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ABSTRACT
Scanning acoustic microscopy is a well-accepted modality

for forming quantitative 2D maps of acoustic properties

of soft tissues at microscopic scales. In our studies, the

sample is raster-scanned with a spatial step size of 2 μm
using a 250 MHz transducer resulting in 3D RF data cubes.
Each RF signal is processed to obtain, for each spatial

location, acoustic parameters, e.g., the speed of sound. The

scanning time is directly dependent on the sample size and

can range from few minutes to hours. In order to maintain

constant experimental conditions for the sensitive thin sec-

tioned samples, the scanning time is an important practical

issue. Hence, the main objective of this work is to reduce

the scanning time by reconstructing acoustic microscopy

images from spatially under sampled measurements, based

on the theory of compressive sampling. A recently pro-

posed approximate message passing method using a Cauchy

maximum a posteriori image denoising algorithm is thus

employed to account for the non-Gaussianity of quantitative

acoustic microscopy wavelet coefficients.

Index Terms— scanning acoustic microscopy, compres-

sive sampling, approximate message passing, Cauchy distri-

bution

I. INTRODUCTION

Quantitative acoustic microscopy (QAM) is an imaging

technology employed to investigate soft biological tissue at

microscopic resolution by eliciting its mechanical property

with very high frequency ultrasound [1]. Specifically, by

processing RF echo data, QAM yields two-dimensional (2D)

quantitative maps of the acoustical and mechanical properties

of soft tissues. Therefore, QAM provides a novel contrast

mechanism compared to histology photomicrographs and

optical and electron microscopy images [2]. Currently, QAM

requires a complete 2D raster scan of the sample to form
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images, thus yielding a large amount of RF data and leading

to corresponding acquisition time when using a conventional

spatial sampling scheme. In this study, the data acquisition

corresponds to a 2 μm step raster scan at 250 MHz.

The scanning time is directly dependent on the sample size

and can range from few minutes to hours. In order to

maintain constant experimental conditions for the sensitive

thin sectioned samples, the scanning time is an important

practical issue. Hence, the main objective of this work is

to reduce the scanning time by reconstructing QAM images

from spatially under sampled measurements, based on the

theory of compressive sampling (CS). In this work, an

approximate message passing (AMP) algorithm, previously

shown to outperform l1-norm minimization, was imple-

mented. This study demonstrates that a discrete wavelet

transform is an appropriate choice for SAM. The Cauchy

distribution was used to construct the denoising function

embedded in the proposed AMP algorithm [3].

The contribution of the proposed AMP-based QAM imaging

framework is twofold: (i) to propose a spiral spatial sam-

pling scheme that meets the practical constraints of QAM

acquisition, (ii) to design a dedicated wavelet domain AMP-

based reconstruction algorithm, which exploits underlying

data statistics through the use of a Cauchy-based MAP

algorithm.

The remainder of this paper is organized as follows. Sec-

tion II provides a brief background on QAM, CS and AMP.

Section III introduces the spiral sampling and the AMP-

based reconstruction algorithm. Section IV compares the

performance of the proposed method with a standard AMP

algorithm. Finally, conclusions are reported in Section V.

II. BACKGROUND
II-A. Quantitative Acoustic Microscopy
In QAM, a high-frequency (e.g., > 50 MHz), single-

element, spherically-focused (e.g., F-number < 1.3),
transducer transmits a short ultrasound pulse and receives

the RF echo signals reflected from the sample which consists

of a thin section of soft tissue affixed to a microscopy slide.

At each scan location, the RF data is digitized, saved, and



processed offline to yield values of acoustic parameters such

as the speed of sound used in this study [4]. The values

obtained at each scan location are then combined to form

quantitative 2D parameter maps.

