter I.15). Formally, the idea of equity
in the aggregation of preferences can be described by the following axiom, known
as the “transfer principle” based on Pigou-Dalton transfers reducing inequalities
[Shorrocks, 1983; Moulin, 1988]:

Transfert principle. Let x ∈ Rn
+ such that xi > x j for i, j ∈ N. Then, for any ε such

that 0 < ε ≤ xi− x j, x− εei + εe j � x where ei (resp. e j) is the vector whose ith

(resp. jth) component equals 1, all the other components being equal to 0.

This axiom captures the notion of equity as follows: if xi > x j, a mean-preserving
shift of performance improving x j at the expense of performance xi produces a better
distribution of criteria satisfaction indices and therefore a better solution. Thus the
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vector x = (10,10) is preferred to the vector y = (14,6) because there is a size 4
transfer from y to x. Note that if the transfer was too large, for example ε = 9, the
inequality would be increased rather than decreased. This is the reason why the ε

amplitude of the transfer should remain lower than xi− x j.
The transfer principle is a mean-preserving operation since one quantity is re-

moved from one component and added to another. It does not exist between two
vectors whose average performances are not the same. However, it becomes more
powerful when combined with the Pareto principle requiring that we strictly prefer
a solution x to a solution y when x �P y. For example, if one wishes to compare
vectors (11,11) and (12,9), one can notice that (11,11) Pareto-dominates (11,10)
and that (11,10) is deduced from the vector (12,9) by a Pigou-Dalton transfer of
amplitude 1. Due to the Pareto principle and to the transfer principle, one has on the
one hand (11,11)� (11,10) and, on the other hand, (11,10)� (12,9), whence, by
transitivity, (11,11) � (12,9). The vectors that can be compared by combining the
Pareto principle and the transfer principle can be characterized using generalized
Lorenz vectors and the notion of generalized Lorenz dominance (see [Marshall and
Olkin, 1979; Shorrocks, 1983]):

Definition 3. For all x∈Rn
+, the generalized Lorenz vector associated to x is defined

by: L(x) = (xσ(1),xσ(1) + xσ(2), . . . ,xσ(1)+ xσ(2)+ . . .+ xσ(n)) where σ represents
the permutation which sorts the components of x by increasing order. Thus xσ(i)

represents the ith smallest component of x.

Definition 4. The generalized Lorenz dominance is a binary relation defined on Rn
+

by: ∀x,y ∈ Rn
+, x %L y iff L(x) %P L(y). The asymmetric part of this relation is

defined by x�L y iff L(x)�P L(y).

The x vector Lorenz-dominates the y vector if L(x) Pareto-dominates L(y). To show
that %L is indeed an instance of the CA approach, it is sufficient to consider that:

φi(x,y) =
{

1 if ∑
i
j=1 xσ( j) ≥ ∑

i
j=1 yσ( j)

0 otherwise

and ψ(z1, . . . ,zn) = ∑
n
i=1 zi− n. The notion of Lorenz dominance was initially in-

troduced to compare vectors with the same average (e.g., for comparing various
income distributions over a population). The generalized version introduced above
is more adapted to the context of multicriteria optimization because it makes it pos-
sible to compare vectors of performances that do not have the same average. The
link between generalized Lorenz dominance and the transfer principle appears with
the following result [Chong76]:

Theorem 1. For all pairs of vectors x,y ∈ Rn
+, if x �P y, or if x is obtained from y

using a Pigou-Dalton transfer, the x �L y. Conversely, if x �L y, then there exists a
sequence of Pigou-Dalton transfers and/or Pareto improvements allowing to pass
from y to x.

This result establishes the generalized Lorenz dominance as the minimal relation
w.r.t. inclusion which simultaneously satisfies the Pareto principle and the principle
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of transfer. This dominance is transitive. To illustrate the use of Lorenz dominance
to compare the vectors considered above, one can observe that L(11,10) = (10,21)
while L(12,9) = (9,21). We thus have (11,10)�L (12,9) since (10,21)�P (9,21).

A consequence of the preceding theorem is that if x �P y then x �L y, which
shows that the Lorenz dominance is potentially more discriminating than the Pareto
dominance. It follows that ND(X ,�L) ⊆ ND(X ,�P), that is to say that the non-
dominated solutions in Lorenz’s sense are Pareto-optimal solutions. Apart from
a few specific cases, there are generally significantly fewer Lorenz-optimal than
Pareto-optimal solutions. The Lorenz dominance thus appears as a natural refine-
ment of the Pareto dominance allowing to remove unfair elements in the Pareto set.

