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We investigate theoretically on the basis of the steady Stokes equations for a viscous
incompressible fluid the flow induced by a Stokeslet located on the centre axis of two
coaxially positioned rigid disks. The Stokeslet is directed along the centre axis. No-slip
boundary conditions are assumed to hold at the surfaces of the disks. We perform the
calculation of the associated Green’s function in large parts analytically, reducing the
spatial evaluation of the flow field to one-dimensional integrations amenable to numerical
treatment. To this end, we formulate the solution of the hydrodynamic problem for the
viscous flow surrounding the two disks as a mixed-boundary-value problem, which we then
reduce into a system of four dual integral equations. We show the existence of viscous
toroidal eddies arising in the fluid domain bounded by the two disks, manifested in the
plane containing the centre axis through adjacent counterrotating eddies. Additionally,
we probe the effect of the confining disks on the slow dynamics of a point-like particle by
evaluating the hydrodynamic mobility function associated with axial motion. Thereupon,
we assess the appropriateness of the commonly-employed superposition approximation
and discuss its validity and applicability as a function of the geometrical properties of
the system. Additionally, we complement our semi-analytical approach by finite-element
computer simulations, which reveals a good agreement. Our results may find applications
in guiding the design of microparticle-based sensing devices and electrokinetic transport
in small scale capacitors.
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1. Introduction

Manipulating colloidal particles suspended in viscous media is a challenging task and is
of paramount importance in various fields of engineering and natural sciences. Frequently,
taking into account the fluid-mediated hydrodynamic interactions between particles
moving through a liquid is essential to predict the behaviour of colloidal suspensions
and polymer solutions (Probstein 2005; Mewis & Wagner 2012). Recent advances in
micro- and nanofluidic technologies have permitted the fabrication and manufacturing
of channels with well-defined geometries and characteristic dimensions ranging from the
micro- to the nanoscale. A deep understanding of the nature of the mutual interactions
between particles and their confining interfaces is of crucial importance in guiding the
design of devices and tools for an optimal nanoscale control of biological macromolecules.
Notable examples include single-molecule manipulation (Turner et al. 1998; Campbell
et al. 2004), DNA mapping for genomic applications (Riehn et al. 2005; Reisner et al.
2005; Persson & Tegenfeldt 2010), DNA separation and sorting (Doyle et al. 2002; Cross
et al. 2007; Xia et al. 2012), and rheological probing of complex structures using Atomic
Force Microscopy cantilevers (François et al. 2008, 2009; Dufour et al. 2012; Darwiche
et al. 2013).

At these small scales, fluid flows are governed by low-Reynolds-number hydrodynamics,
where viscous effects dominate over inertial effects (Kim & Karrila 2013). Solutions for
fluid flows due to point forces, or Stokeslets, acting close to confining boundaries have
been tabulated for various types of geometries, as summarised in the classic textbook by
Happel & Brenner (1983). The study of the fluid-mediated hydrodynamic interactions in
a channel confinement has received significant attention from many researchers over the
past couple of years. In the following, we provide a survey of the current state of the art
and summarise the relevant literature in this subject.

The first attempt to address the motion of a spherical particle confined between
two infinitely extended no-slip walls dates back to Faxén (1921), who calculated in his
PhD dissertation the hydrodynamic mobility parallel to the walls. These calculations
have been performed when the particle is located in the quarter-plane or mid-plane
between the two confining walls (Happel & Brenner 1983). Later, Oseen (1928) suggested
that the hydrodynamic mobility between two walls could approximately be obtained by
superposition of the contributions resulting from each single wall. A modified coherent su-
perposition approximation has further been suggested by Benesch et al. (2003), providing
the diffusion coefficients of a Brownian sphere in confining channels. These predictions
were found to match more accurately the existing experimental data reported in the
literature.

Exact solutions for a point-force singularity acting at an arbitrary position between
two walls have first been obtained using the image technique in a seminal article by
Liron & Mochon (1976). It has been noted that the effect of the second wall becomes
important when the distance separating the particle from the closest wall is larger than
approximately one tenth of the channel width (Brenner 1999). Using this solution, Liron
(1978) further investigated the fluid transport problem of cilia between two parallel plates.
A joint analytical-numerical approach (Ganatos et al. 1980a,b) as well as a multipole
expansion technique (Swan & Brady 2010) were presented to address the motion of
an extended particle confined between two hard walls. Meanwhile, Bhattacharya &
Bławzdziewicz (2002) constructed the image system for the flow field produced by a
force multipole in a space bounded by two parallel walls using the image representation
for Stokes flow. In addition, compressibility effects were examined by Felderhof (2006,
2010a,b). In this context, Hackborn (1990) investigated the asymmetric Stokes flow
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between two parallel planes due to a rotlet singularity, the axis of which is parallel to the
boundary planes. Further, Ozarkar & Sangani (2008) prescribed an analytical approach
using the image-system technique for determining the Stokes flow around particles in a
thin film bounded by a wall and a gas-liquid interface. More recently, Daddi-Moussa-Ider
et al. (2016) have provided the frequency-dependent hydrodynamic mobility functions
between two planar elastic interfaces endowed with resistance toward shear and bending
deformation modes.

Experimentally, Dufresne et al. (2001) reported direct imaging measurements of a
colloidal particle diffusing between two parallel surfaces, finding a good agreement
with the superposition approximation suggested by Oseen. In addition, video
microscopy (Faucheux & Libchaber 1994) combined with optical tweezers (Lin et al.
2000; Tränkle et al. 2016) as well as dynamic light scattering (Lobry & Ostrowsky 1996)
have also allowed for good agreement with available theoretical predictions. Further
experimental investigations have focused on DNA conformation and diffusion in slit-like
confinements (Stein et al. 2006; Balducci et al. 2006; Strychalski et al. 2008; Tang et al.
2010; Graham 2011; Dai et al. 2013; Jones et al. 2013).

Concerning collective properties, the behaviour of suspensions in a channel bounded by
two planar walls has received a lot of attention. For instance, Bhattacharya et al. (2005)
examined the fluid-mediated hydrodynamic interactions in a suspension of spherical
particles confined between two parallel planar walls under creeping-flow conditions. In
addition, Bhattacharya (2008) considered the collective motion of a two-dimensional
periodic array of colloidal particles in a slit pore. Using a novel accelerated Stokesian-
dynamics algorithm, Baron et al. (2008) performed fully-resolved computer simulations
to investigate the collective motion of linear trains and regular square arrays of particles
suspended in a viscous fluid bounded by two parallel plates. Further, Bławzdziewicz &
Wajnryb (2008) analysed the far-field response to external forcing of a suspension of
particles in a channel. Meanwhile, Swan & Brady (2011) presented a numerical method
for computing the hydrodynamic forces exerted on particles in a suspension confined
between two parallel walls. Furthermore, Saintillan et al. (2006) employed Brownian
dynamics simulations to investigate the effect of chain flexibility on the cross-streamline
migration of short polymers in a pressure-driven flow between two flat plates. The latter
numerical study confirmed the existence of a shear-induced migration toward the channel
centreline away from the confining solid boundaries.

