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Abstract 

In this study, we investigated different physical properties of Er0.9Sr0.1Ti0.975Cr0.025O3 

titanate prepared by a solid-state reaction that produces a cubic structure with Fd-3m 

(227) as a space group. Zero-Field Cooled and Field Cooled measurements show a 

second-order antiferromagnetic transition at Neel temperature TN = 23 K, and the 

existence of Griffiths phase at around TGP = 132 K. This soft magnetic material depicts a 

magnetic memory since it “remembers” its thermal history. The relative cooling power 

of this titanate-based sample was then measured to be around 292.27 J/kg at 5 Tesla 

and 400 J/kg at 6 Tesla. However, these values are lower than the RCP value reported 

for the most magnetic refrigerant Gd, although these results are high enough compared 

to different perovskite systems. Therefore, Er0.9Sr0.1Ti0.975Cr0.025O3 is a very suitable, 

environment-friendly magnetic refrigerant.  

Keywords 

ErTiO3; Griffiths phase; Magnetic memory; AC-susceptibility; Magnetic refrigeration.   

1. Introduction 

Materials research that involves combining various metal elements in one structure, like 

in perovskite ABO3, is gaining great interest in the scientific community [1]. This can be 
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in both A and B sites in an easy way. Amongst the different groups of ABO3 structure, we 

studied titanate-based perovskite ATiO3 for its basic structure, and smart and rich 

properties that make it ideal for producing new materials in various research fields. 

The advantage of this kind of structure is its valency and vacancy control enhancing its 

catalytic activity [2]. The BO6 octahedron makes the transfer of electron and oxygen 

easier, leading to non-stoichiometric oxygen, making this perovskite structure a very 

useful catalyst for degradation of pollutants via inducing high reducibility as noted by 

Bradha et al. [2]. The A-site cations assist the stabilization of the B-site valence making 

the electrons of the perovskite structure more active and external energy can excite 

easily [3, 4]. Thus, both the BO6 octahedron and the A-site atoms make ABO3 structure 

an active oxide. 

We are interested in  investigating the magnetic properties of ATiO3 materials for their 

wide range of applications in magnetic memory [5, 6], bolometer applications [7-9], gas 

sensors, magnetoresistance [10, 11], magnetic cooling [12-14], magneto-optical devices, 

magneto-sensor electronics, superconducting electronics, microwaves, energy 

conversion applications, spintronics [15, 16]; a field of science at the interface between 

electronics and magnetism that exploits not only the charge of the electrons but also 

their spin. 

Magnetic properties of rare earth titanate-based perovskite oxides (Gd, Tb, Dy, Ho, Er, 

Tm, Yb)TiO3 had been investigated via neutron diffraction methods as reported by 

Greedan et al. [17]. Their temperature of transition ranges from 38 K to 65 K. They are 

rare earth dependent.  

The first use of the magnetic memory effect was in ferromagnetic (FM) nanoparticles by 

Sun et al. [18, 19]. After that, it had been used in different systems; isolated or 

interacting, systems with spin-glass state, antiferromagnetic nanoparticles, etc. 

The magnetic refrigeration can be marked based on the magnetocaloric effect (MCE) by 

applying an external magnetic field. The gadolinium Gd is considered the most efficient 

magnetic refrigerant with the high value of relative cooling power (RCP) [20], which is 

defined as the quantity of heat transfer between cold and hot reservoirs of a 

thermodynamic cycle. High cost of gadolinium material is a big limiting factor, driving 

researchers to look for low-cost alternatives. 

In this paper, we first report the synthesis of a titanate-based perovskite 

Er0.9Sr0.1Ti0.975Cr0.025O3 system via solid-state reaction. Second, we present the structural 
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and magnetic studies; magnetic memory test, ac-susceptibility measurements, and 

magnetocaloric study of the Er0.9Sr0.1Ti0.975Cr0.025O3 system. We aim to study the physical 

properties of Er0.9Sr0.1Ti0.975Cr0.025O3 system, especially the magnetic cooling technique 

based on the magnetocaloric effect. 