Weighted Lorenz Dominance

The Lorenz dominance deals symmetrically with all components of the vectors that
are compared. The L(x) vector indeed remains invariant by permutation of the com-
ponents of x and consequently the preference x�L y is not affected by a permutation
of the components of x or y . This characteristic seems natural when one wishes to
assign the same importance to all criteria or agents. On the other hand, if we want to
give more weight to some of the criteria, we should consider a weighted extension
of the Lorenz dominance. A first idea that naturally comes to mind to assign differ-
ent weights to components is to duplicate them in proportion to the weights of the
criteria (we assume here that the weights are rational numbers). Thus, if we want to
compare the vectors x = (10,5,15) and y = (10,12,8) given that the criteria have
weights defined by the vector p = (3/6,1/6,2/6) we can consider the extended
vectors x̃ = (10,10,10,5,15,15) and ỹ = (10,10,10,12,8,8) and test if x̃ �L ỹ or
ỹ �L x̃. This is not the case here since the Lorenz vectors (5,15,25,35,50,65) and
(8,16,26,36,46,68) are incomparable in terms of Pareto dominance. Here, the fact
that criterion 3 is twice more important than criterion 1 did not allow us to prefer y
although y distributes performance more equally than x.

A more elaborate way of proposing a weighted extension of the Lorenz domi-
nance without having to duplicate the components (nor assuming that weights are
rational numbers) is to associate to each vector x a cumulative function Fx(z) which
indicates the weight of the coalition formed by the criteria whose performance does
not exceed threshold z. Denoting v the function which gives the weight of a subset
of criteria, we have: Fx(z) = v({i ∈ N,xi ≤ z}). We also consider the left inverse of
Fx, denoted F̌x which reads F̌x(p) = inf{z inR|Fx(z)≥ p} for p∈ [0,1]. This quantity
represents a kind of quantile function; it represents the minimum level z from which
there exists a coalition of criteria satisfied at level z or more and which is of weight
greater than or equal to p. Both Fx and F̌x are stepwise functions. We then define
from Fx,Fy or F̌x, F̌y the second order stochastic dominance by one of the following
formulas which are known to be equivalent:

x %2 y iff ∀z ∈ R,F2
x (z)≤ F2

y (z) with F2
x (z) =

∫ z

−∞

Fx(t)dt (7)
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x %2 y iff ∀p ∈ [0,1], F̌2
x (p)≥ F̌2

y (p) with F̌2
x (p) =

∫ p

0
F̌x(t)dt (8)

This dominance is transitive and coincides with the second order stochastic dom-
inance that will be introduced in the next chapter (just reinterpreting the v func-
tion as a probability measure and using Equation (7)). In the case where the crite-
ria are equally weighted, this dominance %2 reduces to the Lorenz dominance. In
fact, when functions Fx,Fy (resp. F̌x, F̌y) are piecewise linear, testing %2 amounts to
comparing the curves at break points in terms of weak Pareto dominance. Note
that in the case of equally weighted components, the n break points are in k/n
for k = 1, . . . ,n. We can then show that nF̌2

x (k/n) = Lk(x) (see [Shorrocks, 1983;
Muliere and Scarsini, 1989]). This explains why %2 is equivalent to comparing the
components of the Lorenz vectors Lk(x) and Lk(y) for all k ∈ N and therefore, in
this case, %2 is nothing else but the Lorenz dominance %L. For this reason %2 can
be seen as a generalization of Lorenz dominance in the case of weighted criteria.

3.2 Concordance Relations

The concordance relations are preference relations that are not necessarily transi-
tive, resulting from aggregation rules inspired by the majority voting rules (rules of
concordance). In such rules, for each pair of solutions (x,y), we count the number of
criteria in favor of x and y respectively, and it is based on this count to decide whether
x is better than y. If the criteria do not all have the same weight, we can more gener-
ally evaluate the weight of the coalition of criteria in favor of x and against y. This
so-called “concordant” coalition is a widely used notion in ELECTRE type methods
(see [Roy, 1985; Roy and Bouyssou, 1993; Vincke, 1992]). There are many variants
of these rules, of which we give here some typical examples by assuming that the
indices φi(x,y) are constructed as in Equation (4):

Absolute Concordance

∀(x,y) ∈ A×A, c(x,y) = v({i ∈ N : φi(x,y)> 0}) (9)

x % y iff c(x,y)≥ s (10)

where v is a set function defined on 2N and valued in [0,1] and s ∈]0, 1] is an ac-
ceptance threshold named concordance threshold. The most standard instance of
this family of rules is the absolute majority rule obtained for s = (n+ 1)/2 and
v(E) = |E| for all E ⊆ N. When we wish to weight the criteria, we can define
v(E) = ∑i∈E wi where wi represents the weight of criterion i. We may also resort
to more general definitions such as v(E) = ψ(w1, . . . ,wn) where ψ is an aggrega-
tion function.
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Relative Concordance

x % y iff c(x,y)≥ c(y,x) (11)

where c(x,y) is defined by Equation (9). This relation is generally not transitive.
However, some instances of this rule are transitive on any set of alternatives. In fact,
the transitivity appears for very specific definitions of the notion of importance of
criteria. This point has been widely studied in the literature on decision theory, see
e.g., [Dubois et al., 2003] for a reference in AI.