The hydrodynamic problem of particles freely moving between plane-parallel walls in
the presence of an incident flow has further been considered in still more details. Under
an external flow, Uspal et al. (2013) showed how shape and geometric confinement of
rigid microparticles can conveniently be tailored for self-steering. Jones (2004) made use
of a two-dimensional Fourier-transform technique to obtain an analytic expression of the
Green tensor for the Stokes equations with an incident Poiseuille flow. In addition, he
provided the elements of the resistance and mobility tensors in this slit-like geometry.
Besides, Bhattacharya et al. (2006) introduced a novel numerical algorithm based on
transformations between Cartesian and spherical representations of Stokes flow to ac-
count for an incident Poiseuille flow. Meanwhile, Staben et al. (2003) presented a novel
boundary-integral algorithm for the motion of a particle between two parallel planar
walls in Poiseuille flow. The boundary-integral method formulated in their work allowed
to directly incorporate the effects of the confining walls into the stress tensor, without
requiring discretisation of the two walls. In this context, Griggs et al. (2007) and Janssen
& Anderson (2007, 2008) employed boundary-integral methods to examine the motion of
a deformable drop between two parallel walls in Poiseuille flow, where lateral migration
towards the channel centre is observed.
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Geometric confinements significantly alter the behaviour of swimming microorganisms
and can affect the motility of self-propelling active particles in a pronounced way (Lauga
& Powers 2009; Menzel 2013, 2015; Lauga 2016; Zöttl & Stark 2016; Bechinger et al. 2016;
Ostapenko et al. 2018; Gompper et al. 2020; Shaebani et al. 2020). Surface-related effects
on microswimmers can lead to crucial implications for biofilm formation and microbial
activity. In a channel bounded by two walls, Bilbao et al. (2013) studied the locomotion
of a model nematode, finding that the swimming organism tends to swim faster and
navigate more effectively under confinement. Furthermore, Wu et al. (2015, 2016) inves-
tigated the effect of confinement on the swimming behaviour of a model eukaryotic cell
undergoing amoeboid motion. There, the swimmer has been modeled as an inextensible
membrane deploying local active force. It has been found that confinement can strongly
alter the swimming gait. In addition, Brotto et al. (2013) described theoretically the
dynamics of self-propelling active particles in rigidly confined thin liquid films. They
demonstrated that, due to hydrodynamic friction with the nearby rigid walls, confined
microswimmers do not only reorient themselves in response to flow gradients but they
can also show reorientation in uniform flows. In this context, Mathijssen et al. (2016)
investigated theoretically the hydrodynamics of self-propelling microswimmers in a thin
film. Besides, Daddi-Moussa-Ider et al. (2018) examined the behaviour of a three-sphere
microswimmer in a channel bounded by two walls, where different swimming states
have been observed. More recently, amoeboid swimming in a compliant channel was
numerically investigated (Dalal et al. 2020).

In all of the above-mentioned studies, the confining channel was assumed to be of
infinite extent or periodically replicated along the lateral directions. Instead, we here
consider the hydrodynamic problem for a point force acting near two coaxially positioned
disks of finite radius. In many biologically and industrially relevant applications, finite-
size effects become crucial for an accurate and reliable description of transport processes
ranging from the microscale to the nanoscale. Prime examples include the ionic transport
and electrokinetics in small scale capacitors (Marini Bettolo Marconi & Melchionna
2012; Thakore & Hickman 2015; Babel et al. 2018; Asta et al. 2019), electrochemo-
mechanical energy conversion in microfluidic channels (Daiguji et al. 2004), and the
rheology of droplets, capsules, or cells in constricted/structured microchannels (Park &
Dimitrakopoulos 2013; Le Goff et al. 2017; Trégouët et al. 2018, 2019), where boundary
effects may play a pivotal role.

In this contribution, we take a step toward addressing this context by presenting an
analytical theory for the viscous flow resulting from a Stokeslet singularity acting along
the centre axis of two coaxially positioned disks of no-slip surfaces. We formulate the
hydrodynamic problem as a mixed-boundary-value problem, which we then transform
into a system of dual integral equations. Along this path, we show that the solution of
the flow field in the fluid region bounded by the two disks exhibits viscous toroidal eddies.
In addition to that, we derive expressions for the hydrodynamics mobility functions and
discuss the applicability and limitations of the superposition approximation. Moreover,
we support our semi-analytical results by numerical simulations using a finite-element
method (FEM), which leads to a good agreement.

The remainder of this article is organised as follows. In Sec. 2, we formulate the problem
mathematically and derive the corresponding system of dual integral equations, from
which the solution for the hydrodynamic flow fields can be obtained. We then make use
of this solution in Sec. 3 to yield an integral expression of the mobility function of a
point-like particle slowly translating along the axis of the disks. Concluding remarks and
outlooks are contained in Sec. 4. In Appendix A, we detail the analytical derivation of
the kernel functions arising in the resulting integral equations.
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Figure 1. Schematic of the system. The surrounding viscous Newtonian fluid is set into motion
through the action of a point-force singularity located on the axis of the symmetry axis of two
coaxially positioned disks.

2. Mathematical formulation
We examine the axisymmetric flow induced by a Stokeslet singularity acting on the

axis of two coaxially positioned circular disks of equal radius R. Moreover, we suppose
that the disks are located within the planes z = −H/2 and z = H/2 with H denoting
the separation distance between the disks. Their centres are positioned on the z axis. In
addition, we assume that the surrounding viscous fluid is Newtonian, of constant dynamic
viscosity η, and that the flow is incompressible.

2.1. Governing equations
In low-Reynolds-number hydrodynamics, the fluid dynamics is governed by the Stokes

equations (Happel & Brenner 1983)

∇ · v = 0 , (2.1a)
∇ · σ + Fδ(r − r0) êz = 0 , (2.1b)

where v and σ denote, respectively, the fluid velocity field and the hydrodynamic
stress tensor. For a Newtonian fluid, the latter is given by σ = −pI + 2ηE, where p
is the pressure field and E = 1

2

(
∇v + (∇v)T

)
is the rate-of-strain tensor, with the

superscript T denoting a transpose. In addition, δ stands for the Dirac delta function,
and F is the amplitude of a stationary point force acting on the fluid at position r0 = hêz,
where −H/2 < h < H/2, with êz denoting the unit vector along the z direction. See
Fig. 1 for an illustration of the system setup. In the remainder of this article, we scale
all the lengths involved in the problem by the separation H of the two disks.