2. Experimental method 

Based on the familiar solid state reaction at high temperatures, Er0.9Sr0.1Ti0.975Cr0.025O3 

sample was prepared via combining stoichiometric amounts of Er2O3, SrCO3, Cr2O3 and 

TiO2 by following this reaction: 

            
x y2 3 3 2 3 2 1 x 1 y 3 gas

1 x y
Er O xSrCO Cr O (1 y)TiO Er Sr Ti Cr O

2 2
− −

−
+ + + − → +                                                                      

 

The used precursors were intimately ground in alcohol using agate mortar and heated 

repeatedly at different temperatures (900 °C/24 h; 1000 °C/24 h and 1100 °C/24 h) in 

Nebertherm oven in Laboratory of Applied Physics, Faculty of Sciences, University of 

Sfax, Tunisia, accompanied by an intermediate grinding and pressing under 5 tonnes to 

obtain compact pellets. The sample was then quenched in air. 

We determined the structure and the phase purity of this system using X-ray diffraction 

(XRD) at room temperature with a scan from 10 to 100 o (Cu-Kα, radiation source) using 

D8 Advance Bruker Diffractometer that belongs to Qatar Environment and Energy 

Research Institute. 

The morphology and microstructure of the studied compound were investigated using a 

Merlin Scanning Electron Microscope (SEM) equipped with Silicon Drift Detector (SDD)-

X-Max 50 from Oxford Instruments employed for the elemental analysis of the various 

phases which belongs to ICMPE (UMR 7182), CNRS-University Paris Est-France. 

Magnetic and magnetocaloric measurements were performed at both Qatar 

Environment and Energy Research Institute (using QD Dynacool PPMS – VSM module), 

and the University of Silesia, Poland (Quantum Design – MPMS). 

3. Results and discussions 

X-ray diffraction patterns (XRD) of Er0.9Sr0.1Ti0.975Cr0.025O3 titanate are presented in Fig. 

1 [a]. The measurement was carried out in an angular range 2θ varying from 10 o to 100 

o at 298 K. Based on the International Centre for Diffraction Data (ICDD) database, the 

crystal structure of this system is cubic with Fd-3m (227) as a space group with a = 

10.0772(2) Å as a lattice parameter and V = 1023.34 Å³ as a volume. It presents also 

erbium oxide Er2O3 as a second phase, as marked in the same figure, with a cubic 

(1) 
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structure (I213); a = 10.54 Å (199) and V = 1170.91 Å³. We, then, determined the 

crystallite size of Er0.9Sr0.1Ti0.975Cr0.025O3 titanate which was estimated using the highest 

X-ray peak via Debye Scherer's formula as presented in Fig. 1 [b]: 

 

Cu

XRD

kλ
D

βcos(θ)
=                                                                       (2) 

Where k = 0.9 is a dimensionless shape factor, Cu depicts the wavelength of Cu-Kα 

radiation (Cu = 1.5406 Å), θ represents the Bragg angle of the most intense peak and β is 

the full width at half maximum of the Bragg peak. It was 41 nm presented so a nanosized 

system. This size was a little high due to the method of preparation. 

 

 

Fig. 1 [a-b]: [a] Room temperature powder X-ray diffraction (XRD) pattern of 

Er0.9Sr0.1Ti0.975Cr0.025O3 system. [b] The enlarged view shows how we determine 

crystallite size via Debye Scherer's formula. 