Absolute Concordance with Veto

x % y iff
{

c(x,y)≥ s
∀i ∈ N,yi− xi ≤ vi

(12)

where vi is the veto threshold that can be defined as the biggest difference of perfor-
mance yi− xi that can be imagined on criterion i and which is still compatible with
the preference of x over y. If yi− xi exceeds the veto threshold on some criterion
i, x cannot be preferred nor be indifferent to y. This condition aims to prevent any
compensation phenomenon when comparing two alternatives with very contrasted
profiles. It also prevents to compensate a strong weakness with multiple weakly pos-
itive points. This principle of non-veto is presented in an absolute concordance rule
but could also be inserted in the relative concordance rule. The reader may refer to
[Roy and Bouyssou, 1993; Perny, 1998] for more details on this point.

Concordance Rules with Reference Points

Let p ∈Rn be a performance vector used as a reference point to assess and compare
the alternatives. A concordance relation with reference point is defined by:

x % y iff c(x, p)≥ c(y, p) (13)

where c(x,y) is defined by Equation (9). Using the same notations, we can also
introduce the following relation:

x % y iff c(p,y)≥ c(p,x). (14)

Note that, contrary to the standard concordance relations introduced before (see
Equations 10 to 12), the concordance relations with reference point are naturally
transitive, which facilitates their use for choice and ranking problems. One can find
in [Perny and Rolland, 2006; Rolland, 2013; Bouyssou and Marchant, 2013] other
examples of concordance rules with reference points, as well as some axiomatic
analysis concerning these rules.

When a non-transitive concordance relation is used, the candidates cannot be
directly ordered and it is difficult to determine an optimal choice. To overcome the
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problem, many methods for determining a winner or ranking the alternatives from
a non-transitive strict preference relation � have been proposed. Here are some
examples:

The Net Flow Rule

Rank the candidates according to the Net Flow Score defined as follows:

φ(x) = |{y ∈X : x� y}|− |{y ∈X : y� x}|

For a choice problem, select the alternatives maximizing the net flow.

Schwartz’s Rule

Calculate�∗ the transitive closure of relation�. Then define a new strict preference
relation �S as follows:

x�S y iff [x�∗ y and not(y�∗ x)]

By construction relation�S is transitive since it is the asymmetric part of a transitive
relation. For a choice problem, select the solutions of ND(X ,�S).

Decision Rules based on Traces

The traces of a relation � are defined by:

x�+ y iff ∀z ∈X \{x,y}, (y� z⇒ x� z)

x�− y iff ∀z ∈X \{x,y}, (z� x⇒ z� y)

Both relations �+ and �− are transitive, and therefore their intersection too.
They can therefore be used to partially order the solutions or to define a set of non-
dominated elements, for example by calculating ND(X ,�+) or ND(X ,�−).

4 Decision Models in the AC Approach

4.1 The weighted Mean

The decision model based on the weighted mean leads to the following definition of
preferences:
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x % y iff
n

∑
i=1

wixi ≥
n

∑
i=1

wiyi

This model is probably the one that most quickly comes to mind when one aggre-
gates performances. Yet it is often unsatisfactory because it provides no control on
whether the optimal solutions are balanced or not. By way of illustration, let us
consider the following example:

Example 5. A company wants to recruit a technical sales computer. Candidates must
complete two interviews, one for the technical skills of the individual, the other in-
tended to evaluate the business skills. Consider a situation with 4 candidates that
received the following grades: x = (18,5),y = (4,19),z = (11,11),w = (9,7). Can-
didate w who is Pareto-dominated by candidate z is quickly disqualified. The can-
didates x and y, who have a significant weakness on one of the two expected skills
(score less than or equal to 5), do not seem to be suitable either. As a result, the z can-
didate seems to be the best compromise between technical and commercial skills.
However, it can easily be verified that, whatever the weight vector (w1,w2) used,
the candidate z will not be the one with the best weighted average, although he is
Pareto-optimal. This is due to the fact that (11,11) lies within the convex hull of the
points x,y,z,w in the criterion space, whereas only the points on the boundaries of
this convex hull can be obtained by optimizing a weighted sum of the performances.

The above example shows that when a weighted sum is used, we take the risk of
eliminating some Pareto-solutions a priori, even before having chosen the weights
of the criteria, although such solutions could achieve interesting compromises be-
tween the criteria. These well-known limits of the weighted sum justify the interest
in other aggregators. A possible generalization of weighted means is provided by
quasi-arithmetic means defined by:

ψ(x) = f−1

(
n

∑
i=1

wi f (xi)

)

where f (x) is a strictly monotonic function. For instance, the weighted geometric
mean is obtained for f (x) = ln(x), the weighted dual geometric mean when f (x) =
ln(1−x), the harmonic mean when f (x) = 1/x and the weighted Lp norm for f (x) =
xp, p∈N. The next section introduces a more powerful aggregator to explore various
types of compromise solutions in the Pareto set.