We designate by the subscript 1 the variables and parameters in the fluid region
underneath the plane containing the lower disk, for which z 6 −1/2, by the subscript 2
the fluid domain bounded by the planes z = −1/2 and z = 1/2, and by the subscript 3 the
region above the plane containing the upper disk, for which z > 1/2. Since the system is
axisymmetric, all field variables are thus functions of the radial and axial coordinates only.
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Accordingly, the Stokes equations (2.1) can be projected onto the cylindrical coordinate
system as

vr
r

+
∂vr
∂r

+
∂vz
∂z

= 0 , (2.2a)

−∂p
∂r

+ η
(
∆vr −

vr
r2

)
= 0 , (2.2b)

−∂p
∂z

+ η∆vz + Fδ(r − r0) = 0 , (2.2c)

wherein vr and vz denote the radial and axial fluid velocities, respectively, and ∆ is the
Laplace operator given by

∆ :=
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
. (2.3)

We note that the three-dimensional Dirac delta function is expressed in axisymmetric
cylindrical coordinates as δ(r − r0) = (πr)−1δ(r)δ(z − h) (Bracewell 1999).

In an unbounded viscous fluid, i.e., in the absence of the disks, the solution of
Eqs. (2.2) is given by the Oseen tensor, commonly denominated as the free-space Green
function (Kim & Karrila 2013)

vSr =
F

8πη

r (z − h)

ρ3
, vSz =

F

8πη

(
2

ρ
− r2

ρ3

)
, (2.4)

with the distance from the position of the point force ρ =
(
r2 + (z − h)

2
)1/2

. The
corresponding pressure field reads

pS =
F

4π

z − h
ρ3

. (2.5)

In the presence of the confining disks, the solution of the flow problem can be expressed
as a superposition of the solution in an unbounded fluid, given above by Eqs. (2.4)
and (2.5), and a complementary solution, the sum of the two solutions being required to
satisfy the underlying regularity and boundary conditions. Then

v = vS + v∗ , p = pS + p∗ , (2.6)

wherein v∗ and p∗ stand for the complementary solutions (also referred to as the image
solution (Blake 1971)) for the velocity and pressure fields, respectively.

For an axisymmetric Stokes flow, the general solution can be expressed in terms of two
harmonic functions φ and ψ as (Imai 1973; Kim 1983)

v∗r = z
∂φ

∂r
+
∂ψ

∂r
, v∗z = z

∂φ

∂z
− φ+

∂ψ

∂z
, p∗ = 2η

∂φ

∂z
, (2.7)

with
∆φ = 0 , ∆ψ = 0 . (2.8)

In each of the three fluid domains introduced above, the solution of Laplace’s Eqs. (2.8)
can be expressed in terms of Fourier-Bessel integrals as

φi =
F

8πη

∫ ∞
0

(
A+
i (λ)eλz +A−i (λ)e−λz

)
J0(λr) dλ , (2.9a)

ψi =
F

8πη

∫ ∞
0

(
B+
i (λ)eλz +B−i (λ)e−λz

)
J0(λr) dλ , (2.9b)

for i ∈ {1, 2, 3}, with λ denoting the wavenumber and Jk the kth-order Bessel function
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of the first kind (Abramowitz & Stegun 1972). In addition, A±i and B±i are wavenumber-
dependent unknown coefficients, to be determined from the regularity and boundary
conditions. Then, the components of the image velocity and pressure fields are given by

v∗r i = − F

8πη

∫ ∞
0

λ
((
zA+

i +B+
i

)
eλz +

(
zA−i +B−i

)
e−λz

)
J1(λr) dλ , (2.10a)

v∗z i = − F

8πη

∫ ∞
0

(
E+
i e

λz + E−i e
−λz) J0(λr) dλ , (2.10b)

p∗i =
F

4π

∫ ∞
0

λ
(
A+
i e

λz −A−i e
−λz) J0(λr) dλ , (2.10c)

for i ∈ {1, 2, 3}, where we have defined the abbreviations E±i = (1∓ λz)A±i ∓ λB
±
i .

2.2. Boundary conditions and dual integral equations
As regularity conditions, we require for the image field vanishing velocity and pressure

far away from the singularity location as ρ → ∞. This implies that A−1 = B−1 = A+
3 =

B+
3 = 0. In what follows, to simplify notations, we drop the plus sign in the fluid domain

underneath the lower disk to denote A1 = A+
1 and B1 = B+

1 , and we drop the minus
sign in the fluid domain above the upper disk to denote A3 = A−3 and B3 = B−3 .

The boundary conditions consist of requiring (a) the natural continuity of the total fluid
velocity field at the interfaces between the fluid domains, (b) vanishing total velocities at
the surfaces of the disks (the no-slip and no-permeability boundary condition (Lauga et al.
2007)), and (c) continuity of the total viscous-stress vectors at the interfaces between the
fluid domains outside the regions occupied by the disks. Mathematically, these conditions
can be expressed as

(v1 − v2)|z=−1/2 = (v2 − v3)|z=1/2 = 0 (r > 0) , (2.11a)
v1|z=−1/2 = v2|z=±1/2 = v3|z=1/2 = 0 (r < R) , (2.11b)

(σ2 − σ1) · êz|z=−1/2 = (σ3 − σ2) · êz|z=1/2 = 0 (r > R) , (2.11c)

where the components of the stress vector are expressed in cylindrical coordinates for an
axisymmetric flow field by

σi · êz = η

(
∂vri
∂z

+
∂vzi
∂r

)
êr +

(
−pi + 2η

∂vzi
∂z

)
êz , i ∈ {1, 2, 3} . (2.12)

Applying the continuity of the radial components of the fluid velocity at the surfaces
occupied by the two disks yields the expressions of the wavenumber-dependent coefficients
associated with the intermediate fluid domain bounded by the two disks as functions of
those in the lower and upper fluid domains. Defining X2 =

(
A−2 , B

−
2 , A

+
2 , B

+
2

)T and
X13 = (A1, B1, A3, B3)

T, we obtain

X2 = Q ·X13 , (2.13)

where the matrix Q is given by

Q =
(
s2 − λ2

)−1


1
2 (s+ λc) −λs − 1

2 φ
+ −λ2

1
4λs

1
2 (s− λc) − 1

4λ
2 − 1

2 φ
−

− 1
2 φ

+ λ2 1
2 (s+ λc) λs

1
4λ

2 − 1
2 φ
− − 1

4λs
1
2 (s− λc)

 . (2.14)
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Here, we have defined for convenience the abbreviations s = sinh(λ) and c = cosh(λ). In
addition, φ± = λ (λ± 1) + se−λ.