 

In Fig. 2 [a], we present the Scanning Electron Microscopy (SEM) images of 

Er0.9Sr0.1Ti0.975Cr0.025O3 system. It illustrates different shapes of agglomerated grains. The 

EDS spectrum of the system (Fig. 2 [b]) shows that all chemical elements are present (Er, 

Sr, Ti, Cr, and O) and there are no strange elements confirming the right composition 

and no element was lost during sintering [21-23]. Statistical evaluation of the grain size 

distribution of the studied sample was analyzed via ImageJ software (Fig. 2 [c]). The 

particle number as a function of the particle size was shown in the same figure. These 

results were fitted according to Gaussian law to estimate the average particle size which 
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is about 100 nm. Comparing both DXRD and DSEM, we note a difference between the 

crystallites size obtained from XRD patterns and the particle size extracted from SEM 

measurement (DXRD < DSEM). This dissimilarity can be attributed to the agglomeration 

phenomenon and to the fact that each grain of the material is formed by many 

crystallites [24]. Here, we can define the average agglomeration rate as the ratio of the 

average particle size by that of crystallite which is around 2.1734. 

 

 

 

 

Fig. 2 [a-c]: [a] Scanning Electron Microscopy (SEM), [b] EDS analysis spectrum and [c] 

the statistical distribution with Gaussian fit of Er0.9Sr0.1Ti0.975Cr0.025O3 system.  

 

To understand the magnetic properties of this material, Zero Field Cooled (ZFC) and 

Field Cooled (FC) modes were performed under 500 Oe magnetic field (Fig. 3 [a]). The 

[a] 
 [b] 

[c] 
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procedures of both ZFC/FC measurements are presented in Fig. 3 [b]. An important peak 

appears below 10 K which is related to the arrangement of Er3+ magnetic moments as 

reported by Raneesh et al. [23]. The minima appearing in the dM/dT plot is 

corresponding to Neel temperature TN = 23 K. 

 

 

 

 

 

 
Fig. 3 [a-b]: [a] ZFC-FC measurements of Er0.9Sr0.1Ti0.975Cr0.025O3 perovskite under 500 

Oe and the derivative of MFC versus temperature dMFC/dT. Right-side is an enlarged view 

to show ZFC-FC plots. [b] ZFC-FC of procedures. 
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Thus, the material presents a second-order antiferromagnetic-paramagnetic transition 

(AFM-PM). The minute bifurcation in ZFC-FC measurements was related to the state of 

non-magnetic Ti3+ comparing to Er3+ which presents 9.6 B making it PM at high 

temperatures [23]. It should be marked, then, that the inverse of the molar magnetic 

susceptibility 1/χm of the Er0.9Sr0.1Ti0.975Cr0.025O3 system presents a PM phase that can be 

well fitted to the Curie-Weiss law (C-W) in the PM temperature range Fig. 4 [a]. It is 

given by this formula: 

m

m

p

C

T
 =

− 
                                                           (3) 

Where χm is the molar magnetic susceptibility, Cm is the molar Curie constant and θp is 

the Weiss temperature. 

The C-W fit provides a negative Weiss temperature θp = -13.74 K confirming the 

dominance of the AFM state at low temperatures. It gives also the Cm = 8.39 K. g. emu-1 

mol-1 and so the experimental effective moment eff,exp = 8.16 B. The theoretical one is 

given by (4): 

3

2 3

eff ,th effEr
n (Er )+

+
= 

                                          

(4) 

Based on the previous formula, the eff,th = 9.10 B is not so close to the experimental 

value suggesting that the PM phase is not fully homogenous [21]. An abrupt downturn 

starting at 132 K down to 2 K suggests the possibility of existing of Griffiths phase (GP) 

[25-27]. The Griffits temperature TGP is the temperature at which the inverse of 

magnetic susceptibility deviates from C-W law. It is a characteristic temperature for 

which ferromagnetic (FM) clusters start to be formed; transition temperature [28]. 

Thus, TGP = 132 K which is also illustrated by the dM/dT plot. The TGP can be also 

determined via d(1/χm)/dT plot as presented in Fig. 4 [b] giving the same value TGP = 

132 K. The appearance of Griffits phase may be due to the presence of short-range spins 

ferromagnetically correlated above TN; short-range FM clusters in the PM region in the 

temperature range TRand ≤ T ≤ TGP, defining Griffiths regime, which can be attributed to 

the random spatial variation in magnetic exchange interactions due to the nanosized 

grains [25, 27]. TRand is the critical temperature of a random FM state where the 

susceptibility tends to diverge; random transition temperature [28, 29]. 