4.2 The Weighted Tchebycheff Norm

One way to define preferences by a scalarizing function is to measure the distance
to a reference point p ∈ Rn representing a target performance vector. The idea is
to try to be as close as possible to the target on each of the criteria. The quality
of a solution can then be defined as its distance to the target in the sense of the
Tchebycheff norm (a.k.a. infinite norm).
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Let λ ∈ Rn
+ be a weighting vector used in combination with the Tchebycheff

norm on the one hand to normalize criterion values when they are expressed on
different scales, and on the other hand, to control the importance attached to the
different criteria so as to generate compromise solutions with a bias reflecting the
value system of the decision maker:

ψ(x) = ||λ (x− p)||∞ = max
i∈N

λi|xi− pi|

A good choice for the reference point p is the ideal point α ∈ Rn defined by
αi = supx∈X xi which provides an upper bound of the set of Pareto-optimal vectors.
Then, minimizing the Tchebycheff distance amounts to projecting the ideal point on
the Pareto set, in a direction controlled by the weights λi. Usually the weights λi are
defined as follows:

λi =
wi

αi−βi
with βi = inf

x∈X ∗
{xi} and X ∗ = {x ∈X : ∃i ∈ N,xi = αi}

The components αi are obtained by monocriterion optimizations on each compo-
nent separately; this makes it possible to compute X ∗ and then components βi.
The optimization of the parameterized function ψ guarantees that, for any Pareto-
optimal solution x, there exists a weighting vector w such that x will be part of
the ψ-optimal solutions [Wierzbicki, 1986] (in fact to avoid pathological cases and
fully benefit from this property, it is better not to define α as the ideal point but as
a neighbor point strictly above the ideal on every component). We thus correct the
observed defect of the weighted sum since any Pareto-optimal solution can now be
obtained by a minimization of ψ with the proper parameters. On the other hand,
the optimization of function ψ does not quite guarantee the Pareto-optimality of the
solutions obtained because of a drowning effect induced by the maximum. Assume
indeed that the reference point is p = (20,20) and that the two feasible solutions
are x = (4,2) and y = (18,2) we have ψ(x) = ψ(y). Thus, x could be selected as
the best choice while it is Pareto-dominated. To avoid this problem, we introduce
an additional term, the weighted sum of the deviations from the ideal point multi-
plied by an arbitrarily small quantity ε > 0; this weighted sum comes to play the
role of a second criterion considered lexicographically after that of Tchebycheff to
discriminate between equivalent solutions in terms of distance to the ideal point. We
therefore arrive at the following aggregation function to be minimized:

t(x) = max
i∈N

wi(αi− xi)

αi−βi
+ ε

n

∑
i=1

wi(αi− xi)

αi−βi
(15)

By minimizing function t defined by Equation (15), we make sure to generate
only Pareto-optimal solutions. Moreover, if ε is chosen to be small enough, the prac-
tical possibility of reaching any Pareto-optimal solution is preserved [Wierzbicki,
1986]. This dual quality justifies the use of this aggregator in optimization to ex-
plore the Pareto-optimal solutions in various directions controlled by the w vector. It
is therefore widely used in interactive exploration methods [Steuer and Choo, 1983;
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Steuer, 1986; Wierzbicki, 1999]. This aggregator can of course be used to define a
preference over the set of solutions (by proximity to the ideal point α) by setting:
x % y iff t(x) ≤ t(y). An application of this decision model to multiobjective state
space search is proposed in [Galand and Perny, 2006].

4.3 The Ordered Weighted Average (OWA)

The Ordered Weighted Average [Yager, 1988] in an aggregation function enabling to
weight the performances xi according to their rank, once reordered with permutation
σ such that xσ(1) ≤ xσ(2) ≤ ·· · ≤ xσ(n). Formally, the OWA aggregation is defined
by:

OWA(x) =
n

∑
i=1

wixσ(i) (16)

OWA is a symmetric function because the weights do not relate to the components of
x but to those of the reordered vector. This family includes the minimum, maximum,
median operations and all order statistics 2 as special cases, by using a weighting
vector whose all but one components are zero, the remaining one being 1. It is
also widely used in fair optimization as a linear extension of the Lorenz dominance
introduced in the previous section. Indeed, noting that xσ(i) = Li(x)− Li−1(x) for
i > 1, we have:

OWA(x) =
n−1

∑
i=1

(wi−wi+1)Li(x)+wnLn(x) (17)

One can see that, if coefficients wi are positive and chosen to decrease when i
increases, OWA is a linear combination with positive coefficients of the components
of the Lorenz vector. Therefore the weak order defined by:

x % y iff OWA(x)≥ OWA(y)

is a linear extension of Lorenz dominance, that is, x %L y⇒ OWA(x) ≥ OWA(y).
Thus OWA used with strictly decreasing weights wi is an aggregator allowing to
promote balanced solutions. Indeed, due to Equation (17), an OWA-optimal so-
lution is necessarily optimal in Lorenz’s sense and there is therefore no Pigou-
Dalton transfer allowing to reduce inequalities (due to Theorem 1). Another way
to present the treatment of inequalities by an OWA is to consider Equation (16)
and note that by choosing decreasing weights, one assigns the greatest weight to
the least satisfied criterion, then a little less importance to the second least satis-
fied criterion and so on. Of course, comparing or sorting performances from several
criteria only makes sense when they are expressed on the same scale (if not, they
must first be re-encoded using utility functions). To give an example of the use of
OWA, if one wishes to compare the vectors x = (10,5,15) and y = (10,12,8) us-

2 The order statistic of rank k of a sample of values is equal to the kth smallest value.
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ing an OWA with w = (3/6,2/6,1/6), we obtain OWA(x) = 50/6 = 8.33 while
OWA(y) = 52/6 = 8.66, therefore y� x.