On the one hand, by addressing the no-slip velocity boundary conditions at the surfaces
of the disks prescribed by Eqs. (2.11b) and projecting the resulting equations onto the
radial and tangential directions, four integral equations on the inner domain are obtained,

∫ ∞
0

λ
(
1
2A1 −B1

)
e−

λ
2 J1(λr) dλ = ψ+

1 (r) (r < R) , (2.15a)∫ ∞
0

λ
(
1
2A3 +B3

)
e−

λ
2 J1(λr) dλ = ψ−1 (r) (r < R) , (2.15b)∫ ∞

0

(
A1 + λ

(
1
2A1 −B1

))
e−

λ
2 J0(λr) dλ = ψ+

2 (r) (r < R) , (2.15c)∫ ∞
0

(
A3 + λ

(
1
2A3 +B3

))
e−

λ
2 J0(λr) dλ = ψ−2 (r) (r < R) , (2.15d)

wherein the terms appearing on the right-hand sides in these equations are radial
functions resulting from the evaluation of the terms associated with the flow velocity
field induced by the free-space Stokeslet at the surfaces of the coaxially positioned disks.
They are explicitly given by

ψ±1 (r) =
±r
(
h± 1

2

)(
r2 +

(
h± 1

2

)2) 3
2

, ψ±2 (r) =
r2 + 2

(
h± 1

2

)2(
r2 +

(
h± 1

2

)2) 3
2

. (2.16)

On the other hand, four integral equations on the outer domain are obtained by
addressing the continuity of the hydrodynamic stress vector at z = ±1/2 prescribed
by Eq. (2.11c). They can be cast in the form∫ ∞

0

gi(λ)J1(λr) dλ = 0 (r > R) , i ∈ {1, 3} , (2.17a)∫ ∞
0

gi(λ)J0(λr) dλ = 0 (r > R) , i ∈ {2, 4} , (2.17b)

where we have defined the wavenumber-dependent quantities

g1(λ) = λ2
((

1
2A
−
2 −B

−
2

)
e
λ
2 +

(
1
2

(
A1 −A+

2

)
+B+

2 −B1

)
e−

λ
2

)
, (2.18a)

g3(λ) = λ2
((

1
2A

+
2 +B+

2

)
e
λ
2 +

(
1
2

(
A3 −A−2

)
+B3 −B−2

)
e−

λ
2

)
, (2.18b)

g2(λ) = C−e
λ
2 + λ

((
1 + λ

2

) (
A1 −A+

2

)
+ λ

(
B+

2 −B1

))
e−

λ
2 , (2.18c)

g4(λ) = C+e
λ
2 + λ

((
1 + λ

2

) (
A3 −A−2

)
+ λ

(
B3 −B−2

))
e−

λ
2 , (2.18d)

wherein C± = λ
(
(1− λ/2)A±2 ∓ λB

±
2

)
.

Inserting Eqs. (2.13) and (2.14), Eqs. (2.15) through (2.18) form a system of four dual
integral equations (Tricomi 1985) for the unknown wavenumber-dependent coefficients
regrouped in X13. A solution of such types of dual integral equations with Bessel kernels
can be obtained by the methods prescribed by Sneddon (1960, 1966) and Copson (1961).
A similar procedure has recently been employed by some of us to address the axisym-
metric flow induced by a Stokeslet near a circular elastic membrane (Daddi-Moussa-Ider
et al. 2019), and the asymmetric flow field near a finite-sized rigid disk (Daddi-Moussa-
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Ider et al. 2020). Once X13 is determined from solving the dual integral equations
derived above, the remaining wavenumber-dependent coefficients expressed by X2 follow
forthwith from Eqs. (2.13) and (2.14).

The core idea of our solution approach consists of expressing the solution of Eqs. (2.17)
as definite integrals of the forms

gi(λ) = 2λ
1
2

∫ R

0

fi(t)J 3
2
(λt) dt , i ∈ {1, 3} , (2.19a)

gi(λ) = 2λ
1
2

∫ R

0

fi(t)J 1
2
(λt) dt , i ∈ {2, 4} , (2.19b)

where fi : [0, R] → R, for i ∈ {1, 2, 3, 4}, are unknown functions to be determined.
Accordingly, the integral equations in the outer domain boundaries are automatically
satisfied upon making use of the following identity, which holds for any positive inte-
ger p (Abramowitz & Stegun 1972),∫ ∞

0

λ
1
2 Jp(λr)Jp+ 1

2
(λt) dλ = 0 (0 < t < r) . (2.20)

By solving Eqs. (2.18) for the coefficients A1, B1, A3, and B3 upon making use of
Eqs. (2.13) and (2.14), Eqs. (2.15) can be rewritten as∫ ∞

0

(2λ)
−1 (

g1(λ) + (λ− 1) e−λg3(λ) + λe−λg4(λ)
)
J1(λr) dλ = ψ+

1 (r) , (2.21a)∫ ∞
0

(2λ)
−1 (

(λ− 1) e−λg1(λ) + λe−λg2(λ) + g3(λ)
)
J1(λr) dλ = ψ−1 (r) , (2.21b)∫ ∞

0

(2λ)
−1 (

g2(λ) + λe−λg3(λ) + (λ+ 1) e−λg4(λ)
)
J0(λr) dλ = ψ+

2 (r) , (2.21c)∫ ∞
0

(2λ)
−1 (

λe−λg1(λ) + (λ+ 1) e−λg2(λ) + g4(λ)
)
J0(λr) dλ = ψ−2 (r) . (2.21d)

Next, by substituting Eqs. (2.19) into Eqs. (2.21) and interchanging the order of the
integrations with respect to the variables t and λ, the equations associated with the inner
problem can be expressed in the following final forms∫ R

0

(L5(r, t)f1(t) + L4(r, t)f3(t) + L1(r, t)f4(t)) dt = ψ+
1 (r) , (2.22a)∫ R

0

(L4(r, t)f1(t) + L1(r, t)f2(t) + L5(r, t)f3(t)) dt = ψ−1 (r) , (2.22b)∫ R

0

(L6(r, t)f2(t) + L3(r, t)f3(t) + L2(r, t)f4(t)) dt = ψ+
2 (r) , (2.22c)∫ R

0

(L3(r, t)f1(t) + L2(r, t)f2(t) + L6(r, t)f4(t)) dt = ψ−2 (r) , (2.22d)

where the kernels Li : [0, R]2 → R, for i ∈ {1, 2, 3, 4} are complex mathematical functions
that are defined and provided in Appendix A.

Equations (2.22) form a system of four Fredholm integral equations of the first
kind (Smithies 1958; Polyanin & Manzhirov 1998) for the unknown functions fi(t),
i ∈ {1, 2, 3, 4}. Due to the complicated nature of the kernel functions, we recourse to
numerical solutions.
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Figure 2. (Colour online) Log-log plot of the relative discretisation error occurring in the
computation of the amplitude of the image velocity field versus the number of discretisation
points, evaluated at various positions within the fluid domain. Here, we set R = H, h/H = 0.3,
and M = 10N . The errors are estimated relative to the corresponding values computed using a
finer grid spacing with N = 15000 and M = 150000.