II-B. Compressive Sensing
CS theory guarantees an exact recovery of specific

signals or images from fewer measurements than the

number predicted by the Nyquist limit [5], [6]. This

guarantee is mainly based on two conditions: the images

must have a sparse representation in a given basis or

frame and the measurement and sparsity bases should

be as much decorrelated as possible (i.e., incoherent
measurements). In contrast to the classical sampling

followed by compression procedure, CS is concerned with

sampling signals more parsimoniously, acquiring only the

relevant signal information. CS measurement model is

y = Φx+ n, (1)

where y ∈ �
M is the measurement vector, x ∈ �

N is

the image to be reconstructed (N >> M ), Φ ∈ �
M×N

is the measurement matrix and n ∈ �
M is an additive white

Gaussian noise.

Recovering the fully-sampled image x from the measure-

ments y have received a considerable attention in the

literature. Among the existing reconstruction methods, we

focus in this study on AMP algorithm, an iterative process

performing sparse representation-based image denoising, be-

cause of its low computational cost and fast convergence

performance [7], [8].

II-C. Approximate Message Passing Reconstruction
In the context of CS, AMP reconstructs an original image

from a reduced number of linear measurements by perform-

ing elementwise denoising at each iteration. Reconstructing

the image amounts to successive noise cancellations until

the noise variance decreases to a satisfactory level. The al-

gorithm can be succinctly summarised through the following

two steps:

xt+1 = ηt
(
ΦT zt + xt

)
, (2)

zt = y −Φxt +
1

δ
zt−1〈η′t−1

(
ΦT zt−1 + xt−1

)〉,(3)
where x,y, z and δ denote a sparse image (in lexico-

graphical order), the measurements, the residual and the

undersampling ratio (M/N) respectively. η (·) is a function
that represents the denoiser, η

′
(·) is its first derivative

and 〈x〉 = 1
N

∑N
i=1(xi). The superscript t represents the

iteration number and (·)T stands for the classical conjugate
transpose. Given x = 0 and z = y as an initial condition,

the algorithm iterates sequentially (2) and (3) until satisfying

a stopping criterion or reaching a pre-set iteration number.

The last term of the right hand side in (3) is referred to

as the Onsager reaction term and serves at balancing the

sparsity-undersampling tradeoff [9], [10].

An extended wavelet-based AMP system can be generated

by integrating a wavelet transform (denoted by W ) into (2)

and (3) using the following transformation.

y = ΦW−1θx︸ ︷︷ ︸
x

+n, (4)

where W−1 is the inverse wavelet transform, W and

θx denotes the sparse representation of x within wavelet

domain. Denoting ΦW−1 by Θ, (2) and (3) turn into:

θt+1
x = ηt

(
ΘTzt + θtx

)
, (5)

zt = y −Θθtx +
1

δ
zt−1

〈
η

′
t−1

(
ΘTzt−1 + θt−1

x

)〉
. (6)

The subsequently defined denoising algorithms seek to de-

noise the elements of θtq = ΘTzt+ θtx corresponding to the
contaminated wavelet coefficients. To simplify the following

notation, the ith element of θtq is defined as θ
t
q,i = v and

the ith element of the denoised output θt+1
x is defined as

θt+1
x,i = ŵ (a denoised estimate of the true coefficient w).
The most important design consideration is arguably

the choice of the shrinkage (denoising) function, η, in (5)
above. Assuming that the clean wavelet coefficients can be

statistically modelled by Laplace distribution, soft threshold

denoiser is a classical choice for η [9]. Therefore, we use it
herein as a comparative method .

Soft Threshold (ST) denoiser:

ŵ = η(v) = sign(v)(|v| − τ) · �(|v|>τ),
η

′
(v) = �(|v|>τ), (7)

where �(·) is the indicator function. The threshold τ is

defined as the M th largest magnitude value of θtq [9].

III. COMPRESSED QAM IMAGING
III-A. Sensing pattern
The incoherence between the sensing matrix and the

sparsifying transform is important in CS applications. There-

fore, theoretically optimal sensing matrices are based on

randomness. For instance, image projections on random

Gaussian vectors or point-wise multiplication with Bernoulli

vectors formed by uniformly random distributed zeros and

ones are classical examples of obtaining measurements with

maximum incoherence with respect to deterministic sparsi-

fying transforms. However, they are impractical for QAM

data acquisition given that RF data are typically acquired



continuously as the motor stages are moved.