The OWA operator is widely used in social choice theory as a measure of in-
equality under the name of the generalized Gini social evaluation function [Wey-
mark, 1981]. It is also used to aggregate fuzzy set membership functions (see
[Yager, 1988]). In artificial intelligence, it often appears in fair optimization prob-
lems or allocation problems of indivisible goods [Bouveret and Lang, 2005; Golden
and Perny, 2010; Lesca and Perny, 2010], and also in voting rules [Goldsmith
et al., 2014; Elkind and Ismaili, 2015; Skowron et al., 2016; Garcı́a-Lapresta and
Martı́nez-Panero, 2017]. Note that, although OWA is not a linear function of crite-
rion values, the optimization of an OWA function can be done by linear program-
ming (provided that the criteria and the constraints defining the admissible solutions
are linear in the decision variables), for more details see [Ogryczak and Sliwinski,
2003; Chassein and Goerigk, 2015].

4.4 The Weighted OWA (WOWA)

As pointed out in the previous subsection, one characteristic of the OWA is to be
a symmetric aggregation function. This property, which seems natural when the
criteria represent individual points of view in a collective decision problem, may not
be desired in multicriteria decision problems, particularly when certain criteria are
considered more important than others. We then consider now a weighted extension
of the OWA aggregator, the initial weights involved in the OWA definition being
only used to control the importance attached to good and bad performances. This
weighted OWA is know in the literature under the name of WOWA [Torra, 1997]; it
uses a vector p ∈ Rn of criteria weights and takes the following form:

WOWA(x) =
n

∑
i=1

[
xσ(i)− xσ(i−1)

]
ϕ

(
n

∑
k=i

pσ(k)

)

=
n

∑
i=1

[
ϕ

(
n

∑
k=i

pσ(k)

)
−ϕ

(
n

∑
k=i+1

pσ(k)

)]
xσ(i)

where σ is the permutation reordering the components of x by increasing order, i.e.,
xσ(1) ≤ xσ(2) ≤ ·· · ≤ xσ(n); function ϕ is strictly increasing and such that ϕ(0) = 0.
The induced preference is then defined by: x % y iff WOWA(x)≥WOWA(y).

This formulation is known as Yaari’s model in decision under risk because it has
been initially introduced and axiomatically justified in this context [Yaari, 1987] (the
weights pi being interpreted as the probabilities of the states of nature, see the RDU
model in Chapter I.14). Its importation into a multicriteria decision-making context
is more recent and due to Torra [Torra, 1997] who arrives at an identical formulation
starting from an OWA. The specificity of the construction proposed by Torra lies in
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the definition of the ϕ function. It is constructed from the weights (w1, . . . ,wn) of
an OWA so that ϕ(i/N) = ∑

i
k=1 wn−k+1, which allows to weight the criteria while

controlling the importance given to good and bad performances as in an OWA. The
WOWA is therefore constructed from the two weighting vectors p and w. By way
of illustration, consider the following example:

Example 6. If we want to compare vectors x = (10,5,15) and y = (10,12,8) with
a WOWA characterized by weights w = (3/6,2/6,1/6) and criteria weights p =
(3/6,1/6,2/6), we use a piecewise linear ϕ function taking the following values at
the key points: ϕ(0) = 0,ϕ(1/3) = 1/6,ϕ(2/3) = 1/2,ϕ(1) = 1. These values can
be completed by linear interpolation to obtain:

x 0 1/6 2/6 3/6 4/6 5/6 1
ϕ(x) 0 1/12 1/6 2/6 1/2 3/4 1

Then we get:

WOWA(x) = 5+(10−5)ϕ(5/6)+(15−10)ϕ(2/6) = 9.58
WOWA(y) = 8+(10−8)ϕ(4/6)+(12−10)ϕ(1/6) = 9.16

Therefore x is preferred to y. Here the fact that the third criterion is more important
than the second gives an advantage to x which is sufficient to compensate the inegali-
tarian side of this solution. We can verify that it would suffice to be more demanding
on the equity requirement by choosing the weighting vector w = (0.8,0.25,0.05) so
that the preference is reversed in favor of y. In this case, we would indeed have:

ϕ(0) = 0,ϕ(1/3) = 0.05,ϕ(2/3) = 0.3,ϕ(1) = 1

and, by completing using linear interpolation:

x 0 1/6 2/6 3/6 4/6 5/6 1
ϕ(x) 0 0.025 0.05 0.175 0.3 0.65 1

In this case we obtain:

WOWA(x) = 5+(10−5)ϕ(5/6)+(15−10)ϕ(2/6) = 8.5
WOWA(y) = 8+(10−8)ϕ(4/6)+(12−10)ϕ(1/6) = 8.65

and this time we get y is preferred to x.