The GP is characterized by an exponent λ which is between zero and one, defined by (5): 
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m

Rand 1
1 / (T T )

−
  −                                          (5) 

λ means the deviation from to C-W behavior presenting the strength of GP.  This power 

law can be a changed form of the C-W law. Both cases were presented; in the PM regime 

λ = 0, so the equation (5) reduces to the formula (3). For non-zero λ, the inverse of 

magnetic susceptibility follows the equation (5) confirming so the deviation from the C-

W law. 

Fig. 4 [a] shows also the Griffiths fit using power-law formula (5) estimating so the 

values of both λ and TRand as λ = 0.3421 and TRand = 60 K. Thus, the Griffiths regime is 

observed in the temperature range of about 72 K (TGP   ̶  TRand). Such temperature range 

and λ value indicate that the GP is a little robust comparing to other values in previous 

works [25, 27-29]. 
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Fig. 4 [a-b]: [a] Inverse of molar magnetic susceptibility curves of Er0.9Sr0.1Ti0.975Cr0.025O3 

Titanate. Straight lines are belonging to Curie-Weiss law (red color) and Griffiths power 

law (blue color). Hatched surface presents the GP region. [b] The derivative of the 

inverse of molar magnetic susceptibility versus temperature d(1/χm)/dT to get TGP. 

 

To check the presence of magnetic memory effect in Er0.9Sr0.1Ti0.975Cr0.025O3 material, we 

performed the magnetization measurements in the ZFC mode with an arrest in the 

characterization for 2 hours at 50 K [5, 6] as we present in Fig. 5 [a]. The magnetic 

memory can be employed as a proof of spin-glass state at low temperatures [30]. We 

note the ZFC measurements in normal conditions as a reference and the stopped one as 

ZFC memory. The system was cooled from room temperature down to 50 K under 0 Oe 

with an arrest at 50 K for 2 hours where the magnetic field was switched off. After 2 

hours, the sample was cooled down to 2 K without applying any magnetic field. After 

reaching 2 K, the sample was warmed up to 300 K under 500 Oe and the memory test 

was then finished (Fig. 5 [b]). Comparing both plots; we note that the ZFC memory curve 

presents an anomaly at 50 K presented by a downward started at 50 K down to low 

temperatures. This illustrates that the sample “remembers/memorized” its thermal 

history of the stop. The memory effect presented by Er0.9Sr0.1Ti0.975Cr0.025O3 system is an 

obvious signal of spin-glass behavior which is appearing at 50 K. We explain that by the 

fact that when a sample remains for a period of time (2 hours in this case) at one 
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temperature, the major part of the surface magnetic moments is frozen under no applied 

magnetic field. 

 

 

 

Fig.5 [a-b]: [a] Magnetic memory effect in Er0.9Sr0.1Ti0.975Cr0.025O3. [b] Magnetic memory 

procedure. 

 

A powerful technique for describing materials is called the ac dynamic magnetic 

susceptibility [31, 32]. It is defined as the differential response of magnetization system 

to an oscillating magnetic field dM/dH [21]. It is characterized by its susceptibility 
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magnitude χ and its phase shift . It is used generally to investigate a metastable order 

[33-36]. The AC susceptibility is a complex value that is given by [33]: 

' i ''= −                                           (6) 

With χ’ is the in-phase ac susceptibility and χ’’ is the imaginary one. They are given by: 
 

' cos =                                           (7) 

'' sin =                                           (8) 

2 2' '' =  +                                          (9) 

'
arctan( )

''


 =


                                         (10) 