2.3. Numerical solution of the integral equations and comparison with FEM simulations

We now summarise the main steps involved in the numerical computations of the
flow field. First, the integration over the intervals [0, R] in Eqs. (2.22) are partitioned
into N subintervals and each integral is approximated by the standard middle Riemann
sum (Davis & Rabinowitz 2007). The four resulting equations are evaluated at N values
of tj that are uniformly distributed over the interval [0, R] such that tj = (j−1/2)(R/N),
with j = 1, . . . , N . Secondly, the discrete values of fi(tj), with i ∈ {1, 2, 3, 4} are obtained
by solving the resulting linear system of 4N equations. Thirdly, the four integrals in
Eqs. (2.19) are converted into well-behaved definite integrals over [0, π/2] by using the
change of variable λ = tanu and thus dλ = du/ cos2 u. Thereupon, the resulting integrals
are also approximated by the middle Riemann sum, and the wavenumber-dependent
functions gi(λk = tanuk), k = 1, . . . ,M , are evaluated at discrete values of uk such
that uk = (k − 1/2)(π/2)/M . Fourthly, the values of X2 at each discrete point λk are
readily obtained by inverting the linear system of four equations given by Eqs. (2.18).
In addition, it follows from Eq. (2.13) that X13 = Q−1 · X2. Finally, the image flow
fields are obtained from Eqs. (2.10) by approximating, again, the integrals by the middle
Riemann sum.

Even though the approach employed here may seem cumbersome at a first glance, it
has the advantage of being amenable to straightforward implementation. Unlike many
direct numerical simulation techniques which generally require discretisation of the entire
three-dimensional fluid domain, or of at least an effectively two-dimenional domain when
the axial symmetry is exploited, the integral formulation presented in this work reduces
the solution of the flow problem to a set of one-dimensional integrals. Besides, the present
semi-analytical approach might serve as a motivation for various theoretical investiga-
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tions of related problems that could possibly pave the way towards real engineering
applications.

In Fig. 2, we present a log-log plot the variations of the discretisation error (Roy 2010)
associated with the numerical computation of the amplitude of the image velocity field
versus the number of discrete points used in the numerical integration of Eqs. (2.22) while
keeping M = 10N in the discretisation of Eqs. (2.19) and (2.10). The error is estimated
relative to the numerical solution on a finer gird size for N = 15000 and M = 150000 at
three different points of the fluid domain. We observe that the error decays approximately
algebraically as N−3/2 over the whole range of considered values of N and lies well below
10−3 % for N > 5000. We have checked that a similar behaviour is also found when
varying the position of the Stokeslet or the evaluation point within the fluid domain.

To validate our semi-analytical solution, we perform direct numerical simulations for
the same geometry as well. We use a piecewise quadratic finite-element discretisation of
the Stokes problem stated by Eqs. (2.2) in cylindrical coordinates. Since such an equal-
order discretisation does not satisfy the inf-sup condition, we add stabilisation terms
of local projection type (Becker & Braack 2001). The numerical domain is artificially
limited to (0, R)× (−Z,Z) with R,Z ∈ R being sufficiently large numbers so as to avoid
spurious feedback to the region of interest close to the plates. In addition, the Dirac delta
function forcing the flow is represented exactly in the variational formulation by means
of ∫ R

0

∫ Z

−Z
rδ(r − r0)φz(r) dr dz = φz(r0), (2.23)

where φz is the test function corresponding to the vertical direction. Numerically, the
singularity calls for very fine mesh resolution close to r0 and in proximity to the coaxially
positioned plates, which we accomplish by local mesh adaptivity (Braack & Richter 2006).
Further details on the discretisation method and the solution of the resulting linear
systems of equations can be found in Richter (2017).

In Fig. 3, we represent the graphs of the resulting streamlines as well as contour plots
of the total velocity field resulting from a Stokeslet singularity axisymmetrically acting at
various positions along the axis of two coaxially disposed disks of unit radius. Here, we set
the numbers of discrete points toN = 15000 andM = 150000 in our numerical evaluation
of the analytical description. The magnitude of the scaled velocity field is shown on a
logarithmic scale in order to better appreciate the difference in magnitude between the
different fluid regions. In each panel, we depict on the left-hand side the results obtained
via our semi-analytical approach derived in the present work. On the right-hand side in
each panel, we include the corresponding flow fields determined via the FEM simulations.
Good agreement between the two solution procedures is obtained over the whole fluid
domain, demonstrating the robustness and applicability of our semi-analytical approach.
Most noticeably, we observe the existence of adjacent counterrotating eddies, the axis of
rotation of which is directed along the azimuthal direction. Accordingly, the resulting flow
field in the inner region consists of toroidal eddies on account of the axisymmetric nature
of the flow (Moffatt 1964). In contrast to that, descending streamlines are obtained in
the outer region. For infinitely large disks, analogous toroidal structures have previously
been identified and proven to decay exponentially with distance from the singularity
position (Liron & Blake 1981). Moreover, we remark that the overall magnitude of the
flow field becomes less important as the point force gets closer to a confining plate. This
behaviour is accompanied by a notable increase of the asymmetry of the counterrotating
eddies.

Having derived the solution of the flow problem due to an axisymmetric Stokeslet
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Figure 3. Streamlines and contour plots of the flow field induced by a point-force singularity
acting inside two coaxially positioned disks of no-slip surfaces and of rescaled unit radius for
various values of the vertical distance h/H. In each panel, the flow velocity field obtained using
the present semi-analytical approach is displayed in the left domain corresponding to x 6 0, while
the solution obtained using FEM simulations is presented in the right domain corresponding
to x > 0 for the same set of parameters. Here, we have defined the scaled flow velocity as
V = v/(F/(8πη)).

acting near two finite-sized coaxially positioned disks, we next employ our formalism to
recover the solution earlier obtained by Liron & Mochon (1976) for a Stokeslet acting
between two parallel planar walls of infinite extent along the transverse direction.

2.4. Solution for R→∞
For infinitely large disks, the integral equations (2.21) in the inner domain become

defined for the whole axis of positive real numbers. Accordingly, the solution for the
unknown functions gi(λ), for i ∈ {1, 2, 3, 4} can be obtained using inverse Hankel
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transforms. By making use of the orthogonality property of Bessel functions (Abramowitz
& Stegun 1972) ∫ ∞

0

rJν(λr)Jν(λ′r) dr = λ−1 δ (λ− λ′) , (2.24)

we readily obtain
H · g = ψ̂ , (2.25)

where we have defined the unknown vector g = (g1, g2, g3, g4)
T, the wavenumber-

dependent matrix

H =


eλ 0 λ− 1 λ

λ− 1 λ eλ 0
0 eλ λ λ+ 1
λ λ+ 1 0 eλ

 , (2.26)

and where ψ̂ =
(
ψ̂+
1 , ψ̂

−
1 , ψ̂

+
2 , ψ̂

−
2

)T
gathers the inverse Hankel transforms of the previ-

ously introduced auxiliary functions defined by Eqs. (2.16). Specifically,

ψ̂±1 (λ) =

∫ ∞
0

rψ±1 (r)J1(λr) dr =
(
1
2 ± h

)
e−λ(

1
2±h) , (2.27a)

ψ̂±2 (λ) =

∫ ∞
0

rψ±2 (r)J0(λr) dr =
(
1
λ + 1

2 ± h
)
e−λ(

1
2±h) , (2.27b)

for |h| < 1/2. Solving the linear system of equations given by Eqs. (2.25) and (2.26) for
the unknown vector function g upon making use of Eqs. (2.13), (2.14), and (2.18) leads
to

X13 =
(
e−λh,−he−λh, eλh,−heλh

)T
. (2.28)

Accordingly, the total velocity and pressure fields in the lower and upper regions vanish
in the limit R → ∞. The corresponding solution in the intermediate fluid domain can
readily be obtained by invoking Eqs. (2.13) and (2.14).