This example clearly shows how the two vectors of weights interact, one to control
the weights of the criteria and the other to control the fairness requirement. It may
also be noted that if weights wi decrease when i increases (to favor solutions that
equitably share performance among criteria) then the ϕ function is convex and the
function WOWA is concave. In this case, it can be proven that WOWA is mono-
tone increasing with dominance %2 introduced in Equation (7), which means that:
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x %2 y⇒WOWA(x)≥WOWA(y). Thus, we obtain a weighted version of the result
concerning the monotony of OWA with respect to Lorenz dominance.

In practice, nothing prohibits the use of non-decreasing weights and we then
obtain an aggregator that offers a diversity of behaviors in the aggregation. For
example, if we use weights wi increasing with i, we will have a concave ϕ and
a convex WOWA. In maximization, we give a premium to the solutions with an
imbalanced profile alternating good and bad performances. We will return to the
control of WOWA in the more general framework of the Choquet integral. We can
also notice that if φ(x) = x then WOWA reduces to a simple weighted average with
weights pi. Moreover, if pi = 1/n then WOWA reduces to an OWA, which is quite
natural. Finally, it should be noted that WOWAs are very useful for equitable opti-
mization when we want to associate weights with agents (exogenous rights), espe-
cially since when the wi weights are decreasing when i increases, the optimization
of WOWA can be done easily by linear programming using reformulations close to
those needed to linearize an OWA (see [Ogryczak and Sliwinski, 2007] for more
details).

Note that function ϕ does not necessarily have to be constructed from vectors
p and w, it can be directly defined as a convex function to convey an idea of fair-
ness (in maximization, the more function ϕ is convex the greater the requirement of
fairness). On the contrary a concave ϕ function would exhibit a preference for con-
trasted profiles. In minimization problems, this is just the opposite and fairness is
modeled by a concave ϕ function. The direct elicitation of ϕ can be performed using
preference queries on specific pairs of alternatives, see e.g., [Perny et al., 2016].

4.5 The Choquet Integral

The Choquet integral is one of the most sophisticated scalarizing function used
for multicriteria aggregation [Choquet, 1953; Grabisch, 1996; Marichal, 2000a;
Marichal and Roubens, 2000; Grabisch and Labreuche, 2008; Grabisch et al., 2009].
It includes both weighted sums, OWA and WOWA as special cases. It is defined
from a set function, namely the capacity allowing to assign a weight to any subset
of criteria E ⊆ N. More precisely, a capacity is defined as follows:

Definition 5. A capacity is a set function v : N→ [0,1] such that v( /0) = 0, v(N) = 1
and ∀A,B⊆ N,A⊆ B⇒ v(A)≤ v(B).

The capacity is said to be:

• concave or sub-modular if v(A∪B)+ v(A∩B)≤ v(A)+ v(B) for all A,B⊆ N,
• additive if v(A∪B)+ v(A∩B) = v(A)+ v(B) for all A,B⊆ N,
• convex or super-modular if v(A∪B)+ v(A∩B)≥ v(A)+ v(B) for all A,B⊆ N.

For any given capacity v, the Choquet integral of a vector x ∈ Rn is defined by:
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Cv(x) =
n

∑
i=1

[
xσ(i)− xσ(i−1)

]
v(Xσ(i))

=
n

∑
i=1

[
v(Xσ(i))− v(Xσ(i+1))

]
xσ(i)

where σ is the permutation reordering the components of x by increasing order,
i.e., xσ(1) ≤ xσ(2) ≤ ·· · ≤ xσ(n), xσ(0) = 0, Xσ(i) = {σ(i),σ(i+ 1), . . . ,σ(n)} for
i = 1, . . . ,n, and Xσ(n+1) = /0. The preference relation associated to the Choquet
integral is therefore defined by: x % y iff Cv(x)≥Cv(y).

We remark that WOWA is only a special case of Choquet integral in which the
capacity v is defined by v(E) = ϕ(∑i∈E Pi) for a weighting vector (p1, . . . , pn). It can
be shown that v is convex (resp. concave) when ϕ is convex (resp. concave). The
Choquet integral Cv can account for various behaviors depending on the choice of
the capacity. When using an additive capacity, i.e., v(E) = ∑i∈E pi, the Choquet in-
tegral is reduced to the weighted sum and does not offer particular descriptive possi-
bilities. However, we can describe much richer classes of preferences with concave,
convex or other more general capacities. For example, if we use a convex capac-
ity in maximization, the well-balanced profiles will be favored, and this will be the
opposite if we choose a concave capacity, as shown by the following example:

Example 7. Let us consider an example with 3 criteria, i.e., N = 1,2,3 and two ca-
pacities v1 and v2 defined in the following table:

/0 {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v1 0 0.2 0.1 0.3 0.45 0.5 0.65 1
v2 0 0.35 0.5 0.55 0.7 0.9 0.8 1

One can easily check that v1 is convex and v2 is concave. Coming back to the com-
parison of vectors x = (10,5,15) and y = (10,12,8) we have:

Cv1(x) = 5+(10−5)v1({1,3})+(15−10)v1({3}) = 9
Cv1(y) = 8+(10−8)v1({1,2})+(12−10)v1({2}) = 9.1
Cv2(x) = 5+(10−5)v2({1,3})+(15−10)v2{3}) = 12.25
Cv2(y) = 8+(10−8)v2({1,2})+(12−10)v2{2}) = 10.4

One can see that with v1 solution y is preferred to x whereas with v2 solution x is
preferred to y.