In order to respect the acquisition constraints, this paper

investigates a spiral pattern shown in Fig. 1, which can be

easily implemented using servo motors.

Fig. 1: Proposed spiral pattern for sample scanning in QAM.

III-B. Cauchy-based denoiser

This section provides the derivation of the Cauchy-based

denoiser in the wavelet domain embedded in the proposed

AMP algorithm. Wavelet coefficients can be accurately

modelled using heavy tailed distributions such as the

α−stable distribution [11], [12]. The Cauchy distribution is
a special case of the α−stable family which not only has a
heavy tailed form but has a compact analytical probability

density function given by [13]:

P (w) =
γ

w2 + γ2
, (8)

where w and γ are the wavelet coefficient value and the

dispersion parameter respectively. Given (8), a maximum

a posteriori (MAP) estimator method (9) can lead to

the derivation of explicit formulae (12) estimating a

clean wavelet coefficient w from an observed coefficient

observation v contaminated with additive Gaussian noise

(i.e. n = v − w and noise variance σ2) [14].

ŵ = argmax
w

Pw|v(w|v). (9)

Assuming an additive Gaussian noise, i.e. Pv|w(v|w) ∼
N(0, σ2), and using Bayes’ rule, the MAP estimator is given
in (10). Note that (10) is obtained using the log-posterior and

ignoring the evidence Pv(v) which is constant for all inputs.

ŵ(v) = argmax
w

[
− (v − w)2

2σ2
+ log

(
γ

w2 + γ2

)]
. (10)

To find the solution to (10), we cancel the first derivative

relative to w of the function in (10):

ŵ3 − vŵ2 + (γ2 + 2σ2)ŵ − γ2v = 0. (11)
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Fig. 2: Evolution of PSNR and SSIM for different measure-

ment ratios for the proposed AMP and existing AMP-ST

algorithms.

Using Cardano′s method, the estimate of w can be found

in (12) of which first derivative is (13).

ŵ = η(v) =
v

3
+ s+ t, (12)

ŵ
′
= η

′
(v) = 1/3 + s

′
+ t

′
, (13)

where s and t are values determined by v and σ2 iteratively
updated at each iteration together with a constant value γ;
σ2 is estimated as the variance of the z vector defined in
(3). s and t are defined as:

s = 3
√
q
2 + dd, t = 3

√
q
2 − dd, (14)

dd =
√
p3/27 + q2/4,

p = γ2 + 2σ2 − v2/3,

q = vγ2 + 2v3/27− (γ2 + 2σ2)v/3.

s′ and t′ are found as follows:

s′ = q′/2+dd′

3(q/2+dd)(2/3)
, t′ = q′/2−dd′

3(q/2−dd)(2/3) ,

dd′ = p′p2/9+q′q/2
2dd , (15)

p′ = −2v/3,
q′ = −2σ2/3 + 2γ2/3 + 2v2/9.

IV. RESULTS
The proposed method was validated on QAM data classi-

cally acquired at 250 MHz from a human lymph node thin

section obtained from a colorectal cancer patient. The fully

sampled image corresponds to standard raster scanning at

conventional spatial scanning frequencies, resulting into a

pixel size of 2 μm per 2 μm. The data was further down-
sampled using the spiral pattern in Fig. 1 in order to generate

the compressed measurements. Two AMP algorithms have

been used to reconstruct the fully-sampled image from the

spiral measurements. Both algorithms were applied in the

wavelet domain, but used different denoising functions: the

Cauchy denoiser proposed in Section III-B and the classical

soft thresholding described in Section II-C. In the following,

the two algorithms are denoted as ”proposed AMP” and

”AMP-ST”.