3. Hydrodynamic mobility
Our calculation of the flow field presented in the previous section can be employed

in order to probe the effect of the two hard disks on the hydrodynamic drag acting on
an enclosed point-like particle axially moving along the coaxially positioned axis. This
effect is commonly quantified by the hydrodynamic mobility function, which relates the
velocity of a particle to the net force exerted on its surface (Leal 1980; Swan & Brady
2007; Daddi-Moussa-Ider & Gekle 2016, 2017, 2018; Driscoll & Delmotte 2019). In a bulk
Newtonian fluid of constant dynamic viscosity η, the mobility function µ of a spherical
particle of radius a is given by the familiar Stokes law, which states that in this case
the mobility is µ0 = 1/(6πηa) (Stokes 1851). In the presence of the confining disks, the
leading-order correction to the particle mobility for an axisymmetric motion along the
axis is obtained by evaluating the image flow field at the particle position as

∆µ = F−1 lim
(r,z)→(0,h)

v∗z2(r, z) . (3.1)

Evaluating the limit in the latter equation and scaling by the bulk mobility, the scaled
correction to the particle mobility is obtained as

∆µ

µ0
= −ka , (3.2)
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Figure 4. (Colour online) Variations of the correction factor of the hydrodynamic mobility as
defined by Eq. (3.3) versus R/H for various values of h/H. Horizontal dashed lines correspond
to the correction factor near two infinitely large disks as given by Eq. (3.4). Inset: Evolution of
R99/H versus h/H, where R99 is defined such that k (R99/H) = 0.99k∞, for which the correction
factor near infinitely large disks is almost recovered.

where

k =
3

4

∫ ∞
0

((
(1− λh)A+

2 − λB
+
2

)
eλh +

(
(1 + λh)A−2 + λB−2

)
e−λh

)
dλ (3.3)

is a positive dimensionless number commonly denominated as the correction factor of the
Stokes steady mobility (Happel & Brenner 1983). Unfortunately, an analytical evaluation
of this infinite integral is not auspicious. Therefore, we recourse to a numerical evaluation.

For infinitely large disks, i.e., as R → ∞, the correction factor k in Eq. (3.2) can
conveniently be cast into the simple integral form

k∞ =
3

8

∫ ∞
0

W (λ)
(
sinh2 λ− λ2

)−1
dλ , (3.4)

where we have defined the wavenumber-dependent function

W (λ) = Γ+ + Γ− + γ+ + γ− + e−2λ − β+β−λ3 − 2λ2 − 2λ− 1 , (3.5)

with

β± = 1± 2h , Γ± =
(
1 + 1

2 λ
2β2
±
)

sinh (λβ∓) , γ± = λβ± cosh (λβ∓) . (3.6)

This result is found to be in full agreement with the expression obtained by Swan &
Brady (2010), who used a two-dimensional Fourier transform technique.

In Fig. 4, we present a linear-logarithmic plot of the correction factor of the mobility
function versus the radius of the disks for various values of the singularity position.
Results are obtained by integrating Eq. (3.3) numerically. We observe that the curves
follow a sigmoid-logistic-like phenomenology, implying that the correction factor increases
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significantly in the range of small radii before it reaches a saturation value. The latter
corresponds to the correction factor predicted near two infinitely large disks given by
Eq. (3.4).

Next, in order to quantify the effect of finite disk size on the correction to the
hydrodynamics mobility, we customarily define the radius R99 for which the mobility
near infinitely large disks is essentially reached, such that k(R99) = 0.99k∞. In the inset
of Fig. 4, we display the variations of R99 versus h based on the data presented in the
main plot. We observe that R99 reaches a maximum value of about 0.62 at the mid-plane
of the channel before it monotonically decreases with h. This observation suggests that,
to a good approximation, the mobility near two infinitely large disks can adequately
be used to estimate the mobility at arbitrary position along the axis provided that the
radius-to-channel-height ratio is above 0.62. Hence, accounting for the finite-size effect
here becomes crucial only for values below this threshold.

Finally, we comment on the applicability of the often-used approximation originally
suggested by Oseen (1928) to predict the particle mobility between two boundaries by
superimposing separately the leading-order effects of each boundary. Accordingly,

∆µSup

µ0
= −kSupa , kSup = −a−1

(
∆µDisk

µ0

∣∣∣∣
b= 1

2−h
+
∆µDisk

µ0

∣∣∣∣
b= 1

2+h

)
, (3.7)

where the leading-order correction to the mobility function for axisymmetric motion
normal to one rigid circular disk has previously been obtained by Kim (1983) and is
expressed by

∆µDisk

µ0
= − 3

4π

(
3 + 5ξ2

(1 + ξ2)
2 +

3

ξ
arctan

(
1

ξ

))
a

R
, (3.8)

wherein ξ = b/R is a dimensionless parameter with b denoting the distance between
the particle and the centre of the disk. This solution was obtained by formulating the
flow problem in terms of a mixed-boundary-value problem and solving the resulting dual
integral equations using an approach analogous to that employed in the present work.
Notably, we recover for ξ → 0 the familiar correction to the hydrodynamic mobility
near an infinitely extended plane solid wall of no-slip boundary condition at its surface,
namely ∆µDisk/µ0 = −9a/(8b), as originally obtained by Lorentz using the reciprocal
theorem more than a century ago (Lorentz 1907; Lee et al. 1979).

We now assess the accuracy of the superposition approximation stated by Eq. (3.7)
by direct comparison with the exact prediction given by Eq. (3.3). In Fig. 5, we plot
the variations of the percentage relative error between the correction factors kSup and k
versus the radius of the disks R for various values of the particle position h. In the range of
small values of R, the relative error amounts to small values, typically smaller than 10%
for R < 0.1. Upon increasing R, the relative error gradually increases in a logistic-like
manner, before it saturates on a plateau value as R gets larger. The maximum error
is obtained for the particle located on the mid-plane between the two disks for h = 0
and is found to be of about 55% in the limit of infinite disk radius. Therefore, the
superposition approximation cannot be applied properly in this case. Nonetheless, as
the particle position gets closer to either disk, the maximum error notably decreases to
amount to only about 12% for h = 0.4. Consequently, the superposition approximation
can frequently be utilised in this range of values to predict the hydrodynamic mobility
for axisymmetric motion along the axis of the disks.
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Figure 5. (Colour online) Percentage relative error between the correction factor of the Stokes
steady mobility as obtained from the superposition approximation given by Eq. (3.7) and the
exact expression given by Eq. (3.3).