More precisely, the use of a convex capacity in a Choquet integral conveys an idea
of equity due to the following property [Chateauneuf and Tallon, 1999]:

Proposition 1. If v is convex then ∀x1,x2, . . .xp ∈ Rn, ∀k ∈ {1,2, . . . , p} and ∀i ∈
{1,2, . . . , p},λi > 0 such that ∑

p
i=1 λi = 1 we have:

Cv(x1) =Cv(x2) = · · ·=Cv(xp)⇒Cv

(
p

∑
i=1

λixi

)
≥Cv(xk).
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This proposition means that if several solutions xi, i = 1, . . . , p are indifferent for the
decision maker, she we will prefer a solution whose performance vector is a con-
vex combination of the xi’s to all these solutions. For example, if one is indifferent
between two performance vectors (0,20) and (20,0), it is expected that a solution
such as (10,10) which corresponds to the average of the two preceding vectors is
preferable. Obviously, the reverse preference is obtained with a concave capacity.
The Choquet integral for a convex capacity is a concave function and conversely the
Choquet integral for a concave capacity is a convex function [Lovász, 1983]. An-
other useful formulation of the Choquet integral is to express it as a function of the
Möbius masses associated with capacity v. These masses are defined in this way:

Definition 6. To any capacity v defined on 2N one can associate another set function
on 2N named Möbius inverse and defined by:

∀A⊆ N,m(A) = ∑
B⊆A

(−1)|A\B|v(B) (18)

Then, v can be recovered from its Möbius inverse m as follows:

∀A⊆ N,v(A) = ∑
B⊆A

m(B) (19)

Using the Möbius inverse m associated with v, the Choquet integral can be rewrit-
ten as follows:

Cv(x) = ∑
B⊆N

m(B)min
i∈B

xi (20)

This highlights another interpretation of the Choquet integral as a linear aggregator
in a new multidimensional space of size 2n where n is the initial number of criteria.
The components of a vector in this space correspond to quantities mini∈B xi for all
subsets B⊂N. Whether we use the initial formulation of the Choquet integral or the
one that involves the Möbius masses, we may be concerned about the presence of 2n

parameters to characterize the importance of the criteria and their interaction. For-
tunately, in many practical cases, there is no need to consider all these coefficients,
we can resort to k-additive capacities for some k < n, where k-additivity is defined
as follows [Grabisch, 1996; Dubois and Prade, 1997]:

Definition 7. A capacity v is said to be k-additive if its Möbius inverse equals zero
for any subset A⊆N such that |A|> k, and if m(A) 6= 0 for some A such that |A|= k.

If k = 1 we obtain an additive capacity. The k−additive capacities for small values
of k greater than 1 are very useful in practice because they offer sufficient expres-
siveness to model positive or negative interactions between criteria while involv-
ing a fairly small number of parameters. For example, when k = 2, the capacity is
completely characterized by only (n2 + n)/2 coefficients (a Möbius mass for each
singleton and each pair), which enables to model the following interactions between
pairs of criteria:

• positive interaction: m({i, j})> 0 and therefore v({i, j})> v({i})+ v({ j})
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• no interaction: m({i, j}) = 0 and therefore v({i, j}) = v({i})+ v({ j})
• negative interaction: m({i, j})< 0 and therefore v({i, j})< v({i})+ v({ j})

Moreover, with a 2-additive capacity one obtains from Equation (20) a very compact
expression for the Choquet integral:

Cv(x) = ∑
i

mixi +∑
i> j

mi j min{xi,x j}

As with OWA and WOWA, the search for a solution maximizing Cv(x) can be
performed by linear programming in the case where v is convex [Lesca and Perny,
2010]. In the general case, it is more delicate but some efficient linearizations exist
for some class of Möbius representations [Lesca et al., 2013]. For more details on
Choquet integrals, interaction indices and set functions in multicriteria analysis, the
reader should refer to [Grabisch, 1996; Grabisch et al., 2009; Grabisch, 2016]. For
the elicitation of the capacity in the Choquet integral, the reader should refer to
[Grabisch et al., 1995; Marichal and Roubens, 2000; Fallah Tehrani et al., 2012;
Hüllermeier and Fallah Tehrani, 2013; Benabbou et al., 2017].

The Choquet integral is used in various domains of artificial intelligence. For ex-
ample, in machine learning, the use of Choquet integrals provides higher predictive
capacities than linear models, while offering measures for quantifying the impor-
tance of individual predictor variables and the interaction between groups of vari-
ables [Fallah Tehrani et al., 2012]. Moreover, in recommender systems [Beliakov
et al., 2015], the advantage provided by Choquet integrals is to allow positive and
negative synergies between criteria, with enhanced descriptive and prescriptive pos-
sibilities. Similarly, in multiagent decision making [Dubus et al., 2009], the Choquet
integral is used to aggregate individual preferences using a possibly non-additive
measure of the importance of agent coalitions, which allows one to model various
notions of social welfare. In information fusion [Torra and Narukawa, 2007], the
use of the Choquet integral allows one to model positive or negative reinforcements
among sets of observations. Finally, in multiobjective state-space search [Galand
and Perny, 2007], the use of Choquet integrals allows one to find compromise solu-
tions that could not be obtained using linear aggregators.