In this work, we have investigated the existence of GP in ac magnetic susceptibility. We 

present in Fig. 6 the in-phase ac susceptibility (χ’) of Er0.9Sr0.1Ti0.975Cr0.025O3 sample at 

different frequencies 0.9, 9.9, 99.9 and 999.9 Hz. It is clear here the appearance of the GP 

at TGP as determined by dc susceptibility.  The Griffiths phase GP in ac measurements is 

frequency-dependent as presented by the zoom in the same figure. The anomaly in the 

inset is shifting towards higher temperatures while increasing the applied frequency. As 

an example, it varied from 130 K at 0.9 Hz to 135 K at 999.9 Hz; generally, it is quantified 

by (11): 

GP

GP

T
Shift log(Freq)

T



                                          (11) 

The estimatd value in this system is about 0.11, it is more significant than that found in 

CuMnO2 by Kaushal et al. [34] with around 0.003. 
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Fig. 6: Thermal variation of the in-phase ac-susceptibility (χ’) of Er0.9Sr0.1Ti0.975Cr0.025O3 

titanate for different frequencies 0.9, 9.9, 99.9 and 999.9 Hz. Insert presents zoom 

around TGP. 

 

Soft magnetic hysteresis loops data (between ± 7 T) of Er0.9Sr0.1Ti0.975Cr0.025O3 system 

(Fig. 7 [a]) depict mostly linear behaviors at 30, 100 and 300 K confirming so the 

dominance of PM state at high temperatures. For, 2 and 10 K, the M versus H plots are 

also linear-like lines but they are not straight ones and they do not show any tendency to 

saturate proving the presence of AFM state at low temperatures [21, 33]. Greedan et al. 

[17] in their paper showed that ErTiO3 saturate at 4.2 K under a low magnetic field. This 

transformation in the material state is due to the substituting Er by Sr the fact that 

substituting with Sr dilutes the magnetism [33, 37]. 

Fig. 7 [b] shows the break of H/T excluding the existence of a superparamagnetic state 

(SPM) in the studied sample [35]. 
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Fig. 7 [a-b]: [a] Isothermal magnetization measurements of 

Er0.9Sr0.1Ti0.975Cr0.025O3 measured at 2, 10, 30, 100 and 300 K. [b] M versus H/T 

plots shows that the scaling fails excluding out the probability of presence of 

superparamagnetism. 
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Fig. 8 [a] presents the isotherms of magnetization M(H)T = const in the temperature range 

varying from 2 to 300 K for various magnetic fields up to 6 T presenting the absence of 

magnetic hysteresis. These M(H)T = const isotherms were used as a bridge to determine 

the magnetic entropy change via Maxwell relation [21, 38]: 

2

1

H

M

H H

M
S (T, H) dH

T

 
  =  

 
                                                         (12) 

Where H1 and H2 are external applied magnetic fields with
2 1H H H 0 = −  . 

The isothermal magnetization plots illustrate the presence of more than one magnetic 

phase versus temperature. Fig. 8 [b] presents the thermal entropy change (–ΔS) of 

Er0.9Sr0.1Ti0.975Cr0.025O3 system at several magnetic field strengths varying from 1 to 6 T. 

We remark that the maximum of the entropy change (–ΔSmax) is manifesting at very low 

temperatures at around 2 K. To determine plainly the ΔSmax value and to obtain the RCP 

values, we choose to fit all the plots to obtain clearly the maximum of the entropy 

change value via Lorentzian function expressed as follows [39]: 

0 2 2

c

2A w
L(x) y

4(x x ) w
= +

 − +
                                                      (13) 

With y0 presents the offset, A shows the area, w is the width of the Lorentzian and xc is 

noted as the abscissa of the peak (see the inset of Fig. 8 [b]). 

The thermal entropy change (–ΔS) of Er0.9Sr0.1Ti0.975Cr0.025O3 is increasing with the 

external applied magnetic field as presented in the same figure. 