4. Conclusions
To summarise, we have examined the axisymmetric Stokes flow resulting from a

Stokeslet singularity acting on the axis of two coaxially positioned circular disks of
equal radius. We have formulated the solution for the viscous incompressible flow field
as a mixed-boundary-value problem, which we have then reduced into a system of dual
integral equations for four unknown wavenumber-dependent functions. Most importantly,
we have shown the existence of viscous toroidal eddies in the fluid region bounded by
the two plates. In the limit of infinitely large disks, we have successfully recovered the
classic solution by Liron & Mochon (1976) for a Stokeslet acting normal to two parallel
planar walls.

Additionally, we have provided an integral expression of the hydrodynamic mobility
function quantifying the effect of the confining plates on the motion of a point-like
particle moving along the axis of the coaxially positioned disks. Furthermore, we have
demonstrated that accounting for the finite-size effect of the disks becomes essential only
below a threshold value of the radius-to-channel height. Beyond this value, the mobility
near two infinitely large disks can appropriately be employed. Finally, we have tested
the validity and robustness of Oseen’s approximation that postulates that the particle
mobility between two boundaries could approximately be predicted by superimposing
the contributions from each boundary independently. We have found that this simplistic
approximation works quite well as the particle gets closer to either boundary but severely
breaks down when the particle is located in the mid-plane between the two disks.

The analytical approach in the present article is based on the assumption of flow
axisymmetry. The Stokes flow induced by a Stokeslet directed along an arbitrary direction
in the presence of two coaxially positioned disks would be worth being investigated in a
future study. We conjecture that this solution might be obtained by making use of the
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Green and Neumann functions supplemented by the edge function following the approach
by Miyazaki (1984). This solution can then be employed to evaluate the translational
and rotational mobility functions of particles located at arbitrary positions between the
two disks. Alternatively, the problem can possibly be approached differently by means of
multipole expansion methods involving the expression of the relevant hydrodynamic fields
using oblate spheroidal coordinates (Lee & Leal 1980). This approach has widely been
employed in the context of micromechanics of heterogeneous composite materials and
fracture analysis (Kushch & Sangani 2000; Kushch 2013). In principle, our calculations
can be extended to account for higher-order correction factors in the aspect ratio
between the radius of the disks and the distance between the particle and the bounding
plates (Swan & Brady 2010), but this would require a very challenging effort.

For applications requiring the precise manipulation of single molecules at the nanoscale
level, the no-slip boundary condition may need to be lifted. In this context, the effect of
partial slip at the surfaces of the disks is commonly characterised by assuming that the
velocity components of the fluid tangent to the surfaces of the disks is proportional to
the rate of strain at the surfaces (Lauga & Squires 2005; Lasne et al. 2008). This is an
interesting aspect that could be included in our formalism and represents a worthwhile
extension of the problem for future studies. We hope that our study will prove useful
to researchers as well as practitioners working on particulate flow problems involving
finitely sized boundaries, and pave the way toward better design and control of various
processes in micro- and nanofluidic systems.
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Appendix A. Analytical expressions for the kernel functions
In this Appendix, we provide technical details regarding the analytical derivation of

the kernel functions appearing in the system of Fredholm integral equations of the first
kind given by Eqs. (2.22) of the main body of the article.

The kernel functions can be expressed as infinite integrals over the wavenumber λ as

L1(r, t) =

∫ ∞
0

λ
1
2 e−λJ1(λr)J 1

2
(λt) dλ , (A 1a)

L2(r, t) =

∫ ∞
0

(
λ

1
2 + λ−

1
2

)
e−λJ0(λr)J 1

2
(λt) dλ , (A 1b)

L3(r, t) =

∫ ∞
0

λ
1
2 e−λJ0(λr)J 3

2
(λt) dλ , (A 1c)

L4(r, t) =

∫ ∞
0

(
λ

1
2 − λ− 1

2

)
e−λJ1(λr)J 3

2
(λt) dλ , (A 1d)

L5(r, t) =

∫ ∞
0

λ−
1
2 J1(λr)J 3

2
(λt) dλ , (A 1e)

L6(r, t) =

∫ ∞
0

λ−
1
2 J0(λr)J 1

2
(λt) dλ , (A 1f )

where (r, t) ∈ [0, R]2. It can be shown that the first four integrals can conveniently be
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expressed in closed mathematical forms as

L1(r, t) =
(

2
πt

) 1
2 1
r Im (ξ+δ+) , (A 2a)

L2(r, t) =
(

2
πt

) 1
2 (Re (Λ) + Im (δ−)) , (A 2b)

L3(r, t) =
(

2
πt

) 1
2 Re

(
Λt−1 − δ−

)
, (A 2c)

L4(r, t) =
(

2
πt

) 1
2 (Re (χ1) + Im (χ2)) , (A 2d)

where we have defined the abbreviations

ξ± = 1± it , δ± =
(
r2 + ξ2±

)− 1
2 , Λ = arcsin

(
t+ i

r

)
, σ =

r

ξ− + δ−1−
, (A 3a)

α =
t

r
, χ1 = δ−

(
r
2

(
1 + σ2

)
+ ξ−

r

)
− Λ

2α , χ2 = 1
rtδ−

+ δ−
8α

(
ξ− − rσ3

)
. (A 3b)

In addition, the integrals L5 and L6 have analytical forms and can be calculated directly
form standard integration tables or software algebra systems such as Mathematica (Wol-
fram 1999) as

L5(r, t) = 1
2

(
π
2t

) 1
2 α−1H(t− r) +

(
1

2πt

) 1
2

(
α−1 arcsin (α)−

(
1− α2

) 1
2

)
H(r − t) ,

(A 4a)

L6(r, t) =
(
π
2t

) 1
2 H(t− r) +

(
2
πt

) 1
2 arcsin(α)H(r − t) , (A 4b)

where H(·) denotes the Heaviside step function.
In the following, we will show how the integrals given by Eqs. (A 1) can be evaluated

analytically. The core idea of our approach consists of expressing these integrals in the
form of Laplace transforms of Bessel functions of the first kind (Spiegel 1965; Widder
2015),

L{Jk(z)} (p) =
(
1 + p2

)− 1
2

(
p+

(
1 + p2

) 1
2

)−k
, (A 5)

and using the recurrence relation (Abramowitz & Stegun 1972)

2k

z
Jk(z) = Jk−1(z) + Jk+1(z) . (A 6)

In addition, we will employ the following identities providing closed-form expressions
for the Bessel functions of the first kind of half-integer order in terms of the standard
trigonometric functions,

J 1
2
(z) =

(
2
πz

) 1
2 sin(z) , (A 7a)

J− 1
2
(z) =

(
2
πz

) 1
2 cos(z) . (A 7b)

Evaluation of the integral L1

By making use of the identity given by Eq. (A 7a), the integral L1 stated by Eq. (A 1a)
can be expressed as

L1(r, t) =
(

2
πt

) 1
2

∫ ∞
0

e−λJ1(λr) sin (λt) dλ . (A 8)
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Using the change of variable x = λr and Euler’s representation of the sine function, the
latter integral can be expressed as

L1(r, t) =
(

2
πt

) 1
2 1
r Im

(∫ ∞
0

e−
x
r (1−it)J1(x) dx

)
. (A 9)

This leads to Eq. (A 2a) after making use of the Laplace transform given by Eq. (A 5)
for k = 1 and p = (1− it)/r. We note that Im(z) = − Im(z̄) for z ∈ C, where z̄ denotes
the complex conjugate of z.