4.6 The Sugeno Integral

The Sugeno integral [Sugeno, 1974; Dubois et al., 1998; Marichal, 2000b; Dubois
et al., 2001a; Grabisch and Labreuche, 2008; Couceiro et al., 2012] can be seen as
a qualitative counterpart of the Choquet integral. In some cases, performance and
capacity are expressed on a common ordinal scale. In the presence of such infor-
mation, one cannot reasonably use the previous criteria which call for the cardinal
properties of performance and importance indices (weight, capacity). A natural al-
ternative is then to consider the Sugeno integral which reads:
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Sv(x) = max
i∈N

min{xσ(i),v(Xσ(i))}

where σ is the permutation reordering the components of x by increasing order, i.e.,
xσ(1) ≤ xσ(2) ≤ ·· · ≤ xσ(n), Xσ(i) = {σ(i),σ(i+ 1), . . . ,σ(n)} for i = 1, . . . ,n. The
resulting overall preference relation is therefore:

x % y iff Sv(x)≥ Sv(y).

This general aggregator has been introduced by Sugeno [Sugeno, 1974] in fuzzy
sets theory and imported into decision theory under uncertainty where its use was
axiomatically justified [Dubois et al., 1998]. The Sugeno integral can also be used
in multicriteria decision making because the proposed axioms can easily be trans-
posed. When v is a measure of possibility over N defined by v(A) = max{πi, i ∈ A},
(π1, . . . ,πn) playing the role of ordinal weights (positive coefficients such that
max{πi, i ∈ A} = 1), the Sugeno integral is nothing else but a weighted maximum
defined by:

wmax(x) = max
i∈N

min{xi,πi}

When v is a necessity measure defined on N by v(A)= 1−max{πi, i /∈A}, (π1, . . . ,πn)
playing the role of ordinal possibilistic weights, the Sugeno integral takes the par-
ticular form of a weighted minimum defined by:

wmin(x) = min
i∈N

max{xi,1−πi}

The weighted max operator reflects an optimistic view which consists of valuing the
existence of at least one good performance on an important criterion. The weighted
min reflects a more pessimistic view which consists of assessing the extent to which
no important criterion exists on which the alternative under consideration performs
poorly. These two models as well as the Sugeno integral have been studied in depth
in a decision-making framework, see e.g., [Dubois and Prade, 1995; Dubois et al.,
2001b].

5 Conclusion

The models presented in this chapter provide an overview of the main aggregators
used to take multiple points of view into account, whether in multi-criteria decision-
making or collective decision-making (see also chapters I.15 and I.17). Most of them
are widely used in artificial intelligence. In multicriteria and collective decision-
making, the CA approach is very present through ordinal methods of aggregation
derived from social choice theory and voting procedures. However, the AC approach
remains the most widespread, whether in multi-criteria decision-making to deter-
mine specific trade-offs in the Pareto set (by optimizing a scalarizing function), or
in collective decision-making to determine a fair Pareto-optimal solution. Concern-
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ing this second approach, the reader wishing to obtain technical complements on
the aggregation functions and their properties may refer to [Grabisch et al., 2009].

Whether they fall under the CA or AC approach, the models presented in this
chapter can also be used in decision-making under uncertainty, when trying to eval-
uate and compare acts in the sense of Savage. If we consider situations in which
uncertainty is represented by a finite set of possible states S = {s1, . . . ,sn}, it ap-
pears that the different states act as different criteria to evaluate the possible acts.
This explains why several models introduced in this chapter may also be used for
decision under uncertainty. These criteria can even be generalized in the case of a
continuous set of states of nature. The next chapter is precisely intended to present
in the most general case the decision models used under uncertainty and risk.

The main theoretical axes that still need to be developed in multicriteria analysis
relate to the axiomatic justification of existing models (the results to characterize the
preferences that can be represented by a particular model do not always exist in mul-
ticriteria analysis, even if neighboring results sometimes exist for decision making
under uncertainty), the development of decision models with increased descriptive
power in the presence of rich information, and the development of ordinal or partial
aggregation methods in the presence of poor information. From a more operational
point of view, the main challenges of multicriteria decision theory are to propose
efficient methods for eliciting or learning the parameters of the models they pro-
pose (for example for recommendation systems) and, on the other hand, to develop
efficient algorithms for determining preferred solutions in combinatorial problems
(preference-based search). The combinatorial nature of the space of feasible solu-
tions precludes the use of any explicit enumeration method to compare solutions.
The search for preferred solutions necessarily involves the development of implicit
enumeration methods, but the optimization problems that need to be solved are all
the more difficult as the models are sophisticated. Decision theory, by producing
models that are always richer to account for various decision-making behaviors, is
therefore a source of permanent challenges for computer scientists. These aspects of
elicitation and computation are widely studied in artificial intelligence and are the
subject of numerous recent contributions to algorithmic decision theory.
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