(a) (b) (c)

Fig. 3: Illustrative result showing speed-of-sound images of a thin section of a human lymph node acquired from a colorectal
patient: (a) fully-sampled raster-scanned data, (b) and (c) reconstructed images from spiral sub-sampled data (measurement

ratio of 30%) using the AMP-ST and proposed AMP algorithms.

In addition to visual inspection, the peak signal to noise

ratio (PSNR) and the structural similarity (SSIM) index [15]

were used to assess the quality of the reconstructed images

by comparing them to the corresponding fully-sampled quan-

titative map.
Experiments were performed for measurement ratios rang-

ing from 20% to 40% of the data obtained using the

conventional raster scanning approach. Fig. 2 displays the

resulting PSNR and SSIM values. The quantitative results

indicate that the proposed AMP always provided higher

PSNR and SSIM than AMP-ST across the whole gamut of

the investigated measurement ratios. Three speed-of-sound

maps are shown in Fig. 3 representing the fully-sampled

image, and the ones recovered by AMP-ST and proposed

AMP algorithms from data generated with the spiral pattern

for a measurement rate of 30%. From the visual perception,

it can be seen that the dense red area is better reconstructed

using the proposed AMP than with AMP-ST. This subjective

assessment is consistent with the quantitative results shown

in Fig. 2.
Note that similar results can be obtained for other acoustic

parameter maps including attenuation or impedance [3].

V. CONCLUSIONS
Speed-of-sound maps of cancerous human lymph nodes

were reconstructed using an AMP algorithm embedding a

Cauchy-based denoising function from compressed spiral

data. The reconstruction results were more accurate than the

ones obtained using the existing AMP algorithm coupled

with the soft thresholding denoiser. In addition to the sample

reduction, the spiral pattern allows fast scanning because

it is an indefinitely differentiable continuous curve easily

implementable with servo motors. For a measurement ratio

of 30%, the proposed spiral scanning pattern is expected to
reduce the scan time by 60%.
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Basarab and A. Achim1, “Approximate Message Passing Reconstruc-
tion of Quantitative Acoustic Microscopy Images,” in press, 2017.

[4] D. Rohrbach, A. Jakob, H. Lloyd, S. Tretbar, R. Silverman, and J.
Mamou, “A Novel Quantitative 500-MHz Acoustic-microscopy Sys-
tem for Ophthalmologic Tissues,” IEEE Transactions on Biomedical
Engineering, pp.715 - 724, May. 2016.

[5] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency infor-
mation,” Information Theory, IEEE Transactions on, vol. 52, pp. 489-
509, Feb. 2006.

[6] D. Donoho, “Compressed sensing,” Information Theory, IEEE Trans-
actions on, vol. 52, pp. 1289-1306, Apr. 2006.

[7] T. Blumensath and M. Davies, “Iterative hard thresholding for com-
pressed sensing,” Applied and Computational Harmonic Analysis, vol.
27, no. 3, pp. 265-274, 2009.

[8] D. Donoho, “De-noising by soft-thresholding,” Information Theory,
IEEE Transactions on, vol. 41, no. 3, pp. 613-627, 2002.

[9] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing
algorithms for compressed sensing,” Proc. Nat. Academy Sci., vol.
106, no. 45, pp. 18914-18919, Nov. 2009.

[10] C.A. Metzler, A. Maleki and R.G. Baraniuk, “From denoising to
compressed sensing,” arXiv preprint arXiv:1406.4175, 2014.

[11] A. Achim, A. Bezerianos, and P. Tsakalides, “Novel Bayesian mul-
tiscale method for speckle removal in medical ultrasound images,”
IEEE Transactions on Medical Imaging, 20(8), pp. 772-783, 2001.

[12] A. Achim and E. E. Kuruoglu, “Image denoising using bivariate α-
stable distributions in the complex wavelet domain,” in IEEE Signal
Processing Letters, vol. 12, no. 1, pp. 17-20, Jan. 2005.

[13] P. R. Hill, J. H. Kim, A. Basarab, D. Kouamé, D. R. Bull and A.
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