Evaluation of the integral L2

We next consider the integral defined by Eq. (A 1b), which can conveniently be
decomposed into two parts as

L2(r, t) = L2,1(r, t) + L2,2(r, t) , (A 10)

where

L2,1(r, t) =
(

2
πt

) 1
2

∫ ∞
0

e−λJ0(λr) sin (λt) dλ , (A 11a)

L2,2(r, t) =
(

2
πt

) 1
2

∫ t

0

du

∫ ∞
0

e−λJ0(λr) cos (λu) dλ . (A 11b)

Here, we have made use of Eq. (A 7a) together with the integral representation

sin(λt) = λ

∫ t

0

cos(λu) du . (A 12)

Using Euler’s relation together with Eq. (A 5) for k = 0, Eqs. (A 11) can be evaluated
as

L2,1(r, t) =
(

2
πt

) 1
2 Im

((
r2 + (1− it)2

)− 1
2

)
, (A 13a)

L2,2(r, t) =
(

2
πt

) 1
2 Re

(∫ t

0

(
r2 + (1− iu)2

)− 1
2 du

)
. (A 13b)

The definite integral in Eq. (A 13b) can be evaluated as

L2,2(r, t) =
(

2
πt

) 1
2 Re

(
arcsin

(
t+ i

r

))
. (A 14)

Equation (A 2b) follows forthwith after collecting terms.
It is worth mentioning that, for a given complex number z = x+iy, the arcsine function

is defined when ±x /∈ (1,∞) as (Abramowitz & Stegun 1972)

arcsin(z) = arcsin(α−) + i sign(y) ln
(
α+ +

(
α2
+ − 1

) 1
2

)
, (A 15)

where

α± = 1
2

(
(x+ 1)2 + y2

) 1
2 ± 1

2

(
(x− 1)2 + y2

) 1
2 . (A 16)

Evaluation of the integral L3

Analogously, the integral L3 defined by Eq. (A 1c) can be decomposed into two parts
as

L3(r, t) = L3,1(r, t)− L3,2(r, t) , (A 17)
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upon using the recurrence relation stated by Eq. (A 6) and setting k = 1/2 together with
the identities given by Eqs. (A 7). Here, we have defined L3,1(r, t) = t−1L2,2(r, t) and

L3,2(r, t) =
(

2
πt

) 1
2

∫ ∞
0

e−λJ0(λr) cos(λt) dλ , (A 18)

which can readily be evaluated as Eq. (A 11a) but by taking this time the real part. This
leads to Eq. (A 2c) upon collecting terms.

Evaluation of the integral L4

Finally, upon using Eq. (A 6) for k = 1/2 and the identities given by Eqs. (A 7), the
integral L4 can be decomposed into four parts

L4(r, t) = L4,1 + L4,2 − (L4,3 + L4,4) , (A 19)

where we have defined

L4,1(r, t) =
(

2
πt

) 1
2 t−1

∫ ∞
0

λ−1e−λJ1(λr) sin (λt) dλ , (A 20a)

L4,2(r, t) =
(

2
πt

) 1
2

∫ ∞
0

λ−1e−λJ1(λr) cos (λt) dλ , (A 20b)

L4,3(r, t) =
(

2
πt

) 1
2

∫ ∞
0

e−λJ1(λr) cos (λt) dλ , (A 20c)

L4,4(r, t) =
(

2
πt

) 1
2 t−1

∫ ∞
0

λ−2e−λJ1(λr) sin (λt) dλ . (A 20d)

In the following, we will make use when appropriate of the shorthand notations defined
in Eq. (A 3a). By using the integral representation of the sine function given by Eq. (A 12),
the first integral can be expressed as

L4,1(r, t) =
(

2
πt

) 1
2 t−1

∫ t

0

du

∫ ∞
0

e−λJ1(λr) cos (λu) dλ . (A 21)

Similarly, the evaluation of the indefinite integral over λ can be performed using the
Laplace transform of the Bessel function given by Eq. (A 5) to obtain

L4,1(r, t) =
(

2
πt

) 1
2 (tr)−1 Re

(∫ t

0

(
1− (1− iu)

(
r2 + (1− iu)2

)− 1
2

)
du

)
. (A 22)

The definite integral in the latter equation can then be evaluated and cast in the final
simplified form

L4,1(r, t) =
(

2
πt

) 1
2 r−1

(
1 + t−1 Im

(
δ−1−
))
. (A 23)

Next, the evaluation of the second integral is straightforward after expressing the first-
order Bessel function as a function of the zeroth and second order Bessel functions using
the recurrence relation given by Eq. (A 6) for k = 1 to obtain

L4,2(r, t) = r (2πt)
− 1

2

∫ ∞
0

e−λ (J0(λr) + J2(λr)) cos (λt) dλ , (A 24)

which can readily be evaluated as

L4,2(r, t) = r (2πt)
− 1

2 Re
(
δ−
(
1 + σ2

))
. (A 25)

The third integral can be deduced from the calculation of L1(r, t) given by Eq. (A 9),
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this time by taking the real part to obtain

L4,3 =
(

2
πt

) 1
2 r−1 Re (1− ξ−δ−) . (A 26)

Lastly, the fourth integral can be decomposed into two parts as

L4,4(r, t) = L4,4,1(r, t) + L4,4,2(r, t) , (A 27)

where L4,4,1(r, t) = (2α)−1L2,2(r, t) and

L4,4,2(r, t) = (2πt)−
1
2 r
t

∫ ∞
0

λ−1e−λJ2(λr) sin (λt) dλ . (A 28)

This integral can be handled using the recurrence formula given by Eq. (A 6) to obtain

L4,4,2(r, t) = (2πt)−
1
2 r

2

4t

∫ ∞
0

e−λ (J1(λr) + J3(λr)) sin (λt) dλ . (A 29)

The latter integral can be calculated and cast in the final simplified form

L4,4,2(r, t) = (2πt)−
1
2 (4α)

−1 (
r Im

(
δ−σ

3
)
− Im (ξ−δ−)

)
. (A 30)

By collecting terms, Eq. (A 2d) is readily obtained.
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