We show in Fig. 8 [c] the variation of the RCP parameter versus the applied magnetic 

field. The titanate-based sample Er0.9Sr0.1Ti0.975Cr0.025O3 attains around 292.27 J/kg at 5 

T and 400 J/kg at 6 T allowing it to be very suitable magnetic refrigerant. These results 

are lower than those reported by the well-known magnetic refrigerant gadolinium Gd 

which presents around 410 J/kg at 5 T, although these RCP values are high enough 

compared to various other samples. We summarized in Table 1 the values of ΔSmax and 

RCP of different materials which are considered as good magnetic refrigerants versus 

the applied magnetic field. 
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Fig. 8 [a-c]: [a] Magnetization isotherms between 2 to 300 K for a maximum 

magnetic field of 6 T of Er0.9Sr0.1Ti0.975Cr0.025O3 sample. [b] Magnetic entropy 

change (-ΔS) versus temperature for different magnetic fields ranging from 1 T to 

6 T. Red curves are belonging to Lorentzian fit. The inset presents the sample 

curve explanation when Lorentzian fit is used at 6 T. [c] Relative cooling power 

(RCP). 

 

Table 1: Comparison of some values of ΔSmax and RCP of different materials versus the  

applied magnetic fields H. 

 

System 

 

-ΔSmax 

[J/(kg K)] 

 

RCP 

[J/kg] 

 

H (T) 

 

Reference 

Er0.9Sr0.1Ti0.975Cr0.025O3 11.61 292.27 5 Present work 

Er0.9Sr0.1Ti0.975Cr0.025O3 13.41 400.03 6 Present work 

Dy0.5(Sr0.7Ca0.3)0.5MnO3 4 169 5 [39] 

DyPtGa 6 131.2 5 [40]  

Gd 5 196 2 [41]  

Gd 10.2 410 5 [42]  
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La0.67Ba0.33MnO3 1.48 161 5 [43] 

 

La0.67Sr0.33Mn0.9Cr0.1O3 2 200 5 [44]  

 
 

 

The specific heat change ΔCp as a function of temperature is expressed as follows [45, 

46]:  

( )
( )0

0p

S T, H
C T, H T

T

 
  = −


                                                           

 (14) 

The thermal variation of the ΔCp of Er0.9Sr0.1Ti0.975Cr0.025O3 system over the temperature 

range 3–255 K under various magnetic fields from 1 T to 6 T is presented in Fig. 9.  

 
 

Fig. 9: Thermal variation of the specific heat ΔCp of Er0.9Sr0.1Ti0.975Cr0.025O3 sample under 

various magnetic fields from 1 T to 6 T. 

 

It is clear here that ΔCp curves for all applied magnetic fields present negative values. It 

presents also the same negative peak around very low temperatures as the –ΔS. This 

peak can affirm the magnetic correlations in this sample [47]. The ΔS < 0 and the ΔCp < 

0; here we can note that the study of specific heat capacity support strongly the 

magnetocaloric results. We summarized all the magnetocaloric parameters in Table 2. 
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Table 2: Magnetic field dependence of the maximum entropy change ΔSmax, relative 

cooling power values RCP, the maximum heat capacity ΔCp-max and the full width at half 

maximum δTFWHM of the magnetic entropy change curve. 

 

 

H (T) 

 

-ΔSmax [J/(kg K)] 

 

RCP [J/kg] 

 

ΔCp-max [J/(kg K)] 

 

δTFWHM (T) 

1 0.90 13.47 0.11 15.66 

2 3.48 44.5 0.37 17.30 

3 6.82 117.68 0.62 18.80 

4 10.56 219.09 0.79 22.18 

5 11.61 292.27 0.83 26.17 

6 13.41 400.03 0.72 30.83 

 

 

 

4. Conclusion 

Er0.9Sr0.1Ti0.975Cr0.025O3 nanomaterial presents a cubic structure with Fd-3m (227) as a 

space group. Based on magnetic measurements, it presents a second order 

antiferromagnetic transition. It illustrates also the existence of Griffiths phase at around 

TGP = 132 K. Magnetic memory exists in this system; it remembers its thermal history. 

Relative cooling power of this sample is around 292.27 J/kg at 5 T and 400 J/kg at 6 T 

making it suitable for magnetic cooling comparing to the most known magnetic 

refrigerant Gd and many other perovskite materials. 
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